説明

モーショントラッカ装置

【課題】光学マーカーに識別情報を持たせたり、1個1個順番に点灯させたりすることなく、各光学マーカーを確実に識別することができるモーショントラッカ装置を提供する。
【解決手段】 モーショントラッカ装置1であって、対象物10に作用する対象物角速度を短時間で検出する対象物角速度検出センサ4と、対象物10に作用する対象物加速度を短時間で検出する対象物加速度検出センサ5と、第一座標系の角度移動量を算出する第一座標系角度移動量算出部23と、第一座標系の位置移動量を算出する第一座標系位置移動量算出部27と、光学マーカー位置情報、第一座標系の角度移動量及び第一座標系の位置移動量に基づいて、光学マーカーの予想移動位置を推定する光学マーカー推定部26とを備え、光学マーカー位置情報算出部24は、光学マーカーの予想移動位置に基づいて、3個以上の光学マーカー7をそれぞれ識別することを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光学方式のモーショントラッカ装置(以下、MT装置ともいう)に関し、さらに詳細には、光学マーカーの現在位置及び現在角度を検出する機能を備える光学方式のMT装置に関する。本発明は、例えば、ゲーム機や乗物等で用いられる頭部装着型表示装置付ヘルメットの現在位置及び現在角度(すなわち、現在の頭部位置及び頭部角度)を検出するヘッドモーショントラッカ装置(以下、HMT装置ともいう)等に利用される。
ここで、光学方式のHMT装置とは、反射板や発光体等の光学マーカーを取り付けたヘルメット等を頭部に装着して、光学マーカーの位置を立体視が可能なカメラ装置で測定することにより、頭部の動きを追跡する装置等のことをいう。
【背景技術】
【0002】
時々刻々と変動する物体の現在位置や現在角度を正確に測定する技術は、様々な分野で利用されている。例えば、ゲーム機では、バーチャルリアリティ(VR)を実現するために、頭部装着型表示装置付ヘルメットを用いることにより、映像を表示することがなされている。このとき、頭部装着型表示装置付ヘルメットの現在位置や現在角度に合わせて、映像を変化させる必要がある。よって、頭部装着型表示装置付ヘルメット(対象物)の現在位置や現在角度を測定するために、HMT装置が利用されている。
【0003】
また、救難飛行艇による救難活動では、発見した救難目標を見失うことがないようにするため、頭部装着型表示装置付ヘルメットにより表示される照準画像と救難目標とが対応した時にロックすることにより、ロックされた救難目標の位置を演算することが行われている。このとき、その救難目標の位置を演算するために、飛行体(移動体)の緯度、経度、高度、姿勢に加えて、飛行体に設定された相対座標系に対するパイロットの頭部角度及び頭部位置を測定している。このときに、HMT装置が利用されている。
【0004】
頭部装着型表示装置付ヘルメットに利用されるHMT装置としては、光学的に頭部装着型表示装置付ヘルメットの現在位置や現在角度を測定するものが開示されている(例えば、特許文献1参照)。具体的には、複数の反射板を頭部装着型表示装置付ヘルメットに取り付けるとともに光源から光を照射したときの反射光をカメラ装置でモニタする光学方式のHMT装置が開示されている。また、発光体を互いに離隔するようにして複数箇所に取り付けた光学方式のHMT装置もある(例えば、特許文献2参照)。具体的には、頭部装着型表示装置付ヘルメットの外周面上に、光学マーカー群として発光体であるLED(発光ダイオード)を互いに離隔するようにして3箇所に取り付け、頭部装着型表示装置付ヘルメットにおける3個のLEDの相対的な位置関係をHMT装置に予め記憶させておく。そして、これら3個のLEDを、立体視が可能でかつ設置場所が固定された第一カメラと第二カメラ(カメラ装置)で同時に撮影することで、所謂、三角測量の原理により、カメラ装置に対する3個のLEDの相対的な位置関係を測定している。これにより、カメラ装置に対する頭部装着型表示装置付ヘルメットの現在位置や現在角度を特定している。
【特許文献1】特表平9−506194号公報
【特許文献2】特願2006−284442号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
上述したような光学方式のHMT装置で、カメラ装置に対する3個のLEDの相対的な位置関係を測定するためには、3個のLEDをそれぞれ識別する必要がある。よって、頭部装着型表示装置付ヘルメットには、それぞれが識別可能な3個のLEDが取り付けられている。例えば、頭部装着型表示装置付ヘルメットの外周面上に、互いに異なる波長の赤外光を発光するLEDを互いに離隔するようにして取り付け、頭部装着型表示装置付ヘルメットにおける3個のLEDのそれぞれの位置をHMT装置に予め記憶させておく。そして、これら3個のLEDを波長差によりそれぞれ識別しながら、カメラ装置に対する3個のLEDのそれぞれの現在位置を測定している。
【0006】
しかしながら、それぞれが識別可能な3個のLEDを取り付けた場合、1個のLEDが故障等したときに、故障した1個のLEDを新品の1個のLEDと交換するとともに、新品の1個のLEDの識別情報(例えば、波長情報)を改めてHMT装置に記憶させる必要があった。よって、新品のLEDと交換するたびに、新品のLEDの識別情報をHMT装置に記憶させる手間がかかった。
また、識別情報を有さない3個のLEDを、1個1個順番に点灯させることにより、識別することも考えられるが、1個1個順番に点灯させなければならないので、時々刻々と変化する頭部装着型表示装置付ヘルメットの動きをモニタリングすることは困難である。
【0007】
そこで、本出願人は、頭部装着型表示装置付ヘルメット50等に取り付けられた3個のLED57a、57b、57cのそれぞれの現在位置を識別する際に、LED57a、57b、57cに識別情報を持たせたり、1個1個順番に点灯させたりすることもなく、LED57a、57b、57cのそれぞれの現在位置を識別することができる方法を見出した。
