説明

導電性素子およびその製造方法、配線素子、情報入力装置、表示装置、ならびに電子機器

【課題】優れたスループットを実現できる導電性素子を提供する。
【解決手段】導電性素子は、第1の波面および第2の波面を有する基体と、第1の波面上に形成された導電層とを備える。導電層は、導電パターン部を形成し、第1の波面および第2の波面が、0≦(Am1/λm1)<(Am2/λm2)≦1.8(但し、Am1:第1の波面の振動の平均幅、Am2:第2の波面の振動の平均幅、λm1:第1の波面の平均波長、λm2:第2の波面の平均波長)の関係を満たす。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、導電性素子およびその製造方法、配線素子、情報入力装置、表示装置、ならびに電子機器に関する。詳しくは、基体表面に導電パターン部が形成された導電性素子に関する。
【背景技術】
【0002】
従来、ガラスやプラスチックなどからなる絶縁性基材上に所定の回路パターンの導電層を形成する方法としては、フォトリソグラフィーを利用した回路パターン形成方法が広く用いられている。この回路パターンの形成方法では、ステップ&リピート方式、またはそれに近い方式が一般的に用いられている。具体的には、この形成方法では、「金属層コーティング」→「レジスト塗布」→「露光」→「現像」→「除去」→「レジスト剥離」の工程を経て、回路パターンが形成される。このため、フォトリソグラフィーを利用した回路パターンの形成方法は、低スループットとなる。
【0003】
そこで、スループットの向上を実現すべく、スクリーン印刷による回路パターン形成方法が提案されている。このスクリーン印刷による回路パターン形成方法は、絶縁性基材上に金属ペーストなどをマスクを介してスキージで塗布し、その後焼成して所定の回路パターンの導電層を形成する方法である。スクリーン印刷による回路パターン形成方法はスループットに優れるため、種々のデバイスに対する応用が検討されている。例えば特許文献1には、スクリーン印刷を用いてタッチパネルの電極を形成する方法が開示されている。また、特許文献2には、スクリーン印刷を用いて画像表示装置の電極を形成する方法が開示されている。
【0004】
しかしながら、スクリーン印刷はマスクが高価であること、マスクを精度良く位置合わせするのが煩雑であること、マスクの穴が目詰まりし易いことなどの問題がある。このため、スクリーン印刷以外にも、優れたスループットを実現できる回路パターンの形成方法が望まれている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2009−266025号広報
【0006】
【特許文献2】特開2005−149807号広報
【発明の概要】
【発明が解決しようとする課題】
【0007】
したがって、本発明の目的は、優れたスループットを実現できる導電性素子およびその製造方法、配線素子、情報入力装置、表示装置、ならびに電子機器を提供することにある。
【課題を解決するための手段】
【0008】
上述の課題を解決するために、第1の発明は、
第1の波面および第2の波面を有する基体と、
第1の波面上に形成された導電層と
を備え、
導電層は、導電パターン部を形成し、
第1の波面および第2の波面が、以下の関係を満たす導電性素子である。
0≦(Am1/λm1)<(Am2/λm2)≦1.8
(但し、Am1:第1の波面の振動の平均幅、Am2:第2の波面の振動の平均幅、λm1:第1の波面の平均波長、λm2:第2の波面の平均波長)
【0009】
第2の発明は、
可視光の波長以下の波長を有する第1の波面と、第2の波面とを有する基体と、
第1の波面、および第2の波面のうち該第1の波面上に形成された導電層と
を備え、
導電層が、導電パターン部を形成し、
第2の波面の振動の平均幅Am2は、第1の波面の振動の平均幅Am1に比して大きい導電性素子である。
【0010】
第3の発明は、
第1の波面および第2の波面を有する基体表面に対して、導電層を形成する工程と、
基体表面に形成された導電層を除去する工程と
を備え、
除去の工程では、
第1の波面および第2の波面のうち該第1の波面上に、導電層からなる導電パターン部を形成し、
第1の波面および第2の波面が、以下の関係を満たす導電性素子の製造方法である。
0≦(Am1/λm1)<(Am2/λm2)≦1.8
(但し、Am1:第1の波面の振動の平均幅、Am2:第2の波面の振動の平均幅、λm1:第1の波面の平均波長、λm2:第2の波面の平均波長)
【0011】
第4の発明は、
可視光の波長以下の波長を有する第1の波面と、第2の波面とを有する基体表面に対して、導電層を形成する工程と、
基体表面に形成された導電層を除去する工程と
を備え、
第2の波面の振動の平均幅Am2は、第1の波面の振動の平均幅Am1に比して大きく、
第2の波面の平均波長λm2に対する振動の平均幅Am2の比率(Am2/λm1)が、1.8以下であり、
除去の工程では、
第1の波面および第2の波面のうち該第1の波面上に、導電層からなる導電パターン部を形成する導電性素子の製造方法である。
【0012】
本発明では、平面上に形成された導電層の面積は、波面上に形成された導電層の面積よりも大きいことが好ましい。平面上には、連続的に導電層が形成されているのに対して、波面上には、不連続的に導電層が形成されていることが好ましい。平面上に形成された導電層の厚さは、波面上に形成された導電層の厚さよりも厚いことが好ましい。
【0013】
本発明では、導電層の表面抵抗が、5000Ω/□以下であることが好ましい。導電層は、導電性高分子、金属ナノ粒子、およびカーボンナノチューブからなる群より選ばれる少なくとも1種を含んでいることが好ましい。導電層は、透明酸化物半導体を含んでいることが好ましい。透明酸化物半導体は、インジウム錫酸化物、または酸化亜鉛であることが好ましい。導電層は、アモルファスと多結晶との混合状態であることが好ましい。導電パターン部が、配線パターン部であることが好ましい。波面は、多数の構造体が1次元配列されてなる1次元的な波面、または多数の構造体が2次元配列されてなる2次元的な波面であることが好ましい。導電性素子は、配線素子、情報入力装置、表示装置、または電子機器に適用して好適なものである。
【0014】
本発明では、第1の波面および第2の波面が、以下の関係を満たし、
第2の波面の平均波長λ2が、可視光の波長以下であることが好ましい。
(Am1/λm1)=0、0<(Am2/λm2)≦1.8
【0015】
本発明では、第1の波面および第2の波面が、以下の関係を満たし、第1の波面の平均波長λ1が、可視光の波長以下であることが好ましい。
0<(Am1/λm1)<(Am2/λm2)≦1.8
【0016】
本発明では、第1の波面および第2の波面が、以下の関係を満たし、第2の波面の平均波長λ2が、100nm以上であることが好ましい。
(Am1/λm1)=0、0<(Am2/λm2)≦1.8
【0017】
本発明では、第1の波面および第2の波面が、以下の関係を満たし、第1の波面の平均波長λ1、および第2の波面の平均波長λ2が、100nm以上であることが好ましい。
0<(Am1/λm1)<(Am2/λm2)≦1.8
【0018】
本発明では、第2の波面上に形成された、導電層の一部からなる残留膜をさらに備え、導電層、および残留膜が、以下の関係を満たすことが好ましい。この場合、第1の波面上に形成された導電層は、第1の波面上に連続的に形成されているのに対して、第2の波面上に形成された残留膜は、第2の波面上に不連続的に形成されていることが好ましい。
S1>S2
(但し、S1:導電層の面積、S2:残留膜の面積)
【0019】
本発明では、第2の波面上に形成された、導電層の一部からなる残留膜をさらに備え、導電層、および残留膜が、以下の関係を満たすことが好ましい。
d1>d2
(但し、d1:導電層の厚さ、d2:残留膜の厚さ)
【発明の効果】
【0020】
以上説明したように、この発明によれば、優れたスループットを実現できる。
【図面の簡単な説明】
【0021】
【図1】図1Aは、本発明の第1の実施形態に係る導電性素子の一構成例を示す平面図である。図1Bは、本発明の第1の実施形態に係る導電性素子の一構成例を示す断面図である。図1Cは、本発明の第1の実施形態に係る導電性素子の第1の領域の層構成を示す断面図である。
【図2】図2Aは、図1Aに示した第2の領域の一部を拡大して表す平面図である。図2Bは、図2AのトラックT1、T3、・・・における断面図である。図2Cは、図1AのトラックT2、T4、・・・における断面図である。図2Dは、図2AのトラックT1、T3、・・・に対応する潜像形成に用いられるレーザー光の変調波形を示す略線図である。図2Eは、図2AのトラックT2、T4、・・・に対応する潜像形成に用いられるレーザー光の変調波形を示す略線図である。
【図3】図3は、図1Aに示した第2の領域の一部を拡大して表す斜視図である。
【図4】図4Aは、図2Aに示した第2の領域のトラック延在方向の断面図である。図4Bは、図2Aに示した第2の領域のθ方向の断面図である。
【図5】図5は、図1Aに示した第2の領域の一部を拡大して表す斜視図である。
【図6】図6は、図1Aに示した第2の領域の一部を拡大して表す斜視図である。
【図7】図7は、図1Aに示した第2の領域の一部を拡大して表す斜視図である。
【図8】図8は、構造体の境界が不明瞭な場合の構造体底面の設定方法について説明するための図である。
【図9】図9A〜図9Dは、構造体の底面の楕円率を変化させたときの底面形状を示す図である。
【図10】図10Aは、円錐形状または円錐台形状を有する構造体の配置の一例を示す図である。図10Bは、楕円錐形状または楕円錐台形状を有する構造体の配置の一例を示す図である。
【図11】図11Aは、基体を作製するためのロール原盤の一構成例を示す斜視図である。図11Bは、図11Aに示したロール原盤の一部を拡大して表す斜視図である。
【図12】図12Aは、図11Aに示したロール原盤の一部を拡大して表す断面図である。図12Bは、図11Aに示した第2の領域の一部を拡大して示す平面図である。
【図13】図13は、ロール原盤露光装置の一構成例を示す概略図である。
【図14】図14A〜図14Cは、本発明の第1の実施形態に係る導電性素子の製造方法の一例を説明するための工程図である。
【図15】図15A〜図15Cは、本発明の第1の実施形態に係る導電性素子の製造方法の一例を説明するための工程図である。
【図16】図16A〜図16Cは、本発明の第1の実施形態に係る導電性素子の製造方法の一例を説明するための工程図である。
【図17】図17Aは、本発明の第2の実施形態に係る導電性素子の第2の領域の一部を拡大して表す平面図である。図17Bは、本発明の第2の実施形態に係る導電性素子の第2の領域のトラックT1、T3、・・・における断面図である。図17Cは、図17AのトラックT2、T4、・・・における断面図である。図17Dは、図17AのトラックT1、T3、・・・に対応する潜像形成に用いられるレーザー光の変調波形を示す略線図である。図17Eは、図17AのトラックT2、T4、・・・に対応する潜像形成に用いられるレーザー光の変調波形を示す略線図である。
【図18】図18は、構造体の底面の楕円率を変化させたときの底面形状を示す図である。
【図19】図19Aは、基体を作製するためのロール原盤の一部を拡大して表す斜視図である。図19Bは、図19Aに示した第2の領域を拡大して表す平面図である。
【図20】図20Aは、本発明の第3の実施形態に係る導電性素子の一構成例を示す平面図である。図20Bは、本発明の第3の実施形態に係る導電性素子の一構成例を示す断面図である。図20Cは、本発明の第3の実施形態に係る導電性素子の第1の領域の層構成を示す断面図である。
【図21】図21Aは、基体を作製するためのロール原盤の一部を拡大して表す斜視図である。図21Bは、基体を作製するためのロール原盤の一部を拡大して表す断面図である。
【図22】図22Aは、本発明の第4の実施形態に係る導電性素子の一構成例を示す断面図である。図22Bは、本発明の第4の実施形態に係る導電性素子の変形例を示す断面図である。
【図23】図23Aは、本発明の第5の実施形態に係るディスク状原盤の一構成例を示す平面図である。図23Bは、図23Aに示したディスク状原盤の一部を拡大して表す平面図である。
【図24】図24は、ディスク状原盤露光装置の一構成例を示す概略図である。
【図25】図25Aは、本発明の第6の実施形態に係る導電性素子の一構成例を示す平面図である。図25Bは、本発明の第6の実施形態に係る導電性素子の第2の領域の一部を拡大して表す斜視図である。
【図26】図26Aは、本発明の第7の実施形態に係る導電性素子の一構成例を示す平面図である。図26Bは、本発明の第7の実施形態に係る導電性素子の一構成例を示す断面図である。
【図27】図27は、本発明の第8の実施形態に係る液晶表示素子の一構成例を示す斜視図である。
【図28】図28は、本発明の第9の実施形態に係るタッチパネルを備える表示装置の一構成例を示す斜視図である。
【図29】図29Aは、本発明の第9の実施形態に係るタッチパネルの第1の構成例を示す斜視図である。図29Bは、第1の基材の一構成例を示す分解斜視図である。
【図30】図30Aは、本発明の第9の実施形態に係るタッチパネルの第2の構成例を示す斜視図である。図30Bは、第1の基材の一構成例を示す分解斜視図である。
【図31】図31Aは、本発明の第10の実施形態に係るICカードの一構成例を示す平面図である。図31Bは、図31Aに示したICカードの一部を拡大して表す平面図である。
【図32】図32Aは、本発明の第11の実施形態に係る表示装置の構成の一例を示す断面図である。図32Bは、図32Aに示した配線領域を拡大して表す拡大断面図である。図32Cは、図32Aに示した非配線領域を拡大して表す拡大断面図である。
【図33】図33は、試験例2に係る光学シートのエッチング前後の分光スペクトルを示す図である。
【図34】図34Aは、実施例1に係る透明導電性シートの作製に用いた石英マスタの成形面を示す模式図である。図34Bは、実施例1に係る透明導電性シートの導通/非導通評価ポイントを示す模式図である。
【図35】図35は、エッチング時間と初期抵抗値に対する変化率の逆数(仮想厚さ変化)との関係を示すグラフである。
【図36】図36Aは、第2の領域の一部を拡大して表す斜視図である。図36Bは、第2の領域の一部を拡大して表す平面図である。
【発明を実施するための形態】
【0022】
本発明の実施形態について図面を参照しながら以下の順序で説明する。
1.第1の実施形態(波面の有無を利用して基体表面に配線を形成した例:図1A参照)
2.第2の実施形態(四方格子状に構造体を配置した例:図17A参照)
3.第3の実施形態(2種の波面の違いを利用して基体表面に配線を形成した例:図20A参照)
4.第4の実施形態(配線を基体の両面に形成した例:図22A、図22B参照)
5.第5の実施形態(ディスク状原盤の作製例:図23A、図23B参照)
6.第6の実施形態(構造体を凹状とした例:図25A、図25B参照)
7.第7の実施形態(構造体をランダムに形成した例:図26A、図26B参照)
8.第8の実施形態(表示装置に対する適用例:図27参照)
9.第9の実施形態(情報入力装置に対する適用例:図29A、図30A参照)
10.第10の実施形態(ICカードに対する適用例:図31参照)
11.第11の実施形態(表示装置に対する適用例:図32参照)
【0023】
<1.第1の実施形態>
[導電性光学素子の構成]
図1Aは、本発明の第1の実施形態に係る導電性素子の一構成例を示す平面図である。図1Bは、本発明の第1の実施形態に係る導電性素子の一構成例を示す断面図である。図1Cは、本発明の第1の実施形態に係る導電性素子の第1の領域の層構成を示す断面図である。以下では、導電性素子1の回路形成面の面内で互いに直交する2方向をX軸方向、およびY軸方向とし、その回路形成面に垂直な方向をZ軸方向と称する。
【0024】
第1の実施形態に係る導電性素子1は、交互に形成された第1の領域R1および第2の領域R2を有する基体2と、第1の領域R1および第2の領域R2のうち、第1の領域R1に配線パターン部(導電パターン部)をなすように連続的に形成された導電層4とを備える。導電層4は、例えば、導電性を有する単層膜である。ここでは、導電パターン部の一例として配線パターン部が第1の領域R1に形成される場合について説明するが、導電パターン部は配線パターン部に限定されるものではなく、導電性を有する種々のパターンとすることが可能であり、例えば電極パターン部などとすることが可能である。
