説明

スピントロニクス装置及び論理演算素子

【課題】 電流−スピン流変換効率が高く、高強度のスピン流が得られるスピントロニクス装置を提供する。
【解決手段】 互いに平行に対向する第1端面及び第2端面を有し、電子と正孔とが同程度のキャリア密度と移動度を有し、正常及び異常ホール係数が共にゼロである強磁性の両極性伝導金属からなるスピン流生成領域30と、第1端面にオーミック接続し、電子をスピン流生成領域30に注入する第1主電極20と、第2端面にオーミック接続し、正孔をスピン流生成領域30に注入する第2主電極40とを備える。第1端面に垂直な面に直交する方向の外部磁場にもとづく正常ホール効果に、磁場誘起磁化もしくは自発磁化にもとづく異常ホール効果が加わることによって、電子と正孔とを同一方向に輸送されるように偏向して、電子と正孔の電荷を互いに相殺し、スピン流生成領域30における異常ホール効果によってスピン流を得る。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、スピン流を用いたスピントロニクス装置、及びこのスピントロニクス装置を用いた論理演算素子に関する。
【背景技術】
【0002】
電子のスピンは、スピノール空間において「上向き」又は「下向き」の2つの値のみをもつ。多くの個別のスピンは、すべて上向き又は下向きになり、材料が磁性をもつ原因になる。近年、電子のスピンの特性を活用して生まれるスピン依存伝導現象の理解が進み、電子がもっている電荷を活用した半導体装置に代わり、電子スピンの性質を積極的に利用したスピントロニクス装置の開発が急速に進んでいる(特許文献1参照。)。従来の半導体装置の特性が電荷の通路又は格納によって決まるのに対して、スピントロニクス装置はそれに付属するスピンの量子力学特性によって決まる。特に、情報を大容量で高速に処理することができるスピントロニクス装置などが開発のターゲットとなっている。又、最近では、漏れ磁場や熱・エネルギー損失の問題を低減できることから、伝導電子スピンと局在電子スピンの間に働くスピントルクを利用するスピントロニクス装置が注目され、外部磁場を用いない磁化方向制御技術が確立されつつある。
【0003】
このスピントロニクス装置の実現の鍵を握る主役として、電荷の流れを伴う「スピン偏極電流」と電荷の流れを伴わない「スピン流」が知られている。金属強磁性体内では、磁化の原因が伝導電子のスピン状態によるため、電流を流すだけでスピン偏極電流が発生する。一方、非磁性体に電流を流しても、スピン軌道相互作用による散乱で、電流に対して垂直方向にスピン流が生成する現象が「スピンホール効果」として知られており、強磁性体を使わない新しいスピン流の生成手法として、近年、非常に注目されている(非特許文献1参照。)。ここで、スピン流とは、磁気モーメントの輸送現象のうち、個別粒子の移動は伴うが電荷の輸送を伴わないものを指す。
【0004】
導体に電流を流して磁場をかけると、伝導電子は磁場に対して垂直方向のローレンツ力を受け、運動方向が曲げられる。この現象は正常ホール効果とよばれ、電子工学の様々なセンサーに応用されてきた。スピンホール効果は、粒子にもともと備わっている角運動量(スピン)と軌道運動との相対論的相互作用に由来して起きる。スピンホール効果は、古典的なホール効果と対をなす現象であり、試料に電場をかけると、こうしたスピン磁気モーメントをもつ粒子の軌道が電場に垂直な方向に曲げられる。例えば、白金(Pt)や金(Au)などの貴金属中を流れる電流には1/2スピンの電子と−1/2スピンの電子の割合がそれぞれ50%ずつ含まれているが、スピン軌道相互作用によって散乱されるとき、1/2スピンの電子と−1/2スピンの電子が互いに反対方向に散乱され、互いに対向して蓄積されることを利用する。1/2スピンと−1/2スピンの電子が、一定距離を隔てて互いに対向して蓄積される結果、スピンホール効果によって、流している電流方向に対して垂直方向に、電荷輸送のない純粋なスピン流が生成する。
【0005】
電荷の輸送としての電流は、キャリアの散乱体への衝突によってエネルギー散逸を受ける。これに対し、スピン流は電子の不純物やフォノンとの衝突の際に散乱を受けにくいため、スピン拡散長は平均自由行程よりかなり長いので弾道輸送(バリスティック輸送)も比較的容易になる。しかも、スピン流の舞台は、磁性体である必要はなく、非磁性の金属でも半導体でもよいので各種電子デバイスへの応用が可能である。しかしながら、スピン軌道相互作用はクーロン相互作用のような電気的相互作用よりも2桁以上弱いため、散乱確率が小さくなるので、従来のスピンホール効果による電流−スピン流変換効率が低い。そのため、従来のスピンホール効果によっては、高強度のスピン流が得られにくく、又スピン流が持続できる長さも数100nm程度以下に限られるという不都合があった。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2003−188390号公報
【非特許文献】
【0007】
【非特許文献1】L.ヴィラ(Vila)等,「白金線中のホール効果の考察(Evolution of the Spin Hall Effect in Pt Nanowires):サイズ及び温度の効果(Size and Temperature Effects)」,フィジカル・レビュー・レターズ(Phys. Rev. Lett.),第99巻、 p.226604 (2007年)
【発明の概要】
【発明が解決しようとする課題】
【0008】
本発明は、電流−スピン流変換効率が高く、高強度のスピン流が得られるスピントロニクス装置、及びこのスピントロニクス装置を用いた論理演算素子を提供することを目的とする。
【課題を解決するための手段】
【0009】
上記目的を達成するために、本発明の第1の態様は、(a)互いに平行に対向する第1端面及び第2端面を有し、第1導電型キャリアと第2導電型キャリアとが同程度のキャリア密度と移動度を有し、正常及び異常ホール係数が共にゼロである強磁性の両極性伝導金属からなるスピン流生成領域と、(b)第1端面にオーミック接続し、第1導電型キャリアをスピン流生成領域に注入する第1主電極と、(c)第2端面にオーミック接続し、第2導電型キャリアをスピン流生成領域に注入する第2主電極とを備えるスピントロニクス装置であることを要旨とする。この第1の態様に係るスピントロニクス装置では、第1端面に垂直な面に直交する方向の外部磁場にもとづく正常ホール効果に、磁場誘起磁化もしくは自発磁化にもとづく異常ホール効果が加わることによって、第1導電型キャリアと第2導電型キャリアとを同一方向に輸送されるように偏向して、第1導電型キャリアと第2導電型キャリアの電荷を互いに相殺し、スピン流生成領域にスピン流を得ることを特徴とする。
【0010】
本発明の第2の態様は、(a)互いに平行に対向する第1端面及び第2端面を有し、第1導電型キャリアと第2導電型キャリアとが同程度のキャリア密度と移動度を有し、正常及び異常ホール係数が共にゼロである強磁性の両極性伝導金属からなるスピン流生成領域と、(b)第1端面にオーミック接続し、第1導電型キャリアをスピン流生成領域に注入する第1主電極と、(c)第2端面にオーミック接続し、第2導電型キャリアをスピン流生成領域に注入する第2主電極と、(d)第1端面に直交するスピン流生成領域の出力側面に設けられた、強磁性体からなる領域を含む検出電極とを備える論理演算素子であることを要旨とする。この第2の態様に係る論理演算素子では、第1端面に垂直な面に直交する方向の外部磁場にもとづく正常ホール効果に、磁場誘起磁化もしくは自発磁化にもとづく異常ホール効果が加わることによって、第1導電型キャリアと第2導電型キャリアとを共に出力側面に向かう方向に輸送されるように偏向して、第1導電型キャリアと第2導電型キャリアの電荷を互いに相殺し、検出電極の磁化の方向を入力信号、第1主電極と検出電極との間の抵抗を出力信号とすることを特徴とする。
【0011】
本発明の第3の態様は、(a)互いに平行に対向する第1端面及び第2端面を有し、第1導電型キャリアと第2導電型キャリアとが同程度のキャリア密度と移動度を有し、正常及び異常ホール係数が共にゼロである強磁性の両極性伝導金属からなるスピン流生成領域と、(b)第1端面にオーミック接続し、第1導電型キャリアをスピン流生成領域に注入する第1主電極と、(c)第2端面にオーミック接続し、第2導電型キャリアをスピン流生成領域に注入する第2主電極と、(d)第1端面に直交するスピン流生成領域の出力側面に設けられた、強磁性体からなる領域を含む検出電極とを備える論理演算素子であることを要旨とする。この第3の態様に係る論理演算素子では、第1端面に垂直な面に直交する方向の外部磁場にもとづく正常ホール効果に、磁場誘起磁化もしくは自発磁化にもとづく異常ホール効果が加わることによって、第1導電型キャリアと第2導電型キャリアとを共に出力側面に向かう方向に輸送されるように偏向して、第1導電型キャリアと第2導電型キャリアの電荷を互いに相殺し、外部磁場の方向を第1の入力信号、第2主電極の磁化の方向を第2の入力信号、第1主電極と第2主電極との間の抵抗を出力信号とすることを特徴とする。
【発明の効果】
【0012】
本発明によれば、電流−スピン流変換効率が高く、高強度のスピン流が得られるスピントロニクス装置、及びこのスピントロニクス装置を用いた論理演算素子を提供できる。
【図面の簡単な説明】
【0013】
