説明

車両用距離画像データ生成装置および車両用距離画像データの生成方法

【課題】 自車両前方の状況を連続的に把握できる車両用距離画像データ生成装置および車両用距離画像データの生成方法を提供する。
【解決手段】 投光器5と、イメージインテンシファイア7b及び高速度カメラ8と、タイミングコントローラ9と、イメージインテンシファイア7b及び高速度カメラ8により得られたターゲット距離の異なる複数の撮像画像ごとにオブジェクトを検出し、オブジェクトの輝度に基づいて、前記オブジェクトまでの距離を表す距離画像データを生成する画像処理部10を備えた。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、車両用距離画像データ生成装置の技術分野に属する。
【背景技術】
【0002】
特許文献1には、自車両前方を投光し、ターゲット距離から戻ってくる反射光のタイミングに合わせて撮像した画像に基づいて、当該ターゲット距離に障害物等の物体が存在するか否かを検出する技術が開示されている。
【特許文献1】米国特許第6700123号明細書
【発明の開示】
【発明が解決しようとする課題】
【0003】
しかしながら、上記従来技術にあっては、ターゲット距離以外の物体を検出できない。つまり、状況の把握が間欠的であり、自車両前方の状況を連続的に把握できないという問題があった。
【0004】
本発明の目的は、自車両前方の状況を連続的に把握できる車両用距離画像データ生成装置および車両用距離画像データの生成方法を提供することにある。
【課題を解決するための手段】
【0005】
上記目的を達成するため、本発明の車両用距離画像データ生成装置では、自車両前方に所定周期でパルス光を投光する投光手段と、ターゲット距離に応じて設定される撮像タイミングで前記ターゲット距離から帰ってくる反射光を撮像する撮像手段と、前記ターゲット距離が連続的に変化するように前記撮像タイミングを制御するタイミング制御手段と、前記撮像手段により得られたターゲット距離の異なる複数の撮像画像ごとにオブジェクトを検出し、前記オブジェクトの輝度に基づいて、前記オブジェクトまでの距離を表す距離画像データを生成する距離画像データ生成手段と、を備えた、ことを特徴とする。
【発明の効果】
【0006】
よって、本発明にあっては、自車両前方の状況を連続的に把握できる。
【発明を実施するための最良の形態】
【0007】
以下、本発明の車両用距離画像データ生成装置および車両用距離画像データの生成方法を実現するための最良の形態を、図面に基づく実施例により説明する。
【実施例1】
【0008】
まず、構成を説明する。
図1は、本発明の車両用距離画像データ生成装置を適用した実施例1の障害物検出装置1の構成を示すブロック図であり、実施例1の障害物検出装置1は、距離画像データ生成装置2と、物体認識処理部3と、判断部4とを備えている。
【0009】
距離画像データ生成装置2は、投光器(投光手段)5と、対物レンズ6と、光増倍部7と、高速度カメラ(撮像手段)8と、タイミングコントローラ(タイミング制御手段)9と、画像処理部(距離画像データ生成手段)10とを備えている。
投光器5は、車両の前端部に配置した近赤外線LEDであり、タイミングコントローラ9から出力されるパルス信号に応じて、所定の投光時間tL(例えば、5ns)の間、パルス光を出力する。パルス信号の周期は、投光器5の投光周期tPであり、投光周期tPは、例えば、1/100s以下の間隔とする。
対物レンズ6は、物体からの反射光を受光するためのもので、投光器5と隣接配置している。例えば、自車両前方の所定範囲を撮像できる画角とするように設定された光学系である。
【0010】
光倍増部7は、ゲート7aとイメージインテンシファイア7bとを備えている。
ゲート7aは、タイミングコントローラ9からの開閉指令信号に応じて開閉する。ここで、実施例1では、ゲート7aの開時間(ゲート時間)tGを、投光時間tLと同じ5nsとしている。ここで、ゲート時間tGは、撮像エリア(ターゲット距離)の撮像対象幅に相当し、ゲート時間tGを長くするほど撮像エリアの撮像対象幅は長くなる。実施例1では、ゲート時間tG=5nsとしているため、撮像対象幅は、光速度(約3×108m/s)×ゲート時間(5ns)から、1.5mとなる。