【0025】
また、表面抵抗の低減の観点から、図1Cに示すように、第1の領域R1の基体表面上に、導電層4に隣接して形成された金属層5をさらに備えることが好ましい。この導電性素子1は、例えば、プリント基板、画像表示素子、情報入力装置などである。プリント基板としては、例えば、リジッド基板、フレキシブル基板、リジッドフレキシブル基板などが挙げられる。画像表示素子としては、例えば、液晶表示素子、エルクトロルミネッセンス(EL)素子(例えば有機EL素子、無機EL素子)などが挙げられる。
【0026】
(第1の領域R1、第2の領域R2
第2の領域R2の基体表面には、例えば可視光の波長以下の波長を有する波面Sw2が形成され、この波面Sw2上には導電層4が形成されていないか、もしくは導電層4が不連続的に形成されている状態となっている。波面Sw2は、例えば可視光の波長以下の配置ピッチで多数の構造体3が形成された凹凸面である。一方、第1の領域R1の基体表面には、例えば平面Sp1が形成され、この平面Sp1上には導電層4が連続的に形成されている。したがって、第2の領域R2は、隣接する第1の領域R1に形成された導電層4の間を絶縁するための絶縁領域として機能する。これに対して、第1の領域R1に連続的に形成された導電層4は、第1の領域R1の延在方向に向かって導電性を有し、配線パターン部(導電パターン部)として機能する。
【0027】
平面Sp1、および波面Sw2が以下の関係を満たすことが好ましい。
(Am1/λm1)=0、0<(Am2/λm2)≦1.8
(但し、Am1:平面Sp1の振動の平均幅、Am2:波面Sw2の振動の平均幅、λm1:平面Sp1の平均波長、λm2:波面Sw2の平均波長)
なお、平面Sp1は、振動の平均幅Am1が「0」の波面とみなすことができるため、上述のように平面Sp1の振動の平均幅Am1、平均波長λm1および比率(Am1/λm1)を定義することができる。
比率(Am2/λm2)>1.8であると、波面Sw2を転写する際に剥離不良となり波面Sw2が破壊される傾向がある。
【0028】
波面Sw2は、例えば、可視光の波長以下の波長を有する1次元または2次元的な波面であり、具体的には、可視光の波長以下の配置ピッチで多数の構造体3が1次元または2次元的に配列されてなる凹凸面である。
【0029】
波面Sw2の平均波長λm2は、好ましくは100nm以上の範囲である。平均波長λm2が100nm未満であると、波面Sw2の作製が困難となる傾向がある。
また、波面Sw2の平均波長λm2は、好ましくは100μm以下の範囲である。平均波長λm2が100μmを超えると、インプリントと膜形成の際に段差、カバレッジに問題が発生し不具合が生じる。
【0030】
第2の領域R2には導電層4が完全に存在しないことが好ましいが、第2の領域R2が絶縁領域と機能すれば導電層4が存在していてもよい。この場合、第1の領域R1に形成された導電層4の面積は、第2の領域R2に形成された導電層4の面積よりも大きいことが好ましい。具体的には、第1の領域R1には導電層4が連続的に形成されているのに対して、第2の領域R2には導電層4が島状などに不連続に形成されていることが好ましい。また、第2の領域R2に形成された導電層4の厚さが、実質的に導電性を示さないほどに、第1の領域R1に形成された導電層4の厚さよりも薄く、第2の領域R2が絶縁領域として機能するようにしてもよい。
【0031】
より具体的には、第2の領域R2には導電層4またはその一部が残留膜として完全に存在しないことが好ましいが、第2の領域R2が絶縁領域として機能する程度であれば残留膜として存在していてもよい。第2の領域R2に残留膜が存在する場合、第1の領域R1に形成された導電層4と、第2の領域R2に形成された残留膜とが、以下の関係を満たすことが好ましい。
S1>S2
(但し、S1:導電層の面積、S2:残留膜の面積)
このような関係を満たす場合、第1の領域R1には導電層4が連続的に形成されているのに対して、第2の領域R2には残留膜が島状などに不連続に形成されていることが好ましい。
【0032】
また、第2の領域R2に残留膜が存在する場合、第1の領域R1に形成された導電層4と、第2の領域R2に形成された残留膜とが、以下の関係を満たすことが好ましい。
d1>d2
(但し、d1:導電層の厚さ、d2:残留膜の厚さ)
このような関係を満たす場合、残留膜の厚さが、実質的に導電性を示さないほどに、導電層4の厚さよりも薄く、第2の領域R2が絶縁領域として機能することが好ましい。
【0033】
なお、図1Aでは、第1の領域R1に連続的に形成された導電層4、すなわち配線が、直線状の形状を有している例が示されているが、配線の形状はこれに限定されるものではなく、回路設計などに応じて所望の形状とすることが可能である。また、第2の領域R2に導電層4が不連続的などに形成されている場合には、導電層4は配線としては機能しないため、図示を省略している。すなわち、残留膜の図示を省略している。
【0034】
波面Sw2の振動の幅が最大となる位置を含むようにして、波面Sw2を一方向に向かって切断したときの断面形状は、例えば、三角波形状、正弦波形状、2次曲線もしくは2次曲線の一部を繰り返した波形状、またはこれらに近似する形状などである。2次曲線としては、円、楕円、放物線などが挙げられる。
【0035】
波面Sw2の平均波長λm2に対する振動の平均幅Am2の比率(Am2/λm2)は、1.8以下であることが好ましい。比率(Am2/λm2)が1.8を超えると、構造体を転写する際に剥離不良となり構造体が破壊される傾向がある。
【0036】
ここで、波面Sw2の平均波長λm2、および振動の平均幅Am2は、以下のようにして求めたものである。まず、導電層4の波面Sw2の振動の幅が最大となる位置を含むようにして導電性素子1を一方向に切断し、その断面を透過型電子顕微鏡(TEM:Transmission Electron Microscope)にて撮影する。次に、撮影したTEM写真から、波面Sw2の波長λ2、および振動の幅A2を求める。この測定を導電性素子1から無作為に選び出された10箇所で繰り返し行い、測定値を単純に平均(算術平均)して、波面Sw2の平均波長λm2、および振動の平均幅Am2を求める。次に、これらの平均波長λm2、および振動の平均幅Am2を用いて、波面Sw2の比率(Am2/λm2)を求める。
【0037】
以下、導電性素子1を構成する基体2、構造体3、導電層4、および金属層5について順次説明する。
【0038】
(基体)
基体2は、例えば、透明性または不透明性を有する基体である。基体2の材料としては、例えば、プラスチック材料などの有機材料、ガラスなどの無機材料を用いることができる。
【0039】
ガラスとしては、例えば、ソーダライムガラス、鉛ガラス、硬質ガラス、石英ガラス、液晶化ガラスなど(「化学便覧」基礎編、P.I-537、日本化学会編参照)が用いられる。プラスチック材料としては、透明性、屈折率、および分散などの光学特性、さらには耐衝撃性、耐熱性、および耐久性などの諸特性の観点から、ポリメチルメタアクリレート、メチルメタクリレートと他のアルキル(メタ)アクリレート、スチレンなどといったビニルモノマーとの共重合体などの(メタ)アクリル系樹脂;ポリカーボネート、ジエチレングリコールビスアリルカーボネート(CR-39)などのポリカーボネート系樹脂;(臭素化)ビスフェノールA型のジ(メタ)アクリレートの単独重合体ないし共重合体、(臭素化)ビスフェノールAモノ(メタ)アクリレートのウレタン変性モノマーの重合体及び共重合体などといった熱硬化性(メタ)アクリル系樹脂;ポリエステル特にポリエチレンテレフタレート、ポリエチレンナフタレートおよび不飽和ポリエステル、アクリロニトリル−スチレン共重合体、ポリ塩化ビニル、ポリウレタン、エポキシ樹脂、ポリアリレート、ポリエーテルスルホン、ポリエーテルケトン、シクロオレフィンポリマー(商品名:アートン、ゼオノア)などが好ましい。また、耐熱性を考慮したアラミド系樹脂の使用も可能である。
【0040】
基体2としてプラスチック材料を用いる場合、プラスチック表面の表面エネルギー、塗布性、すべり性、平面性などをより改善するために、表面処理として下塗り層を設けるようにしてもよい。この下塗り層としては、例えば、オルガノアルコキシメタル化合物、ポリエステル、アクリル変性ポリエステル、ポリウレタンなどが挙げられる。また、下塗り層を設けるのと同様の効果を得るために、基体2の表面に対してコロナ放電、UV照射処理を行うようにしてもよい。
【0041】
基体2がプラスチックフィルムである場合には、基体2は、例えば、上述の樹脂を伸延、あるいは溶剤に希釈後フィルム状に成膜して乾燥するなどの方法で得ることができる。また、基体2の厚さは、例えば25μm〜500μm程度である。
【0042】
基体2の形状としては、例えば、フィルム状、プレート状、ブロック状を挙げることができるが、特にこれらの形状に限定されるものではない。ここで、フィルムにはシートが含まれるものと定義する。
【0043】
(構造体)
図2Aは、図1Aに示した第2の領域の一部を拡大して表す平面図である。図2Bは、図2AのトラックT1、T3、・・・における断面図である。図2Cは、図1AのトラックT2、T4、・・・における断面図である。図2Dは、図2AのトラックT1、T3、・・・に対応する潜像形成に用いられるレーザー光の変調波形を示す略線図である。図2Eは、図2AのトラックT2、T4、・・・に対応する潜像形成に用いられるレーザー光の変調波形を示す略線図である。図3、図5〜図7は、図1Aに示した第2の領域の一部を拡大して表す斜視図である。図4Aは、図2Aに示した第2の領域のトラック延在方向の断面図である。図4Bは、図2Aに示した第2の領域のθ方向の断面図である。
【0044】
第2の領域R2における基体2の表面には、凸部である構造体3が多数配列されている。これにより、第2の領域R2における基体2の表面には波面Sw2が形成されている。構造体3は、例えば、基体2と別成形、または基体2と一体成形されている。構造体3と基体2とを別成形する場合には、必要に応じて構造体3と基体2との間に基底層を備えるようにしてもよい。基底層は、構造体3の底面側に構造体3と一体成形された層であり、構造体3と同様のエネルギー線硬化性樹脂組成物などを硬化してなる。基底層の厚さは、特に限定されるものではなく、必要に応じて適宜選択することができる。
【0045】
構造体3のアスペクト比(Hm/Pm)が以下の関係を満たすことが好ましい。
0<(Hm/Pm)≦1.8
(但し、Hm:構造体3の平均高さ、Pm:構造体3の平均配置ピッチ)
(Hm/Pm)>1.8であると、構造体3を転写する際に剥離不良となり構造体3が破壊される傾向がある。
【0046】
複数の構造体3の配列としては、例えば、1次元または2次元配列を用いることができる。構造体3の配列としては、例えば、規則的または不規則的な配列を用いることができ、原盤の作製方法などに応じて上記配列のうちから適切な配列を選択することが好ましい。
【0047】
構造体3は、光の反射を低減する観点からすると、反射の低減を目的とする光の波長帯域以下の短い配置ピッチ、例えば可視光以下の配置ピッチで周期的に2次元配置されていることが好ましい。ここで、配置ピッチとは、平均配置ピッチPを意味する。反射の低減を目的とする光の波長帯域は、例えば、紫外光の波長帯域、可視光の波長帯域または赤外光の波長帯域である。ここで、紫外光の波長帯域とは10nm以上360nm以下の波長帯域、可視光の波長帯域とは360nm以上830nm以下の波長帯域、赤外光の波長帯域とは830nm以上1mm以下の波長帯域をいう。具体的には、構造体3の平均配置ピッチは、好ましくは180nm以上350nm以下、より好ましくは100nm以上320nm以下、さらに好ましくは110nm以上280nm以下範囲内である。配置ピッチが180nm未満であると、構造体3の作製が困難となる傾向がある。一方、配置ピッチが350nmを超えると、可視光の回折が生じる傾向がある。
【0048】
導電性素子1の各構造体3は、基体2の表面において複数列のトラックT1、T2、T3、・・・(以下総称して「トラックT」ともいう。)をなすような配置形態を有する。本発明において、トラックとは、構造体3が列をなして直線状または曲線状に連なった部分のことをいう。また、列方向とは、基体2の成形面において、トラックの延在方向(例えばX軸方向)に直交する方向)のことをいう。
【0049】
構造体3は、隣接する2つのトラックT間において、半ピッチずれた位置に配置されている。具体的には、隣接する2つのトラックT間において、一方のトラック(例えばT1)に配列された構造体3の中間位置(半ピッチずれた位置)に、他方のトラック(例えばT2)の構造体3が配置されている。その結果、図2Aに示すように、隣接する3列のトラック(T1〜T3)間においてa1〜a7の各点に構造体3の中心が位置する六方格子パターンまたは準六方格子パターンを形成するように構造体3が配置されている。本実施形態において、六方格子パターンとは、正六角形状の格子パターンのことをいう。また、準六方格子パターンとは、正六角形状の格子パターンとは異なり、トラックの延在方向(例えばX軸方向)に引き伸ばされ歪んだ六方格子パターンのことをいう。
【0050】
構造体3が準六方格子パターンを形成するように配置されている場合には、図2Aに示すように、同一トラック(例えばT1)内における構造体3の配置ピッチP1(a1〜a2間距離)は、隣接する2つのトラック(例えばT1およびT2)間における構造体3の配置ピッチ、すなわちトラックの延在方向に対して±θ方向における構造体3の配置ピッチP2(例えばa1〜a7、a2〜a7間距離)よりも長くなっていることが好ましい。このように構造体3を配置することで、構造体3の充填密度の更なる向上を図れるようになる。
【0051】
構造体3が、成形の容易さの観点から、軸対象な錐体形状、またはトラック方向に延伸または収縮させた錐体形状を有することが好ましい。隣接する構造体同士が接合されている場合には、構造体3が、隣接する構造体3に接合されている下部を除いて軸対称な錐体形状、またはトラック方向に延伸または収縮させた錐体形状を有することが好ましい。錐体形状としては、例えば、円錐形状、円錐台形状、楕円錐形状、楕円錐台形状などを挙げることができる。ここで、錐体形状とは、上述のように、円錐形状および円錐台形状以外にも、楕円錐形状、楕円錐台形状を含む概念である。また、円錐台形状とは、円錐形状の頂部を切り落とした形状をいい、楕円錐台形状とは、楕円錐の頂部を切り落とした形状のことをいう。
【0052】
構造体3は、トラックの延在方向の幅がこの延在方向とは直交する列方向の幅よりも大きい底面を有する錐体形状であることが好ましい。具体的には、構造体3は、図3および図5に示すように、底面が長軸と短軸をもつ楕円形、長円形または卵型の錐体構造で、頂部が曲面である楕円錐形状であることが好ましい。また、図6に示すように、底面が長軸と短軸をもつ楕円形、長円形または卵型の錐体構造で、頂部が平坦である楕円錐台形状であることが好ましい。このような形状にすると、列方向の充填率を向上させることができるからである。
【0053】
反射特性の向上の観点からすると、頂部の傾きが緩やかで中央部から底部に徐々に急峻な傾きの錐体形状(図5参照)が好ましい。また、反射特性および透過特性の向上の観点からすると、中央部の傾きが底部および頂部より急峻な錐形形状(図3参照)、または、頂部が平坦な錐体形状(図6参照)であることが好ましい。構造体3が楕円錐形状または楕円錐台形状を有する場合、その底面の長軸方向が、トラックの延在方向と平行となることが好ましい。図3などでは、各構造体3は、それぞれ同一の形状を有しているが、構造体3の形状はこれに限定されるものではなく、基体表面に2種以上の形状の構造体3が形成されていてもよい。また、構造体3は、基体2と一体成形されていてもよい。
【0054】