【図1】本発明の第1の実施の形態に係るスピントロニクス装置の構成を説明する模式図である。
【図2】本発明の第1の実施の形態に係るスピントロニクス装置を論理演算素子(NOT)として用いる場合の真理値表である。
【図3】本発明の第1の実施の形態に係るスピントロニクス装置の原理を説明するために、ホール抵抗の外部磁場依存性を示す図である。
【図4】本発明の第1の実施の形態に係るスピントロニクス装置のスピン流生成領域として用いる両極性伝導特性をもつ強磁性体の候補としてのGd薄膜を、水素雰囲気処理した後のX線回折を示す図である。
【図5】Gd薄膜の水素化前後の、77Kにおけるホール抵抗の磁場依存性を示す図である。
【図6】図6(a)は、77KにおけるGd薄膜の水素処理前後の磁化の磁場依存性の測定結果であり、図6(b)は、300KにおけるGd薄膜の水素処理前後の磁化の磁場依存性の測定結果である。
【図7】水素処理前のGd薄膜のホール抵抗の外部磁場依存性を示す図である。
【図8】水素処理後のGd薄膜のホール抵抗の外部磁場依存性を示す図である。
【図9】本発明の第1の実施の形態に係るスピントロニクス装置のスピン流生成領域として用いる両極性伝導特性をもつ強磁性体の候補としてのニッケル・マンガン・アンチモン(Ni1.15Mn0.85Sb)のホール抵抗の外部磁場μoH/温度依存性を示す図である。
【図10】本発明の第1の実施の形態に係るスピントロニクス装置のスピン流生成領域として用いる両極性伝導特性をもつ強磁性体の候補としての酸化クロム(CrO)のホール抵抗の外部磁場μoH依存性を示す図である。
【図11】本発明の第2の実施の形態に係るスピントロニクス装置の構成を説明する模式図である。
【図12】本発明の第3の実施の形態に係るスピントロニクス装置の構成を説明する模式図である。
【図13】本発明の第3の実施の形態に係るスピントロニクス装置を論理演算素子(XOR)として用いる場合の真理値表である。
【図14】本発明の第4の実施の形態に係るスピン・メモリのメモリユニットを説明する模式図である。
【図15】本発明の第4の実施の形態に係るスピン・メモリの動作を説明する模式図である。
【図16】本発明の第4の実施の形態に係るスピン・メモリのセルアレイの一部を説明する平面図である。
【図17】本発明の第5の実施の形態に係る高強度のスピン流を発生可能なスピントロニクス装置の構成を説明する模式図である。
【発明を実施するための形態】
【0014】
次に、図面を参照して、本発明の第1〜第5の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。但し、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。例えば、図1,図11,図12、図14及び図17等において、スピン流生成領域30の各図の縦方向に測られる厚さ(第1端面と第2端面との間の距離)は、便宜上誇張した大きさで図示されており、現実の厚さはスピン拡散長を考慮すると図示よりも薄い方が好ましいトポロジーがあり得るので、厚みと平面寸法との関係は現実のものとは異なり得ることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
【0015】
又、以下に示す第1〜第5の実施の形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。
【0016】
(第1の実施の形態:NOT)
本発明の第1の実施の形態に係るスピントロニクス装置は、図1に示すように、第1導電型キャリアと第2導電型キャリア(電子と正孔)とが同程度のキャリア密度と移動度を有し、正常及び異常ホール係数が共にゼロである強磁性の両極性伝導金属からなる直方体状のスピン流生成領域30、スピン流生成領域30の端面(第1端面)にオーミック接合された第1主電極20、第1端面に平行に対向する端面(第2端面)にオーミック接合された第2主電極40、第1端面及び第2端面と直交する側面(出力側面)の中央部に金属学的に接合された強磁性体からなる領域を含む検出電極50を有するスピン流変換素子10と、スピン流変換素子10の第1主電極20と第2主電極40との間に直流のバイアス電圧を印加する直流電源6とを備える。本発明において「ホール係数がゼロ」とは、ホール係数Rが、1.5×10‐113/C以下の小さな値であり、実質的に「ホール係数がゼロ」が見なせればよい。
【0017】
第1の実施の形態に係るスピントロニクス装置は、第1主電極20の電位を示すノードN1と、検出電極50の電位を示すノードN2との間に図示を省略した電圧計等の電位測定手段を更に備えており、電位測定手段が測定する電圧の変化により、スピン流変換素子10の電流−スピン流変換したスピン流を検出する。即ち、第1主電極20と検出電極50との間の抵抗値の変化を検出して、スピン流生成領域30で電流−スピン流変換したスピン流の有無を検出する。
【0018】
図1に示すように、強磁性の両極性伝導金属からなるスピン流生成領域30に,バイアス電流(Y方向)と外部磁場(Z方向)を印加すると、定常状態では正常ホール効果によってX方向とZ方向に電流は流れず、Z方向に電場も発生しないので、抵抗率テンソルのxy成分としてホール抵抗ρxy(=−ρyx)は、Z方向の外部磁場B及び磁化Mを用いて、

ρxy=RoB+RsμoM ……(1)

で表すことができる。ここで、Roは正常ホール係数であり、(1)式の右辺第1項がローレンツ力にもとづく正常ホール効果を示し、Rsは異常ホール係数で、μoは真空中の透磁率であり、右辺第2項が、スピン−軌道相互作用やスピンカイラリティ等による異常ホール効果を示す。正常ホール効果によるホール抵抗ρxyの外部磁場B依存性を図3(a)に、異常ホール効果によるホール抵抗ρxyの外部磁場B依存性を図3(b)に示す。図3(c)には、(1)式で示される正常ホール効果成分と異常ホール効果成分との和が示されている。
【0019】
フェルミ面の曲率において正値と負値の領域がほぼ均等に分布し、曲率の平均値がゼロであれば、磁場に垂直な面内で互いに逆方向に注入された第1導電型キャリア及び第2導電型キャリア(電子及び正孔)は、電子濃度Ne=正孔濃度Nh、且つ電子移動度μe=正孔移動度μhとなるので、ローレンツ力の働く方向(X方向)に運ばれる総電荷量は電子と正孔によって相殺される。即ちフェルミ面の曲率の平均値が実質的にゼロであれば、正常ホール係数が実質的にゼロとなり、正常ホール効果におけるホール電圧が消失する。このため、正孔及び電子がホール電場から受ける力がなくなり、ローレンツ力との釣り合いがなくなる。よって、磁場に垂直な面内で互いに逆方向に注入された正孔及び電子が共にローレンツ力の働く方向(X方向)に偏向され、ローレンツ力の働く方向(X方向)への電荷の流れは0となる。このとき、電子スピンと正孔スピンの符号が同じならば、X方向にスピン流が発生する。
【0020】
しかし、(1)式で示すように、スピン流生成領域30では、正常ホール効果成分の他に異常ホール効果成分が加わり、キャリアはスピン−軌道相互作用等によって、量子論的確率にもとづいてスピンの符号(±1/2)に依存して+Xと−X方向の両方に偏向する。このとき、スピン流生成領域30が強磁性体であり磁化をもつ場合には、スピン偏極度に依存してどちらかのスピンの方がより多く+X方向に偏向する。スピン流生成領域30がさらに両極性の場合には、電子スピンの他に正孔スピンが発生する。このとき、電子スピンと正孔スピンが共に+X方向に偏向するようなスピン−軌道相互作用特性をもつ場合には、+X方向に運ぶ総電荷量は電子と正孔によって相殺され、異常ホール係数が実質的にゼロとなり、ホール電圧が消失する。さらに、電子スピンと正孔スピンが共に同じ符号をもつスピン構造をもつとき、X方向にスピン流が発生する。
【0021】
このように、両極性の導電性強磁性体のホール効果では、(i)正常ホール係数と異常ホール係数が共にゼロになり、(ii) 電子スピンと正孔スピンが共に+X方向に偏向するようなスピン−軌道相互作用特性をもち, (iii)電子スピンと正孔スピンが同じ符号をもつようなスピン構造をもつことによって横方向(+X方向)に電荷輸送はないもののスピン輸送が行われる、スピン流を発生させることが可能である。上記の条件が揃えば、スピン流生成領域30を構成する強磁性体は金属(縮退系)でもよいし、半導体(非縮体系)でもよいので、異種材料へのスピン流注入効率を悪くしている電気抵抗率の不整合の問題に対して利点がある。このような導電性強磁性体中のスピン流は磁場が印加できる領域ならばどこでも発生するものであるから、スピン拡散長が100nm以下と短いものの、スピン偏極度が高く、ハーフメタルの場合は最大100%とに及ぶという特徴をもつ。
【0022】
上記の三つの条件は理想的な場合であって、これらの条件が満たされているときに最も大きい強度のスピン流が得られる。しかし、これらの条件が全て満たされなくても、スピン流を横方向(+X方向)に生成することが実質的に可能である。横方向の電流ゼロ状態は、横回路を開放にする境界条件によって自動的に達成されるので、正常及び異常ホール係数が共にゼロでなくてもよい。ただし、両極性は必須条件である。単極性では回路開放状態のとき、キャリアは横方向に偏向できないからである。正常ホール係数が有限の値をもつことは電子スピンと正孔スピンの符号に関する条件(iii)を緩和する。なぜならば、正常ホール係数がゼロでないとき電子数密度と正孔数密度が等しくないので、互いに反対符号の電子スピンと正孔スピンが同じ方向に偏向しても、正味のスピン流が残るからである。