具体的には、まず、第一カメラの撮影方向と第二カメラの撮影方向とが定まった状態において、エピポーラ幾何学に基づく予測により、第一カメラで撮影された第一画像と第二カメラで撮影された第二画像との間での共通のLED像の組を認識することを行った。
そして、第一画像中のLED像と第二画像中のLED像との対応付けを行うことができれば、第一画像及び第二画像中のLED像の位置により、第一カメラからの方向角度αと第二カメラからの方向角度βとを算出し、第一カメラと第二カメラとの間の距離dを用いることで、所謂、三角測量の手法でカメラ装置に対するLEDの位置を算出することを行った(図3参照)。
【0008】
このようにして算出された各LEDの位置が、頭部装着型表示装置付ヘルメットに取り付けられたLEDのいずれにそれぞれ対応するかはまだ認識できないので、例えば、時間がt、tと順に流れたとすると、図10に示すように、時間tに、LED57a、57b、57cのそれぞれの位置を記憶するとともに、記憶されたそれぞれのLED57a、57b、57cの位置を中心とする一定の大きさの球状である予想移動範囲Da、Db、Dcを設定することにより、時間tに、予想移動範囲Da、Db、Dcに存在するLEDを、時間tに設定された予想移動範囲Da、Db、Dcに対応するLEDと同一のものであると識別した。
【0009】
しかしながら、図11に示すように、頭部装着型表示装置付ヘルメット50の移動速度が速い場合に、予想移動範囲Da、Db、DcにLEDが存在しなくなることがあった。また、設定する予想移動範囲Da、Db、Dcの大きさを大きくすると、予想移動範囲Da、Db、Dcに2個のLEDが同時に存在することがあった。つまり、予想移動範囲Da、Db、Dcに存在するLEDを、その予想移動範囲Da、Db、Dcに対応するLEDと同一のものであると識別することができなくなることがあった。
【0010】
そこで、本発明は、頭部装着型表示装置付ヘルメット等の対象物に取り付けられた3個以上のLED等の光学マーカーのそれぞれの現在位置を識別する際に、光学マーカーに識別情報を持たせたり、1個1個順番に点灯させたりすることなく、各光学マーカーを確実に識別することができるモーショントラッカ装置を提供することを目的とする。
【課題を解決するための手段】
【0011】
上記課題を解決するためになされた本発明のモーショントラッカ装置は、第一座標系が設定された対象物と、前記第一座標系に位置決めされて対象物に取り付けられた3個以上の同一種の光学マーカーと、第二座標系が設定され、前記光学マーカーからの光線を立体視で検出するカメラ装置と、検出された光線に基づいて、前記第二座標系における3個以上の光学マーカーのそれぞれの現在位置を含む光学マーカー位置情報を算出する光学マーカー位置情報算出部と、前記光学マーカー位置情報を記憶する光学マーカー記憶部と、前記光学マーカー位置情報に基づいて、前記第二座標系における対象物の現在位置及び現在角度を含む相対情報を算出する相対情報算出部とを備えるモーショントラッカ装置であって、前記第一座標系に位置決めされて対象物に取り付けられ、前記対象物に作用する対象物角速度を、前記カメラ装置での光線の検出間隔時間より短時間で検出する対象物角速度検出センサと、前記第一座標系に位置決めされて対象物に取り付けられ、前記対象物に作用する対象物加速度を、前記カメラ装置での光線の検出間隔時間より短時間で検出する対象物加速度検出センサと、前記対象物角速度に基づいて、前記第一座標系の角度移動量を算出する第一座標系角度移動量算出部と、前記対象物加速度に基づいて、前記第一座標系の位置移動量を算出する第一座標系位置移動量算出部と、前記光学マーカー記憶部に記憶された光学マーカー位置情報、第一座標系の角度移動量及び第一座標系の位置移動量に基づいて、前記第二座標系における光学マーカーの予想移動位置を推定する光学マーカー推定部とを備え、前記光学マーカー位置情報算出部は、前記光学マーカーの予想移動位置に基づいて、前記3個以上の光学マーカーをそれぞれ識別するようにしている。
【0012】
ここで、「角度移動量」とは、ロール方向(X軸に対する回転)と、エレベーション方向(Y軸に対する回転)と、アジマス方向(Z軸に対する回転)とにおける移動量のことをいう。
また、「位置移動量」とは、X軸方向とY軸方向とZ軸方向とにおける移動量のことをいう。
また、「対象物角速度検出センサ」とは、センサ自体に3軸(X軸、Y軸、Z軸)が定義されて、この3軸を基準とする角速度を短時間(例えば、4msec)で検出できるもののことをいい、例えば、ジャイロセンサ等が用いられる。
また、「対象物加速度検出センサ」とは、センサ自体に3軸(X軸、Y軸、Z軸)が定義されて、この3軸を基準とする3軸方向の加速度を短時間(例えば、4msec)で検出できるもののことをいい、例えば、加速度センサ等が用いられる。
また、「カメラ装置での光線の検出間隔時間」とは、カメラ装置による撮影と撮影との間隔時間(例えば、16msec)のこという。
【0013】
本発明のモーショントラッカ装置によれば、時間がt、t2’(tの直前)、tと順に流れたとすると、時間tに記憶された3個以上の光学マーカーのそれぞれの位置と、時間tから時間t2’までに対象物に作用する対象物角速度と、時間tから時間t2’までに対象物に作用する対象物加速度とを用いて、第一座標系の角度移動量と第一座標系の位置移動量とを算出することにより、時間t2’での光学マーカーの予想移動位置を推定する。次に、例えば、推定された各光学マーカーの予想移動位置を中心とする球状である予想移動範囲を設定することにより、時間tに予想移動範囲に存在する光学マーカーを、時間t2’に設定された予想移動範囲に対応する光学マーカーと同一のものであると識別する。