【0011】
イメージインテンシファイア7bは、極微弱な光(物体からの反射光等)を一旦電子に変換して電気的に増幅し、再度蛍光像に戻すことで光量を倍増してコントラストのついた像を見るデバイスである。イメージインテンシファイア7bの光電面より光電現象によって打ち出された光電子はkVオーダーの高電圧で加速され、陽極側の蛍光面に打ち込まれることにより、100倍以上の光子数の蛍光を発する。蛍光面で発生した蛍光は、ファイバオプティックプレートにより、そのままの位置関係を保ったまま散乱されることなく高速度カメラ8のイメージセンサに導かれる。
高速度カメラ8は、タイミングコントローラ9からの指令信号に応じて、光倍増部7から発せられた像を撮像し、撮像画像(カラー画像)を画像処理部10へ出力する。実施例1では、解像度640×480(横:縦)、輝度値1〜255(256段階)、100fps以上のカメラを用いている。
【0012】
タイミングコントローラ9は、高速度カメラ8により撮像される撮像画像が、狙った撮像エリアから帰ってくる反射光のタイミングとなるように、投光器5の投光開始時点からゲート7aを開くまでの時間であるディレイ時間tDを設定し、ディレイ時間に応じた開閉指令信号を出力することで、撮像タイミングを制御する。つまり、ディレイ時間tDは、自車両から撮像エリアまでの距離(撮像対象距離)を決める値であり、ディレイ時間tDと撮像対象距離との関係は、以下の式となる。
撮像対象距離=光速度(約3×108m/s)×ディレイ時間tD/2
図2に、1つの撮像エリアを撮像する際の、投光器5の動作(投光動作)とゲート7aの動作(カメラゲート動作)との時間的な関係を示す。
【0013】
タイミングコントローラ9は、撮像エリアが車両手前側から先方へと連続的に移動するように、ディレイ時間tDを所定間隔(例えば、10ns)ずつ長くすることで、高速度カメラ8の撮像範囲を車両前方側へ変化させる。なお、タイミングコントローラ9は、ゲート7aが開く直前に高速度カメラ8の撮像動作を開始させ、ゲート7aが完全に閉じた後に撮像動作を終了させる。
【0014】
また、実施例1では、図3に示すように、撮像対象距離をB1→B2→B3→…と連続的に変化させながら撮像する際、撮像エリアの撮像対象幅Aよりも撮像対象距離の増加量(B2-B1)を短くすることで、撮像エリアの一部がオーバーラップしながら変化するように撮像対象距離の増加量を設定している。
【0015】
図4は、撮像対象距離の増加量を極限まで小さくした場合、言い換えると、撮像エリアを無限に増やして撮像を行った場合の時間的な輝度変化を示す模式図であり、撮像エリアの一部をオーバーラップさせることで、連続する複数の撮像画像における同一の画素の輝度値は、徐々に増加し、ピーク後は徐々に小さくなる特性となる。なお、実際には撮像エリアは有限個(1〜n)であるが、連続する撮像エリアの一部をオーバーラップさせることで、時間的な輝度変化は図4の特性に近くなる。
【0016】
タイミングコントローラ9は、1フレーム分、すなわち、設定された所定範囲(エリア1、エリア2、…、エリアn)の撮像画像が全て撮像された場合、画像処理部10に対し画像処理指令信号を出力する。
【0017】
画像処理部10は、高速度カメラ8により撮像された1フレーム分の撮像画像から、距離情報を伴う物体(オブジェクト)を検出し、物体までの距離を色や輝度等で表す距離画像データを生成し、生成した距離画像データを物体認識処理部3へ出力する。
【0018】
物体認識処理部3は、距離画像データに含まれる物体(オブジェクト)に対して、さらにパターンマッチング等により距離画像データに含まれる物体を特定する。
判断部4は、物体認識処理部3により特定された物体(人、自動車、標識等)と自車両との関係(距離、相対速度等)に基づいて、警報等による運転者への情報提示、自動ブレーキ等の車両制御の要否を判断する。