【0023】
スピン流生成領域30としての両極性伝導特性をもつ強磁性体としては、ガドリニウム(Gd)、Gdの水素処理膜、酸化クロム(CrO)、ニッケル・マンガン・アンチモン(NiMnSb)等が好適である。図4は、Gd薄膜を水素雰囲気処理した後のX線回折を示す。Gdの水素処理膜は[111]方向に配向した立方晶GdH2相が80%、[001]方向に配向した六方晶Gd相が約20%の共晶の可能性が高い。図5に示すように、Gd薄膜の水素化によってホール抵抗が約10分の1になると共に,強磁性的振る舞いが明確になることが分かる。図6(a)は、77KにおけるGd薄膜の水素処理前後の磁化の磁場依存性の測定結果であり、図6(b)は、300KにおけるGd薄膜の水素処理前後の磁化の磁場依存性の測定結果である。磁化は水素処理によって約3分の1に減少するが、ホール抵抗は約10分の1まで減少するという特徴をもつ。
【0024】
厚さ300nmのGd薄膜に対してほぼ垂直に外部磁場B(T)を印加し、超伝導磁束量子干渉計(SQUID)による実験値を磁化M(単位体積あたりの磁気モーメント)として用い、(1)式のホール抵抗ρxyの測定値を再現するように正常ホール係数Roと異常ホール係数Rsを決定した解析結果を、図7及び図8に示す。図7は、水素処理前のGd薄膜のホール抵抗ρxyの外部磁場B(T)依存性を示す。図7(a)に示すように、300Kでは正常ホール係数Roは負値(−1.0×10―93/C)図7(b)に示すように、77Kでは正常ホール係数Roは正値(2.0×10−103/C)になる。したがって、水素処理前のGd薄膜の正常ホール係数Roは、77Kと300Kの間でゼロ値をとる。このことは、Gdが両極性伝導であることを意味し、Gdが両極伝導特性をもつ強磁性体であることが確認できる。
【0025】
図8は、のGdの水素処理膜のホール抵抗ρxyの外部磁場B(T)依存性を示す。図8(a)に示すように、300Kでは正常ホール係数Roは負値(−5.0×10‐113/C)であるが、図8(b)に示すように、77Kでは正常ホール係数Roは正値(9.5×10−113/C)になる。したがって、Gdの水素処理膜の正常ホール係数Roは、77Kと300Kの間でゼロ値をとる。このことは、Gdの水素処理膜が両極性伝導であることを意味し、Gdの水素処理膜が両極伝導特性をもつ強磁性体であることが確認できる。このようにGd及びその水素処理膜では、77Kと300Kの間で確実に正常ホール係数ゼロ条件を満たすことができる。
【0026】
一方、異常ホール係数Rsについては、Gdでは−4.4×10−83/Cであるが(図7(a))、水素処理後は、−4.1×10−93/Cのように約10分の1に減少する(図7(b))。このことは、水素処理工程が異常ホール係数ゼロ化に有効であることを意味する。
【0027】
図7及び図8に示すとおり、Gd薄膜及びその水素処理膜共に、膜面に対して垂直方向に磁場を印加する場合は保持力が小さく軟磁性的振る舞いを示し、ゼロ磁場下では、磁化Mがほぼゼロである。したがって、スピン流を発生させるには、外部磁場Bが必要である。しかし、今後、結晶軸方向に対する磁場方向を制御するなど保持力を大きくする方法が見い出さられば、無磁場でも自発磁化による異常ホール効果を利用することによって、スピン流を生成できると期待できる。
【0028】
図9は、スピン流生成領域30としての両極性伝導特性をもつ強磁性体の他の例として、Ni1.15Mn0.85Sbのホール抵抗ρxyの外部磁場μoH/T依存性を示す。Ni1.15Mn0.85Sbのキュリー温度は728Kであるが、図9は厚さ80nmのNi1.15Mn0.85Sbの、50K,60K,70K,80K,90K,100K,110K,130K,150K,200K,250K,290Kのホール抵抗ρxyを示す(図9中の挿入図は、厚さ5nmのNi1.15Mn0.85Sbの、4.2K,100K,150K,175K,200K,250K,300Kのホール抵抗ρxyを示す。)。ホール抵抗ρxyが50Kと290Kの間でゼロ値をとるので、Ni1.15Mn0.85Sbが両極性伝導であることが分かり、Ni1.15Mn0.85Sbが両極伝導特性をもつ強磁性体であることが確認できる。
【0029】
図10は、スピン流生成領域30としての両極性伝導特性をもつ強磁性体の他の例として、CrOのホール抵抗ρHの外部磁場μoH依存性を示す。CrOのキュリー温度は395Kであるが、図10では10K〜100Kまでのホール抵抗ρHを示す。ホール抵抗ρHが10Kと100Kの間でゼロ値をとるので、CrOが両極性伝導であることが分かる。CrOのスピン編極度は約90%であることが知られている。
【0030】
図1においては、スピン流生成領域30は、第1主電極20、スピン流生成領域30、第2主電極40及び検出電極50がなす平面に垂直な方向(Z方向)に磁場Bが印加されているが、検出電極50は、磁場Bに対して平行又は反平行(Z方向又は−Z方向)検出電極50は、比抵抗が1.0×10‐6Ωm以下とすることが好ましく、検出電極50を構成する強磁性体として、例えばCoxFeyNiz(x=0.2〜0.7,y=0.2〜0.4,z=0.1〜0.2)のようなコバルト・鉄・ニッケル合金等を含む種々の強磁性体が採用可能である。検出電極50を結晶性の強磁性体とする場合は磁化容易軸となる結晶軸方位をスピン流生成領域30の側面(出力側面)に対して垂直となるようにそれぞれ選ぶのが好ましい。強磁性体が立方晶系であれば、[100],[010],[−100],[0−10]方向が磁化容易軸となる。
【0031】
図1に示すように、スピン流変換素子10の第1主電極20をカソード、第2主電極40をアノードとして、直流電源6から直流のバイアス電圧を印加すると、第1主電極20において電子(第1導電型キャリア)がスピン流生成領域30に注入され、スピン流生成領域30中を第2主電極40に向かう方向(−Y方向)に進行する。又、第2主電極40からは正孔(第2導電型キャリア)がスピン流生成領域30に注入され、スピン流生成領域30中を第1主電極20に向かう方向(Y方向)に進行する。
【0032】
第1主電極20から注入された電子(第1導電型キャリア)、第2主電極40から注入された正孔(第2導電型キャリア)は、スピン流生成領域30において、それぞれ検出電極50に向かう方向(X方向)に作用するローレンツ力を磁場Bの下で受けて、検出電極50に向かう方向(X方向)に湾曲して進行する。電子と正孔の移動度が等しいときそれぞれに作用するローレンツ力の大きさが等しく、且つ検出電極50へ向かう正孔と電子の数がほぼ等しい場合、両キャリアが運ぶ総電荷量は0となるが、このとき、電子スピンと正孔スピンの符号が同じならば、+X方向にスピン流が発生する。しかし、(1)式で示すように、スピン流生成領域30では正常ホール効果成分の他に異常ホール効果成分が加わり、キャリアはスピン−軌道相互作用によって、スピンの符号(±1/2)に依存して+Xと−X方向の両方に偏向する。スピン流生成領域30が強磁性体であり磁化をもつ場合には、スピン偏極度に依存して、どちらかのスピンの方がより多く+X方向に偏向する。スピン流生成領域30がさらに両極性の場合には、電子スピンの他に正孔スピンが発生するが、電子スピンと正孔スピンが共に+X方向に偏向するようなスピン−軌道相互作用特性をもつ場合には、+X方向に運ばれる総電荷量は相殺され、異常ホール係数がゼロとなり、ホール電圧が消失する。さらに、電子スピンと正孔スピンが共に同じ符号をもつようなスピン構造をもつとき、正味の横電流=0の条件で、検出電極50へ向かうスピン流が発生する。
【0033】
図2に真理値表を示すように、検出電極50の磁化Mが外部磁場BHに平行(Z方向:上向き)の場合が入力信号=1と定義し、検出電極50の磁化Mが、外部磁場BHに反平行(−Z方向:下向き)の場合が入力信号=0と定義すれば(図2において、Z方向の磁化を上向きの矢印、−Z方向を下向きの矢印で示す。)、第1の実施の形態に係るスピン流変換素子10は、否定(NOT)の出力信号を出力するNOTゲートとして用いることが可能である。
【0034】
検出電極50の磁化Mが、外部磁場BHと同方向(Z方向)にしておけば、スピン流生成領域30の中央部付近にスピン蓄積は生じず、第1主電極20、検出電極50間の抵抗値は変化しない。このとき、ノードN1−N2間の検出電圧V=VUUとする(図2において、Z方向の磁化を上向きの矢印、−Z方向を下向きの矢印で示す。)。一方、検出電極50の磁化Mを、外部磁場BHと逆方向(−Z方向)にすると、スピン流があれば、スピン流生成領域30の中央部付近にスピン蓄積が生じ、第1主電極20、検出電極50間の抵抗値が増加し、このときの検出電圧V=VUD>VUUとなるので、スピン流の有無を判定することができる。よって、図2の真理値表に示すように、入力信号が1の場合、出力電圧Vは、スピン流生成領域30で発生させたスピン流によって、スピン流生成領域30の中央部付近にスピン蓄積が生じないので、ノードN1−N2間の抵抗値は変化せず、出力電圧Vの値がロウレベル(=0)になる。一方、入力信号が0の場合、出力電圧Vは、スピン流生成領域30で発生させたスピン流によって、スピン流生成領域30の中央部付近にスピン蓄積が生じるので、ノードN1−N2間の抵抗値が増加し、出力電圧Vの値がハイレベル(=1)になる。