【発明の効果】
【0014】
以上のように、本発明のモーショントラッカ装置によれば、対象物角速度と対象物加速度とにより推定された光学マーカーの予想移動位置を設定するので、対象物の移動速度が速い場合にも、光学マーカーを見失うことを防ぐことができる。
【0015】
(他の課題を解決するための手段および効果)
また、上記の発明において、前記第一座標系位置移動量算出部は、前記光学マーカー記憶部に記憶された少なくとも2つの光学マーカー位置情報に基づいて、前記第一座標系の原点の移動速度を算出し、当該第一座標系の原点の移動速度と対象物加速度とに基づいて、前記第一座標系の位置移動量を算出するようにしてもよい。
また、上記の発明において、前記光学マーカー位置情報算出部は、前記光学マーカーの予想移動位置に基づいて、前記光学マーカーの予想移動範囲を設定することで、前記3個以上の光学マーカーをそれぞれ識別するようにしてもよい。
また、上記の発明において、前記光学マーカーの予想移動範囲は、各光学マーカーの予想移動位置を中心とする球状であるようにしてもよい。
【0016】
そして、上記の発明において、前記第一座標系の角度移動量及び第一座標系の位置移動量に基づいて、前記光学マーカーの位置移動量を算出することで、前記光学マーカーの予想移動範囲の大きさを決定する予想移動範囲決定部を備えるようにしてもよい。
本発明によれば、時間tから時間t2’までに対象物に作用する対象物角速度と、時間tから時間t2’までに対象物に作用する対象物加速度とにより、第一座標系の角度移動量と第一座標系の位置移動量とを算出することで、時間tから時間t2’までの光学マーカーの位置移動量を算出する。これにより、1個の光学マーカーの予想移動位置を中心とする予想移動範囲の大きさを、例えば、光学マーカーの位置移動量が長い場合には大きくし、一方、光学マーカーの位置移動量が短い場合には小さくすることができる。よって、対象物の移動速度が速い場合にも、予想移動範囲に光学マーカーが存在しなくなることをより防ぐとともに、対象物の移動速度が遅い場合に、予想移動範囲に2個以上の光学マーカーが同時に存在することをより防ぐことができる。
【0017】
さらに、上記の発明において、前記対象物は、搭乗者の頭部に装着されるヘルメットであり、かつ、前記カメラ装置は、前記搭乗者が搭乗する移動体に取り付けられ、前記移動体に取り付けられ、前記移動体に作用する移動体角速度を、前記対象物角速度検出センサと同時間に検出する移動体角速度検出センサと、前記移動体に取り付けられ、前記移動体に作用する移動体加速度を、前記対象物加速度度検出センサと同時間に検出する移動体加速度検出センサとを備え、前記第一座標系角度移動量算出部は、前記対象物角速度と移動体角速度とに基づいて、前記第一座標系の角度移動量を算出し、前記第一座標系位置移動量算出部は、前記対象物加速度と移動体加速度とに基づいて、前記第一座標系の位置移動量を算出するようにしてもよい。
【0018】
ここで、「移動体角速度検出センサ」とは、対象物角速度検出センサと同様に、センサ自体に3軸が定義されて、この3軸を基準とする角速度を短時間(例えば、4msec)で検出できるもののことをいい、例えば、ジャイロセンサ等が用いられる。なお、上述した対象物角速度センサは、対象物が移動体中で移動したときには、対象物の動きと移動体の動きとが合成された動きの情報を検出することになるが、移動体角速度センサは、移動体の動きのみの情報を検出することになる。
また、「移動体加速度検出センサ」とは、対象物加速度検出センサと同様に、センサ自体に3軸が定義されて、この3軸を基準とする3軸方向の加速度を短時間(例えば、4msec)で検出できるもののことをいい、例えば、加速度センサ等が用いられる。なお、上述した対象物加速度センサは、対象物が移動体中で移動したときには、対象物の動きと移動体の動きとが合成された動きの情報を検出することになるが、移動体加速度センサは、移動体の動きのみの情報を検出することになる。
【0019】
本発明によれば、対象物角速度検出センサで、移動体中では搭乗者の頭部の動きと移動体の動きとが合成された動きの情報が検出されるが、移動体角速度検出センサで移動体の動きのみの情報が検出されるため、対象物角速度と移動体角速度とを用いて、移動体の動きを除外した搭乗者の頭部の動きのみの情報を算出することができる。
さらに、対象物加速度検出センサで、移動体中では搭乗者の頭部の動きと移動体の動きとが合成された動きの情報が検出されるが、移動体加速度検出センサで移動体の動きのみの情報が検出されるため、対象物加速度と移動体加速度とを用いて、移動体の動きを除外した搭乗者の頭部の動きのみの情報を算出することができる。
これにより、例えば、搭乗者が移動体に搭乗していても、光学マーカーの予想移動位置を設定することができるので、対象物の移動速度が速い場合にも、光学マーカーを見失うことを防ぐことができる。
【発明を実施するための最良の形態】
【0020】
以下、本発明の実施形態について図面を用いて説明する。なお、本発明は、以下に説明するような実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の態様が含まれることはいうまでもない。
【0021】
(実施形態1)
図1は、本発明の一実施形態であるHMT装置の概略構成を示す図であり、図2は、図1に示す頭部装着型表示装置付ヘルメットの平面図である。
HMT装置1は、カメラ装置2に設定される第二座標系(XYZ座標系)に対する遊戯者3の頭部位置(X、Y、Z)及び頭部角度(RL、EL、AZ)を含む相対情報を算出するものである。つまり、XYZ座標系における遊戯者3が着用する頭部装着型表示装置付ヘルメット10に設定された第一座標系(X’Y’Z’座標系)の位置及び角度を算出する。