【0019】
[距離画像データ生成制御処理]
図5は、実施例1の画像処理部10で実行される距離画像データ生成制御処理の流れを示すフローチャートで、以下、各ステップについて説明する。なお、この処理は、所定の演算周期で繰り返し実行される。
【0020】
ステップS1では、画像処理部10が、投光器5による投光を行わずに自車両前方を撮像した撮像画像の最も輝度の低い輝度値データを後の輝度判断のために記憶し、ステップS2へ移行する。このデータは、距離画像データ生成の際に用いるものとする。
【0021】
ステップS2では、画像処理部10が、撮像画像を入力し、ステップS3へと移行する。
【0022】
ステップS3では、画像処理部10が、入力された撮像画像に対して、所定の輝度しきい値により2値化する処理を画像中に各画素について行い、2値化画像を生成する処理を行う。
【0023】
ステップS4では、画像処理部10が、2値化画像において、画素が輝度のある面積部分を構成する箇所について、ラベルを割り付けるラベリング処理を行う。
【0024】
ステップS5では、画像処理部10が、1フレーム分(エリア1、エリア2、…、エリアn)の画像入力が終了したか否かを判定する。YESの場合にはステップS6へ移行し、NOの場合にはステップS2へ移行する。
【0025】
ステップS6では、画像処理部10が、前後の距離の複数画像にまたがるオブジェクトの検出を行う。
【0026】
ステップS7では、画像処理部10が前後の距離の複数画像にまたがるオブジェクトが検出されたかどうかを判断し、検出されたならばステップS8へ進み、検出されなかったならば、ステップS10へ進む。
【0027】
ステップS8では、画像処理部10が、検出されたオブジェクトの重なる部分について、それぞれの画像における平均輝度を算出する。
【0028】
ステップS9では、画像処理部10が、重なる部分の平均輝度の最も高い距離をそのオブジェクトの距離と判定する。
【0029】
ステップS10では、距離の判定されたオブジェクトを、色や輝度により距離情報を伴う画像として、距離画像データを生成し、リターンへ移行する。
【0030】
次に、作用を説明する。
[距離画像データ生成作用]
タイミングコントローラ9は、高速度カメラ8により撮像される撮像画像が、狙った撮像エリアから帰ってくる反射光のタイミングとなるように、ディレイ時間tDを設定し、高速度カメラ8の撮像タイミングを制御する。狙った撮像エリアに物体が存在している場合、投光器5から出射された光が撮像エリアから戻ってくる時間は、自車両と撮像エリアまでの距離(撮像対象距離)を光が往復する時間となるため、ディレイ時間tDは、撮像対象距離と光速度から求めることができる。
【0031】
上記方法で得られた高速度カメラ8の撮像画像において、撮像エリアに物体が存在する場合、当該物体の位置に対応する画素の輝度値データは、反射光の影響を受け、他の画素の輝度値データよりも高い値を示す。これにより、各画素の輝度値データに基づいて、狙った撮像エリアに存在する物体との距離を求めることができる。
【0032】
さらに、実施例1では、ディレイ時間tDを変化させながら撮像エリア1〜nの撮像画像を取得する。続いて、各撮像画像において、2値化(ステップS3)、ラベリング(ステップS4)を行い、ラベリングされたオブジェクトの前後の距離において重なる部分の輝度値データを比較し、最も高い輝度値データを当該オブジェクトの距離とし、撮像範囲(640×480)のオブジェクトと距離の情報を持つデータ(距離画像データ)を生成する。
【0033】
従来のレーザレーダやステレオカメラを用いた距離検出方法では、雨、霧や雪などの影響を受けやすく、信号レベルに対するノイズレベルが大きくなる(SN比が小さい)ため、悪天候時の信頼性が低い。なお、悪天候の影響を受けにくいミリ波レーダを用いた場合、距離検出の信頼性は高くなるが、ミリ波レーダの信号から物体認識(物体の特定)を行うのは困難であり、別途カメラ画像が必要となる。そして、悪天候時にはカメラ画像が不明瞭となるため、正確な物体認識を行うことは困難である。