【0035】
このように、本発明の第1の実施の形態に係る論理演算素子は、ハイレベル(=1)の入力信号を反転してロウレベル(=0)の出力信号を出力し、ロウレベル(=0)の入力信号を反転してハイレベル(=1)の出力信号を出力するインバータ(NOTゲート)として動作する。
【0036】
第1の実施の形態に係る論理演算素子は、入力信号としての磁化の方向を保持することができるため、検出電極50の磁化Mの方向を反転させるまで、検出電極50に継続して外部磁場を与えずに、一定の出力が可能である。
【0037】
なお、スピン流生成領域30の形状は直方体に限定されるものではなく、第1端面と第2端面とが平行で、出力側面が第1端面と第2端面に対し互いに垂直であり、正孔及び電子がローレンツ力によって円弧状に軌道を変更する輸送経路が確保できるトポロジーであれば、第1端面と出力側面との間に凹部や穴部等を有する形状、或いは第2端面と出力側面との間に凹部や穴部等を有する形状等であっても、第1の実施の形態に係るスピントロニクス装置のスピン流生成領域30として許容され得る。
【0038】
(第2の実施の形態:NOT)
図1に示す第1の実施の形態に係るスピントロニクス装置はバイアス電圧が直流の場合について例示的に説明したが、図11に示すように2つの検出電極51a,51bをスピン流生成領域30を挟み込むように配置することによって、バイアス電圧が交流の場合であってもスピン流の検出を行うことが可能である。
【0039】
即ち、本発明の第2の実施の形態に係るスピントロニクス装置は、図11に示すように、正孔と電子とが同程度のキャリア密度と移動度を有し、正常及び異常ホール係数が共にゼロである強磁性の両極性伝導金属からなる直方体状のスピン流生成領域30、スピン流生成領域30の端面にオーミック接合された第1主電極20、スピン流生成領域30の第1主電極20が配置された端面(第1端面)と対向する端面(第2端面)にオーミック接合された第2主電極40、スピン流生成領域30の第1主電極20が配置された端面と直交する一方の側面(第1出力側面)の中央部に金属学的に接合された強磁性体からなる第1の検出電極51a、第1の検出電極51aと電気的に短絡され、第1出力側面に対向する他方の側面(第2出力側面)にオーミック接合され、第1の検出電極51aと同一の強磁性体からなる第2の検出電極51bを有するスピン流変換素子11と、スピン流変換素子11の第1主電極20と第2主電極40との間に交流電圧を印加する交流電源7とを備える。
【0040】
スピン流生成領域30は、第1主電極20、スピン流生成領域30、第2主電極40、第1の検出電極51a及び第2の検出電極51bがなす平面に垂直な方向(Z方向)に外部磁場Bが印加されている。スピン流生成領域30中に注入された正孔と電子は、外部磁場Bと交流電源7からの交流電流によって、第1の検出電極51aに向かう方向(−X方向)に働くローレンツ力、第2の検出電極51bに向かう方向(X方向)に働くローレンツ力を交互に受け、異常ホール効果によって、どちらかのスピンの方がより多く+X方向に偏向するため、正味の横電流=0の条件で、検出電極50へ向かうスピン流が発生する。
【0041】
第2の実施の形態に係るスピントロニクス装置は、第1の実施の形態に係るスピントロニクス装置と同様に、第1の検出電極51a及び第2の検出電極51bは、それぞれ同一方向の磁化Mを有しており、磁化Mの方向は、制御用磁場によって、外部磁場BHに対して平行又は反平行(Z方向又は−Z方向)に任意(自由)に設定可能である。
【0042】
第2の実施の形態に係るスピントロニクス装置は、第1主電極20の電位を示すノードN1、第1の検出電極51a及び第2の検出電極51bからそれぞれ引き出され、互いに接合されたノードN2は、それぞれロックイン増幅器(ロックインアンプ)9に接続されており、ノードN3の電圧をロックインアンプにおける位相検波の参照信号として使用し、ノードN1−N2間の交流電圧の変化をロックイン増幅器9で測定することにより、第1主電極20と、第1の検出電極51a及び第2の検出電極51bとの間の抵抗値の変化を検出できる。
【0043】
第1の実施の形態で説明したように、磁化Mが、外部磁場BHと平行(Z方向)の場合、スピン流生成領域30の中央部付近にスピン蓄積は生じず、ノードN1−N2間の抵抗値は変化しない。磁化Mが、外部磁場BHと反平行(−Z方向)の場合、スピン流生成領域30の中央部付近に異常ホール効果によってスピン蓄積が生じ、ノードN1−N2間の抵抗値が増加する。磁化M、外部磁場BHが互いに平行の場合の検出電圧V=VUU、反平行な場合の検出電圧V=VUDとすると、スピン流生成領域30中にスピン流が生成される場合はVUU<VUD、スピン流が生成されない場合はVUU=VUDの関係が成り立つ。このことを利用して、スピン流の有無を判定することができる。
【0044】
なお、スピン流生成領域30の形状は直方体に限定されるものではなく、第1端面と第2端面とが平行、第1出力側面が第1端面と第2端面に対し互いに垂直、第2出力側面が第1端面と第2端面に対し互いに垂直であり、正孔及び電子がローレンツ力によって円弧状に軌道を変更する輸送経路が確保できるトポロジーであれば、第1端面と第1出力側面との間に凹部や穴部等を有する形状、第2端面と第1出力側面との間に凹部や穴部等を有する形状、第2端面と第2出力側面との間に凹部や穴部等を有する形状、第1端面と第2出力側面との間に凹部や穴部等を有する形状のような、種々の形状が第2の実施の形態に係るスピントロニクス装置のスピン流生成領域30として許容され得る。
【0045】
図2に示した真理値表の場合と同様に、検出電極50の磁化Mが外部磁場BHに平行(Z方向:上向き)の場合が入力信号=1と定義し、検出電極50の磁化Mが、外部磁場BHに反平行(−Z方向:下向き)の場合が入力信号=0と定義すれば、第2の実施の形態に係るスピン流変換素子10も否定(NOT)の出力信号を出力するNOTゲートとして用いることが可能である。
【0046】
(第3の実施の形態:XOR)
本発明の第3の実施の形態に係る論理演算素子12は、図12に示すように、正孔と電子とが同程度のキャリア密度と移動度を有し、正常及び異常ホール係数が共にゼロである強磁性の両極性伝導金属からなる直方体状のスピン流生成領域30と、スピン流生成領域30の端面にオーミック接合され、電子(第1導電型キャリア)をスピン流生成領域30に注入する第1主電極22と、スピン流生成領域30の第1主電極22が配置された端面と対向する端面にオーミック接合された第2主電極40と、スピン流生成領域30の第1主電極22が配置された端面と直交する側面の中央部に金属学的に接合された強磁性体からなる領域を含む検出電極50とを備える。
【0047】
第3の実施の形態に係る論理演算素子12は、外部磁場Bの方向を第1入力信号A=0,1、検出電極50の磁化Mの方向を第2入力信号C=0,1とし、図13の真理値表に示されたような排他的論理和(XOR)の出力信号を出力するXORゲートである。
【0048】
第1主電極22、スピン流生成領域30、第2主電極40及び検出電極50がなすスピン流生成領域30の平面に垂直な方向(Z方向)に外部磁場Bが印加されるが、図12及び図13において、外部磁場BがZ方向の場合の第1入力信号Aを1とし、−Z方向の場合の第1入力信号Aを0とする。同様に、検出電極50の磁化Mが、外部磁場Bと平行(Z方向)の場合の第2入力信号Cを1、反平行(−Z方向)の場合の第2入力信号Cを0とする(図13において、Z方向の磁化を上向きの矢印、−Z方向を下向きの矢印で示す。)。
【0049】
図13に真理値表を示すように、第3の実施の形態に係る論理演算素子12においては、第1入力信号Aが1、第2入力信号Cが1の場合は、異常ホール効果によってスピン流生成領域30で発生させたスピン流によって、スピン流生成領域30の中央部付近にスピン蓄積が生じないので、ノードN1−N2間の抵抗値は変化せず、出力電圧Vの値がロウレベル(=0)になる。
【0050】
第1入力信号Aが1、第2入力信号Cが0の場合は、異常ホール効果によってスピン流生成領域30で発生させたスピン流によって、スピン流生成領域30の中央部付近にスピン蓄積が生じるので、ノードN1−N2間の抵抗値が増加し、出力電圧Vの値がハイレベル(=1)になる。
【0051】
第1入力信号Aが0、第2入力信号Cが1の場合は、第1主電極22からスピン流生成領域30に下向き(−Z方向)に電子が注入され、異常ホール効果によって、第2主電極40から注入される正孔と共に、検出電極50に向かうスピン流となる。 検出電極50は、上向き(Z方向)の磁化Mを有しているので、スピン流生成領域30の中央部付近にスピン蓄積が生じる。よってノードN1−N2間の抵抗値は増加し、出力電圧Vの値がハイレベル(=1)となる。
【0052】
第1入力信号Aが0、第2入力信号Cが0の場合は、第1主電極22からスピン流生成領域30に、下向き(−Z方向)に電子が注入され、異常ホール効果によって、第2主電極40から注入される正孔とで、検出電極50に向かうスピン流となる。検出電極50は、下向き(−Z方向)の磁化Mを有しているので、スピン流生成領域30の中央部付近にスピン蓄積は生じず、出力電圧Vの値がロウレベル(=0)となる。
【0053】
(第4の実施の形態:スピン・メモリ)
