説明

無電解ニッケルメッキ膜の製造方法およびそれを用いた磁気記録媒体用基板

【課題】無欠陥の無電解ニッケルメッキ膜の製造方法の提供。
【解決手段】スパッタ法を用いて、基材上に99.99%以上の純度および2.5μm以上の膜厚を有するアルミニウム層を形成する工程と、無電解メッキを用いて、アルミニウム層の上に無電解ニッケルメッキ膜を形成する工程とを含むことを特徴とする無電解ニッケルメッキ膜の製造方法。ここで、基材とアルミニウム層との間に99.99%以上の純度を有するチタン層を形成する工程をさらに含んでもよい。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、無欠陥で高耐蝕性が要求される無電解ニッケルメッキ膜の製造方法に関する。より詳細には、本発明は、無欠陥で高耐蝕性のニッケルメッキ膜を有するアルミニウム基材を使用する分野において有用である。たとえば、本発明は、コンピュータの外部記憶装置などを含む各種磁気記録装置に搭載される磁気記録媒体用基板の製造において有用である。
【背景技術】
【0002】
磁気記録媒体用基材は、磁気記録のノイズ源とならないような高い非磁性特性を有することが求められている。また、基材の表面は、磁気ヘッドとの摺動または衝撃に耐える高い硬度が求められている。上記の点に鑑みて、磁気記録媒体用基材は、一般的にはアルミニウムを用いて作製され、その表面に通常5〜20μmの膜厚を有する無電解ニッケルメッキが施されている。
【0003】
加えて、磁気記録装置内では、磁気記録媒体を10,000rpmもの高速で回転させ、媒体表面上の数nmの高さに浮上させた磁気ヘッドで走査することにより、高密度記録および高速アクセスを両立させている。この特性を達成するため、磁気記録媒体用基材表面は、高い平坦性(1nm以下の平均表面粗さRa)とともに、記録抜けの原因となる欠陥を最少化することが求められている。
【0004】
アルミニウム下地層の面方位が(111)であることが、無電解ニッケルメッキ膜を形成する上で好ましいことが知られている。アルミニウム下地層の上に形成される無電解ニッケルメッキ膜の膜厚の均一性を向上させるために、アルミニウム下地層を異種材料層で上下2つの層に分断する方法が提案されている(特許文献1参照)。この提案において、異種材料層によってアルミニウム下地層の連続性を断ち切り、低い基材温度において上層のアルミニウム層を形成することによって、上層のアルミニウム結晶粒を小さくし、(111)配向以外の結晶粒のそれぞれの面積を小さくしている。そして、周囲に存在する(111)配向の結晶粒上に成長したニッケルメッキ膜が(111)配向以外の結晶粒上にかぶさることによって、均一な膜厚を有するニッケルメッキ膜を形成している。この提案においては、個々の結晶粒の面積を小さくすることを検討しているものの、アルミニウム下地層全体を通した(111)配向以外の部分の総面積については何らの検討もなされていない。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2008−028079号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
磁気記録媒体が高い信頼性を維持するためには、アルミニウム腐蝕性ガス(たとえば、塩素系ガスおよび硝酸系ガス)に曝された場合においても、前述の欠陥が増加しないことが要求される。たとえば、磁気記録装置に収容された磁気記録媒体の無電解ニッケルメッキ膜にアルミニウム下地層まで貫通する欠陥が存在する場合、磁気記録装置内にアルミニウム腐蝕性ガスが侵入した際に、アルミニウム腐蝕性ガスがアルミニウム下地層に到達し、アルミニウム下地層の溶蝕(コロージョン)が発生させる恐れがある。そして、コロージョンの発生は、磁気記録媒体を使用不能状態にする恐れがある。したがって、無電解ニッケルメッキ膜の無欠陥化が強く求められるようになってきている。