【0034】
これに対し、実施例1では、狙った撮像エリアから帰ってくる反射波のみを撮像画像に反映させるため、雨、霧や雪などの影響により屈曲した光、すなわち、ノイズの混入レベルを低く抑え、高いSN比を得ることができる。つまり、悪天候や夜間にかかわらず、高い距離検出精度を得ることができる。
そして、生成された距離画像データにより、画像から検出される物体(オブジェクト)の距離が分かるため、その後パターンマッチング等の手法を用いて物体認識を行う場合、物体との距離を瞬時に把握できる。
【0035】
さらに、実施例1では、撮像エリアを連続的に変化させて複数の撮像画像を取得し、各撮像画像を比較して各画素の距離を検出しているため、自車両前方の状況を連続的に、かつ、広範囲に亘って把握できる。例えば、自車両と先行車両との間に歩行者が飛び出してきた状況であっても、先行車と歩行者の距離をそれぞれ同時に把握でき、警報による運転者への情報提示や自動ブレーキ等の車両制御を行うことが可能である。
【0036】
図6は、自車両前方の異なる位置に4人の歩行者A〜Dが存在している状況を示し、自車両と各歩行者との距離の関係は、A<B<C<Dとする。
このとき、実施例1では、1つの物体からの反射光が連続する複数の撮像エリアにおける撮像画像のオブジェクトを構成する画素に反映されるように、撮像エリアの一部をオーバーラップさせている。このため、各歩行者に対応するオブジェクトを構成する画素の時間的な輝度変化は、図7に示すように、歩行者の位置でピークを取る三角形の特性を示す。
【0037】
なお、距離画像データは、警報や車両制御に用いるデータであるため、ある程度の演算速度が要求される以上、撮像エリアを無限に細かく設定することは時間的に不可能であるが、1つの物体からの反射光が複数の撮像画像の含まれるようにすることで、図8に示すように、オブジェクトを構成する画素の時間的な輝度変化を上記特性に近似させ、三角形部分のピークと対応する撮像エリアを、当該画素における物体の距離とすることで、検出精度を高めることができる。
【0038】
[オブジェクトの距離判定作用]
実施例1の距離画像生成装置2では、上記説明のように、距離画像データ生成の際に、各距離画像に対して、2値化、ラベリングを行っている。
この点について、さらに詳細に図を用いて説明する。
図9は通常の画像と同様に充分に長いゲート時間(1/60sec程度)で撮像した撮像画像の例を示す図である。図10は図9の撮像範囲を、8つの距離画像でそれぞれ撮像した撮像画像の例を示す図である。図11は検出されたうちの一つのオブジェクトについて、重なっている部分の例を示す図である。図12は図9の撮像範囲についてのオブジェクト検出結果の例を示す図である。
【0039】
図9に示すような撮像範囲を図10に示すように8つの距離に分けて、タイミング制御を行い撮像したとする。
本実施例では、それぞれの画像(図10(a)〜(h))について、2値化処理(ステップS3)、ラベリング処理(ステップS4)が行われる。
これにより、図10(a)〜(h)に示すように複数のオブジェクトが検出されることになる。このオブジェクトを符号101〜106に図の(a)〜(h)を組合せて例えば101aというように示す。検出されない図では、欠番となる。
【0040】
図10(a)〜(h)の距離は、順に遠くなるものとし、上記説明したように輝度データが図8のように得られる状態にするため、オブジェクトは、前後の距離にまたがって検出されることになる(ステップS6,S7)。
その場合に例えば、オブジェクト101a〜101gが検出される場合には(図10(a)〜(g)参照)、図11に示すようにこれらを重ねる。すると、オブジェクト101a〜101gの全てに重なる部分201が検出される。
【0041】
この重なる部分201に対して、図10(a)〜(g)のそれぞれの画像において、この重なる部分201を構成する画素の輝度値を合計し、画素数で割って、平均輝度値を算出する。すると、各距離ごとに平均輝度値が算出されることになる。