本発明の第4の実施の形態に係るスピン・メモリのメモリユニットは、図14に示すように、第1導電型キャリアと第2導電型キャリア(電子と正孔)とが同程度のキャリア密度と移動度を有し、正常及び異常ホール係数が共にゼロである強磁性の両極性伝導金属からなる直方体状の第1スピン流生成領域30ijaと、第1スピン流生成領域30ijaの上部端部及び下部端部との間に第1スイッチSijaを介して直流のバイアス電圧を印加する第1直流電源Vijaと、第1導電型キャリアと第2導電型キャリアとが同程度のキャリア密度と移動度を有し、正常及び異常ホール係数が共にゼロである強磁性の両極性伝導金属からなる直方体状の第2スピン流生成領域30ijbと、第2スピン流生成領域30ijbの上部端部及び下部端部との間に第2スイッチSijbを介して直流のバイアス電圧を印加する第2直流電源Vijbと、それぞれの上部端部及び下部端部との間の中央近傍に位置し、第1スピン流生成領域30ijaの側面(出力側面)と第2スピン流生成領域30ijbの間に金属学的に接合されて挟まれた強磁性金属層からなる磁化自由層60ijと、磁化自由層60ijの上に設けられた、厚さ1〜2nmの絶縁体層からなる非磁性層61ijと、非磁性層61ijの上に設けられた強磁性金属層からなる磁化固定層62ijと、磁化固定層62ijに接続された第3スイッチSijcとを備える。 磁化自由層60ijと、磁化自由層60ijの上に設けられた非磁性層61ijと、非磁性層61ijの上に設けられた磁化固定層62ijとでトンネル磁気抵抗効果(TMR)型検出電極を構成している。 磁化自由層60ij及び磁化固定層62ijとしては、例えば、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、又はそれらを主成分とする合金を用いることができる。この中で特にFe−Ni、Fe−Co−Ni、Fe−Coなどが望ましい。又これらの磁性体には、銀(Ag)、銅(Cu)、金(Au)、硼素(B)、炭素(C)、窒素(N)、酸素(O)、マグネシウム(Mg)、アルミニウム(Al)、シリコン(Si)、リン(P)、チタン(Ti)、クロム(Cr)、ジルコニウム(Zr)、ニオブ(Nb)、モリブテン(Mo)、ハフニウム(Hf)、タンタル(Ta)、タングステン(W)、パラジウム(Pd)、白金(Pt)などの非磁性元素を添加して、磁気特性、結晶性、機械的特性、化学的特性などの各種性質を調整してもよい。 なお、磁化自由層60ijと磁化固定層62ijは同じ材料である必要はなく、磁気特性、プロセス条件など必要に応じて上記材料より個別に任意に選択してよい。 非磁性層61ijとしては、例えば、酸化アルミニウム(Al)、酸化シリコン(SiO)、酸化マグネシウム(MgO)、窒化アルミニウム(AlN)、などの絶縁体が好ましい。但し、他にCu、Cr、Al、亜鉛(Zn)などの非磁性金属を用いることもできる。又非磁性層61ijに用いる絶縁体は、化学量論的にみて完全に正確な組成である必要はなく、酸素、窒素などの過不足が存在してもよい。
【0054】
図14において、第3スイッチSijcを開いた状態(OFF状態)で、左側の第1スイッチSijaを閉じる(ON状態)と、上部端部をカソード、下部端部をアノードとして、第1直流電源Vijaから直流のバイアス電圧を印加すると、上部端部において電子(第1導電型キャリア)が第1スピン流生成領域30ijaに注入され、第1スピン流生成領域30ija中を下部端部に向かう方向(−Y方向)に進行する。又、下部端部からは正孔(第2導電型キャリア)が第1スピン流生成領域30ijaに注入され、第1スピン流生成領域30ija中を上部端部に向かう方向(Y方向)に進行する。上部端部から注入された電子(第1導電型キャリア)、下部端部から注入された正孔(第2導電型キャリア)は、第1スピン流生成領域30ijaにおいて、Z方向に向かう外部磁場Bのローレンツ力を受けて、磁化自由層60ijに向かう方向(X方向)に湾曲して進行する。電子と正孔の移動度が等しいときそれぞれに作用するローレンツ力の大きさが等しく、且つ磁化自由層60ijへ向かう正孔と電子の数がほぼ等しい場合、両キャリアが運ぶ総電荷量は0となるが、このとき、電子スピンと正孔スピンの符号が同じならば、X方向にスピン流が発生する。しかし、(1)式に示すように、第1スピン流生成領域30ijaでは正常ホール効果の他に、異常ホール効果が加わり、キャリアはスピン−軌道相互作用等によって、スピンの符号(±1/2)に依存して+Xと−X方向の両方に偏向する。第1スピン流生成領域30ijaが強磁性体であり磁化をもつ場合には、スピン偏極度に依存してどちらかのスピンの方がより多く+X方向に偏向する。第1スピン流生成領域30ijaがさらに両極性の場合には、電子スピンの他に正孔スピンが発生するが、電子スピンと正孔スピンが共に+X方向に偏向するようなスピン−軌道相互作用特性をもつ場合には、+X方向に運ばれる総電荷量は相殺され、異常ホール係数がゼロとなり、ホール電圧が消失する。さらに、電子スピンと正孔スピンが共に同じ符号をもつようなスピン構造をもつとき、上向き(Z方向)にスピン偏極した電子と正孔が磁化自由層60ijへ向かい、磁化自由層60ijへ向かうスピン流が発生する。
【0055】
一方、図14において、第3スイッチSijcを開いた状態(OFF状態)で、右側の第2スイッチSijbを閉じる(ON状態)と、下部端部をカソード、上部端部をアノードとして、第2直流電源Vijbから直流のバイアス電圧を印加すると、下部端部において電子(第2導電型キャリア)が第2スピン流生成領域30ijbに注入され、第2スピン流生成領域30ijb中を上部端部に向かう方向(Y方向)に進行する。又、上部端部からは正孔(第2導電型キャリア)が第2スピン流生成領域30ijbに注入され、第2スピン流生成領域30ijb中を下部端部に向かう方向(−Y方向)に進行する。下部端部から注入された電子(第2導電型キャリア)、上部端部から注入された正孔(第2導電型キャリア)は、第2スピン流生成領域30ijbにおいて、Z方向に向かう外部磁場Bのローレンツ力を受けて、磁化自由層60ijに向かう方向(−X方向)に湾曲して進行する。電子と正孔の移動度が等しいときそれぞれに作用するローレンツ力の大きさが等しく、且つ磁化自由層60ijへ向かう正孔と電子の数がほぼ等しい場合、両キャリアが運ぶ総電荷量は0となるが、このとき、電子スピンと正孔スピンの符号が同じならば、X方向にスピン流が発生する。しかし、(1)式に示すように、第2スピン流生成領域30ijbでは正常ホール効果の他に、異常ホール効果が加わり、キャリアはスピン−軌道相互作用等によって、スピンの符号(±1/2)に依存して+Xと−X方向の両方に偏向する。第2スピン流生成領域30ijbが強磁性体であり磁化をもつ場合には、スピン偏極度に依存して、どちらかのスピンの方がより多く−X方向に偏向する。第1スピン流生成領域30ijaがさらに両極性の場合には、電子スピンの他に正孔スピンが発生するが、電子スピンと正孔スピンが共に+X方向に偏向するようなスピン−軌道相互作用特性をもつ場合には、+X方向に運ばれる総電荷量は相殺され、異常ホール係数がゼロとなり、ホール電圧が消失する。さらに、電子スピンと正孔スピンが共に同じ符号をもつようなスピン構造をもつとき、下向き(−Z方向)にスピン偏極した電子と正孔が磁化自由層60ijへ向かい、磁化自由層60ijへ向かうスピン流が発生する。
【0056】
第1スイッチSija及び第2スイッチSijbを開いた状態(OFF状態)で、第3スイッチSijcを閉じる(ON状態)と、第3スイッチSijcを介して、TMR素子の膜面に対して垂直に電圧をかけるとトンネル効果により絶縁体層にトンネル電流が流れる。TMR素子を構成する強磁性トンネル接合では、アップスピンとダウンスピンで電子が絶縁体をトンネルする確率が異なり、磁化自由層60ijと磁化固定層62ijの磁化の向きが平行のときに電流が流れやすく、反平行のときに流れにくい。強磁性体からなる磁化自由層60ij中の伝導電子は、第1スピン流生成領域30ijaから注入されたスピン流、若しくは第2スピン流生成領域30ijbから注入されたスピン流によって、スピン偏極してメモリー情報を記憶しているので、スピン偏極の状態によって、トンネル電流が変化し、トンネル電流が感じる抵抗の変化としてメモリー情報を読み出すことができる。
【0057】
磁化固定層62ijの磁化の向きをダウンスピン(−Z方向)として磁化を固定したとして、図15を用いて、第4の実施の形態に係るスピン・メモリのメモリユニットの動作を説明する。
【0058】
(a)図15に示すとおり、先ず、第1スイッチSija及び第2スイッチSijbが共にOFF状態で、初期状態として、磁化自由層60ij がアップスピン(+Z方向)であれば、第3スイッチSijcを閉じる(ON状態)と、磁化自由層60ijと磁化固定層62ijの磁化の向きが反平行であり、TMR抵抗が高いので、ハイレベル(=1)のメモリー情報を読み出すことができる。
【0059】
(b)次に、第3スイッチSijc及び第2スイッチSijbが開いた状態(OFF状態)で、第1スイッチSijaを閉じる(ON状態)と、上部端部をカソード、下部端部をアノードとして、直流のバイアス電圧が印加され、正常及び異常ホール効果によって、下向き(−Z方向)にスピン偏極したキャリアが磁化自由層60ijへ向かい、磁化自由層60ijにダウンスピン(−Z方向)のスピン流が注入され、磁化自由層60ijにダウンスピンが記憶される。その後、第1スイッチSija及び第2スイッチSijbを共にOFF状態として、第3スイッチSijcを閉じる(ON状態)と、磁化自由層60ijと磁化固定層62ijの磁化の向きが平行であるので、TMR抵抗が低く、ロウレベル(=0)のメモリー情報を読み出すことができる。