【課題を解決するための手段】
【0007】
本発明者は、無電解ニッケルメッキ膜の形成にあたり、その下地層となるアルミニウム層を純度99.99%以上のアルミニウムで形成することにより、アルミニウム層の(111)配向性を高めることを見いだし、本発明に至った。
【発明の効果】
【0008】
本発明の構成を採用することによって、基材上に高純度のアルミニウム層を形成することによって、無欠陥の高耐食性無電解ニッケルメッキ膜の形成が可能になる。また、基材上に高純度のチタン層および高純度のアルミニウム層の積層膜を形成することによって、無欠陥の高耐食性無電解ニッケルメッキ膜をより安定的に形成することが可能になる。
【図面の簡単な説明】
【0009】
【図1】本発明の方法で形成した無電解ニッケルメッキ膜積層体の1つの構成例を示す図である。
【図2】本発明の方法で形成した無電解ニッケルメッキ膜積層体の別の構成例を示す図である。
【図3】無電解ニッケルメッキ膜を形成するための下地層であるアルミニウム層における結晶粒の平均粒径と配向性との関係を示すグラフである。
【発明を実施するための形態】
【0010】
従来は、アルミニウム基材表面上に直接無電解メッキを行ってニッケルメッキを形成していた。本発明においては、図1に示すように、基材10の上に高純度のアルミニウム層30を形成し、その上に無電解メッキによって無電解ニッケルメッキ膜40を形成する。あるいはまた、図2に示すように、基材10の上に、高純度のチタン層20および高純度のアルミニウム層30を順次形成し、その上に無電解メッキによって無電解ニッケルメッキ膜40を形成する。高純度のアルミニウム層30単層でも十分な配向性を有する被製膜面(無電解メッキを施す表面)を形成することは可能である。しかしながら、高純度のチタン層20を介在させることによって、基材10の影響を完全に断ち切って、被製膜面、すなわち高純度のアルミニウム層30の表面を安定して高配向性の表面とすることが可能となる。
【0011】
本発明における基材10は、非磁性の材料、好ましくはアルミニウムまたはアルミニウム合金(Ag−Mgなど)で形成される。本発明における基材10は、たとえば磁気記録媒体用のアルミニウムまたはアルミニウム合金製のディスクであってもよいし、あるいはアルミニウムまたはアルミニウム合金製の自動車用ホイールであってもよい。
【0012】
本発明における高純度のアルミニウム層30は、99.99%以上、好ましくは99.999%以上の純度のアルミニウムで形成される。アルミニウム層30は、スパッタ法または蒸着法を用いて形成することができる。好ましくは、スパッタ法を用いてアルミニウム層30を形成する。なぜなら、製膜時のアルミニウム原子が被製膜基材に衝突するエネルギーを増大させることによって、密着力の増大、配向性の向上、および大面積での製膜時の膜厚の均一性の向上などの効果を達成できるからである。スパッタ法を用いてアルミニウム層30を形成する場合、99.99%以上、好ましくは99.999%以上の純度を有するアルミニウムターゲット材料を用いることによって、前述の高純度を達成することができる。何らの理論に拘束されることを意図するものではないが、アルミニウムの純度向上による配向性の向上は以下の機構によって得られていると考えている。アルミニウム層30の純度を向上させた場合、結晶成長の阻害要因となる不純物濃度が減少するため、アルミニウム層30中の結晶粒径が増大する。基材10(表面にアルミニウムの自然酸化膜が形成されている)またはチタン層20の上に堆積するアルミニウムは<111>方向に優先配向して、面方位(111)を有する結晶粒を形成する。しかしながら、他の方向(たとえば、<100>、<110>など)に配向して、他の面方位の結晶粒も少ない確率で発生する。ただし、他の面方位の結晶粒は、面方位(111)を有する結晶粒に比較して粒径が小さい。したがって、結晶粒径の増大に伴って、他の面方位の結晶粒は、大きな粒径を有する面方位(111)の結晶粒に飲み込まれ、アルミニウム層30の表面において、面方位(111)に配向した領域が拡大し、配向性が向上する。