このデータから、最も高い平均輝度値の距離をこのオブジェクトの距離とする。
このようにして、各オブジェクトに対して距離を判定する(図12参照)。
【0042】
本実施例の距離画像データとしては、同一位置の画素、つまり例えば座標(1、1)における各距離の輝度を見て、最も高い輝度から画素毎の距離データを判定し、距離画像データを作成することが考えられる。つまり画素ごとに距離を持つ画像である。
この場合、次の処理として、物体認識処理部3において、オブジェクトの判定を行うが、ノイズ等によりオブジェクトを構成する画素が均一な距離データを持たないため、オブジェクトの判断と距離の特定が難しくなる。
【0043】
本実施例では、各距離画像の処理において、オブジェクトの検出を行い、オブジェクト単位で距離の判定を行うため、オブジェクトの判断と距離を容易な処理で確実に行う。
【0044】
次に、効果を説明する。
実施例1の距離画像データ生成装置2にあっては、以下に列挙する効果を奏する。
【0045】
(1)自車両前方に所定周期でパルス光を投光する投光器5と、ターゲット距離に応じて設定される撮像タイミングでターゲット距離から帰ってくる反射光を撮像するイメージインテンシファイア7b及び高速度カメラ8と、ターゲット距離が連続的に変化するように撮像タイミングを制御するタイミングコントローラ9と、イメージインテンシファイア7b及び高速度カメラ8により得られたターゲット距離の異なる複数の撮像画像ごとにオブジェクトを検出し、オブジェクトの輝度に基づいて、前記オブジェクトまでの距離を表す距離画像データを生成する画像処理部10を備えたため、自車両前方の状況を連続的に把握できる。また、距離情報を伴うオブジェクトを容易な処理で確実に検出することができる。
【0046】
(2)上記(1)において、画像処理部10は、前後の連続する距離画像に存在する同じオブジェクトの最も高い輝度の距離を、オブジェクトの距離とするため、距離情報を伴うオブジェクトを容易な処理で確実に検出することができる。
【0047】
(3)上記(1)又は(2)において、画像処理部10は、前後の連続する距離画像に存在する同じオブジェクトの重なる部分に対して、重なる部分を構成する画素の輝度データから平均輝度値を算出し、最も高い輝度平均値の距離をオブジェクトの距離とするステップS7〜S9の処理を備えたため、前後の連続する距離画像で、重なる部分を設定すると、それは、同じ面積(同じ画素数で構成される)となる。この同じ面積での平均輝度値を比較すれば、図8に示す状態のピークに近い距離を選択することができ、オブジェクトの距離を正確に判定することができる。
そして、画素ごとの距離画像からオブジェクトを判定するのに比較して、容易な処理で確実にオブジェクトの検出ができる。
なお、本明細書中でオブジェクトとは、その後にパターンマッチングされ認識される物体を狭義ではさすが、処理途中では、広くラベリングされた際に、ノイズ等ではないと処理されたものを指すものとする。
【0048】
(他の実施例)
以上、本発明を実施するための最良の形態を、実施例に基づき説明したが、本発明の具体的な構成については、実施例の構成に限らず、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計変更や追加等は許容される。
【0049】
例えば、投光周期、投光時間、ゲート時間、撮像対象幅、撮像対象距離の変化量、1フレーム中の撮像エリア数は、撮像手段の性能や距離画像データ生成手段の性能に応じて適宜設定することができる。
また、実施例1では、2値化、ラベリングまでを画像処理部10で行い、物体認識処理部3で、その後のパターンマッチングを行うようにしたが、画像処理部10でパターンマッチングまでを行い、距離画像データにパターンマッチングした物体(狭義のオブジェクト)を表現するようにしてもよい。
なお、実施例1の距離画像データには、オブジェクト以外の部分には、距離画像での同じ位置となる画素データの輝度に基づき、距離データを判定して、画素ごとの距離データからなる距離画像としてもよい。また、必要がない場合には、検出されたオブジェクトのみで構成される距離画像としてもよい。