【0060】
(c)次に、第3スイッチSijc及び第1スイッチSijaが開いた状態(OFF状態)で、第2スイッチSijbを閉じる(ON状態)と、下部端部をカソード、上部端部をアノードとして、直流のバイアス電圧が印加され、正常及び異常ホール効果によって、上向き(+Z方向)にスピン偏極したキャリアが磁化自由層60ijへ向かい、磁化自由層60ijにアップスピン(+Z方向)のスピン流が注入され、磁化自由層60ijにアップスピンが記憶される。その後、第1スイッチSija及び第2スイッチSijbを共にOFF状態として、第3スイッチSijcを閉じる(ON状態)と、磁化自由層60ijと磁化固定層62ijの磁化の向きが反平行であるので、TMR抵抗が高く、ハイレベル(=1)のメモリー情報を読み出すことができる。
【0061】
図16は、本発明の第4の実施の形態に係るスピン・メモリのセルアレイの一部を説明する平面図である。セルアレイの周辺には、Xセレクタ、Yセレクタ、センスアンプ等が配置されるが、図示を省略している。図16に示すとおり、セルアレイは、X方向へ延在する第1のワード線1A,2A,3A,…、第2のワード線1B,2B,3B,…、第3のワード線1C,2C,3C,…と、Y方向へ延在するビット線1,2,3,…と、複数の第1のワード線1A,2A,3A,…、第2のワード線1B,2B,3B,…、第3のワード線1C,2C,3C,…とビット線1,2,3,…との交点の各々に対応して行列状に設けられた複数のメモリユニットとを備える。 図16の1行目の一番左の列のメモリユニットにおいて、第1スイッチS11aは、そのゲート電極を第1のワード線1Aに、一方のソース・ドレイン電極をビット線1に、他方のソース・ドレイン電極を第1スピン流生成領域3011aの上端部に、それぞれ接続されたMOSトランジスタで、第2スイッチS11bは、そのゲート電極を第2のワード線1Bに、一方のソース・ドレイン電極をビット線1に、他方のソース・ドレイン電極を第2スピン流生成領域3011bの下端部に、それぞれ接続されたMOSトランジスタで、第3スイッチS11cは、そのゲート電極を第3のワード線1Cに、一方のソース・ドレイン電極をビット線1に、他方のソース・ドレイン電極をTMR型検出電極の磁化固定層6211に、それぞれ接続されたMOSトランジスタである。尚、図16では省略されているが、第1スピン流生成領域3011aと接地部との間にはワード線1Aをゲート電極とするMOSトランジスタが、また、第2スピン流生成領域3011bと接地部との間にはワード線1Bをゲート電極とするMOSトランジスタが、また、磁化自由層6011と接地部との間にはワード線1Cをゲート電極とするMOSトランジスタが、それぞれ、接続される。同様に、図16の1行目の左から2番目のメモリユニットにおいて、第1スイッチS12aは、そのゲート電極を第1のワード線1Aに、一方のソース・ドレイン電極をビット線2に、他方のソース・ドレイン電極を第1スピン流生成領域3012aの上端部に、それぞれ接続されたMOSトランジスタで、第2スイッチS12bは、そのゲート電極を第2のワード線1Bに、一方のソース・ドレイン電極をビット線2に、他方のソース・ドレイン電極を第2スピン流生成領域3012bの下端部に、それぞれ接続されたMOSトランジスタで、第3スイッチS12cは、そのゲート電極を第3のワード線1Cに、一方のソース・ドレイン電極をビット線2に、他方のソース・ドレイン電極をTMR型検出電極の磁化固定層6212に、それぞれ接続されたMOSトランジスタであり、図16の1行目の左から3番目のメモリユニットにおいて、第1スイッチS13aは、そのゲート電極を第1のワード線1Aに、一方のソース・ドレイン電極をビット線3に、他方のソース・ドレイン電極を第1スピン流生成領域3013aの上端部に、それぞれ接続されたMOSトランジスタで、第2スイッチS13bは、そのゲート電極を第2のワード線1Bに、一方のソース・ドレイン電極をビット線3に、他方のソース・ドレイン電極を第2スピン流生成領域3013bの下端部に、それぞれ接続されたMOSトランジスタで、第3スイッチS13cは、そのゲート電極を第3のワード線1Cに、一方のソース・ドレイン電極をビット線3に、他方のソース・ドレイン電極をTMR型検出電極の磁化固定層6213に、それぞれ接続されたMOSトランジスタである。尚、図16では省略されているが、第1スピン流生成領域3012aと接地部との間にはワード線1Aをゲート電極とするMOSトランジスタが、また、第2スピン流生成領域3012bと接地部との間にはワード線1Bをゲート電極とするMOSトランジスタが、また、磁化自由層6012と接地部との間にはワード線1Cをゲート電極とするMOSトランジスタが、それぞれ、接続される。
【0062】
更に、図16の2行目の一番左の列のメモリユニットにおいて、第1スイッチS21aは、そのゲート電極を第1のワード線2Aに、一方のソース・ドレイン電極をビット線1に、他方のソース・ドレイン電極を第1スピン流生成領域3021aの上端部に、それぞれ接続されたMOSトランジスタで、第2スイッチS21bは、そのゲート電極を第2のワード線2Bに、一方のソース・ドレイン電極をビット線1に、他方のソース・ドレイン電極を第2スピン流生成領域3021bの下端部に、それぞれ接続されたMOSトランジスタで、第3スイッチS21cは、そのゲート電極を第3のワード線2Cに、一方のソース・ドレイン電極をビット線1に、他方のソース・ドレイン電極をTMR型検出電極の磁化固定層6221に、それぞれ接続されたMOSトランジスタである。尚、図16では省略されているが、第1スピン流生成領域3021aと接地部との間にはワード線1Aをゲート電極とするMOSトランジスタが、また、第2スピン流生成領域3021bと接地部との間にはワード線1Bをゲート電極とするMOSトランジスタが、また、磁化自由層6021と接地部との間にはワード線1Cをゲート電極とするMOSトランジスタが、それぞれ、接続される。図16の2行目の左から2番目のメモリユニットにおいて、第1スイッチS22aは、そのゲート電極を第1のワード線2Aに、一方のソース・ドレイン電極をビット線2に、他方のソース・ドレイン電極を第1スピン流生成領域3022aの上端部に、それぞれ接続されたMOSトランジスタで、第2スイッチS22bは、そのゲート電極を第2のワード線2Bに、一方のソース・ドレイン電極をビット線2に、他方のソース・ドレイン電極を第2スピン流生成領域3022bの下端部に、それぞれ接続されたMOSトランジスタで、第3スイッチS22cは、そのゲート電極を第3のワード線2Cに、一方のソース・ドレイン電極をビット線2に、他方のソース・ドレイン電極をTMR型検出電極の磁化固定層6222に、それぞれ接続されたMOSトランジスタである。尚、図16では省略されているが、第1スピン流生成領域3022aと接地部との間にはワード線1Aをゲート電極とするMOSトランジスタが、また、第2スピン流生成領域3022bと接地部との間にはワード線1Bをゲート電極とするMOSトランジスタが、また、磁化自由層6022と接地部との間にはワード線1Cをゲート電極とするMOSトランジスタが、それぞれ、接続される。図16の2行目の左から3番目のメモリユニットにおいて、第1スイッチS23aは、そのゲート電極を第1のワード線2Aに、一方のソース・ドレイン電極をビット線3に、他方のソース・ドレイン電極を第1スピン流生成領域3023aの上端部に、それぞれ接続されたMOSトランジスタで、第2スイッチS23bは、そのゲート電極を第2のワード線2Bに、一方のソース・ドレイン電極をビット線3に、他方のソース・ドレイン電極を第2スピン流生成領域3023bの下端部に、それぞれ接続されたMOSトランジスタで、第3スイッチS23cは、そのゲート電極を第3のワード線2Cに、一方のソース・ドレイン電極をビット線3に、他方のソース・ドレイン電極をTMR型検出電極の磁化固定層6223に、それぞれ接続されたMOSトランジスタである。尚、図16では省略されているが、第1スピン流生成領域3023aと接地部との間にはワード線1Aをゲート電極とするMOSトランジスタが、また、第2スピン流生成領域3023bと接地部との間にはワード線1Bをゲート電極とするMOSトランジスタが、また、磁化自由層6023と接地部との間にはワード線1Cをゲート電極とするMOSトランジスタが、それぞれ、接続される。
【0063】