また、図3、図5〜図7に示すように、構造体3の周囲の一部または全部に突出部6を設けることが好ましい。このようにすると、構造体3の充填率が低い場合でも、反射率を低く抑えることができるからである。具体的には例えば、突出部6は、図3、図5、および図6に示すように、隣り合う構造体3の間に設けられる。また、細長い突出部6が、図7に示すように、構造体3の周囲の全体またはその一部に設けられるようにしてもよい。この細長い突出部6は、例えば、構造体3の頂部から下部の方向に向かって延びている。突出部6の形状としては、断面三角形状および断面四角形状などを挙げることができるが、特にこれらの形状に限定されるものではなく、成形の容易さなどを考慮して選択することができる。また、構造体3の周囲の一部または全部の表面を荒らし、微細の凹凸を形成するようにしてもよい。具体的には例えば、隣り合う構造体3の間の表面を荒らし、微細な凹凸を形成するようにしてもよい。また、構造体3の表面、例えば頂部に微小な穴を形成するようにしてもよい。
【0055】
トラックの延在方向における構造体3の高さH1は、列方向における構造体3の高さH2よりも小さいことが好ましい。すなわち、構造体3の高さH1、H2がH1<H2の関係を満たすことが好ましい。H1≧H2の関係を満たすように構造体3を配列すると、トラックの延在方向の配置ピッチP1を長くする必要が生じるため、トラックの延在方向における構造体3の充填率が低下するためである。このように充填率が低下すると、反射特性の低下を招くことになる。
【0056】
構造体3の平均高さHm、平均配置ピッチPm、平均アスペクト比(Hm/Pm)がそれぞれ、波面Sw2の平均波長λm、振動の平均幅Am、比率(Am/λm)と同様であることが好ましい。
【0057】
なお、平均アスペクト比は、以下の式(1)により定義される。
平均アスペクト比=Hm/Pm・・・(1)
但し、Hm:構造体の高さ、Pm:平均配置ピッチ(平均周期)
ここで、平均配置ピッチPmは以下の式(2)により定義される。
平均配置ピッチPm=(p1+p2+・・・+p10)/10 ・・・(2)
1、p2・・・p10は、基体表面から無作為に選び出された構造体3の配置ピッチP1またはP2である。但し、P1:トラックの延在方向の配置ピッチ(トラック延在方向周期)、P2:トラックの延在方向に対して±θ方向(但し、θ=60°−δ、ここで、δは、好ましくは0°<δ≦11°、より好ましくは3°≦δ≦6°)の配置ピッチ(θ方向周期)
【0058】
ここで、平均配置ピッチPm、平均高さHm、およびアスペクト比(Hm/Pm)は、以下のようにして求めたものである。まず、導電性素子1を構造体3の頂部を含むように切断し、その断面を透過型電子顕微鏡(TEM)にて撮影する。次に、撮影したTEM写真から、構造体3の配置ピッチP(配置ピッチP1またはP2)、および構造体3の高さHを求める。この測定を導電性素子1から無作為に選び出された10箇所で繰り返し行い、測定値を単純に平均(算術平均)して、平均配置ピッチPm、および平均高さHmを求める。次に、これらの平均配置ピッチPm、および平均高さHmを用いて、アスペクト比(Hm/Pm)を求める。
【0059】
なお、構造体3のアスペクト比は全て同一である場合に限らず、各構造体3が一定の高さ分布をもつように構成されていてもよい。高さ分布を有する構造体3を設けることで、反射特性の波長依存性を低減することができる。したがって、優れた反射防止特性を有する導電性素子1を実現することができる。
【0060】
ここで、高さ分布とは、2種以上の高さ(深さ)を有する構造体3が基体2の表面に設けられていることを意味する。すなわち、基準となる高さを有する構造体3と、この構造体3とは異なる高さを有する構造体3とが基体2の表面に設けられていることを意味する。基準とは異なる高さを有する構造体3は、例えば基体2の表面に周期的または非周期的(ランダム)に設けられている。その周期性の方向としては、例えばトラックの延在方向、列方向などが挙げられる。
【0061】
構造体3の周縁部に裾部3aを設けることが好ましい。導電性光学素子の製造工程において構造体3を金型などから容易に剥離することが可能になるからである。ここで、裾部3aとは、構造体3の底部の周縁部に設けられた突出部を意味する。この裾部3aは、上記剥離特性の観点からすると、構造体3の頂部から下部の方向に向かって、なだらかに高さが低下する曲面を有することが好ましい。なお、裾部3aは、構造体3の周縁部の一部にのみ設けてもよいが、上記剥離特性の向上の観点からすると、構造体3の周縁部の全体に設けることが好ましい。また、構造体3が凹部である場合には、裾部は、構造体3である凹部の開口周縁に設けられた曲面となる。
【0062】
六方格子パターン、または準六方格子パターンを形成するように構造体3が配置されている場合には、構造体3の高さHは、構造体3の列方向の高さとする。構造体3のトラック延在方向(X方向)の高さは、列方向(Y方向)の高さよりも小さく、また、構造体3のトラック延在方向以外の部分における高さは列方向の高さとほぼ同一であるため、サブ波長構造体の高さを列方向の高さで代表する。但し、構造体3が凹部である場合、上記式(1)における構造体の高さHは、構造体の深さHとする。
【0063】
同一トラック内における構造体3の配置ピッチをP1、隣接する2つのトラック間における構造体3の配置ピッチをP2としたとき、比率P1/P2が、好ましくは1.00≦P1/P2≦1.2、または1.00<P1/P2≦1.2、より好ましくは1.00≦P1/P2≦1.1、または1.00<P1/P2≦1.1の関係を満たしている。このような数値範囲にすることで、楕円錐または楕円錐台形状を有する構造体3の充填率を向上することができるので、反射防止特性を向上することができる。
【0064】
基体表面における構造体3の充填率は、100%を上限として、65%以上、好ましくは73%以上、より好ましくは86%以上の範囲内である。充填率をこのような範囲にすることで、反射防止特性を向上することができる。充填率を向上させるためには、隣接する構造体3の下部同士を接合する、または、構造体底面の楕円率を調整などして構造体3に歪みを付与することが好ましい。
【0065】
ここで、構造体3の充填率(平均充填率)は以下のようにして求めた値である。
まず、導電性素子1の表面を走査型電子顕微鏡(SEM:Scanning Electron Microscope)を用いてTop Viewで撮影する。次に、撮影したSEM写真から無作為に単位格子Ucを選び出し、その単位格子Ucの配置ピッチP1、およびトラックピッチTpを測定する(図1B参照)。また、その単位格子Ucの中央に位置する構造体3の底面の面積Sを画像処理により測定する。次に、測定した配置ピッチP1、トラックピッチTp、および底面の面積Sを用いて、以下の式(3)より充填率を求める。
充填率=(S(hex.)/S(unit))×100 ・・・(3)
単位格子面積:S(unit)=P1×2Tp
単位格子内に存在する構造体の底面の面積:S(hex.)=2S
【0066】
上述した充填率算出の処理を、撮影したSEM写真から無作為に選び出された10箇所の単位格子について行う。そして、測定値を単純に平均(算術平均)して充填率の平均率を求め、これを基体表面における構造体3の充填率とする。
【0067】
構造体3が重なっているときや、構造体3の間に突出部6などの副構造体があるときの充填率は、構造体3の高さに対して5%の高さに対応する部分を閾値として面積比を判定する方法で充填率を求めることができる。
【0068】
図7は、構造体3の境界が不明瞭な場合の充填率の算出方法について説明するための図である。構造体3の境界が不明瞭な場合には、断面SEM観察により、図7に示すように、構造体3の高さhの5%(=(d/h)×100)に相当する部分を閾値とし、その高さdで構造体3の径を換算し充填率を求めるようにする。構造体3の底面が楕円である場合には、長軸および短軸で同様の処理を行う。
【0069】
図8は、構造体3の底面の楕円率を変化させたときの底面形状を示す図である。図8A〜図8Dに示す楕円の楕円率はそれぞれ、100%、110%、120%、141%である。このように楕円率を変化させることで、基体表面における構造体3の充填率を変化させることができる。構造体3が準六方格子パターンを形成する場合には、構造体底面の楕円率eは、100%<e<150%以下であることが好ましい。この範囲にすることで、構造体3の充填率を向上し、優れた反射防止特性を得ることができるからである。
【0070】
ここで、楕円率eは、構造体底面のトラック方向(X方向)の径をa、それとは直交する列方向(Y方向)の径をbとしたときに、(a/b)×100で定義される。なお、構造体3の径a、bは以下のようにして求めた値である。導電性素子1の表面を走査型電子顕微鏡(SEM:Scanning Electron Microscope)を用いてTop Viewで撮影し、撮影したSEM写真から無作為に構造体3を10個抽出する。次に、抽出した構造体3それぞれの底面の径a、bを測定する。そして、測定値a、bそれぞれを単純に平均(算術平均)して径a、bの平均値を求め、これを構造体3の径a、bとする。
【0071】
図9Aは、円錐形状または円錐台形状を有する構造体3の配置の一例を示す。図9Bは、楕円錐形状または楕円錐台形状を有する構造体3の配置の一例を示す。図9Aおよび図9Bに示すように、構造体3が、その下部同士を重ね合うようにして接合されていていることが好ましい。具体的には、構造体3の下部が、隣接関係にある構造体3の一部または全部の下部と接合されていることが好ましい。より具体的には、トラック方向において、θ方向において、またはそれら両方向において、構造体3の下部同士を接合することが好ましい。より具体的には、トラック方向において、θ方向において、またはそれら両方向において、構造体3の下部同士を接合することが好ましい。図9A、図9Bでは、隣接関係にある構造体3の全部の下部を接合する例が示されている。このように構造体3を接合することで、構造体3の充填率を向上することができる。構造体同士は、屈折率を考慮した光路長で使用環境下の光の波長帯域の最大値の1/4以下の部分で接合されていることが好ましい。これにより、優れた反射防止特性を得ることができる。
【0072】
図9Bに示すように、同一トラック内において隣接する構造体3の下部同士が重ね合わされて第1の接合部aが形成されるとともに、隣接するトラック間において隣接する構造体3の下部同士が重ね合わされて第2の接合部2が形成される。第1の接合部aと第2の接合部bとの交点に交点部cが形成される。交点部cの位置は、例えば、第1の接合部a、および第2の接合部bの位置よりも低くなっている。楕円錐形状または楕円錐台形状を有する構造体3の下部同士を接合した場合には、例えば、接合部a、接合部b、交点部cの順序でそれらの高さが低くなる。
【0073】
配置ピッチP1に対する径2rの比率((2r/P1)×100)が、85%以上、好ましくは90%以上、より好ましくは95%以上である。このような範囲にすることで、構造体3の充填率を向上し、反射防止特性を向上できるからである。比率((2r/P1)×100)が大きくなり、構造体3の重なりが大きくなりすぎると反射防止特性が低減する傾向にある。したがって、屈折率を考慮した光路長で使用環境下の光の波長帯域の最大値の1/4以下の部分で構造体同士が接合されるように、比率((2r/P1)×100)の上限値を設定することが好ましい。ここで、配置ピッチP1は、構造体3のトラック方向の配置ピッチ、径2rは、構造体底面のトラック方向の径である。なお、構造体底面が円形である場合、径2rは直径となり、構造体底面が楕円形である場合、径2rは長径となる。
【0074】
(導電層)
導電層4は、例えば、透明導電層などである。透明導電層は、例えば、無機透明導電膜である。導電層4は、例えば単層膜である。
【0075】
無機透明導電膜は、透明酸化物半導体を主成分としていることが好ましい。透明酸化物半導体としては、例えば、SnO2、InO2、ZnOおよびCdOなどの二元化合物、二元化合物の構成元素であるSn、In、ZnおよびCdのうちの少なくとも一つの元素を含む三元化合物、または多元系(複合)酸化物を用いることができる。透明酸化物半導体の具体例としては、例えばインジウム錫酸化物(ITO)、酸化亜鉛(ZnO)、アルミドープ酸化亜鉛(AZO(Al23、ZnO))、SZO、フッ素ドープ酸化錫(FTO)、酸化錫(SnO2)、ガリウムドープ酸化亜鉛(GZO)、酸化インジウム亜鉛(IZO(In23、ZnO))などが挙げられる。特に、信頼性の高さ、および抵抗率の低さなどの観点から、インジウム錫酸化物(ITO)が好ましい。無機透明導電膜を構成する材料は、導電性の向上の観点からすると、アモルファスと多結晶との混合状態であることが好ましい。
【0076】
導電層4を構成する材料として、金属膜を含んでも良い。金属膜の材料としては、例えば、Ag、Al、Au、Pt、Pd、Ni、Cr、Nb、W、Mo、Ti、およびCuからなる群から選ばれる少なくとも1種を用いることができる。また、導電層4が、導電性高分子、金属ナノ粒子、およびカーボンナノチューブからなる群より選ばれる少なくとも1種を主成分として含むようにしてもよい。
【0077】
第1の領域R1における導電層4の表面抵抗は、5000Ω/□以下であることが好ましい。5000Ω/□を超えると、抵抗が増大しすぎて電極として使用できなくなる傾向がある。
【0078】
[ロール原盤の構成]
図11Aは、基体を作製するためのロール原盤の一構成例を示す斜視図である。図11Bは、図11Aに示したロール原盤の一部を拡大して表す斜視図である。ロール原盤11は、上述した基体表面に構造体3を成形するための原盤である。ロール原盤11は、例えば、円柱状または円筒状の形状を有し、その円柱面または円筒面には多数の第1の領域R1および第2の領域R2が交互に設定されている。図11Aおよび図11Bでは、第1の領域R1および第2の領域R2が周方向に向かって、リング状に形成されている場合が示されているが、第1の領域R1および第2の領域R2の形状はこの例に限定されるものではなく、所望とする配線の形状、すなわち第1の領域R1に形成する導電層4の形状に応じて適宜選択される。ロール原盤11の材料は、例えばガラスを用いることができるが、この材料に特に限定されるものではない。
【0079】
図12Aは、図11Aに示したロール原盤の一部を拡大して表す断面図である。図12Bは、図11Aに示した第2の領域の一部を拡大して示す平面図である。ロール原盤11の第2の領域R2には、例えば、凹部である構造体12が可視光の波長以下のピッチで多数配置され、第1の領域R1には、例えば、凹部である構造体12が形成されず平面状とされている。第2の領域R2の多数の構造体3は、隣接する3列のトラック(T1〜T3)間においてa1〜a7の各点に構造体3の中心が位置する六方格子パターンまたは準六方格子パターンを形成するように配置されている。このような六方格子パターンまたは準六方格子パターンは、後述するロール原盤露光装置を用い、2次元パターンが空間的にリンクし、1トラック毎に極性反転フォマッター信号と記録装置の回転コントロラーを同期させ信号を発生し、角速度一定(CAV:Constant Angular Velocity)で適切な送りピッチでパターニングすることにより記録することができる。極性反転フォマッター信号の周波数とロールの回転数を適切に設定することにより、所望の記録領域に空間周波数が一様な格子パターンを形成することが可能である。
【0080】
[露光装置の構成]
図13は、ロール原盤露光装置の一構成例を示す概略図である。以下、図13を参照して、ロール原盤露光装置の構成について説明する。なお、このロール原盤露光装置は、例えば、光学ディスク記録装置をベースとして構成することが可能である。
【0081】
レーザー光源21は、記録媒体としての原盤11の表面に着膜されたレジストを露光するための光源であり、例えば波長λ=266nmの記録用のレーザー光14を発振するものである。レーザー光源21から出射されたレーザー光14は、平行ビームのまま直進し、電気光学素子(EOM:Electro Optical Modulator)22へ入射する。電気光学素子22を透過したレーザー光14は、ミラー23で反射され、変調光学系25に導かれる。
【0082】
ミラー23は、偏光ビームスプリッタで構成されており、一方の偏光成分を反射し他方の偏光成分を透過する機能をもつ。ミラー23を透過した偏光成分はフォトダイオード24で受光され、その受光信号に基づいて電気光学素子22を制御してレーザー光14の位相変調を行う。