【0013】
無電解ニッケルメッキの前処理のエッチングによる膜厚減少および製造時のバラツキを考慮すると、形成時のアルミニウム層30は、2.5μm以上、好ましくは3μm以上の膜厚を有する。本発明においては、一般的に、アルミニウム層30の膜厚が大きくなるにつれて、アルミニウム層30内の結晶粒の平均粒径が増大し、配向性が向上する。一方、製造コストおよび量産性の観点からは、アルミニウム層30の膜厚は必要最小限であることが望ましい。アルミニウム層30は、2.5μm以上10μm以下、好ましくは3μm以上6μm以下の膜厚を有する。
【0014】
本発明における高純度のアルミニウム層30の形成は、被製膜基材(基材10または基材10と高純度のチタン層20との積層体)を、好ましくは180℃以上420℃以下、より好ましくは300℃以上400℃以下の温度に加熱して実施することが好ましい。被製膜基材の温度を上昇させることによって、アルミニウム層30の結晶粒の平均粒径が増大し、これによってアルミニウム層30の配向性が向上するからである。図3において、種々の被製膜基材温度において種々の膜厚を有するアルミニウム層30を形成し、アルミニウム層30の結晶粒の平均粒径と配向性との相関を示す。なお、配向性は、(111)結晶面から15゜以上乖離した結晶粒の面積の比率(アルミニウム層の表面積を基準とする)をもって評価した。したがって、より小さい数値が、より優れた配向性を示す。図3から分かるように、結晶粒の平均粒径の増大に伴って、アルミニウム層30の配向性が向上していることが分かる。本発明においては、アルミニウム層における配向性、すなわち(111)結晶面から15゜以上乖離した結晶粒の面積の比率を、15%以下、好ましくは5%以下とすることが望ましい。
【0015】
図2に示すように高純度のチタン層20を基材10とアルミニウム層30との間に介在させる場合、高純度のチタン層20は、99.99%以上、好ましくは99.999%以上の純度のチタンで形成される。チタン層20は、スパッタ法または蒸着法を用いて形成することができる。好ましくは、スパッタ法を用いてチタン層20を形成する。なぜなら、製膜時のチタン原子が被製膜基材に衝突するエネルギーを増大させることによって、密着力の増大、配向性の向上、および大面積での製膜時の膜厚の均一性の向上などの効果を達成できるからである。スパッタ法を用いてチタン層20を形成する場合、99.99%以上、好ましくは99.999%以上の純度を有するチタンターゲット材料を用いることによって、前述の高純度を達成することができる。
【0016】
チタン層20は、0.01μm以上0.15μm以下、好ましくは0.02μm以上0.05μm以下の膜厚を有する。0.01μm以上のチタン層20を形成した場合に、アルミニウム層30の配向性に対する基材10の影響を排除することが可能となる。さらに、チタン層20の膜厚を0.02μm以上とすることによって、チタン層20自身の配向性を安定的に向上させることが可能となる。チタン層20の配向性の向上は、その上に形成されるアルミニウム層30の高配向状態の達成を可能にする。また、チタン層の膜厚の上限を前述のように設定することによって、優れた量産性および低い製造コストを達成することができる。
【0017】