更に、図16の3行目の一番左の列のメモリユニットにおいて、第1スイッチS31aは、そのゲート電極を第1のワード線3Aに、一方のソース・ドレイン電極をビット線1に、他方のソース・ドレイン電極を第1スピン流生成領域3031aの上端部に、それぞれ接続されたMOSトランジスタで、第2スイッチS31bは、そのゲート電極を第2のワード線3Bに、一方のソース・ドレイン電極をビット線1に、他方のソース・ドレイン電極を第2スピン流生成領域3031bの下端部に、それぞれ接続されたMOSトランジスタで、第3スイッチS31cは、そのゲート電極を第3のワード線3Cに、一方のソース・ドレイン電極をビット線1に、他方のソース・ドレイン電極をTMR型検出電極の磁化固定層6231に、それぞれ接続されたMOSトランジスタである。尚、図16では省略されているが、第1スピン流生成領域3031aと接地部との間にはワード線1Aをゲート電極とするMOSトランジスタが、また、第2スピン流生成領域3031bと接地部との間にはワード線1Bをゲート電極とするMOSトランジスタが、また、磁化自由層6031と接地部との間にはワード線1Cをゲート電極とするMOSトランジスタが、それぞれ、接続される。図16の3行目の左から2番目のメモリユニットにおいて、第1スイッチS32aは、そのゲート電極を第1のワード線3Aに、一方のソース・ドレイン電極をビット線2に、他方のソース・ドレイン電極を第1スピン流生成領域3032aの上端部に、それぞれ接続されたMOSトランジスタで、第2スイッチS32bは、そのゲート電極を第2のワード線3Bに、一方のソース・ドレイン電極をビット線2に、他方のソース・ドレイン電極を第2スピン流生成領域3032bの下端部に、それぞれ接続されたMOSトランジスタで、第3スイッチS32cは、そのゲート電極を第3のワード線3Cに、一方のソース・ドレイン電極をビット線2に、他方のソース・ドレイン電極をTMR型検出電極の磁化固定層6232に、それぞれ接続されたMOSトランジスタである。尚、図16では省略されているが、第1スピン流生成領域3032aと接地部との間にはワード線1Aをゲート電極とするMOSトランジスタが、また、第2スピン流生成領域3032bと接地部との間にはワード線1Bをゲート電極とするMOSトランジスタが、また、磁化自由層6032と接地部との間にはワード線1Cをゲート電極とするMOSトランジスタが、それぞれ、接続される。図16の3行目の左から3番目のメモリユニットにおいて、第1スイッチS33aは、そのゲート電極を第1のワード線3Aに、一方のソース・ドレイン電極をビット線3に、他方のソース・ドレイン電極を第1スピン流生成領域3033aの上端部に、それぞれ接続されたMOSトランジスタで、第2スイッチS33bは、そのゲート電極を第2のワード線3Bに、一方のソース・ドレイン電極をビット線3に、他方のソース・ドレイン電極を第2スピン流生成領域3033bの下端部に、それぞれ接続されたMOSトランジスタで、第3スイッチS33cは、そのゲート電極を第3のワード線3Cに、一方のソース・ドレイン電極をビット線3に、他方のソース・ドレイン電極をTMR型検出電極の磁化固定層6233に、それぞれ接続されたMOSトランジスタである。尚、図16では省略されているが、第1スピン流生成領域3033aと接地部との間にはワード線1Aをゲート電極とするMOSトランジスタが、また、第2スピン流生成領域3033bと接地部との間にはワード線1Bをゲート電極とするMOSトランジスタが、また、磁化自由層6033と接地部との間にはワード線1Cをゲート電極とするMOSトランジスタが、それぞれ、接続される。
【0064】
(第5の実施の形態)
本発明の第5の実施の形態に係るスピントロニクス装置は、図17に示すように、正孔と電子とが同程度のキャリア密度と移動度を有し、正常及び異常ホール係数が共にゼロである強磁性の両極性伝導金属からなる直方体状の第1のスピン流生成領域34-1、第1のスピン流生成領域34-1の一方の端面にオーミック接合され、電子を第1のスピン流生成領域34-1に注入する第1の第1主電極24-1、第1のスピン流生成領域34-1の第1の第1主電極24-1が配置された端面と対向する端面にオーミック接合され、正孔を第1のスピン流生成領域34-1に注入する第1の第2主電極44-1、第1のスピン流生成領域34-1の第1の第1主電極24-1が配置された端面と直交する側面の中央部に金属学的に接合され、強磁性体からなる磁化固定電極である第1の検出電極54-1を備える第1のスピン流変換素子14-1と;第1のスピン流生成領域34-1と第1の検出電極54-1を介して接続されるように、第1のスピン流生成領域34-1と並列に配置され、正孔と電子とが同程度のキャリア密度と移動度を有し、正常及び異常ホール係数が共にゼロである強磁性の両極性伝導金属からなる直方体状の第2のスピン流生成領域34-2、第2のスピン流生成領域34-2の一方の端面にオーミック接合され、電子を第2のスピン流生成領域34-2に注入する第2の第1主電極24-2、第2のスピン流生成領域34-2の第2の第1主電極24-2が配置された端面と対向する端面にオーミック接合され、正孔を第2のスピン流生成領域34-2に注入する第2の第2主電極44-2、第2のスピン流生成領域34-2の第2の第1主電極24-2が配置された端面と直交する側面の中央部に金属学的に接合され、強磁性体からなる磁化固定電極である第2の検出電極54-2を備える第2のスピン流変換素子14-2と;第2のスピン流生成領域34-2と第2の検出電極54-2を介して接続されるように、第1のスピン流生成領域34-1,第2のスピン流生成領域34-2と並列に配置され、正孔と電子とが同程度のキャリア密度と移動度を有し、正常及び異常ホール係数が共にゼロである強磁性の両極性伝導金属からなる直方体状の第3のスピン流生成領域34-3、第3のスピン流生成領域34-3の一方の端面にオーミック接合され、電子を第3のスピン流生成領域34-3に注入する第3の第1主電極24-3、第3のスピン流生成領域34-3の第3の第1主電極24-3が配置された端面と対向する端面にオーミック接合され、正孔を第3のスピン流生成領域34-3に注入する第3の第2主電極44-3、第3のスピン流生成領域34-3の第3の第1主電極24-3が配置された端面と直交する側面の中央部に金属学的に接合され、強磁性体からなる磁化固定電極である第3の検出電極54-3を備える第3のスピン流変換素子14-3と;……;第(n−1)のスピン流生成領域(図示省略)と第(n−1)の検出電極(図示省略)を介して接続されるように、第1のスピン流生成領域34-1,第2のスピン流生成領域34-2,第3のスピン流生成領域34-3,…,第(n−1)のスピン流生成領域と並列に配置され、正孔と電子とが同程度のキャリア密度と移動度を有し、正常及び異常ホール係数が共にゼロである強磁性の両極性伝導金属からなる直方体状の第nのスピン流生成領域34-n、第nのスピン流生成領域34-nの一方の端面にオーミック接合され、電子を第nのスピン流生成領域34-nに注入する第nの第1主電極24-n、第nのスピン流生成領域34-nの第nの第1主電極24-nが配置された端面と対向する端面にオーミック接合され、正孔を第nのスピン流生成領域34-nに注入する第nの第2主電極44-n、第nのスピン流生成領域34-nの第nの第1主電極24-nが配置された端面と直交する側面の中央部に金属学的に接合され、強磁性体からなる磁化固定電極である第nの検出電極54-nを備える第nのスピン流変換素子14-nと;このようにタンデムに多段接続された複数のスピン流変換素子14-1〜14-nがそれぞれ備える第1主電極24-1〜24-nと第2主電極44-1〜44-nとの間にそれぞれ直流のバイアス電圧を並列的に印加する直流電源5とを備え、高強度のスピン流を発生する。
【0065】
図17に示すように、タンデムに多段接続された複数のスピン流変換素子14-1〜14-nは、複数のスピン流変換素子14-1〜14-nがそれぞれ備える第1主電極24-1〜24-n、スピン流生成領域34-1〜34-n、第2主電極44-1〜44-n及び検出電極54-1〜54-nがなす平面に垂直な方向(Z方向)に外部磁場Bが印加されるとき、検出電極54-1〜54-nは、外部磁場Bの方向に対して平行(Z方向)にそれぞれ磁化Mの方向を有する。
【0066】
検出電極54-1〜54-nは、好ましくは、保磁力が300mT程度以上の強磁性体から構成することができ、比抵抗が1.0×10‐6Ωm以下とすることが好ましい。検出電極54-1〜54-nを構成する物質として、例えばCoxFeyNiz(x=0.2〜0.7,y=0.2〜0.4,z=0.1〜0.2)のような、コバルト・鉄・ニッケル合金等の種々の強磁性体が採用可能である。
【0067】
図17に示すように、タンデムに多段接続された複数のスピン流変換素子14-1〜14-nのそれぞれの第1主電極24-1〜24-nをカソード、それぞれの第2主電極44-1〜44-nをアノードとして、直流電源5から直流のバイアス電圧をそれぞれに印加すると、第1主電極24-1〜24-nから電子が、それぞれのスピン流生成領域34-1〜34-nに注入され、それぞれのスピン流生成領域34-1〜34-n中を第2主電極44-1〜44-nに向かう方向にそれぞれ進行する。又、それぞれの第2主電極44-1〜44-nからは正孔がスピン流生成領域34-1〜34-nにそれぞれ注入され、それぞれのスピン流生成領域34-1〜34-n中を第1主電極24-1〜24-nに向かう方向にそれぞれ進行する。
【0068】
それぞれのスピン流生成領域34-1〜34-nにおいて、第1主電極24-1〜24-nからそれぞれ注入された電子、第2主電極44-1〜44-nから注入された正孔は、外部磁場Bによるローレンツ力を受けて、それぞれ第1のスピン流変換素子14-1から第nのスピン流変換素子14-nへ向かう方向(X方向)にそれぞれ湾曲し、第1のスピン流変換素子14-1から第nのスピン流変換素子14-nへ向かう方向(X方向)にそれぞれ進行する。上向き(Z方向)に磁化Mの方向を固定したそれぞれの検出電極54-1〜54-nへ向かう正孔と電子の数はほぼ等しいので、両キャリアが運ぶ総電荷量は0と考えることができ、それぞれのスピン流生成領域34-1〜34-n内に、正常及び異常ホール効果によって、検出電極54-1〜54-nへ向かって、X方向にそれぞれスピン流が生成する。