【0083】
変調光学系25において、レーザー光14は、集光レンズ26により、ガラス(SiO2)などからなる音響光学素子(AOM:Acousto-Optic Modulator)27に集光される。レーザー光14は、音響光学素子27により強度変調され発散した後、レンズ28によって平行ビーム化される。変調光学系25から出射されたレーザー光14は、ミラー31によって反射され、移動光学テーブル32上に水平かつ平行に導かれる。
【0084】
移動光学テーブル32は、ビームエキスパンダ33、および対物レンズ34を備えている。移動光学テーブル32に導かれたレーザー光14は、ビームエキスパンダ33により所望のビーム形状に整形された後、対物レンズ34を介して、原盤11上のレジスト層へ照射される。原盤11は、スピンドルモータ35に接続されたターンテーブル36の上に載置されている。そして、原盤11を回転させるとともに、レーザー光14を原盤11の高さ方向に移動させながら、レジスト層へレーザー光14を間欠的に照射することにより、レジスト層の露光工程が行われる。形成された潜像は、円周方向に長軸を有する略楕円形になる。レーザー光14の移動は、移動光学テーブル32の矢印R方向への移動によって行われる。
【0085】
露光装置は、図2Aに示した六方格子または準六方格子の2次元パターンに対応する潜像をレジスト層に形成するための制御機構37を備えている。制御機構37は、フォマッター29とドライバ30とを備える。フォマッター29は、極性反転部を備え、この極性反転部が、レジスト層に対するレーザー光14の照射タイミングを制御する。ドライバ30は、極性反転部の出力を受けて、音響光学素子27を制御する。
【0086】
このロール原盤露光装置では、2次元パターンが空間的にリンクするように1トラック毎に極性反転フォマッター信号と記録装置の回転コントロラーを同期させ信号を発生し、音響光学素子27により強度変調している。角速度一定(CAV)で適切な回転数と適切な変調周波数と適切な送りピッチでパターニングすることにより、六方格子または準六方格子パターンを記録することができる。例えば、円周方向の周期を315nm、円周方向に対して約60度方向(約−60度方向)の周期を300nmにするには、送りピッチを251nmにすればよい(ピタゴラスの法則)。極性反転フォマッター信号の周波数はロールの回転数(例えば1800rpm、900rpm、450rpm、225rpm)により変化させる。例えば、ロールの回転数1800rpm、900rpm、450rpm、225rpmそれぞれに対向する極性反転フォマッター信号の周波数は、37.70MHz、18.85MHz、9.34MHz、4、71MHzとなる。所望の記録領域に空間周波数(円周315nm周期、円周方向約60度方向(約−60度方向)300nm周期)が一様な準六方格子パターンは、遠紫外線レーザー光を移動光学テーブル32上のビームエキスパンダ(BEX)33により5倍のビーム径に拡大し、開口数(NA)0.9の対物レンズ34を介して原盤11上のレジスト層に照射し、微細な潜像を形成することにより得られる。
【0087】
[導電性素子の製造方法]
以下、図13〜図16を参照しながら、本発明の第1の実施形態に係る導電性素子1の製造方法の一例について説明する。
【0088】
(レジスト成膜工程)
まず、図14Aに示すように、円柱状または円筒状のロール原盤11を準備する。このロール原盤11は、例えばガラス原盤である。次に、図14Bに示すように、ロール原盤11の表面にレジスト層13を形成する。レジスト層13の材料としては、例えば有機系レジスト、および無機系レジストのいずれを用いてもよい。有機系レジストとしては、例えばノボラック系レジストや化学増幅型レジストを用いることができる。また、無機系レジストとしては、例えば、1種または2種以上含む金属化合物を用いることができる。
【0089】
(露光工程)
次に、図14Cに示すように、上述したロール原盤露光装置を用いて、ロール原盤11を回転させると共に、レーザー光(露光ビーム)15をレジスト層13に照射する。このとき、レーザー光14をロール原盤11の高さ方向(円柱状または円筒状のロール原盤11の中心軸に平行な方向)に移動させながら、レーザー光14を照射する。この際、配線パターン部間の絶縁領域に対応する第2の領域R2のみに潜像を形成し露光部とするのに対して、配線パターン部に対応する第1の領域R1は露光せず、非露光部とする。レーザー光14の軌跡に応じた潜像15は、例えば、可視光の波長以下のピッチで形成される。
【0090】
潜像15は、例えば、ロール原盤表面において複数列のトラックをなすように配置されるとともに、六方格子パターンまたは準六方格子パターンを形成する。潜像15は、例えば、トラックの延在方向に長軸方向を有する楕円形状である。
【0091】
(現像工程)
次に、例えば、ロール原盤11を回転させながら、レジスト層13上に現像液を滴下して、図15Aに示すように、レジスト層13を現像処理する。図示するように、レジスト層13をポジ型のレジストにより形成した場合には、レーザー光14で露光した露光部は、非露光部と比較して現像液に対する溶解速度が増すので、潜像(露光部)16に応じたパターンがレジスト層13に形成される。これにより、第2の領域R2のレジスト層13には、六方格子パターン、または準六方格子パターンなどの開口部が形成されるのに対して、第1の領域R1のレジスト層13には、開口部が形成されず、第1の領域R1全体はレジスト層13に覆われた状態が維持される。すなわち、第2の領域R2のみに開口パターンを有するマスクがロール原盤表面に形成される。
【0092】
(エッチング工程)
次に、ロール原盤11の上に形成されたレジスト層13のパターン(レジストパターン)をマスクとして、ロール原盤11の表面をロールエッチング処理する。これにより、ロール原盤表面のうち第2の領域R2では、開口部を介してエッチングが進行し、図15Bに示すように、第2の領域R2には、トラックの延在方向に長軸方向をもつ楕円錐形状または楕円錐台形状などの構造体(凹部)12が形成される。一方、ロール原盤表面のうち第1の領域R1では、この領域全体がレジスト層13に覆われているため、エッチングは施されず、平面状のロール原盤表面が維持される。エッチング方法としては、例えばドライエッチングを用いることができる。
以上により、目的とするロール原盤11が得られる。
【0093】
(転写工程)
次に、例えば、図15Cに示すように、ロール原盤11と転写材料15を塗布したフィルムなどの基体2を密着させ、紫外線などを照射して転写材料15を硬化させた後、硬化した転写材料15と一体となった基体2を剥離する。
【0094】
転写材料は、例えば、紫外線硬化材料と、開始剤とからなり、必要に応じてフィラーや機能性添加剤などを含んでいる。
【0095】
紫外線硬化材料は、例えば、単官能モノマー、二官能モノマー、多官能モノマーなどからなり、具体的には、以下に示す材料を単独または、複数混合したものである。
単官能モノマーとしては、例えば、カルボン酸類(アクリル酸)、ヒドロキシ類(2−ヒドロキシエチルアクリレート、2−ヒドロキシプロピルアクリレート、4−ヒドロキシブチルアクリレート)、アルキル、脂環類(イソブチルアクリレート、t−ブチルアクリレート、イソオクチルアクリレート、ラウリルアクリレート、ステアリルアクリレート、イソボニルアクリレート、シクロヘキシルアクリレート)、その他機能性モノマー(2−メトキシエチルアクリレート、メトキシエチレンクリコールアクリレート、2−エトキシエチルアクリレート、テトラヒドロフルフリルアクリレート、ベンジルアクリレート、エチルカルビトールアクリレート、フェノキシエチルアクリレート、N,N-ジメチルアミノエチルアクリレート、N,N-ジメチルアミノプロピルアクリルアミド、N,N−ジメチルアクリルアミド、アクリロイルモルホリン、N−イソプロピルアクリルアミド、N,N−ジエチルアクリルアミド、N−ビニルピロリドン、2−(パーフルオロオクチル)エチル アクリレート、3−パーフルオロヘキシル−2−ヒドロキシプロピルアクリレート、3−パーフルオロオクチルー2−ヒドロキシプロピル アクリレート、2−(パーフルオロデシル)エチル アクリレート、2−(パーフルオロー3−メチルブチル)エチル アクリレート)、2,4,6−トリブロモフェノールアクリレート、2,4,6−トリブロモフェノールメタクリレート、2−(2,4,6−トリブロモフェノキシ)エチルアクリレート)、2−エチルヘキシルアクリレートなどを挙げることができる。
【0096】
二官能モノマーとしては、例えば、トリ(プロピレングリコール)ジアクリレート、トリメチロールプロパン ジアリルエーテル、ウレタンアクリレートなどを挙げることができる。
【0097】
多官能モノマーとしては、例えば、トリメチロールプロパントリアクリレート、ジペンタエリスリトールペンタ及びヘキサアクリレート、ジトリメチロールプロパンテトラアクリレートなどを挙げることができる。
【0098】
開始剤としては、例えば、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、1−ヒドロキシ−シクロヘキシルフェニルケトン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オンなどを挙げることができる。
【0099】
フィラーとしては、例えば、無機微粒子および有機微粒子のいずれも用いることができる。無機微粒子としては、例えば、SiO2、TiO2、ZrO2、SnO2、Al23などの金属酸化物微粒子を挙げることができる。
【0100】
機能性添加剤としては、例えば、レベリング剤、表面調整剤、消泡剤などを挙げることができる。基体2の材料としては、例えば、メチルメタクリレート(共)重合体、ポリカーボネート、スチレン(共)重合体、メチルメタクリレート−スチレン共重合体、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、ポリエステル、ポリアミド、ポリイミド、ポリエーテルスルフォン、ポリスルフォン、ポリプロピレン、ポリメチルペンテン、ポリ塩化ビニル、ポリビニルアセタール、ポリエーテルケトン、ポリウレタン、ガラスなどが挙げられる。
【0101】
基体2の成形方法は特に限定されず、例えば射出成形法、押し出し成形法、キャスト成形法などを用いることができる。必要に応じて、コロナ処理などの表面処理を基体表面に施すようにしてもよい。
【0102】
(金属層成膜工程)
次に、必要に応じて、基体表面の第1の領域R1および第2の領域R2に金属層5を形成する。金属層5の成膜方法としては、例えば、熱CVD、プラズマCVD、光CVDなどのCVD法(Chemical Vapor Deposition(化学蒸着法):化学反応を利用して気相から薄膜を析出させる技術)のほか、真空蒸着、プラズマ援用蒸着、スパッタリング、イオンプレーティングなどのPVD法(Physical Vapor Deposition(物理蒸着法):真空中で物理的に気化させた材料を基板上に凝集させ、薄膜を形成する技術)を用いることができる。
【0103】
(導電層の成膜工程)
次に、図16Bに示すように、基体表面の第1の領域R1および第2の領域R2に導電層4を成膜する。これにより、第1の領域R1と第2の領域R2とで異なる状態の導電層4が形成される。導電層4の成膜方法としては、例えば、ドライプロセスまたはウエットプロセスによる成膜方法を用いることができる。具体的な成膜方法としては、例えば、化学的作製法、または物理的作製法を用いることができる。化学的作製法としては、例えば、熱CVD、プラズマCVD、光CVDなどのCVD(Chemical Vapor Deposition)法、スプレー法、ディップ法、粉末塗布法などを挙げることができる。物理的作製法としては、例えば、真空蒸着法、スパッタ法、イオンプレーティング法、パルスレーザ蒸着法などを用いることができる。また、基体2を加熱しながら、導電層4を形成するようにしてもよい。次に、必要に応じて、導電層4に対してアニール処理を施す。これにより、導電層4が、例えばアモルファスと多結晶との混合状態となる。
【0104】
(導電層の除去工程)
次に、図16Cに示すように、導電層4が形成された基体表面に対して、エッチング処理を施す。これにより、第2の領域R2では導電層4が除去されるのに対して、第1の領域R1では導電層4が残留する。したがって、第1の領域R1に形成された導電層4は配線として機能するのに対して、第2の領域R2は上記配線間の絶縁領域として機能する。エッチングとしては、ウェットエッチングまたはドライエッチングを用いることができ、両者を組み合わせて用いるようにしてもよい。ウエットエッチングのエッチング液としては、例えば、硫酸、塩酸、硝酸および塩化第二鉄のうち1種類以上が用いることができる。また、シュウ酸、リン酸・酢酸・硝酸の混酸、硝酸第二セリウムアンモニウム水溶液をエッチング液として用いるようにしてもよい。ドライエッチングとしては、プラズマエッチング、反応性イオンエッチング(RIE:Reactive Ion Etching)を用いることができる。
【0105】
ここで、除去とは、(1)第2の領域R2から導電層4を完全になくすこと、(2)第2の領域R2にて導電性を示さない程度まで導電層4を不連続な状態(例えば島状の状態)にすること、または(3)第2の領域R2にて導電性を示さない程度の薄さまで導電層4を薄くすることを意味する。
【0106】
(洗浄工程)
次に、必要に応じて、エッチング処理を施した基体表面を洗浄する。
以上により、目的とする導電性素子1が得られる。
【0107】
第1の実施形態では、平面Sp1および波面Sw2を有する基体表面に対して導電層4を形成する。そして、平面Sp1および波面Sw2に形成した導電層4の状態の違いを利用して、平面Sp1および波面Sw2の波面のうち、波面Sw2上に形成された導電層4を除去するのに対して、平面Sp1上に形成された導電層4を残すことにより、導電パターン部を形成する。したがって、精細かつ高スループットの導電性素子1を実現できる。
【0108】
(変形例)
図36Aは、第2の領域の一部を拡大して表す斜視図である。図36Bは、第2の領域の一部を拡大して表す平面図である。図36Aおよび図36Bに示すように、複数の構造体3が、例えば、第2の領域R2において複数列のトラックT上に、これらのトラックTに沿うようにして1次元配列されて、1次元的な波面Sw2が形成されるようにしてもよい。トラックTの形状としては、直線状、円弧状などを用いることができ、これらの形状のトラックを蛇行(ウォブル)させるようにしてもよい。
【0109】
構造体3は、例えば、一方向に向かって延在された柱状体であり、その断面形状は、例えば三角形状、頂部に曲率Rが付された三角形状、多角形状、半円形状、半楕円形状、放物線状などを挙げることができるが、これらの形状に限定されるものではない。構造体32の具体的形状としては、例えば、レンチキュラー形状、プリズム形状などを挙げることができるが、これらの形状に限定されるものではない。構造体3の高さが、トラック方向に向かって変化するようにしてもよい。また、構造体3が、トラック方向に断続するようにしてもよい。
【0110】
<2.第2の実施形態>
[導電性光学素子の構成]
図17Aは、本発明の第2の実施形態に係る導電性素子の第2の領域の一部を拡大して表す平面図である。図17Bは、本発明の第2の実施形態に係る導電性素子の第2の領域のトラックT1、T3、・・・における断面図である。図17Cは、図17AのトラックT2、T4、・・・における断面図である。図17Dは、図17AのトラックT1、T3、・・・に対応する潜像形成に用いられるレーザー光の変調波形を示す略線図である。図17Eは、図17AのトラックT2、T4、・・・に対応する潜像形成に用いられるレーザー光の変調波形を示す略線図である。
【0111】
第2の実施形態に係る導電性素子1は、第2の領域R2に形成された多数の構造体3が、隣接する3列のトラック間において四方格子パターンまたは準四方格子パターンをなしている点において、第1の実施形態のものとは異なっている。本実施形態において、準四方格子パターンとは、正四方格子パターンと異なり、トラックの延在方向(X方向)に引き伸ばされ歪んだ四方格子パターンを意味する。
【0112】