本発明における無電解ニッケルメッキ膜40は、ニッケルを主成分し、リン、モリブデン、タングステンなどの添加物を含んでもよい膜である。無電解ニッケルメッキ膜40における添加物の含有量は、膜の総質量を基準として、好ましくは10質量%14質量%以下、より好ましくは12質量%以上13質量%以下である。本発明における無電解ニッケルメッキ膜40は、慣用の材料および方法を用いる無電解ニッケルメッキによって形成される。無電解ニッケルメッキ膜40の形成の前に、被製膜表面となるアルミニウム層30表面の洗浄、酸エッチング、および/または、置換亜鉛メッキ(ジンケート)などの初期反応層の形成を行ってもよい。
【0018】
無電解ニッケルメッキ膜40の形成前に酸エッチングを行う場合、通常の場合、アルミニウム層30の膜厚が約1μm程度減少する。したがって、酸エッチング後のアルミニウム層30の膜厚は、1.0μm以上、より好ましくは1.5μm以上8.5μm以下、より好ましくは2μm以上5μm以下の膜厚を有する。上記のような膜厚を有することによって、酸エッチングの不均一性によって、酸エッチング液が下にあるチタン層20および基材10に到達することを防止することができる。
【0019】
本発明によって形成された無電解ニッケルメッキ膜40は、ピンホールなどの欠陥が少なく、腐蝕性環境に置かれた場合であっても下にある基材10を腐蝕から保護することが可能となる。よって、本発明によって製造された無電解ニッケルメッキ膜40で被覆された基材は、信頼性の高い磁気記録媒体を製造するための磁気記録媒体用基板として有用である。
【0020】
あるいはまた、本発明によって形成されるニッケルメッキ膜は、自動車用ホイールにおいても有用である、自動車用アルミニウムホイールは、一般的に、アルミニウム基材上に、無電解ニッケルメッキ膜、または無電解ニッケルメッキ膜/電気ニッケルメッキ膜/電気クロムメッキ膜が形成されている。無電解ニッケルメッキ膜にピンホールが存在した場合、冬期に融雪剤として路面散布される塩化カルシウムなどに含まれる塩素イオンは、ホイールのアルミニウム基材を著しく腐蝕させ、著しい孔食が発生する。しかしながら、本発明によって形成される無電解ニッケルメッキ膜はピンホールなどの欠陥が少ないため、上記のような孔食の発生を抑制することが可能である。
【実施例】
【0021】
(実施例1)
本実施例は、図1に示す構造の無電解ニッケルメッキ膜積層体の製造例である。
外径95mm、内径25mm、および板厚1.75mmの円環形状を有するAl−Mg合金製の基材10を準備した。基材10にアルカリ洗浄および酸エッチングを施して、その表面を清浄化した。
【0022】
次いで、99.99%以上の純度を有するアルミニウムターゲットを用いたスパッタ法によって、膜厚2.5μmのアルミニウム層30を形成した。この際、製膜パワーを10kWとし、基材10の温度を300℃とした。得られたアルミニウム層30の表面の200μm平方の領域について、後方散乱電子回折法(EBSD)を用いて分析し、(111)方位から15゜以上乖離した結晶粒の存在する面積の比率を求めた。得られた比率を、以下の第1表における「配向性」として示した。
【0023】
続いて、アルミニウム層30にアルカリ洗浄および酸エッチングを施して、その表面を清浄化した。次に、無電解Ni−Pメッキの初期反応層として、アルミニウム層30の上にジンケート膜を形成した。
【0024】
続いて、無電解ニッケルメッキ液ニムデン−HDX(上村工業製)を用いて、12.2%のリンを含み、7μmの膜厚を有する無電解Ni−Pメッキ膜40を形成した。得られた無電解Ni−Pメッキ膜40を、平均粒径800nmのアルミナスラリーおよび発泡ウレタン製研磨パッドを用いて粗研磨した。粗研磨の加工厚さを2μmとした。続いて、20〜200nmの粒径を有するコロイダルシリカおよび発泡ウレタン製研磨パッドを用いて仕上げポリッシュ加工を施した。仕上げポリッシュ加工の加工厚さを0.2μmとした。さらに、アルカリ洗浄剤およびPVAスポンジを用いて無電解Ni−Pメッキ膜40の表面を十分に擦り洗い、18MΩ・cm以上の抵抗率を有する脱イオン水を用いて十分にすすいで、研磨砥粒、切粉、およびその他の付着異物を除去して、磁気記録媒体用基板を得た。