【0069】
即ち、第1の第1主電極24-1から第1のスピン流生成領域34-1に注入された電子と第1の第2主電極44-1から第1のスピン流生成領域34-1に注入された正孔に対する異常ホール効果によるスピン流は、第1の検出電極54-1が上向き(Z方向)に磁化Mの方向を固定しているので、第1の検出電極54-1に電荷の流れを伴わずに流れ込ませることができる。このため、第2のスピン流生成領域34-2においては、第2の第1主電極24-2から第2のスピン流生成領域34-2に注入された電子と第2の第2主電極44-2から第2のスピン流生成領域34-2に注入された正孔に対する異常ホール効果によるスピン流と、第1の検出電極54-1を介して第2のスピン流生成領域34-2に注入された第1のスピン流生成領域34-1からのスピン流とが重畳される。重畳されたスピン流は、第2の検出電極54-2が上向き(Z方向)に磁化Mの方向を固定しているので、第2の検出電極54-2に電荷の流れを伴わずに流れ込める。このため、第3のスピン流生成領域34-3においては、第3の第1主電極24-3から第3のスピン流生成領域34-3に注入された電子と第3の第2主電極44-3から第3のスピン流生成領域34-3に注入された正孔に対する異常ホール効果によるスピン流と、第2の検出電極54-2を介して第3のスピン流生成領域34-3に注入された第1のスピン流生成領域34-1及び第2のスピン流生成領域34-2からのスピン流とが重畳される。重畳されたスピン流は第3の検出電極54-3に電荷の流れを伴わずに流れ込める。同様にして、第nのスピン流生成領域34-nにおいては、第nの第1主電極24-nから第nのスピン流生成領域34-nに注入された電子と第nの第2主電極44-nから第nのスピン流生成領域34-nに注入された正孔に対する異常ホール効果によるスピン流と、第(n−1)の検出電極(図示省略)を介して第nのスピン流生成領域34-nに注入された第1のスピン流生成領域34-1,第2のスピン流生成領域34-2,第3のスピン流生成領域34-3,…,第(n−1)のスピン流生成領域(図示省略)からのスピン流とが重畳される。このようにして、タンデムに多段接続された複数のスピン流生成領域34-1〜34-n内でそれぞれ異常ホール効果によって発生したスピン流は、第1のスピン流変換素子14-1から第nのスピン流変換素子14-nにかけて次第に重畳され強度を増す。高強度のスピン流は、第nのスピン流変換素子14-nの第nの検出電極54-nから、図示を省略した外部装置に出力される。
【0070】
図17に示す第5の実施の形態に係るスピントロニクス装置においては、外部磁場Bの方向と、タンデムに多段接続された複数のスピン流変換素子14-1〜14-nがそれぞれ備える検出電極54-1〜54-nの磁化Mcの方向とは、それぞれ互いに平行であるので、すべてのスピン流変換素子14-1〜14-nにおいてスピン蓄積は生じず、検出電極54-1〜54-nを介してスピン流をタンデムに逐次重畳して増幅し、電荷の流れを伴わずに高強度のスピン流を発生させることができる。
【0071】
(その他の実施の形態)
上記のように、本発明は第1〜第5の実施の形態によって記載したが、この開示の一部をなす論述及び図面は本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
【0072】
詳細な説明を省略するが、例えば、本発明のスピン流変換素子は、スピントルク型磁気抵抗RAM、スピントランスファートルク型発振素子、スピンゼーベック効果素子、スピン流−熱流変換による冷却素子等にも適用可能であることは、上記の説明から理解できるであろう。
【0073】
このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
【符号の説明】
【0074】
ija…第1スイッチ
ijb…第2スイッチ
ijc…第3スイッチ
ija…第1直流電源
ijb…第2直流電源
1,2,3,…ビット線
1A.2A,3A…第1のワード線
1B,2B,3B…第2のワード線
1C.2C,3C…第3のワード線
5…直流電源
6…直流電源
7…交流電源
9…ロックイン増幅器
10,11,14-1〜14-n…スピン流変換素子
12…論理演算素子
20,22,23,24-1〜24-n…第1主電極
30,34-1〜34-n…スピン流生成領域
40,44-1〜44-n,…第2主電極
50,51a,51b,54-1〜54-n…検出電極
60ij…磁化自由層
61ij…非磁性層
62ij…磁化固定層

【特許請求の範囲】
【請求項1】
互いに平行に対向する第1端面及び第2端面を有し、第1導電型キャリアと第2導電型キャリアとが同程度のキャリア密度と移動度を有し、正常及び異常ホール係数が共にゼロである強磁性の両極性伝導金属からなるスピン流生成領域と、
前記第1端面にオーミック接続し、第1導電型キャリアを前記スピン流生成領域に注入する第1主電極と、
前記第2端面にオーミック接続し、第2導電型キャリアを前記スピン流生成領域に注入する第2主電極
とを備え、前記第1端面に垂直な面に直交する方向の外部磁場にもとづく正常ホール効果に、磁場誘起磁化もしくは自発磁化にもとづく異常ホール効果が加わることによって、第1導電型キャリアと第2導電型キャリアとを同一方向に輸送されるように偏向して、第1導電型キャリアと第2導電型キャリアの電荷を互いに相殺し、前記スピン流生成領域における異常ホール効果によってスピン流を得ることを特徴とするスピントロニクス装置。
【請求項2】
前記両極性伝導金属がガドリニウム、又は水素化ガドリニウムとガドリニウムの共存相、を含むことを特徴とする請求項1に記載のスピントロニクス装置。
【請求項3】
前記同一方向に直交する前記スピン流生成領域の出力側面に設けられた、強磁性体からなる領域を含む検出電極を更に備え、前記第1主電極と前記検出電極との間の抵抗測定により、前記スピン流の存在を検出することを特徴とする請求項1又は2に記載のスピントロニクス装置。
【請求項4】
互いに平行に対向する第1端面及び第2端面を有し、第1導電型キャリアと第2導電型キャリアとが同程度のキャリア密度と移動度を有し、正常及び異常ホール係数が共にゼロである強磁性の両極性伝導金属からなるスピン流生成領域と、
前記第1端面にオーミック接続し、第1導電型キャリアを前記スピン流生成領域に注入する第1主電極と、
前記第2端面にオーミック接続し、第2導電型キャリアを前記スピン流生成領域に注入する第2主電極と、
前記第1端面に直交する前記スピン流生成領域の出力側面に設けられた、強磁性体からなる領域を含む検出電極
とを備え、前記第1端面に垂直な面に直交する方向の外部磁場にもとづく正常ホール効果に、磁場誘起磁化もしくは自発磁化にもとづく異常ホール効果が加わることによって、第1導電型キャリアと第2導電型キャリアとを共に前記出力側面に向かう方向に輸送されるように偏向して、第1導電型キャリアと第2導電型キャリアの電荷を互いに相殺し、前記検出電極の磁化の方向を入力信号、前記第1主電極と前記検出電極との間の抵抗を出力信号とすることを特徴とする論理演算素子。
【請求項5】
互いに平行に対向する第1端面及び第2端面を有し、第1導電型キャリアと第2導電型キャリアとが同程度のキャリア密度と移動度を有し、正常及び異常ホール係数が共にゼロである強磁性の両極性伝導金属からなるスピン流生成領域と、
前記第1端面にオーミック接続し、第1導電型キャリアを前記スピン流生成領域に注入する第1主電極と、
前記第2端面にオーミック接続し、第2導電型キャリアを前記スピン流生成領域に注入する第2主電極と、
前記第1端面に直交する前記スピン流生成領域の出力側面に設けられた、強磁性体からなる領域を含む検出電極
とを備え、前記第1端面に垂直な面に直交する方向の外部磁場にもとづく正常ホール効果に、磁場誘起磁化もしくは自発磁化にもとづく異常ホール効果が加わることによって、第1導電型キャリアと第2導電型キャリアとを共に前記出力側面に向かう方向に輸送されるように偏向して、第1導電型キャリアと第2導電型キャリアの電荷を互いに相殺し、前記外部磁場の方向を第1の入力信号、前記第2主電極の磁化の方向を第2の入力信号、前記第1主電極と前記第2主電極との間の抵抗を出力信号とすることを特徴とする論理演算素子。
【請求項6】
前記両極性伝導金属がガドリニウム、又は水素化ガドリニウムとガドリニウムの共存相、を含むことを特徴とする請求項4又は5に記載の論理演算素子。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate


【公開番号】特開2012−99720(P2012−99720A)
【公開日】平成24年5月24日(2012.5.24)
【国際特許分類】
【出願番号】特願2010−247535(P2010−247535)
【出願日】平成22年11月4日(2010.11.4)
【出願人】(504190548)国立大学法人埼玉大学 (292)
【出願人】(504176911)国立大学法人大阪大学 (1,536)
【Fターム(参考)】