同一トラック内における構造体3の配置ピッチP1は、隣接する2つのトラック間における構造体3の配置ピッチP2よりも長いことが好ましい。また、同一トラック内における構造体3の配置ピッチをP1、隣接する2つのトラック間における構造体3の配置ピッチをP2としたとき、P1/P2が1.4<P1/P2≦1.5の関係を満たすことが好ましい。このような数値範囲にすることで、楕円錐または楕円錐台形状を有する構造体3の充填率を向上することができるので、反射防止特性を向上することができる。
【0113】
トラックの延在方向に対して±θ方向における構造体3の高さH2は、トラックの延在方向における構造体3の高さH1よりも小さいことが好ましい。すなわち、構造体3の高さH1、H2がH1>H2の関係を満たすことが好ましい。四方格子パターン、または準四方格子パターンを形成するように構造体3が配置されている場合には、構造体3の高さHは、構造体3の延在方向(トラック方向)の高さとする。
【0114】
図18は、構造体3の底面の楕円率を変化させたときの底面形状を示す図である。楕円31、32、33の楕円率はそれぞれ、100%、163.3%、141%である。このように楕円率を変化させることで、基体表面における構造体3の充填率を変化させることができる。構造体3が四方格子または準四方格子パターンを形成する場合には、構造体底面の楕円率eは、150%≦e≦180%であることが好ましい。この範囲にすることで、構造体3の充填率を向上し、優れた反射防止特性を得ることができるからである。
【0115】
基体表面における構造体3の充填率は、100%を上限として、65%以上、好ましくは73%以上、より好ましくは86%以上の範囲内である。充填率をこのような範囲にすることで、反射防止特性を向上することができる。
【0116】
ここで、構造体3の充填率(平均充填率)は以下のようにして求めた値である。
まず、導電性素子1の表面を走査型電子顕微鏡(SEM:Scanning Electron Microscope)を用いてTop Viewで撮影する。次に、撮影したSEM写真から無作為に単位格子Ucを選び出し、その単位格子Ucの配置ピッチP1、およびトラックピッチTpを測定する(図17A参照)。また、その単位格子Ucに含まれる4つの構造体3のいずれかの底面の面積Sを画像処理により測定する。次に、測定した配置ピッチP1、トラックピッチTp、および底面の面積Sを用いて、以下の式(4)より充填率を求める。
充填率=(S(tetra)/S(unit))×100 ・・・(2)
単位格子面積:S(unit)=2×((P1×Tp)×(1/2))=P1×Tp
単位格子内に存在する構造体の底面の面積:S(tetra)=S
【0117】
上述した充填率算出の処理を、撮影したSEM写真から無作為に選び出された10箇所の単位格子について行う。そして、測定値を単純に平均(算術平均)して充填率の平均率を求め、これを基体表面における構造体3の充填率とする。
【0118】
配置ピッチP1に対する径2rの比率((2r/P1)×100)が、64%以上、好ましくは69%以上、より好ましくは73%以上である。このような範囲にすることで、構造体3の充填率を向上し、反射防止特性を向上できるからである。ここで、配置ピッチP1は、構造体3のトラック方向の配置ピッチ、径2rは、構造体底面のトラック方向の径である。なお、構造体底面が円形である場合、径2rは直径となり、構造体底面が楕円形である場合、径2rは長径となる。
【0119】
[ロール原盤の構成]
図19Aは、基体を作製するためのロール原盤の一部を拡大して表す斜視図である。図19Bは、図19Aに示した第2の領域を拡大して表す平面図である。このロール原盤は、第2の領域R2の多数の構造体12が、隣接する3列のトラック(例えばT1〜T3)間において四方格子パターンまたは準四方格子パターンを形成するように配置されている点において、第1の実施形態のものとは異なっている。
【0120】
このような四方格子パターン、または準四方格子パターンは、ロール原盤露光装置を用い、2次元パターンが空間的にリンクし、1トラック毎に極性反転フォマッター信号と記録装置の回転コントロラーを同期させ信号を発生し、角速度一定(CAV)で適切な送りピッチでパターニングすることにより記録することができる。極性反転フォマッター信号の周波数とロールの回転数を適切に設定することにより、所望の記録領域に空間周波数が一様な格子パターンをレーザー光の照射によりロール原盤11上のレジスト層に形成することが可能である。
【0121】
第2の実施形態では、第1の実施形態と同様の効果を得ることができる。
【0122】
<3.第3の実施形態>
[導電性素子の構成]
図20Aは、本発明の第3の実施形態に係る導電性素子の一構成例を示す平面図である。図20Bは、本発明の第3の実施形態に係る導電性素子の一構成例を示す断面図である。図20Cは、本発明の第3の実施形態に係る導電性素子の第1の領域の層構成を示す断面図である。第3の実施形態に係る導電性素子1は、第1の領域R1に形成された第1の波面Sw1と、第2の領域R2に形成された第2の波面Sw2との違い(例えば振動の平均幅の違い)を利用して、第1の領域R1と第2の領域R2とに成膜された導電層4のエッチング速度を変化させて、配線パターン部などを形成している点において、第1の実施形態とは異なっている。
【0123】
(第1の領域、第2の領域)
第2の領域R2の基体表面には、例えば可視光の波長以下の波長を有する第2の波面Sw2が形成され、この第2の波面Sw2上には導電層4が形成されていないか、もしくは導電層4が不連続的に形成されている状態となっている。また、第2の領域R2に形成された導電層4の厚さが、実質的に導電性を示さないほどに、第1の領域R1に形成された導電層4の厚さよりも薄く、第2の領域R2が絶縁領域として機能するようにしてもよい。一方、第1の領域R1の基体表面には、例えば可視光の波長以下の波長を有する第1の波面Sw1が形成され、この第2の波面Sw1上には導電層4が連続的に形成されている。したがって、第2の領域R2は、隣接する第1の領域R1に形成された導電層4の間を絶縁するための絶縁領域として機能する。これに対して、第1の領域R1に連続的に形成された導電層4は、第1の領域R1の延在方向に向かって導電性を有し、配線パターン部(導電パターン部)として機能する。
【0124】
第1の波面Sw1は、例えば可視光の波長以下の配置ピッチで多数の第1の構造体31が形成された凹凸面である。第2の波面Sw2は、例えば可視光の波長以下の配置ピッチで多数の第2の構造体32が形成された凹凸面である。また、表面抵抗の低減の観点から、図20Cに示すように、基体表面に金属層5をさらに備えることが好ましい。
【0125】
導電層4は、第1の領域R1において第1の構造体31による反射防止効果を阻害しないように、第1の構造体31の表面形状に倣って形成され、第1の構造体31と導電層4との表面形状がほぼ相似形状であることが好ましい。導電層4の形成による屈折率プロファイルの変化を抑制し、優れた反射防止特性および/または透過特性を維持できるからである。導電層4を構成する材料は、アモルファスと多結晶との混合状態であることが好ましい。第1の構造体31の高さを低くした場合にも、第1の構造体31の反射防止効果を阻害しないような膜厚で導電層4を形成することができるからである。すなわち、第1の構造体31の高さを低くした場合にも、導電層4が第1の構造体31の形状に倣った形状を維持することができるからである。
【0126】
第2の波面Sw2の平均波長λm2に対する振動の平均幅Am2の比率(Am2/λm2)は、第1の波面Sw1の平均波長λm1に対する振動の平均幅Am1の比率(Am1/λm1)よりも大きいことが好ましい。これにより、光学特性と電気的選択性を両立できるからである。第2の波面Sw2の平均波長λm2に対する振動の平均幅Am2の比率(Am2/λm2)は、1.8以下であることが好ましい。比率(Am2/λm2)が1.8を超えると、第2の構造体32を転写する際に剥離不良となり第2の構造体32が破壊される傾向がある。第2の波面の振動の平均幅Am2は、第1の波面の振動の平均幅Am1に比して大きいことが好ましい。
また、第1の波面Sw1の平均波長λm1、および波面Sw2の平均波長λm2は、好ましくは100nm以上の範囲である。平均波長λm1、および平均波長λm2が100nm未満であると、波面Sw2の作製が困難となる傾向がある。第1の波面Sw1の平均波長λm1、および波面Sw2の平均波長λm2は、好ましくは100μm以下の範囲である。平均波長λm1、および平均波長λm2が100μmを超えると、インプリントと膜形成の際に段差、カバレッジに問題が発生し不具合が生じる。
【0127】
第2の構造体32の平均アスペクト比は、第1の構造体31の平均アスペクト比に比して大きいことが好ましい。第1の構造体31の平均配置ピッチPm1、平均高さHm1、平均アスペクト比(Hm1/Pm1)がそれぞれ、第1の波面Sw1の平均波長λm1、振動の平均幅Am1、比率(Am1/λm1)と同様であることが好ましい。第2の構造体32の平均配置ピッチPm2、平均高さHm2、平均アスペクト比(Hm2/Pm2)がそれぞれ、第2の波面Sw2の平均波長λm2、振動の平均幅Am2、比率(Am2/λm2)と同様であることが好ましい。
【0128】
具体的には、第2の波面Sw2の平均波長λm2に対する振動の平均幅Am2の比率(Am2/λm2)は、第1の波面Sw1の平均波長λm1に対する振動の平均幅Am1の比率(Am1/λm1)よりも大きいことが好ましい。これにより、光学特性と電気的選択性を両立できるからである。より具体的には、比率(Am1/λm1)および比率(Am2/λm2)が、以下の関係を満たすことが好ましい。
0<(Am1/λm1)<(Am2/λm2)≦1.8
(但し、Am1:波面Sw1の振動の平均幅、Am2:波面Sw2の振動の平均幅、λm1:波面Sw1の平均波長、λm2:波面Sw2の平均波長)
比率(Am2/λm2)>1.8であると、波面Sw2を転写する際に剥離不良となり波面Sw2が破壊される傾向がある。
ここで、波面Sw1の比率(Am1/λm1)は、第1の実施形態における波面Sw2と同様にして測定したものである。
【0129】
波面Sw1、および波面Sw2の形状、波長および振動の幅はそれぞれ独立に選択することが可能である。具体的には例えば、波面Sw1、および波面Sw2はそれぞれ独立に、1次元的または2次元的な波面とすることが可能である。また、波面Sw1、および波面Sw2の波長および振動の幅はそれぞれ独立に、ナノオーダーまたはミクロンオーダーの波長および振動の幅とすることが可能である。
【0130】
第2の領域R2には導電層4の一部が残留膜として完全に存在しないことが好ましいが、第2の領域R2が絶縁領域として機能する程度であれば残留膜として存在していてもよい。この場合、第1の領域R1に形成された導電層4の面積は、第2の領域R2に形成された導電層4またはその一部の面積よりも大きいことが好ましい。具体的には、第1の領域R1には導電層4が連続的に形成されているのに対して、第2の領域R2には導電層4またはその一部が島状などに不連続に形成されていることが好ましい。また、第2の領域R2に形成された導電層4またはその一部の厚さが、実質的に導電性を示さないほどに、第1の領域R1に形成された導電層4の厚さよりも薄く、第2の領域R2が絶縁領域として機能するようにしてもよい。
【0131】
(構造体)
第1の領域R1に形成された第1の構造体31は、例えば、第2の領域R2に形成された第2の構造体32と同様に、六方格子パターン、準六方格子パターン、四方格子パターン、または準四方格子パターンなど規則的な格子パターンを形成する。また、後述するように、第1の構造体31をランダムに配列するようにしてもよい。なお、第1の領域R1の第1の構造体31と第2の領域R2の第2の構造体32との配置パターンは同一である必要はなく、両領域の構造体が異なる配置パターンをとるようにしてもよい。
【0132】
第1の波面Sw1は、例えば可視光の波長以下の配置ピッチで多数の第1の構造体31が形成された凹凸面である。第2の波面Sw2は、例えば可視光の波長以下の配置ピッチで多数の第2の構造体32が形成された凹凸面である。第2の構造体32の平均アスペクト比(Hm2/Pm2)は、第1の構造体31の平均アスペクト比(Hm1/Pm1)に比して大きいことが好ましい。具体的には、第1の構造体31、および第2の構造体32が以下の関係を満たしていることが好ましい。
0<(Hm1/Pm1)<(Hm2/Pm2)≦1.8
(但し、Hm1:第1の構造体31の平均高さ、Hm2:第2の構造体32の平均高さ、Pm1:第1の構造体31の平均配置ピッチ、Pm2:第2の構造体32の平均配置ピッチ)
比率(Hm2/Pm2)>1.8であると、第2の構造体32を転写する際に剥離不良となり構造体32が破壊される傾向がある。
【0133】
ここで、第1の構造体31のアスペクト比(Hm1/Pm1)、および第2の構造体32のアスペクト比(Hm2/Pm2)は、第1の実施形態における構造体3のアスペクト比(Hm/Pm)と同様にして測定したものである。
第1の構造体31、および第2の構造体32において、上記以外のことは第1の実施形態における構造体3と同様とすることができる。なお、第1の構造体31、および第2の構造体32の配置パターンや形状などは同一である必要はなく、両構造体が異なる配置パターンや形状などをとるようにしてもよい。
【0134】
[ロール原盤の構成]
図21Aは、基体を作製するためのロール原盤の一部を拡大して表す斜視図である。図21Bは、基体を作製するためのロール原盤の一部を拡大して表す断面図である。第3の実施形態に係るロール原盤11は、第1の領域R1および第2の領域R2の両領域にそれぞれ、第1の波面Sw1および第2の波面Sw2を備える点において、第1の実施形態のものとは異なっている。
【0135】
ロール原盤11の第2の波面Sw1は、例えば可視光の波長以下のピッチで凹状の第1の構造体121を配列することにより形成されている。ロール原盤11の第2の波面Sw2は、例えば可視光の波長以下のピッチで凹状の第2の構造体122を配列することにより形成されている。ロール原盤11の第1の波面Sw1、第2の波面Sw2は、基体2の第1の波面SW1、第2の波面Sw2の凹凸を反転して形状を有している。
【0136】
ロール原盤11の第1の領域R1および第2の領域R2はそれぞれ、基体2の第1の領域R1および第2の領域R2に対応している。すなわち、ロール原盤11の第1の領域R1に形成された凹状の構造体121は、基体2の第1の領域R1に形成された凸状の構造体31を形成するためのものである。ロール原盤11の第2の領域R2に形成された凹状の構造体122は、基体2の第2の領域R2に形成された凸状の構造体32を形成するためのものである。第2の構造体122のアスペクト比は、第1の構造体121のアスペクト比に比して大きいことが好ましい。
【0137】
第3の実施形態におけるエッチング工程では、導電層4が形成された基体表面に対してエッチング処理を施すことにより、第2の領域R2では導電層4が除去されるのに対して、第1の領域R1では導電層4が残留する。具体的には、第1の波面Sw1および第2の波面Sw2上に形成された導電層4の膜質や相状態等の違いを利用して、第2の波面Sw2上に形成された導電層4を実質的に除去するのに対して、第1の波面Sw1上に形成された導電層4を連続的につながるように残留させることが好ましい。これにより、第1の波面Sw1および第2の波面Sw2のうち第1の波面Sw1上に選択的に導電パターン部を形成することができる。
【0138】
また、第1の波面Sw1および第2の波面Sw2上に形成された導電層4の膜質や相状態等の違いを利用して、第2の波面Sw2上に形成された導電層4を除去して島状などに不連続にするのに対して、第1の波面Sw1上に形成された導電層4を連続的につながるように残留させることが好ましい。これにより、第1の波面Sw1および第2の波面Sw2のうち第1の波面Sw1上に選択的に導電パターン部を形成することができる。
【0139】
また、第1の波面Sw1および第2の波面Sw2上に形成された導電層4の膜質や相状態等の違いを利用して、第2の波面Sw2上に形成された導電層4の厚さを第1の波面Sw1上に形成された導電層4の厚さに比して大幅に薄くすることが好ましい。これにより、第1の波面Sw1および第2の波面Sw2のうち第1の波面Sw1上に導電パターン部を選択的に形成することができる。