なお、角度RLは、ロール方向(X軸に対する回転)の角度であり、角度ELは、エレベーション方向(Y軸に対する回転)の角度であり、角度AZは、アジマス方向(Z軸に対する回転)の角度である。
【0022】
HMT装置1は、遊戯者3の頭部に装着される頭部装着型表示装置付ヘルメット10と、ゲーム機30に取り付けられたカメラ装置2と、コンピュータにより構成される制御部20とから構成される。
頭部装着型表示装置付ヘルメット10は、表示器(図示せず)と、表示器から出射される画像表示光を反射することにより、遊戯者3の目に導くコンバイナ8と、光学マーカーとして機能するLED群7と、3軸ジャイロセンサ(対象物角速度検出センサ)4と、加速度センサ(対象物加速度検出センサ)5とを有する。なお、頭部装着型表示装置付ヘルメット10を装着した遊戯者3は、表示器による表示映像とコンバイナ8の前方実在物とを視認することが可能となっている。
【0023】
ここで、頭部装着型表示装置付ヘルメット10自体には、第一座標系(X’Y’Z’座標系)が予め定められており、3軸ジャイロセンサ4と加速度センサ5とは、X’Y’Z’座標系と正確に軸合わせされ、かつ、X’Y’Z’座標系に位置決めされて取り付けられている。なお、初期状態において、X’Y’Z’座標系は遊戯者3によって後述する第二座標系(XYZ座標系)と軸合わせ(軸のズレの調整)される。初期状態でのX’Y’Z’座標系とXYZ座標系との軸合わせの方法については、広く用いられている一般的な方法(例えば、頭部装着型表示装置付ヘルメット10を装着した遊戯者3に特定方向を向くように指示することにより軸合わせを行う方法)等により行われる。
【0024】
LED群7は、図2に示すように、同じ波長の赤外光を発光する3個(あるいは3個以上の数)のLED7a、7b、7cがお互い一定の距離dを隔てるようにして、第一座標系(X’Y’Z’座標系)に位置決めされて取り付けられたものである。つまり、X’Y’Z’座標系におけるLED7a、7b、7cの座標位置は、(X’DISa、Y’DISa、Z’ DISa)、(X’DISb、Y’ DISb、Z’ DISb)、(X’DISc、Y’DISc、Z’ DISc)として表現できる。しかしながら、LED7a、7b、7cは、同じ波長の赤外光を発光するものなので、後述するカメラ装置2のみでは、撮影した各LEDが、頭部装着型表示装置付ヘルメット10に取り付けられたLEDのいずれにそれぞれ対応するかは認識できないことになる。
【0025】
3軸ジャイロセンサ4は、頭部装着型表示装置付ヘルメット10に作用する角速度(V’RL、V’EL、V’AZ)を短時間(例えば、4msec)で検出するものである。なお、3軸ジャイロセンサ4は、第一座標系(X’Y’Z’座標系)に軸合わせされているので、ロール方向(X’軸に対する回転)、エレベーション方向(Y’軸に対する回転)、アジマス方向(Z’軸に対する回転)における対象物角速度(V’RL、V’EL、V’AZ)が検出される。また、3軸ジャイロセンサ4は、X’Y’Z’座標系の原点に取り付けられているが、X’Y’Z’座標系の原点以外の位置に取り付けられた場合には、X’Y’Z’座標系の原点の位置での角速度を求めるためにオフセット行列M0を乗算したりする一般的な計算方法等で、対象物角速度(V’RL、V’EL、V’AZ)を変換することになる。
【0026】
加速度センサ5は、頭部装着型表示装置付ヘルメット10に作用する加速度(α’、α’、α’)を短時間(例えば、4msec)で検出するものである。なお、加速度センサ5は、第一座標系(X’Y’Z’座標系)に軸合わせされているので、X’軸方向、Y’軸方向、Z’軸方向における対象物加速度(α’、α’、α’)が検出される。
【0027】
ゲーム機30は、遊戯者3が着席する座席30aとカメラ装置2とを備える。
カメラ装置2は、第一カメラ2aと第二カメラ2bとからなる。第一カメラ2aと第二カメラ2bとは、撮影方向が異なりかつ立体視が可能な一定の距離dを隔てるように、天井に固定されている。
ここで、図3に示すように、カメラ装置2(2a、2b)に対するLED7aの位置は、カメラ装置2に撮影された画像中に映し出されているLED7a像の位置を抽出し、さらに第一カメラ2aからの方向角度αと第二カメラ2bからの方向角度βとを抽出し、第一カメラ2aと第二カメラ2bとの間の距離dを用いることにより、三角測量の手法で算出することができる。他の光学マーカーであるLED7b、7cのカメラ装置2に対する位置についても、同様に算出される。
【0028】
このときの各LED7a、7b、7cの位置を、空間座標で表現することができるようにするために、カメラ装置2に固定され、カメラ装置2とともに移動する座標系である第二座標系(XYZ座標系)を用いる。なお、XYZ座標系の具体的な原点位置やXYZ軸方向の説明については後述する。XYZ座標系によりLED7a、7b、7cの座標位置は、(XLED1、YLED1、ZLED1)、(XLED2、YLED2、ZLED2)、(XLED3、YLED3、ZLED3)として表現できる。これにより、カメラ装置2に対する3個のLED7a、7b、7cの座標位置(XLED1、YLED1、ZLED1)、(XLED2、YLED2、ZLED2)、(XLED3、YLED3、ZLED3)がそれぞれどのLEDか識別されて特定されれば、LED7a、7b、7cが位置決めされて取り付けられている頭部装着型表示装置付ヘルメット10の位置(X、Y、Z)及び角度(RL、EL、AZ)は、XYZ座標系における第一座標系(X’Y’Z’座標系)の位置及び角度を用いて表現できる。なお、角度RLは、ロール方向(X軸に対する回転)の角度であり、角度ELは、エレベーション方向(Y軸に対する回転)の角度であり、角度AZは、アジマス方向(Z軸に対する回転)の角度である。また、頭部装着型表示装置付ヘルメット10の位置(X、Y、Z)は、X’Y’Z’座標系の原点の座標位置である。