【0025】
表面欠陥解析装置OSA(Optical Spectrum Analyzer)を用いて、得られた磁気記録媒体用基板の片側表面の無電解Ni−Pメッキ膜40の全体にわたって、200nm以上の直径を有するピット欠陥の数を測定した。ここで、ピット欠陥数が10個/面以下の場合を「◎」、25個/面以下の場合を「○」、50個/面以下の場合を「△」、51個/面以上の場合を「×」と判定した。その結果を第1表に示す。
【0026】
(実施例2〜5)
アルミニウム層30の膜厚を変化させたことを除いて実施例1の手順を繰り返して、磁気記録媒体用基板を得た。アルミニウム層30の膜厚および配向性、ならびに磁気記録媒体用基板のピット欠陥の数を第1表に示す。
【0027】
(実施例6)
99.999%以上の純度を有するアルミニウムターゲットを用いて膜厚3μmのアルミニウム層30を形成したことを除いて実施例1の手順を繰り返して、磁気記録媒体用基板を得た。アルミニウム層30の配向性、ならびに磁気記録媒体用基板のピット欠陥の数を第1表に示す。
【0028】
(比較例1)
アルミニウム層30を形成しなかったことを除いて実施例1の手順を繰り返して、磁気記録媒体用基板を得た。磁気記録媒体用基板のピット欠陥の数を第1表に示す。
【0029】
(比較例2)
アルミニウム層30の膜厚を2μmにしたことを除いて実施例1の手順を繰り返して、磁気記録媒体用基板を得た。アルミニウム層30の配向性、ならびに磁気記録媒体用基板のピット欠陥の数を第1表に示す。
【0030】
(実施例6)
99.9%以上の純度を有するアルミニウムターゲットを用いたことを除いて実施例6の手順を繰り返して、磁気記録媒体用基板を得た。アルミニウム層30の配向性、ならびに磁気記録媒体用基板のピット欠陥の数を第1表に示す。
【0031】
【表1】

【0032】
比較例1と実施例1〜5との比較において、基材10の上に純度99.99%以上のアルミニウム層30を形成することにより、優れた配向性を有するアルミニウム層30が得られ、その上に形成される無電解ニッケルメッキ膜(Ni−P膜)のピット欠陥を著しく減少できることが分かる。また、比較例2と実施例1〜5との比較において、アルミニウム層30の製膜時の膜厚を2.5μm以上とすることが、無電解ニッケルメッキ膜のピット欠陥の減少に必要であることが分かる。さらに、アルミニウム層30の製膜時の膜厚が等しい比較例3および実施例2の比較から、アルミニウム層30の純度が99.99%以上であることが、無電解ニッケルメッキ膜のピット欠陥の減少に重要であることが分かる。また、アルミニウム層30の純度を99.999%以上とした実施例6と、実施例2との比較から、アルミニウム層30の純度を向上させることによって、より効果的に無電解ニッケルメッキ膜のピット欠陥を減少できることが分かる。
【0033】
(実施例7)
本実施例は、図2に示す構造の無電解ニッケルメッキ膜積層体の製造例である。
最初に、実施例1の手順に従って清浄化したAlMg合金製基材を準備した。
【0034】
次に、99.99%以上の純度を有するチタンターゲットを用いたスパッタ法によって、膜厚0.01μmのチタン層20を形成した。この際、製膜パワーを10kWとし、基材10の温度を300℃とした。
【0035】
続いて、実施例1と同様の手順によって、膜厚2.5μmのアルミニウム層30、ならびに無電解ニッケルメッキ膜40の形成を行い、磁気記録媒体用基板を得た。アルミニウム層30の配向性、および無電解ニッケルメッキ膜のピット欠陥について、実施例1と同様の評価を行った。結果を第2表に示す。
【0036】
(実施例8〜11)
チタン層20の膜厚を変化させたことを除いて実施例7の手順を繰り返して、磁気記録媒体用基板を得た。チタン層20の膜厚、アルミニウム層30の膜厚および配向性、ならびに磁気記録媒体用基板のピット欠陥の数を第2表に示す。