【0140】
第3の実施形態では、第1の領域R1および第2の領域R2の両領域に構造体31および構造体32を形成しているので、導電性素子1の反射防止特性を向上することができる。このような構成とする場合、配線として機能する第1の領域R1の導電層4は、第1の領域R1に形成された構造体31の形状に倣った形状とすることが好ましい。これにより、反射防止特性および/または透過特性の効果の低下を抑制することができるからである。
【0141】
変調(例えば振幅変調および/または周波数変調)が施された波面を基体表面に形成し、その基体表面上に導電層を形成することで、基体2の波面の変調の違いに応じて、導電層の状態を変化させることができる。したがって、基体2の波面の変調の違いに応じて、エッチング溶液に対する導電層4の溶解度を変化させることができる。すなわち、基体2の波面の変調の違いを利用して、基体表面に所望の導電パターン部を形成することができる。
【0142】
基体表面の波面をナノ構造体により形成した場合には、視認性および光学特性を向上することもできる。光学特性を劣化させずに所望の電気抵抗を実現することができる。
【0143】
導電層からなる配線を基体表面に形成する従来の情報入力装置(例えば、デジタル式抵抗タッチパネルや静電容量式タッチパネルなど)では、導電層と基材とは反射率が異なるため、配線が見えて表示品質が劣化する傾向がある。これに対して、本発明の実施形態に係る情報入力装置では、導電層の有無にかかわらず、低反射および高透過率を実現しているため、配線の視認を抑制できる。
【0144】
<4.第4の実施形態>
図22Aは、本発明の第4の実施形態に係る導電性素子の一構成例を示す断面図である。第4の実施形態に係る導電性素子1は、基体2の両主面に第1の領域R1および第2の領域R2を設定し、両領域のうち第1の領域R1にのみ連続的に導電層4を形成することで、基体両面に配線を形成している点において、第1の実施形態とは異なっている。また、図22Bに示すように、基体2に第1の領域R1にスルーホール(貫通孔)を形成し、このスルーホールに導体インクなどの導電材料を埋め込み、基体2の両面に形成された回路などの配線を電気的に接続するようにしてもよい。
【0145】
第4の実施形態では、基体2の両面に配線を形成しているので、第1の実施形態よりも多くの回路を導電性素子1に搭載することが可能となる。
【0146】
<5.第5の実施形態>
[ディスク状原盤の構成]
図23Aは、本発明の第5の実施形態に係るディスク状原盤の一構成例を示す平面図である。図23Bは、図23Aに示したディスク状原盤の一部を拡大して表す平面図である。
第5の実施形態は、ディスク状原盤41の表面に第1の領域R1および第2の領域R2を設定し、第2の領域R2に凹状の構造体12を多数形成している点において第1の実施形態とは異なっている。なお、図23Aおよび図23Bでは、円環状を有する第1の領域R1および第2の領域R2を交互に形成する例が示されているが、第1の領域R1および第2の領域R2の形状はこれに限定されるものではなく、所望とする配線の形状に応じて種々の形状に設定可能である。
【0147】
[露光装置の構成]
まず、図24を参照して、上述した構成を有するディスク状原盤41を作製するための露光装置について説明する。
【0148】
移動光学テーブル32は、ビームエキスパンダ33、ミラー38および対物レンズ34を備えている。移動光学テーブル32に導かれたレーザー光14は、ビームエキスパンダ33により所望のビーム形状に整形された後、ミラー38および対物レンズ34を介して、ディスク状原盤41上のレジスト層へ照射される。原盤41は、スピンドルモータ35に接続されたターンテーブル(図示を省略する。)の上に載置されている。そして、原盤41を回転させるとともに、レーザー光14を原盤41の回転半径方向に移動させながら、原盤41上のレジスト層へレーザー光を照射することにより、レジスト層の露光工程が行われる。形成された潜像は、円周方向に長軸を有する略楕円形になる。レーザー光14の移動は、移動光学テーブル32の矢印R方向への移動によって行われる。
【0149】
図24に示した露光装置においては、レジスト層に対して六方格子または準六方格子の2次元パターンからなる潜像を形成するための制御機構37を備えている。制御機構37は、フォマッター29とドライバ30とを備える。フォマッター29は、極性反転部を備え、この極性反転部が、レジスト層に対するレーザー光14の照射タイミングを制御する。ドライバ30は、極性反転部の出力を受けて、音響光学素子27を制御する。
【0150】
制御機構37は、潜像の2次元パターンが空間的にリンクするように、1トラック毎に、AOM27によるレーザー光14の強度変調と、スピンドルモータ35の駆動回転速度と、移動光学テーブル32の移動速度とをそれぞれ同期させる。原盤41は、角速度一定(CAV)で回転制御される。そして、スピンドルモータ35による原盤41の適切な回転数と、AOM27によるレーザー強度の適切な周波数変調と、移動光学テーブル32によるレーザー光14の適切な送りピッチとでパターニングを行う。これにより、レジスト層に対して六方格子パターン、または準六方格子パターンの潜像が形成される。
【0151】
更に、極性反転部の制御信号を、空間周波数(潜像のパターン密度)が一様になるように徐々に変化させる。より具体的には、レジスト層に対するレーザー光14の照射周期を1トラック毎に変化させながら露光を行い、各トラックTにおいて配置ピッチP1が所定値(例えば330nm、315nm、または300nm)となるように制御機構37においてレーザー光14の周波数変調を行う。即ち、トラック位置がディスク状原盤41の中心から遠ざかるに従い、レーザー光の照射周期が短くなるように変調制御する。これにより、基板全面において空間周波数が一様なナノパターンを形成することが可能となる。
【0152】
[導電性素子の製造方法]
上述した構成を有する露光装置を用いて、ディスク状原盤41上に形成されたレジスト層を露光する以外は、第1の実施形態と同様にして導電性素子1を作製することができる。
【0153】
この第5の実施形態によれば、第1の実施形態と同様の効果を得ることができる。
【0154】
<6.第6の実施形態>
図25Aは、本発明の第6の実施形態に係る導電性素子の一構成例を示す平面図である。図25Bは、本発明の第6の実施形態に係る導電性素子の第2の領域の一部を拡大して表す斜視図である。第6の実施形態に係る導電性素子1は、凹部である構造体3が基体表面の第2の領域R2に多数配列されている点において、第1の実施形態のものとは異なっている。この構造体3の形状は、第1の実施形態における構造体3の凸形状を反転して凹形状としたものである。なお、上述のように構造体3を凹部とした場合、凹部である構造体3の開口部(凹部の入り口部分)を下部、基体2の深さ方向の最下部(凹部の最も深い部分)を頂部と定義する。すなわち、非実体的な空間である構造体3により頂部、および下部を定義する。また、第6の実施形態では、構造体3が凹部であるため、式(1)などにおける構造体3の高さHは、構造体3の深さHとなる。
この第6の実施形態において、上記以外のことは、第1の実施形態と同様である。
【0155】
この第6の実施形態では、第1の実施形態における凸形状の構造体3の形状を反転して凹形状としているので、第1の実施形態と同様の効果を得ることができる。
【0156】
<7.第7の実施形態>
図26Aは、本発明の第7の実施形態に係る導電性素子の一構成例を示す平面図である。図26Bは、本発明の第7の実施形態に係る導電性素子の一構成例を示す断面図である。第7の実施形態に係る導電性素子は、多数の構造体3がランダムに配置されている点において、第1の実施形態とは異なっている。構造体3の配置ピッチはランダムに変化するが、その配置ピッチは可視光の波長以下とすることが好ましい。基体表面に配置される構造体3は、同一の大きさおよび/または形状に限定されるものではなく、2種以上の異なる大きさおよび/または形状を有していてもよい。構造体3は、2次元的または3次元的にランダムに形成されていることが好ましい。ここで、2次元的にランダムとは、導電性素子1の面内方向にランダムであることをいう。また、3次元的にランダムとは、導電性素子1の面内方向にランダムであると共に、導電性素子1の厚さ方向にもランダムであることをいう。
【0157】
<8.第8の実施形態>
図27は、本発明の第8の実施形態に係る液晶表示素子の一構成例を示す斜視図である。図27に示すように、液晶表示素子は、パッシブマトリックス駆動方式(単純マトリックス駆動方式ともいう。)の表示素子であり、所定間隔を離して対向配置された第1の基材101および第2の基材111と、第1の基材101および第2の基材111の間に配置された液晶層121とを備える。
【0158】
第1の基材101の両主面のうち、第2の基材111に対向する一主面には、直線状の第1の領域R1および第2の領域R2が交互に繰り返し設定されている。第1の領域R1および第2の領域R2における第1の基材101の表面構造は、上述の第1〜第7の実施形態のいずれかの導電性素子における基体の表面構造と同様である。例えば、第2の領域R2における第1の基材表面は、例えば可視光の波長以下の配置ピッチで構造体が多数形成されて波面とされ、例えば透明導電層が島状などに不連続的に形成されている。これに対して、第1の領域R1には、構造体が形成されず平面状とされ、例えば透明導電層が連続的に形成されている。したがって、第1の基材101の両主面のうち、第2の基材111に対向する一主面には、連続的に形成された透明導電層からなる複数の横(X)電極(第1の電極)102がストライプ状に形成されている。
【0159】
第2の基材111の両主面のうち、第1の基材101に対向する一主面には、直線状の第1の領域R1および第2の領域R2が交互に繰り返し設定されている。第1の領域R1および第2の領域R2における第2の基材111の表面構造は、上述の第1〜第7の実施形態のいずれかの導電性素子における基体の表面構造と同様である。例えば、第2の領域R2における第2の基材表面は、例えば可視光の波長以下の配置ピッチで構造体が多数形成されて波面とされ、例えば透明導電層が不連続的に島状などに形成されている。これに対して、第1の領域R1には、構造体が形成されず平面とされ、例えば透明導電層が連続的に形成されている。したがって、第2の基材111の両主面のうち、第1の基材101に対向する一主面には、連続的に形成された透明導電層からなる縦(Y)電極(第2の電極)112がストライプ状に多数形成されている。
【0160】
第1の基材101および第2の基材111の第1の領域R1および第2の領域R2は、互いに直交する関係にある。すなわち、第1の基材101の横電極102と第2の基材111の縦電極112とは互いに直交する関係にある。
【0161】
第8の実施形態では、例えば波面の有無または構造体の有無を利用して液晶表示素子の電極を作製することができる。また、例えば波面の波長または構造体の配置ピッチを可視光の波長以下とした場合には、液晶表示素子の反射防止特性および/または透過特性を向上することができる。
【0162】
また、上述の第3の実施形態のように、第1の領域R1および第2の領域R2のそれぞれにアスペクト比などの異なる構造体を形成するようにしてもよい。これにより、液晶表示素子の反射防止特性および/または透過特性をさらに向上することができる。このような構成とする場合、横電極102および縦電極112として機能する第1の領域R1の透明導電層は、第1の領域R1に形成された構造体の形状に倣った形状とすることが好ましい。これにより、構造体による反射防止および/または透過特性の効果の低下を抑制することができるからである。
【0163】
<9.第9の実施形態>
図28は、本発明の第9の実施形態に係るタッチパネルを備える表示装置の一構成例を示す斜視図である。図28に示すように、表示装置202上にタッチパネル(情報入力装置)201が設けられている。表示装置202とタッチパネル201とは、例えば粘着剤を介して貼り合わされている。また、タッチパネル201の表面にフロントパネル(表面部材)203をさらに備えるようにしてもよい。タッチパネル201とフロントパネル(表面部材)203とは、例えば粘着剤により貼り合わされる。
【0164】
表示装置201としては、例えば、液晶ディスプレイ、CRT(Cathode Ray Tube)ディスプレイ、プラズマディスプレイ(Plasma Display Panel:PDP)、エレクトロルミネッセンス(Electro Luminescence:EL)ディスプレイ、表面伝導型電子放出素子ディスプレイ(Surface-conduction Electron-emitter Display:SED)などの各種表示装置を用いることができる。タッチパネル302は、例えば、抵抗膜方式または静電容量方式のタッチパネルである。抵抗膜方式のタッチパネルとしては、例えば、マトリックス抵抗膜方式のタッチパネルが挙げられる。静電容量方式のタッチパネルとしては、例えば、Wire Sensor方式またはITO Grid方式の投射型静電容量方式タッチパネルが挙げられる。
【0165】
図29Aは、本発明の第9の実施形態に係るタッチパネルの第1の構成例を示す斜視図である。このタッチパネル201は、マトリックス抵抗膜方式のタッチパネルであり、ドットスペーサ(図示省略)を介して所定間隔を離して対向配置された第1の基材211と第2の基材221とを備える。
【0166】
図29Bは、第1の基材の一構成例を示す分解斜視図である。なお、第2の基材221は第1の基材211とほぼ同様の構成を有するので、分解斜視図の記載を省略する。第1の基材211の両主面のうち、第2の基材221に対向する一主面には、矩形状の第1の領域R1および第2の領域R2が交互に繰り返し設定されている。第1の領域R1および第2の領域R2における第1の基材211の表面構造は、上述の第1〜第7の実施形態のいずれかの導電性素子における基体の表面構造と同様である。例えば、第2の領域R2における第1の基材表面は、例えば可視光の波長以下の配置ピッチで構造体が多数形成されて波面とされ、例えば透明導電層が島状などに不連続的に形成されている。これに対して、第1の領域R1における第1の基材表面は、構造体が形成されず平面状とされ、例えば透明導電層が連続的に形成されている。したがって、第1の基材211の両主面のうち、第2の基材221に対向する一主面には、連続的に形成された透明導電層からなる複数の横(X)電極(第1の電極)212がストライプ状に形成されている。
【0167】
第2の基材221の両主面のうち、第1の基材211に対向する一主面には、矩形状の第1の領域R1および第2の領域R2が交互に繰り返し設定されている。第1の領域R1および第2の領域R2における第2の基材221の表面構造は、上述の第1〜第7の実施形態のいずれかの導電性素子における基体の表面構造と同様である。例えば、第2の領域R2における第2の基材表面は、例えば可視光の波長以下の配置ピッチで構造体が多数形成されて波面とされ、例えば透明導電層が島状などに不連続的に形成されている。これに対して、第1の領域R1における第2の基材表面は、構造体が形成されず平面状とされ、例えば透明導電層が連続的に形成されている。したがって、第2の基材221の両主面のうち、第1の基材211に対向する一主面には、連続的に形成された透明導電層からなる縦(Y)電極(第2の電極)222がストライプ状に多数形成されている。
【0168】
第1の基材211および第2の基材221の第1の領域R1および第2の領域R2は、互いに直交する関係にある。すなわち、第1の基材211の横電極212と第2の基材2211の縦電極221とは互いに直交する関係にある。
【0169】
図30Aは、本発明の第9の実施形態に係るタッチパネルの第2の構成例を示す斜視図である。このタッチパネルは、ITO Grid方式の投射型静電容量方式タッチパネルであり、重ね合わされた第1の基材231と第2の基材241とを備える。
【0170】