【0029】
制御部20は、図1に示すように、CPU21、メモリ41等からなるコンピュータにより構成され、各種の制御や演算処理を行うものである。CPU21が実行する処理を、機能ブロックごとに分けて説明すると、モーショントラッカ駆動部28と、第一座標系角度移動量算出部23と、第一座標系位置移動量算出部27と、相対情報算出部22と、光学マーカー位置情報算出部24と、光学マーカー推定部26と、映像表示部25とを有する。なお、図4は、制御部20が実行する流れを説明するタイムチャートである。
【0030】
また、メモリ41には、制御部20が処理を実行するために必要な種々のデータを蓄積する領域が形成してあり、第二座標系(XYZ座標系)を記憶する第二座標系記憶領域43と、時間記憶領域42と、第一座標系(X’Y’Z’座標系)を記憶するとともに、X’Y’Z’座標系における3個のLED7a、7b、7cのそれぞれの位置(X’DIS、Y’DIS、Z’ DIS)を初期データとして記憶する第一座標系記憶領域46と、XYZ座標系における3個のLED7a、7b、7cの時間tでのそれぞれの位置(XLED、YLED、ZLED)を含む光学マーカー位置情報を順次記憶する光学マーカー記憶領域44と、dを直径とする球状とする予想移動範囲の大きさを記憶する予想移動範囲記憶領域45とを有する。
【0031】
ここで、第二座標系(XYZ座標系)は、原点及び各座標軸の方向を任意に定めることができるが、本実施形態では図3に示すように、第一カメラ2aと第二カメラ2bとの中点を原点とし、前方方向をX軸方向とし、前方方向に垂直方向をY軸方向とし、X軸方向及びY軸方向に垂直方向をZ軸方向とするように、第二座標系記憶領域43に予め設定されている。
また、時間記憶領域44は、カメラ装置2でLED7a、7b、7cが検出される毎に更新される時間tと、対象物角速度(V’RL、V’EL、V’AZ)及び対象物加速度(α’、α’、α’)が検出される毎に更新される時間sとを記憶する。ただし、ここでの時間t、sは、実時間を単位とする代わりに、後述するモーショントラッカ駆動部28や第一座標系角度移動量算出部23や第一座標系位置移動量算出部27が、画像データ、角度移動量(RLDEP、ELDEP、AZDEP)、位置移動量(ΔX、ΔY、ΔZ)を算出するプログラム(図8及び図9参照)を実行する際の処理回数カウンタt、sの値を、「時間」として扱うものである。
【0032】
モーショントラッカ駆動部28は、LED群7を点灯させる指令信号を出力するとともに、カメラ装置2でLED群7から出射される光線の画像データを時間t毎に検出させる制御を行う。しかし、LED7a、7b、7cは、同じ波長の赤外光を発光するものなので、エピポーラ幾何学に基づく予測により、第一カメラ2aで撮影された第一画像と第二カメラ2bで撮影された第二画像との間での共通のLED像の組を認識することは行うことができるが、頭部装着型表示装置付ヘルメット10に取り付けられたLEDのいずれにそれぞれ対応するかを決定することはできない。そこで、後述する光学マーカー位置情報算出部24等によって、各LEDが識別されるようになっている。
【0033】
第一座標系角度移動量算出部23は、3軸ジャイロセンサ4で検出された時間tから時間t+sまでの対象物角速度(VRL’、VEL’、VAZ’)を積分演算することにより、時間tから時間t+sまでの第一座標系(X’Y’Z’座標系)の角度移動量(RLDEP、ELDEP、AZDEP)を算出する制御を行う。
まず、3軸ジャイロセンサ4で検出された時間sの対象物角速度(V’RL、V’EL、V’AZ)を積分演算することにより、時間tに記憶されたX’Y’Z’座標系の角度(RL、EL、AZ)からの角度移動量(RLs0、ELs0、AZs0)を算出する。次に、3軸ジャイロセンサ4で検出された時間sの対象物角速度(V’RL、V’EL、V’AZ)を積分演算することにより、時間t+sでのX’Y’Z’座標系の角度からの角度移動量(RLs1、ELs1、AZs1)を算出する。このように角度移動量を算出していき、時間s〜sに算出された角度移動量を合計して、時間tから時間t+sまでのX’Y’Z’座標系の角度移動量(RLDEP、ELDEP、AZDEP)を算出する。
【0034】
第一座標系位置移動量算出部27は、加速度センサ5で検出された時間tから時間tn+までの対象物加速度(α’、α’、α’)を二回積分演算することにより、時間tから時間tn+までの第一座標系(X’Y’Z’座標系)の位置移動量(ΔX、ΔY、ΔZ)を算出する制御を行う。
時間tから時間tn+までの対象物加速度(α’、α’、α’)を用いて、時間tから時間tn+までのX’Y’Z’座標系の位置移動量(ΔX、ΔY、ΔZ)を算出するには、対象物加速度(α’、α’、α’)を二回積分演算するため、時間tでのX’Y’Z’座標系の移動速度(初速度)が必要になる。そこで、時間tn−1でのX’Y’Z’座標系の原点の位置と、時間tでのX’Y’Z’座標系の原点の位置とを差分して、その差分を時間t−tn−1で除算することにより、原点の移動速度(V’、V’、V’)を算出する。これにより、原点の移動速度(V’、V’、V ’)を時間tでのX’Y’Z’座標系の移動速度として用いる。
そして、X’Y’Z’座標系の移動速度(V’、V’、V’)を用いて、加速度センサ5で検出された時間sの対象物加速度(α’、α’、α’)を二回積分演算することにより、時間tに記憶されたX’Y’Z’座標系の位置(X、Y、Z)からの位置移動量(ΔXs0、ΔYs0、ΔZs0)を算出する。次に、X’Y’Z’座標系の移動速度(V’、V’、V’)を用いて、加速度センサ5で検出された時間sの対象物加速度(α’、α’、α’)を二回積分演算することにより、時間t+sでのX’Y’Z’座標系の位置からの位置移動量(ΔXs1、ΔYs1、ΔZs1)を算出する。このように位置移動量を算出していき、時間s〜sに算出された位置移動量を合計して、時間tから時間t+sまでのX’Y’Z’座標系の位置移動量(ΔX、ΔY、ΔZ)を算出する。