【0037】
(実施例12)
99.999%以上の純度を有するチタンターゲットを用いて膜厚0.02μmのチタン層20を形成し、99.999%以上の純度を有するアルミニウムターゲットを用いて膜厚3μmのアルミニウム層30を形成したことを除いて実施例7の手順を繰り返して、磁気記録媒体用基板を得た。チタン層20の膜厚、アルミニウム層30の配向性、ならびに磁気記録媒体用基板のピット欠陥の数を第2表に示す。
【0038】
(比較例4)
99.9%以上の純度を有するチタンターゲットを用いて膜厚0.02μmのチタン層20を形成し、膜厚3μmのアルミニウム層30を形成したことを除いて実施例7の手順を繰り返して、磁気記録媒体用基板を得た。チタン層20の膜厚、アルミニウム層30の配向性、ならびに磁気記録媒体用基板のピット欠陥の数を第2表に示す。
【0039】
【表2】

【0040】
比較例1と実施例7〜11との比較において、基材10の上に純度99.99%以上のチタン層20および純度99.99%以上のアルミニウム層30を形成することにより、優れた配向性を有するアルミニウム層30が得られ、その上に形成される無電解ニッケルメッキ膜(Ni−P膜)のピット欠陥を著しく減少できることが分かる。また、実施例1と実施例7〜11との比較において、純度99.99%以上のチタン層20を設けることが、アルミニウム層30単層に比較して、より一層有効に無電解ニッケルメッキ膜のピット欠陥を減少させることが分かる。また、比較例4および実施例8の比較から、チタン層20の純度が99.99%以上であることが、無電解ニッケルメッキ膜のピット欠陥の減少に重要であることが分かる。また、チタン層20およびアルミニウム層30の純度を99.999%以上とした実施例12と、実施例8との比較から、チタン層20およびアルミニウム層30の純度を向上させることによって、より効果的に無電解ニッケルメッキ膜のピット欠陥を減少できることが分かる。
【0041】
なお、実施例3および実施例9については、それぞれ10個の試料の作製を行い、前述の評価を行った。これらの実施例においては、いずれもその平均値を第1表および第2表に示した。実施例9においては、10個の試料全てにおいて、アルミニウム層30の配向性((111)方位から15゜以上乖離した面積の比率)は5%以下であり、かつピット欠陥も10個/面以下であった。一方、実施例3においては、10個の試料中に15%を超える18%のアルミニウム層30の配向性を示す試料が1個存在した。この試料のピット欠陥は39個/面であり、「△」と評価された。このことは、アルミニウム層30のみを用いる場合に比べて、チタン層20の併用が、基材10の影響を完全に排除して高配向性のアルミニウム層30を安定的に作製することを可能にし、ひいては無電解ニッケルメッキ膜のピット欠陥を安定的に減少させることを可能にすることが分かる。
【符号の説明】
【0042】
10 基材
20 チタン層
30 アルミニウム層
40 無電解ニッケルメッキ膜

【特許請求の範囲】
【請求項1】
スパッタ法または蒸着法を用いて、基材上に99.99%以上の純度および2.5μm以上の膜厚を有するアルミニウム層を形成する工程と、
無電解メッキを用いて、前記アルミニウム層の上に無電解ニッケルメッキ膜を形成する工程と
を含むことを特徴とする無電解ニッケルメッキ膜の製造方法。
【請求項2】
基材上に99.99%以上の純度を有するチタン層を形成する工程と、
スパッタ法または蒸着法を用いて、チタン層上に99.99%以上および2.5μm以上の純度を有するアルミニウム層を形成する工程と、
無電解メッキを用いて、前記アルミニウム層の上に無電解ニッケルメッキ膜を形成する工程と
を含むことを特徴とする無電解ニッケルメッキ膜の製造方法。
【請求項3】