図30Bは、第1の基材の一構成例を示す分解斜視図である。なお、第2の基材241は第1の基材231とほぼ同様の構成を有するので、分解斜視図の記載を省略する。第1の基材231の両主面のうち、第2の基材241に対向する一主面には、第1の領域R1および第2の領域R2が交互に繰り返し設定され、隣り合う第1の領域R1の間は第2の領域R2により隔てられている。第2の基材241の両主面のうち、第2の基材231に対向する一主面には、第1の領域R1および第2の領域R2が交互に繰り返し設定され、隣り合う第1の領域R1の間は第2の領域R2により隔てられている。第1の領域R1および第2の領域R2における第1の基材231および第2の基材241の表面構造は、上述の第1〜第7の実施形態のいずれかの導電性素子における基体の表面構造と同様である。
【0171】
第1の基材231の第1の領域R1は、所定形状の単位領域C1をX軸方向に繰り返し連結してなり、第2の領域R2は、所定形状の単位領域C2をX軸方向に繰り返し連結してなる。第2の基材241の第1の領域R1は、所定形状の単位領域C1をY軸方向に繰り返し連結してなり、第2の領域R2は、所定形状の単位領域C2をY軸方向に繰り返し連結してなる。単位領域C1および単位領域C2の形状としては、例えばダイヤモンド形状(菱形形状)、三角形状、四角形状などが挙げられるが、これらの形状に限定されるものではない。
【0172】
第2の領域R2における第1の基材表面または第2の基材表面は、例えば可視光の波長以下の配置ピッチで構造体が多数形成されて波面とされ、例えば透明導電層が島状などに不連続的に形成されている。これに対して、第1の領域R1における第1の基材表面または第2の基材表面は、構造体が形成されず平面状とされ、例えば透明導電層が連続的に形成されている。したがって、第1の基材231の両主面のうち、第2の基材241に対向する一主面には、透明導電層からなる複数の横(X)電極(第1の電極)232が配列されている。また、第2の基材241の両主面のうち、第1の基材231に対向する一主面には、透明導電層からなる複数の縦(Y)電極(第2の電極)242が配列されている。横電極232および縦電極242は、第1の領域R1と同様の形状を有する。
【0173】
第1の基材231の横電極232と第2の基材241の縦電極242とは互いに直交する関係にある。第1の基材231と第2の基材241とを重ね合わせた状態において、第1の基材231の第1の領域R1と、第2の基材241の第2の領域R2とが重ね合わされ、第1の基材231の第2の領域R2と、第2の基材241の第1の領域R1とが重ね合わされる。したがって、タッチパネル201を入力面側から見た場合には、複数の横(X)電極(第1の電極)232と複数の縦(Y)電極(第2の電極)242とが重ならず、一主面に敷き詰められて細密充填された状態として見える。
【0174】
第9の実施形態では、例えば波面の有無または構造体の有無を利用してタッチパネル201の電極を作製することができる。また、例えば波面の波長または構造体の配置ピッチを可視光の波長以下とした場合には、タッチパネル201の反射防止特性および/または透過特性を向上することができる。
【0175】
また、上述の第3の実施形態のように、第1の領域R1および第2の領域R2のそれぞれにアスペクト比などの異なる構造体を形成するようにしてもよい。これにより、タッチパネル201の反射防止特性および/または透過特性をさらに向上することができる。したがって、例えば、電極の視認を抑制することができる。このような構成とする場合、電極として機能する第1の領域R1の透明導電層は、第1の領域R1に形成された構造体の形状に倣った形状とすることが好ましい。これにより、構造体による反射防止効果および/または透過特性向上の効果の低下を抑制することができるからである。
【0176】
<10.第10の実施形態>
図31Aは、本発明の第10の実施形態に係るICカードの一構成例を示す平面図である。図31Bは、図31Aに示したICカードの一部を拡大して表す平面図である。このICカードは、いわゆる非接触型ICカードであり、基材301と、アンテナコイル302と、ICチップ303とを備える。アンテナコイル302の両端がICチップ303に対して接続されている。また、基材301の両面には外装材(図示省略)が設けられている。
【0177】
基材301の形状としては、フィルム状、シート状、基板状を用いることができるが、特にこれらの材料に限定されるものではなく、ICカード1に求められる特性に応じて任意に選択し使用することが可能である。基材102の材料としては、耐久性や利便性などの観点から、フレキシブル性を有する樹脂材料を用いることが好ましい。このような樹脂材料としては、例えば、PEN(ポリエチレンナフタレート)、PET(ポリエチレンテレフタレート)、ポリイミド(PI)、ポリエステルを用いることができるが、特にこれらの材料に限定されるものではなく、従来公知の樹脂材料からICカードに求められる特性に応じて任意に選択し使用することが可能である。
【0178】
基材301の一主面の周縁部には、例えば、第1の領域R1と第1の領域R2とが交互に螺旋状に形成されている。第1の領域R1および第2の領域R2における基材301の表面構造は、上述の第1〜第7の実施形態のいずれかの導電性素子における基体の表面構造と同様である。例えば、第2の領域R2における基材表面は、例えば微細ピッチで構造体が多数形成されて波面とされ、例えば導電層が島状などに不連続的に形成されている。これに対して、第1の領域R1における基材表面は、構造体が形成されず平面状とされ、例えば導電層が連続的に形成されている。したがって、基材301の一主面の周縁部には、連続的に形成された導電層からなるアンテナコイル302が第1の領域R1の形状に倣って形成されている。なお、上述の第3の実施形態のように、第1の領域R1および第2の領域R2のそれぞれにアスペクト比などの異なる構造体を形成するようにしてもよい。
【0179】
外装材は、ICカードの表面および裏面を構成するものであり、例えば、PET(ポリエチレンテレフタレート)、PBT(ポリブチルテレフタレート)、PEG(ポリエチレングリコール、配向PETなどの高分子材料を主成分とするが、特にこれらの材料に限定されるものではなく、従来公知の樹脂材料からICカードに求められる特性に応じて任意に選択し使用することが可能である。
【0180】
アンテナコイル302は、基材301上に複数回巻回されて形成されたループコイル形状の電磁誘導コイルであり、その両端はICチップ303に接続されている。アンテナコイル103は、リーダ/ライタから発せられる交流磁界を受信して交流電圧を誘起し、その交流電圧をICチップ303に供給する。
【0181】
ICチップ303は、アンテナコイル302から供給される電力により駆動し、ICカード1内の各部を制御する。例えば、ICチップ303は、アンテナコイル5を介してリーダ/ライタと通信を行う。具体的には、リーダ/ライタとの相互認証やデータのやり取りなどを行う。
【0182】
第10の実施形態では、例えば波面の有無または構造体の有無を利用してICカードのアンテナコイル302を作製することができる。したがって、エッチングなどを用いずにアンテナコイル302を作製することができるので、ICカードの生産性を向上することができる。
【0183】
<11.第11の実施形態>
図32Aは、本発明の第11の実施形態に係る表示装置の構成の一例を示す断面図である。図32Bは、図32Aに示した配線領域を拡大して表す拡大断面図である。図32Cは、図32Aに示した非配線領域を拡大して表す拡大断面図である。第11の実施形態において、第1の実施形態と同一の箇所または対向する箇所には同一の符号を付す。この表示装置400は、いわゆるマイクロカプセル電気泳動方式の電子ペーパーであり、第1の導電性素子401と、第1の導電性素子401と対向配置された第2の導電性素子402と、これらの両素子間に設けられたマイクロカプセル層(媒質層)403とを備える。ここでは、マイクロカプセル電気泳動方式の電子ペーパーに対して本発明を適用した例について説明するが、電子ペーパーはこの例に限定されるものではなく、対向配置された導電性素子間に媒質層が設けられた構成であれば本発明は適用可能である。ここで、媒質には液体および固体以外に、空気などの気体も含まれる。また、媒質には、カプセル、顔料および粒子などの部材が含まれていてもよい。マイクロカプセル電気泳動方式以外に本発明を適用可能な電子ペーパーとしては、例えばツイストボール方式、サーマルリライタブル方式、トナーディスプレイ方式、In−Plane型電気泳動方式、電子粉粒方式の電子パーパーなどが挙げられる。
【0184】
マイクロカプセル層403は、多数のマイクロカプセル431を含んでいる。マイクロカプセル内には、例えば、黒色粒子おび白色粒子が分散された透明な液体(分散媒)が封入されている。
【0185】
第1の導電性素子401は、第2の導電性素子402と対向する側に平面Sp1および波面Sw2を有する基体2と、この基体2の波面Sw1上に形成された導電層4とを備える。また、必要に応じて、粘着剤などの貼合層411を介して、基体2をガラスなどの支持体412に貼り合わせるようにしてもよい。第2の導電性素子402は、第1の導電性素子401と対向する側に平面Sp1および波面Sw2を有する基体2と、この基体2の波面Sw1上に形成された導電層4とを備える。
【0186】
第1の導電性素子401、および第2の導電性素子402が有する導電層4は、電子ペーパー400の駆動方式に応じて所定の電極パターン状に形成されている。駆動方式としては、例えば単純マトリックス駆動方式、アクティブマトリックス駆動方式、セグメント駆動方式などが挙げられる。
この第11の実施形態において、上記以外のことは第1の実施形態と同様である。
【実施例】
【0187】
以下、試験例によりこの発明を具体的に説明するが、この発明はこれらの試験例のみに限定されるものではない。
【0188】
以下の試験例、および実施例では、導電性シートの表面抵抗は4端子抵抗測定機にて測定した。なお、プローブ先端針の径はR100μmとし、針のピッチは1mmとした。
【0189】
(試験例1)
(転写工程)
まず、凹状のナノ構造体が成形面に形成された石英マスタを準備した。次に、ナノ構造体を形成した石英マスタに紫外線硬化樹脂を塗布し、易接着層付きPET(ポリエチレンテレフタレート)シートを密着させ紫外線を照射し硬化させながら、PETシートを剥離した。これにより、PETシート表面に凸状のナノ構造体が多数形成された光学シートが得られた。構造体の配置ピッチは270nm、構造体の高さは160nmであった。
【0190】
(成膜工程)
次に、スパッタリング法により、光学シート上にITO膜を形成した。到達真空度は0.00015Pa、成膜時真空度は0.24Paとし、成膜時にはArガスとO2ガスとを導入し、その混合比率はAr:O2=200:13とした。また、膜厚が平板換算で30nmとなるように成膜条件を調整した。なお、平板換算膜厚は、構造体頂部の膜厚とほぼ等しくなる。
【0191】
(アニール工程)
次に、ITO膜を形成した光学シートに対して、150℃、30分間の大気中アニールを施した。これにより、ITO膜の多結晶化が促進された。次に、この促進の状態を確認すべく、X線回折(X‐ray diffraction:XRD)でITO膜を測定したところ、In23のピークが確認された。次に、ITO膜の表面抵抗値を4端針法にて測定したところ、表面抵抗値は350Ω/□であった。
【0192】
(エッチング工程)
次に、アニール処理を施した光学シートを、PH3程度の溶液に20秒間浸漬させた。
【0193】
(洗浄工程)
次に、エッチング処理を施した光学シートを純水により洗浄した。次に、光学シート表面の表面抵抗値を4端針法にて測定したところ、その表面は絶縁されていた。
以上により、目的とする光学シートが得られた。
【0194】
(試験例2)
ナノ構造体の配置ピッチを250nm、ナノ構造体の高さを190nmとする以外は試験例1と同様にして光学シートを得た。なお、ITO膜のアニール工程後において試験例1と同様にして光学シートの表面抵抗を測定したところ、その値は550Ω/□であった。また、洗浄工程後において試験例1と同様にして光学シートの表面抵抗を測定したところ、その表面は絶縁されていた。
【0195】
(試験例3)
構造体をPETシート上に形成せず、PETシートの平滑面上にITO膜を形成する以外は試験例1と同様にして光学シートを得た。なお、ITO膜のアニール工程後において試験例1と同様にして光学シートの表面抵抗を測定したところ、その値は200Ω/□であった。また、洗浄工程後において試験例1と同様にして光学シートの表面抵抗を測定したところ、その抵抗値は200Ω/□であった。
【0196】
(反射特性評価)
試験例2に係る光学シートについて、上述の除去工程前後の分光スペクトルを測定した。その結果を図33に示す。
【0197】
表1は、試験例1〜3に係る光学シートの構成および評価結果を示す。
【表1】

【0198】
表1から以下のことがわかる。
構造体上にITO膜を形成した試験例1、2では、エッチング前後で光学シート表面の表面抵抗が大きく変化し、光学シート表面は導通状態から絶縁状態に変化している。これに対して、平滑面上ITO膜を形成した試験例3では、エッチング前後で光学シート表面抵抗が変化せず、導通状態が維持されている。
【0199】
図33から以下のことがわかる。
エッチング工程前には、ITOに起因する短波長帯域の反射率増加が確認されているのに対して、エッチング工程後には、上記短波長帯域の反射率増加が確認されず、波長帯域350〜800nmにてほぼスラットな分光スペクトルが得られている。
【0200】
以上の評価結果を総合すると、試験例1、2に係る光学シートでは、エッチング後にはITO膜が光学シート表面から除去されているのに対して、試験例3に係る光学シートでは、エッチング後にもITO膜が薄膜状を維持して残留している。したがって、光学シート表面の構造体の有無を利用して、配線などの導電パターン部を基体表面に形成できる。また、光学シート表面の波面および平面の違いを利用して、配線などの導電パターン部を基体表面に形成できる。
【0201】
(実施例1)
(転写工程)
まず、図34Aに示すように、ナノ構造体形成領域(第1の領域)R1と平面領域(第2の領域)R2とが成形面にストライプ状に形成された石英マスタを準備した。次に、この石英マスタの成形面上に紫外線硬化樹脂を塗布し、易接着層付きPETシートを密着させて、紫外線を照射し硬化させながら、PETシートを剥離した。これにより、PETシート表面のうち、ナノ構造体形成領域(第1の領域)R1には凸状のナノ構造体が多数形成されるのに対して、平面領域(第2の領域)R2には平坦面が形成された光学シートが得られた。構造体の配置ピッチは250nm、構造体の高さは200nm、構造体の形状は円錐台、構造体の配列は六方配置であった。
【0202】
(成膜工程)
次に、スパッタリング法により、光学シートの成形面上にITO膜を形成した。到達真空度は0.00015Pa、成膜時真空度は0.24Paとし、成膜時にはArガスとO2ガスとを導入し、その混合比率はAr:O2=200:13とした。また、膜厚が平板換算で30nmとなるように成膜条件を調整した。なお、平板換算膜厚は、構造体頂部の膜厚とほぼ等しくなる。
【0203】
(アニール工程)
次に、ITO膜を形成した光学シートに対して、150℃、30分間の大気中アニールを施した。これにより、ITO膜の多結晶化が促進された。次に、この促進の状態を確認すべく、X線回折(X‐ray diffraction:XRD)でITO膜を測定したところ、In23のピークが確認された。
【0204】
(エッチング工程)
次に、アニール処理を施した光学シートを、PH3程度の溶液に20秒間浸漬させた。
【0205】
(洗浄工程)
次に、エッチング処理を施した光学シートを純水により洗浄した。
以上により、目的とする透明導電性シートが得られた。
【0206】
(導通/非導通評価)
上述のようにして得られた実施例1に係る透明導電性シートの表面について、テスターを用いて導通および非導通を、図34Bに示すポイントで評価した。その評価結果を表2に示す。
【0207】
表2は、実施例1に係る透明導電性シートの評価結果を示す。
【表2】

【0208】
表2から以下のことがわかる。