【0035】
光学マーカー推定部26は、時間tの光学マーカー位置情報、時間tから時間tn+までの第一座標系(X’Y’Z’座標系)の角度移動量(RLDEP、ELDEP、AZDEP)、時間tから時間tn+までのX’Y’Z’座標系の位置移動量(ΔX、ΔY、ΔZ)に基づいて、第二座標系(XYZ座標系)におけるLED7a、7b、7cの予想移動位置17a、17b、17cを推定する制御を行う。
XYZ座標系における時間tから時間tn+までのLED7aの位置移動量(ΔX、ΔY、ΔZ)を算出するには、X’Y’Z’座標系が角度移動量(RLDEP、ELDEP、AZDEP)で移動することにより生じるLED7aの位置移動量(ΔX、ΔY、ΔZ)と、X’Y’Z’座標系が位置移動量(ΔX、ΔY、ΔZ)で移動することにより生じるLED7aの位置移動量(ΔX、ΔY、ΔZ)とを算出する必要がある。
まず、X’Y’Z’座標系が角度移動量(RLDEP、ELDEP、AZDEP)で移動することにより、XYZ座標系におけるLED7aの位置移動量(ΔX、ΔY、ΔZ)を算出する方法について説明する。時間tから時間tn+までのX’Y’Z’座標系の角度移動量(RLDEP、ELDEP、AZDEP)を下記式(1)に代入することにより、時間tから時間tn+までのLED7aの位置移動量(ΔX、ΔY、ΔZ)を算出する。
【0036】
【数1】

【0037】
次に、X’Y’Z’座標系が位置移動量(ΔX、ΔY、ΔZ)で移動することにより、XYZ座標系におけるLED7aの位置移動量(ΔX、ΔY、ΔZ)を算出する方法について説明する。このときには、時間tから時間tn+までのX’Y’Z’座標系の位置移動量(ΔX、ΔY、ΔZ)が、そのまま時間tから時間tn+までのLED7aの位置移動量(ΔX、ΔY、ΔZ)となる。
そして、LED7aの位置移動量(ΔX、ΔY、ΔZ)と、LED7aの位置移動量(ΔX、ΔY、ΔZ)とを算出することができれば、下記式(2)により、XYZ座標系における時間tのLED7aの位置(XLED、YLED、ZLED)に、LED7aの位置移動量(ΔX、ΔY、ΔZ)とLED7aの位置移動量(ΔX、ΔY、ΔZ)とを加算することで、時間tn+でのLED7aの予想移動位置17a(XDEP、YDEP、ZDEP)を推定する(図5参照)。
【0038】
【数2】

【0039】
また、LED7b、7cについても、同様に時間tn+s2でのLED7b、7cの予想移動位置17b、17cを推定する。
【0040】
光学マーカー位置情報算出部24は、時間t+sでのLED7a、7b、7cのそれぞれの予想移動位置17a、17b、17cを用いて、LED7a、7b、7cのそれぞれの予想移動範囲Da、Db、Dcを設定することにより、時間tn+1の画像データを用いて、LED7a、7b、7cのそれぞれの現在位置を含む時間tn+1の光学マーカー位置情報を算出する制御を行う。
まず、図6に示すように、光学マーカー推定部26により推定された時間t+sでのLED7a、7b、7cのそれぞれの予想移動位置17a、17b、17cを中心としdを直径とする球状である予想移動範囲Da、Db、Dcを第二座標系(XYZ座標系)に設定する。これにより、時間tn+1に、予想移動範囲Da、Db、Dcに存在するLEDを、時間t+sに設定された予想移動範囲Da、Db、Dcに対応するLEDと同一のものであると識別する。例えば、図7に示すように、時間tn+1に、予想移動範囲Daに存在するLED7aを、時間t+sに設定された予想移動範囲Daに対応するLED7aと同一のものであると識別する。同様に、予想移動範囲Dbに存在するLED7bを、LED7bと同一のものであるとし、予想移動範囲Dcに存在するLED7cを、LED7cと同一のものであると識別する。このようにして、LED7a、7b、7cのそれぞれの現在位置を含む時間tn+1の光学マーカー位置情報が算出される。
【0041】
相対情報算出部22は、時間tn+1の光学マーカー位置情報に基づいて、第二座標系(XYZ座標系)における遊戯者3の頭部位置(X、Y、Z)及び頭部角度(RL、EL、AZ)を含む相対情報を算出する制御を行う。
具体的には、XYZ座標系における3個のLED7a、7b、7cのそれぞれの現在の座標位置である時間tn+1の光学マーカー位置情報を得ることで、LED7a、7b、7cが固定されている頭部装着型表示装置付ヘルメット10の現在位置(X、Y、Z)や現在角度(RL、EL、AZ)が算出される。
映像表示部25は、相対情報に基づいて、表示器から映像表示光を出射する制御を行う。これにより、遊戯者3は、表示器による表示映像を視認することができる。
【0042】
次に、HMT装置1により、XYZ座標系における遊戯者3の頭部位置(X、Y、Z)及び頭部角度(RL、EL、AZ)を測定する測定動作について説明する。図8及び図9は、HMT装置1による測定動作について説明するためのフローチャートである。
まず、ステップS101の処理において、頭部装着型表示装置付ヘルメット10を装着した遊戯者3の頭部が初期位置になるように指示する。つまり、X’Y’Z’座標系は遊戯者3によってXYZ座標系と軸合わせされる。
次に、ステップS102の処理において、時間tとしてt=tと時間記憶領域42に記憶させる。
【0043】
次に、ステップS103の処理において、モーショントラッカ駆動部28は、カメラ装置2でLED群7の画像データを検出させる。なお、X’Y’Z’座標系におけるLED群7の座標位置(X’DIS、Y’DIS、Z’ DIS)を初期データとして第一座標系記憶領域46に記憶させているので、時間tの光学マーカー位置情報は、初期データを用いてLED7a、7b、7cがそれぞれ識別されることにより、LED7a、7b、7cのそれぞれの現在位置を含む時間tの光学マーカー位置情報が光学マーカー記憶領域44に記憶されることになる。