前記チタン層が0.01μm以上0.15μm以下の膜厚を有することを特徴とする請求項2に記載の無電解ニッケルメッキ膜の製造方法。
【請求項4】
前記チタン層が0.02μm以上0.05μm以下の膜厚を有することを特徴とする請求項3に記載の無電解ニッケルメッキ膜の製造方法。
【請求項5】
前記チタン層が99.999%以上の純度を有することを特徴とする請求項2から4のいずれかに記載の無電解ニッケルメッキ膜の製造方法。
【請求項6】
前記アルミニウム層が2.5μm以上10μm以下の膜厚を有することを特徴とする請求項1から5のいずれかに記載の無電解ニッケルメッキ膜の製造方法。
【請求項7】
前記アルミニウム層が3μm以上6μm以下の膜厚を有することを特徴とする請求項6に記載の無電解ニッケルメッキ膜の製造方法。
【請求項8】
前記アルミニウム層が99.999%以上の純度を有することを特徴とする請求項1から7のいずれかに記載の無電解ニッケルメッキ膜の製造方法。
【請求項9】
前記アルミニウム層において、(111)結晶面から15゜以上乖離した結晶粒の面積の前記アルミニウム層の表面積を基準とした比率が15%以下であることを特徴とする請求項1から8のいずれかに記載の無電解ニッケルメッキ膜の製造方法。
【請求項10】
前記アルミニウム層において、(111)結晶面から15゜以上乖離した結晶粒の面積の前記アルミニウム層の表面積を基準とした比率が5%以下であることを特徴とする請求項9に記載の無電解ニッケルメッキ膜の製造方法。
【請求項11】
基材と、99.99%以上の純度および1.0μm以上の膜厚を有するアルミニウム層と、無電解メッキにより前記アルミニウム層上に形成された無電解ニッケルメッキ膜とを含む磁気記録媒体用基板。
【請求項12】
前記基材と前記アルミニウム層との間に、純度99.99%以上のチタン層をさらに含むことを特徴とする請求項11に記載の磁気記録媒体用基板。
【請求項13】
前記チタン層が0.01μm以上0.15μm以下の膜厚を有することを特徴とする請求項12に記載の磁気記録媒体用基板。
【請求項14】
前記チタン層が0.02μm以上0.05μm以下の膜厚を有することを特徴とする請求項13に記載の磁気記録媒体用基板。
【請求項15】
前記アルミニウム層が1.0μm以上8.5μm以下の膜厚を有することを特徴とする請求項11から14のいずれかに記載の磁気記録媒体用基板。
【請求項16】
前記アルミニウム層が2μm以上5μm以下の膜厚を有することを特徴とする請求項15に記載の磁気記録媒体用基板。
【請求項17】
前記アルミニウム層が99.999%以上の純度を有することを特徴とする請求項11から16のいずれかに記載の磁気記録媒体用基板。
【請求項18】
前記チタン層が99.999%以上の純度を有することを特徴とする請求項11から17のいずれかに記載の磁気記録媒体用基板。
【請求項19】
前記アルミニウム層において、(111)結晶面から15゜以上乖離した結晶粒の面積の前記アルミニウム層の表面積を基準とした比率が15%以下であることを特徴とする請求項11から18のいずれかに記載の磁気記録媒体用基板。
【請求項20】
前記アルミニウム層において、(111)結晶面から15゜以上乖離した結晶粒の面積の前記アルミニウム層の表面積を基準とした比率が5%以下であることを特徴とする請求項19に記載の磁気記録媒体用基板。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2012−21178(P2012−21178A)
【公開日】平成24年2月2日(2012.2.2)
【国際特許分類】
【出願番号】特願2010−158032(P2010−158032)
【出願日】平成22年7月12日(2010.7.12)
【出願人】(000005234)富士電機株式会社 (3,146)
【Fターム(参考)】