透明導電性シート表面のうちナノ構造体形成領域(第1の領域)R1は絶縁状態となるのに対して、平面領域(第2の領域)R2は導通状態となる。したがって、インプリント工程、成膜工程およびエッチング工程を順次行うだけで、配線や電極などの所望の導電パターン部を基体表面に形成できる。すなわち、スループットを向上することができる
【0209】
(試験例4−1)
(成膜工程)
まず、平滑な表面を有するPETシートを準備した。次に、スパッタリング法により、PETシート上にITO膜を形成した。到達真空度は0.00015Pa、成膜時真空度は0.24Paとし、成膜時にはArガスとO2ガスとを導入し、その混合比率はAr:O2=20:1とした。また、ITO膜の膜厚が30nmとなるように成膜条件を調整した。
【0210】
(アニール工程)
次に、ITO膜を形成したPETシートに対して、150℃、60分間の大気中アニールを施した。これにより、ITO膜の多結晶化が促進された。次に、この促進の状態を確認すべく、X線回折(X‐ray diffraction:XRD)でITO膜を測定したところ、In23のピークが確認された。
以上により、目的とする光学シートが得られた。
【0211】
(試験例4−2)
(成膜工程、アニール工程)
まず、試験例4−1と同様にして成膜工程およびアニール工程を行い、アニール処理が施されたITO膜を有するPETフィルムを作製した。
【0212】
(エッチング工程)
次に、アニール処理を施したPETフィルムを、PH3程度の溶液に10秒間浸漬させて、ITO膜をエッチングした。
【0213】
(洗浄工程)
次に、エッチング処理を施したPETシートに対して、純水洗浄、IPA(イソプロピルアルコール)洗浄、純粋洗浄を順次行った。
以上により、目的とする光学シートが得られた。
【0214】
(試験例4−3)
浸漬時間を20秒間に変更する以外は試験例4−2と同様にして光学シートを得た。
【0215】
(試験例4−4)
浸漬時間を30秒間に変更する以外は試験例4−2と同様にして光学シートを得た。
【0216】
(試験例4−5)
浸漬時間を40秒間に変更する以外は試験例4−2と同様にして光学シートを得た。
【0217】
(試験例4−6)
浸漬時間を50秒間に変更する以外は試験例4−2と同様にして光学シートを得た。
【0218】
(試験例4−7)
浸漬時間を60秒間に変更する以外は試験例4−2と同様にして光学シートを得た。
【0219】
(試験例5−1)
(転写工程)
まず、凹状のナノ構造体が成形面に形成された石英マスタを準備した。次に、ナノ構造体を形成した石英マスタに紫外線硬化樹脂を塗布し、易接着層付きPETシートを密着させ紫外線を照射し硬化させながら、PETシートを剥離した。これにより、ナノ構造体が多数表面に形成されたPETシートが得られた。
以下に、PETシート表面に形成されたナノ構造体の構成の詳細を示す。
構造体の配列:六方格子配列
構造体の凹凸形状:凸状
構造体の全体形状:円錐台
構造体の配置ピッチ:250nm
構造体の高さ:90nm
構造体のアスペクト比:0.36
【0220】
(成膜工程)
次に、スパッタリング法により、ナノ構造体が形成されたPETシート表面上にITO膜を形成した。到達真空度は0.00015Pa、成膜時真空度は0.24Paとし、成膜時にはArガスとO2ガスとを導入し、その混合比率はAr:O2=20:1とした。また、膜厚が平板換算で30nmとなるように成膜条件を調整した。なお、平板換算膜厚は、ナノ構造体が形成されたPETシート表面にITO膜を形成した場合と同様の成膜条件にて、平板上にITO膜を形成したときの膜厚である。本発明者の知見によれば、平板換算膜厚は、構造体頂部の膜厚とほぼ等しくなる。
【0221】
(アニール工程)
次に、ITO膜を形成したPETシートに対して、150℃、60分間の大気中アニールを施した。これにより、ITO膜の多結晶化が促進された。次に、この促進の状態を確認すべく、X線回折(X‐ray diffraction:XRD)でITO膜を測定したところ、In23のピークが確認された。
以上により、目的とする光学シートが得られた。
【0222】
(試験例5−2)
(成膜工程、アニール工程)
まず、試験例5−1と同様にして成膜工程およびアニール工程を行い、アニール処理が施されたITO膜を有するPETフィルムを作製した。
【0223】
(エッチング工程)
次に、アニール処理を施したPETフィルムを、PH3程度の溶液に10秒間浸漬させて、ITO膜をエッチングした。
【0224】
(洗浄工程)
次に、エッチング処理を施したPETシートに対して、純水洗浄、IPA洗浄、純粋洗浄を順次行った。
以上により、目的とする光学シートが得られた。
【0225】
(試験例5−3)
浸漬時間を20秒間に変更する以外は試験例5−2と同様にして光学シートを得た。
【0226】
(試験例6−1)
構造体の配置ピッチを250nm、構造体の高さを120nm、アスペクト比を0.48とする以外は試験例5−1と同様にして光学シートを得た。
【0227】
(試験例6−2)
構造体の配置ピッチを250nm、構造体の高さを120nm、アスペクト比を0.48とする以外は試験例5−2と同様にして光学シートを得た。
【0228】
(試験例6−3)
構造体の配置ピッチを250nm、構造体の高さを120nm、アスペクト比を0.48とする以外は試験例5−3と同様にして光学シートを得た。
【0229】
(試験例7−1)
構造体の配置ピッチを250nm、構造体の高さを155nm、アスペクト比を0.62とする以外は試験例5−1と同様にして光学シートを得た。
【0230】
(試験例7−2)
構造体の配置ピッチを250nm、構造体の高さを155nm、アスペクト比を0.62とする以外は試験例5−2と同様にして光学シートを得た。
【0231】
(試験例7−3)
構造体の配置ピッチを250nm、構造体の高さを155nm、アスペクト比を0.62とする以外は試験例5−3と同様にして光学シートを得た。
【0232】
(試験例8−1)
(成膜工程、アニール工程)
以下のプレズムシートを用いる以外は試験例5−1と同様にして成膜工程およびアニール工程を行い、アニール処理が施されたITO膜を有するプリズムシートを作製した。
以上により、目的とする光学シートが得られた。
以下に、プレズムシートの構成の詳細を示す。
プリズム(構造体)の配列:1次元配列
プリズムの凹凸形状:凸状
プリズムの形状:断面2等辺三角形状の柱状体
プリズムの配置ピッチ:10μm
プリズムの高さ:5μm
プリズムのアスペクト比:0.50
【0233】
(試験例8−2)
(成膜工程、アニール工程)
まず、試験例8−1と同様にして成膜工程およびアニール工程を行い、アニール処理が施されたITO膜を有するプリズムシートを作製した。
【0234】
(エッチング工程)
次に、アニール処理を施したプリズムシートを、PH3程度の溶液に10秒間浸漬させて、ITO膜をエッチングした。
【0235】
(洗浄工程)
次に、エッチング処理を施したPETシートに対して、純水洗浄、IPA洗浄、純粋洗浄を順次行った。
以上により、目的とする光学シートが得られた。
【0236】
(試験例8−3)
浸漬時間を20秒間に変更する以外は試験例4−2と同様にして光学シートを得た。
【0237】
(試験例8−4)
浸漬時間を30秒間に変更する以外は試験例4−2と同様にして光学シートを得た。
【0238】
(試験例8−5)
浸漬時間を40秒間に変更する以外は試験例4−2と同様にして光学シートを得た。
【0239】
(表面抵抗)
上述のようにして得られた試験例1−1〜8−5の光学シート表面の表面抵抗値を4端針法にて測定した。その結果を表3に示す。
【0240】
(初期変化率の逆数)
上述のようにようにして得られた試験例1−1〜8−5の光学シート表面の初期変化率の逆数(仮想厚さの変化)を以下の式より求めた。その結果を表4および図35に示す。
(初期変化率の逆数)=(エッチング前のサンプルの表面抵抗)/(エッチング後のサンプルの表面抵抗)
【0241】
【表3】

【0242】
【表4】

【0243】
表3、表4および図35から以下のことがわかる。
平坦面上にITO膜を形成した試験例4−1〜4−7では、エッチングによりITO膜の膜厚に殆ど変化せず、表面抵抗がほぼ一定となる傾向がある。これに対して、多数の構造体上にITO膜を形成した試験例5−1〜5−3、試験例6−1〜6−3、試験例7−1〜7−3では、エッチングによりITO膜の膜厚が急激に減少し、表面抵抗が急激に上昇する傾向がある。
ミクロンオーダーの配置ピッチで多数の構造体を形成した試験例8−1〜8−5でも、
ナノオーダーの配置ピッチで多数の構造体を形成した試験例5−1〜5−3、試験例6−1〜6−3、試験例7−1〜7−3と同様の傾向を示す。
【0244】
以上、この発明の実施形態について具体的に説明したが、この発明は、上述の実施形態に限定されるものではなく、この発明の技術的思想に基づく各種の変形が可能である。
【0245】
例えば、上述の実施形態において挙げた構成、方法、形状、材料および数値などはあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、形状、材料および数値などを用いてもよい。
【0246】
また、上述の実施形態の各構成は、この発明の主旨を逸脱しない限り、互いに組み合わせることが可能である。
【0247】
また、上述の実施形態では、片面または両面に配線が形成された単層の導電性素子に対して本発明を適用した例を説明したが、本発明はこの例に限定されるものではなく、多層の導電性素子に対しても適用可能である。
【0248】
また、上述の実施形態では、平面状の基体表面に配線を形成する場合を例として説明したが、配線を形成する面は平面に限定されるものではなく、曲面状の基体表面に配線を形成するようにしてもよい。
【0249】
また、上述の実施形態では、液晶表示素子に対して本発明を適用した例を説明したが、本発明はこの例に限定されるものではなく、パッシブマトリックス駆動方式の種々の表示素子(例えばEL素子、電子ペーパーなど)に対しても適用可能である。
【0250】
また、上述の実施形態では、2つの基材を重ね合わせる構成を有する投射型静電容量方式タッチパネルに対して本発明を適用した例について説明したが、本発明はこの例に限定されるものではない。例えば、1つの基材の両面に電極を形成した構成を有する投射型静電容量方式タッチパネルに対しても本発明は適用可能である。
【0251】
また、上述の実施形態では、電子機器の例として表示装置や情報入力装置に本発明を適用する例について説明したが、本発明はこの例に限定されるものではなく、表示素子や配線素子(例えばプリント基板)などを備える種々の電子機器に対して適用可能である。
【符号の説明】
【0252】
1 導電性素子
2 基体
3 構造体
4 導電層
5 金属層
11 ロール原盤
12 構造体
13 レジスト層
41 ディスク状原盤

【特許請求の範囲】
【請求項1】
第1の波面および第2の波面を有する基体と、
上記第1の波面上に形成された導電層と
を備え、
上記導電層は、導電パターン部を形成し、
上記第1の波面および上記第2の波面が、以下の関係を満たす導電性素子。
0≦(Am1/λm1)<(Am2/λm2)≦1.8
(但し、Am1:第1の波面の振動の平均幅、Am2:第2の波面の振動の平均幅、λm1:第1の波面の平均波長、λm2:第2の波面の平均波長)
【請求項2】
可視光の波長以下の波長を有する第1の波面と、第2の波面とを有する基体と、
上記第1の波面、および上記第2の波面のうち該第1の波面上に形成された導電層と
を備え、
上記導電層が、導電パターン部を形成し、
上記第2の波面の振動の平均幅Am2は、上記第1の波面の振動の平均幅Am1に比して大きい導電性素子。
【請求項3】
上記第1の波面および上記第2の波面が、以下の関係を満たし、
上記第2の波面の平均波長λ2が、可視光の波長以下である請求項1記載の導電性素子。
(Am1/λm1)=0、0<(Am2/λm2)≦1.8
【請求項4】
上記第1の波面および上記第2の波面が、以下の関係を満たし、
上記第1の波面の平均波長λ1が、可視光の波長以下である請求項1記載の導電性素子。
0<(Am1/λm1)<(Am2/λm2)≦1.8
【請求項5】
上記第1の波面および上記第2の波面が、以下の関係を満たし、
上記第2の波面の平均波長λ2が、100nm以上である請求項1記載の導電性素子。
(Am1/λm1)=0、0<(Am2/λm2)≦1.8
【請求項6】
上記第1の波面および上記第2の波面が、以下の関係を満たし、
上記第1の波面の平均波長λ1、および上記第2の波面の平均波長λ2が、100nm以上である請求項1記載の導電性素子。
0<(Am1/λm1)<(Am2/λm2)≦1.8
【請求項7】
上記第2の波面上に形成された、上記導電層の一部からなる残留膜をさらに備え、
上記導電層、および上記残留膜が、以下の関係を満たす請求項1記載の導電性素子。
S1>S2
(但し、S1:導電層の面積、S2:残留膜の面積)
【請求項8】
上記第1の波面上に形成された導電層は、上記第1の波面上に連続的に形成されているのに対して、上記第2の波面上に形成された残留膜は、上記第2の波面上に不連続的に形成されている請求項7記載の導電性素子。
【請求項9】
上記第2の波面上に形成された、上記導電層の一部からなる残留膜をさらに備え、
上記導電層、および上記残留膜が、以下の関係を満たす請求項1記載の導電性素子。
d1>d2
(但し、d1:導電層の厚さ、d2:残留膜の厚さ)
【請求項10】
上記導電層の表面抵抗が、5000Ω/□以下である請求項1または2記載の導電性素子。
【請求項11】
上記導電層は、導電性高分子、金属ナノ粒子、およびカーボンナノチューブからなる群より選ばれる少なくとも1種を含んでいる請求項1または2記載の導電性素子。
【請求項12】
上記導電層は、透明酸化物半導体を含んでいる請求項1または2記載の導電性素子。
【請求項13】
上記透明酸化物半導体は、インジウム錫酸化物、または酸化亜鉛である請求項12記載の導電性素子。
【請求項14】
上記導電層は、アモルファスと多結晶との混合状態である請求項12記載の導電性素子。
【請求項15】
上記導電パターン部が、配線パターン部である請求項1または2記載の導電性素子。
【請求項16】
請求項1〜15のいずれか1項に記載の導電性素子を備える配線素子。
【請求項17】
請求項1〜14のいずれか1項に記載の導電性素子を備える情報入力装置。
【請求項18】
請求項1〜14のいずれか1項に記載の導電性素子を備える表示装置。
【請求項19】
請求項1〜16のいずれか1項に記載の導電性素子を備える電子機器。
【請求項20】
第1の波面および第2の波面を有する基体表面に対して、導電層を形成する工程と、
上記基体表面に形成された導電層を除去する工程と
を備え、
上記除去の工程では、
上記第1の波面および上記第2の波面のうち該第1の波面上に、上記導電層からなる導電パターン部を形成し、
上記第1の波面および上記第2の波面が、以下の関係を満たす導電性素子の製造方法。
0≦(Am1/λm1)<(Am2/λm2)≦1.8
(但し、Am1:第1の波面の振動の平均幅、Am2:第2の波面の振動の平均幅、λm1:第1の波面の平均波長、λm2:第2の波面の平均波長)
【請求項21】
可視光の波長以下の波長を有する第1の波面と、第2の波面とを有する基体表面に対して、導電層を形成する工程と、
上記基体表面に形成された導電層を除去する工程と
を備え、
上記第2の波面の振動の平均幅Am2は、上記第1の波面の振動の平均幅Am1に比して大きく、
上記第2の波面の平均波長λm2に対する振動の平均幅Am2の比率(Am2/λm1)が、1.8以下であり、
上記除去の工程では、
上記第1の波面および上記第2の波面のうち該第1の波面上に、上記導電層からなる導電パターン部を形成する導電性素子の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate

【図34】
image rotate

【図35】
image rotate

【図36】
image rotate


【公開番号】特開2011−248324(P2011−248324A)
【公開日】平成23年12月8日(2011.12.8)
【国際特許分類】
【出願番号】特願2011−24256(P2011−24256)
【出願日】平成23年2月7日(2011.2.7)
【出願人】(000002185)ソニー株式会社 (34,172)
【Fターム(参考)】