次に、ステップS104の処理において、時間sとしてs=sと時間記憶領域42に記憶させる。
【0044】
次に、ステップS105の処理において、3軸ジャイロセンサ4が、対象物角速度(V’RL、V’EL、V’AZ)を検出する。
また、ステップS106の処理において、加速度センサ5が、対象物加速度(α’、α’、α’)を検出する。
【0045】
次に、ステップS107の処理において、s>sを満たすか否かを判定する。s>sを満たさないと判定したときには、ステップS108の処理において、s=sn+1と時間記憶領域44に記憶させて、ステップS105及びS106の処理に戻る。つまり、s>sを満たすと判定するときまで、ステップS105〜ステップS108の処理は繰り返される。
一方、s>sを満たすと判定したときには、ステップS109の処理において、第一座標系角度移動量算出部23は、3軸ジャイロセンサ4で検出された時間tから時間t+sまでの対象物角速度(V’RL、V’EL、V’AZ)を積分演算することにより、時間tから時間t+sまでのX’Y’Z’座標系の角度移動量(RLDEP、ELDEP、AZDEP)を算出する。
【0046】
次に、ステップS110の処理において、第一座標系位置移動量算出部27は、加速度センサ5で検出された時間tから時間tn+までの対象物加速度(α’、α’、α’)を二回積分演算することにより、時間tから時間tn+までのX’Y’Z’座標系の位置移動量(ΔX、ΔY、ΔZ)を算出する。
次に、ステップS111の処理において、光学マーカー推定部26は、時間tの光学マーカー位置情報、時間tから時間tn+までのX’Y’Z’座標系の角度移動量(RLDEP、ELDEP、AZDEP)、時間tから時間tn+までのX’Y’Z’座標系の位置移動量(ΔX、ΔY、ΔZ)に基づいて、XYZ座標系におけるLED7a、7b、7cの予想移動位置17a、17b、17cを推定する。
【0047】
次に、ステップS112の処理において、光学マーカー位置情報算出部24は、時間t+sでのLED7a、7b、7cのそれぞれの予想移動位置17a、17b、17cを用いて、LED7a、7b、7cのそれぞれの予想移動範囲Da、Db、DcをXYZ座標系に設定する。
次に、ステップS113の処理において、t=tn+1と時間記憶領域42に記憶させる。
次に、ステップS114の処理において、モーショントラッカ駆動部28は、カメラ装置2でLED群7の画像データを検出させる。
【0048】
次に、ステップS115の処理において、光学マーカー位置情報算出部24は、時間tn+1の画像データを用いて、予想移動範囲Da、Db、Dcに存在するLEDを、設定された予想移動範囲Da、Db、Dcに対応するLEDと同一のものであると識別することにより、LED7a、7b、7cのそれぞれの現在位置を含む時間tn+1の光学マーカー位置情報を算出する。このとき、光学マーカー記憶領域44に時間tn+1の光学マーカー位置情報を記憶させる。
次に、ステップS116の処理において、相対頭部情報算出部22は、時間tn+1の光学マーカー位置情報に基づいて、XYZ座標系における遊戯者3の頭部の現在位置(X、Y、Z)や現在角度(RL、EL、AZ)を算出する。
【0049】
次に、ステップS117の処理において、映像表示光を出射することを終了させるか否かを判定する。映像表示光を出射することを終了させるときには、本フローチャートを終了させる。一方、映像表示光を出射することを終了させないと判定されたときには、ステップS104の処理に戻る。つまり、映像表示光を出射することを終了させると判定するときまで、ステップS104〜ステップS117の処理は繰り返される。
【0050】
以上のように、HMT装置1によれば、対象物角速度(V’RL、V’EL、V’AZ)と対象物加速度(α’、α’、α’)とにより推定されたLED7a、7b、7cの位置を中心とする予想移動範囲Da、Db、Dcを設定するので、頭部装着型表示装置付ヘルメット10の移動速度が速い場合にも、予想移動範囲Da、Db、DcにLED7a、7b、7cが存在しなくなることを防ぐことができる。
【0051】
(実施形態2)
図12は、本発明の他の一実施形態であるHMT装置の概略構成を示す図である。
HMT装置61は、カメラ装置2に設定される第二座標系(XYZ座標系)に対するパイロット63の頭部位置(X、Y、Z)及び頭部角度(RL、EL、AZ)を含む相対情報を算出するものである。つまり、XYZ座標系におけるパイロット63が着用する頭部装着型表示装置付ヘルメット10に設定された第一座標系(X’Y’Z’座標系)の位置及び角度を算出する。なお、上述した実施形態1と同様のものについては、同じ符号を付して、説明を省略することとする。
【0052】
HMT装置61は、パイロット63の頭部に装着される頭部装着型表示装置付ヘルメット10と、飛行体62に取り付けられたカメラ装置2と、飛行体62に取り付けられた3軸ジャイロセンサ(移動体角速度検出センサ)64と、飛行体62に取り付けられた加速度センサ(移動体加速度検出センサ)65と、コンピュータにより構成される制御部20とから構成される。
【0053】
3軸ジャイロセンサ(移動体角速度検出センサ)64は、飛行体62に作用する角速度(VRL、VEL、VAZ)を短時間(例えば、4msec)で検出するものである。つまり、パイロット63は飛行体62に乗っており、飛行体62も動いているので、対象物角速度(V’RL、V’EL、V’AZ)は、頭部装着型表示装置付ヘルメット10の角速度だけでなく、飛行体62の角速度も含んだものとなるが、3軸ジャイロセンサ64は、飛行体62のみに作用する角速度を、3軸ジャイロセンサ4と同時間で検出する。なお、3軸ジャイロセンサ64は、第二座標系(XYZ座標系)に軸合わせされている。