【図面の簡単な説明】
【0050】
【図1】実施例1の障害物検出装置1の構成を示すブロック図である。
【図2】1つの撮像エリアを撮像する際の、投光器5の動作(投光動作)とゲート7aの動作(カメラゲート動作)との時間的な関係を示す図である。
【図3】撮像エリアの一部がオーバーラップする状態を示す図である。
【図4】撮像エリアを無限に増やして撮像を行った場合の時間的な輝度変化を示す模式図である。
【図5】実施例1の画像処理部10で実行される距離画像データ生成制御処理の流れを示すフローチャートである。
【図6】自車両前方の異なる位置に4人の歩行者A〜Dが存在している状況を示す図である。
【図7】各歩行者A〜Bに対応する画素の時間的な輝度変化を示す模式図である。
【図8】実施例1の距離画像データ生成作用を示す図である。
【図9】通常の画像と同様に充分に長いゲート時間(1/60sec程度)で撮像した撮像画像の例を示す図である。
【図10】図9の撮像範囲を、8つの距離画像でそれぞれ撮像した撮像画像の例を示す図である。
【図11】検出されたうちの一つのオブジェクトについて、重なっている部分の例を示す図である。
【図12】図9の撮像範囲についてのオブジェクト検出結果の例を示す図である。
【符号の説明】
【0051】
1 障害物検出装置
2 距離画像データ生成装置
3 物体認識処理部
4 判断部
5 投光器(投光手段)
6 対物レンズ
7 光増倍部
7a ゲート
7b イメージインテンシファイア
8 高速度カメラ(撮像手段)
9 タイミングコントローラ(タイミング制御手段)
10 画像処理部(距離画像データ生成手段)
P (距離画像データの常時発光箇所を示す)符号
101a〜101g (検出された)オブジェクト
102a〜102h (検出された)オブジェクト
103a〜103e (検出された)オブジェクト
104d〜104h (検出された)オブジェクト
105e〜105h (検出された)オブジェクト
106e〜106h (検出された)オブジェクト
201 (同じオブジェクトで距離の異なるオブジェクトが)重なる部分

【特許請求の範囲】
【請求項1】
自車両前方に所定周期でパルス光を投光する投光手段と、
ターゲット距離に応じて設定される撮像タイミングで前記ターゲット距離から帰ってくる反射光を撮像する撮像手段と、
前記ターゲット距離が連続的に変化するように前記撮像タイミングを制御するタイミング制御手段と、
前記撮像手段により得られたターゲット距離の異なる複数の撮像画像ごとにオブジェクトを検出し、前記オブジェクトの輝度に基づいて、前記オブジェクトまでの距離を表す距離画像データを生成する距離画像データ生成手段と、
を備えた、
ことを特徴とする車両用距離画像データ生成装置。
【請求項2】
請求項1に記載の車両用距離画像データ生成装置において、
前記距離画像データ生成手段は、
前後の連続する距離画像に存在する同じオブジェクトの最も高い輝度の距離を、前記オブジェクトの距離とする、
ことを特徴とする車両用距離画像データ生成装置。
【請求項3】
請求項1又は請求項2に記載の車両用距離画像データ生成装置において、
前記距離画像データ生成手段は、
前後の連続する距離画像に存在する同じオブジェクトの重なる部分に対して、前記重なる部分を構成する画素の輝度データから平均輝度値を算出し、最も高い輝度平均値の距離を前記オブジェクトの距離とする、
ことを特徴とする車両用距離画像データ生成装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2009−281895(P2009−281895A)
【公開日】平成21年12月3日(2009.12.3)
【国際特許分類】
【出願番号】特願2008−134865(P2008−134865)
【出願日】平成20年5月23日(2008.5.23)
【出願人】(000004765)カルソニックカンセイ株式会社 (3,404)
【Fターム(参考)】