【0054】
加速度センサ(移動体加速度検出センサ)65は、飛行体62に作用する加速度(α、α、α)を短時間(例えば、4msec)で検出するものである。つまり、パイロット63は飛行体62に乗っており、飛行体62も動いているので、対象物加速度(α’、α’、α’)は、頭部装着型表示装置付ヘルメット10の加速度だけでなく、飛行体62の加速度も含んだものとなるが、加速度センサ65は、飛行体62のみに作用する加速度を、加速度センサ4と同時間で検出する。なお、加速度センサ65は、第二座標系(XYZ座標系)に軸合わせされている。
【0055】
制御部20は、図12に示すように、CPU21、メモリ41等からなるコンピュータにより構成され、各種の制御や演算処理を行うものである。CPU21が実行する処理を、機能ブロックごとに分けて説明すると、モーショントラッカ駆動部28と、対象物角速度(V’RL、V’EL、V’AZ)と移動体角速度(VRL、VEL、VAZ)とに基づいてXYZ座標系の角度移動量(RLDEP、ELDEP、AZDEP)を算出する第一座標系角度移動量算出部68と、対象物加速度(α’、α’、α’)と移動体加速度(α、α、α)とに基づいてXYZ座標系の位置移動量(ΔX、ΔY、ΔZ)を算出する第一座標系位置移動量算出部67と、相対情報算出部22と、光学マーカー位置情報算出部24と、光学マーカー推定部26と、映像表示部25と、予想移動範囲Da、Db、Dcの大きさを決定する予想移動範囲決定部66とを有する。
また、予想移動範囲記憶領域45には、LED7a、7b、7cの位置移動量と、予想移動範囲Da、Db、Dcの大きさとを対応させたテーブルが記憶されている。
【0056】
第一座標系角度移動量算出部68は、3軸ジャイロセンサ4で検出された時間tから時間t+sまでの対象物角速度(V’RL、V’EL、V’AZ)と、3軸ジャイロセンサ64で検出された時間tから時間t+sまでの対象物角速度(VRL、VEL、VAZ)との差分を積分演算することにより、時間tから時間t+sまでの第一座標系(XYZ座標系)の角度移動量(RLDEP、ELDEP、AZDEP)を算出する制御を行う。
【0057】
第一座標系位置移動量算出部67は、加速度センサ5で検出された時間tから時間tn+までの対象物加速度(α’、α’、α’)と、加速度センサ65で検出された時間tから時間tn+までの移動体加速度(α、α、α)との差分を二回積分演算することにより、時間tから時間tn+までの第一座標系(X’Y’Z’座標系)の位置移動量(ΔX、ΔY、ΔZ)を算出する制御を行う。
【0058】
予想移動範囲決定部66は、予想移動位置17a、17b、17c及び時間tの光学マーカー位置情報に基づいてLED7a、7b、7cの位置移動量を算出することで予想移動範囲Da、Db、Dcの大きさを決定する制御を行う。
例えば、LED7aの予想移動位置17aを中心とする予想移動範囲Daの大きさを、LED7aの位置移動量が長い場合には大きくし、一方、LED7aの位置移動量が短い場合には小さくする。また、LED7bの予想移動位置17bを中心とする予想移動範囲Daの大きさを、LED7bの位置移動量が長い場合には大きくし、一方、LED7bの位置移動量が短い場合には小さくする。さらに、LED7cの予想移動位置17cを中心とする予想移動範囲Dcの大きさを、LED7cの位置移動量が長い場合には大きくし、一方、LED7cの位置移動量が短い場合には小さくする。
【0059】
光学マーカー位置情報算出部24は、時間t+sでのLED7a、7b、7cのそれぞれの予想移動位置17a、17b、17c、及び、予想移動範囲決定部66で決定された予想移動範囲Da、Db、Dcの大きさを用いて、LED7a、7b、7cのそれぞれの予想移動範囲Da、Db、Dcを設定することにより、時間tn+1の画像データを用いて、LED7a、7b、7cのそれぞれの現在位置を含む時間tn+1の光学マーカー位置情報を算出する制御を行う。
【0060】
以上のように、HMT装置61によれば、3軸ジャイロセンサ4で、飛行体62中ではパイロット63の頭部の動きと飛行体62の動きとが合成された動きの情報が検出されるが、3軸ジャイロセンサ64で飛行体62の動きのみの情報が検出されるため、対象物角速度(V’RL、V’EL、V’AZ)と移動体角速度(VRL、VEL、VAZ)とを用いて、飛行体62の動きを除外したパイロット63の頭部の動きのみの情報を算出することができる。
さらに、加速度センサ5で、飛行体62中ではパイロット63の頭部の動きと飛行体62の動きとが合成された動きの情報が検出されるが、加速度センサ65で飛行体62の動きのみの情報が検出されるため、対象物加速度(V’RL、V’EL、V’AZ)と移動体加速度(VRL、VEL、VAZ)とを用いて、飛行体62の動きを除外したパイロット63の頭部の動きのみの情報を算出することができる。
これにより、パイロット63が飛行体62に搭乗していても、推定されたLED7a、7b、7cの予想移動位置17a、17b、17cを中心とする予想移動範囲Da、Db、Dcを設定することができるので、パイロット63の頭部の移動速度が速い場合にも、予想移動範囲Da、Db、DcにLED7a、7b、7cが存在しなくなることを防ぐことができる。
【0061】
また、予想移動範囲決定部66は、LED7aの予想移動位置LED17aを中心とする予想移動範囲Daの大きさを、LED7aの位置移動量が長い場合には大きくし、一方、LED7aの位置移動量が短い場合には小さくする。よって、頭部装着型表示装置付ヘルメット10の移動速度が速い場合にも、予想移動範囲Da、Db、DcにLED7a、7b、7cが存在しなくなることをより防ぐとともに、頭部装着型表示装置付ヘルメット10の移動速度が遅い場合に、予想移動範囲Da、Db、Dcに2個以上のLED7a、7b、7cが同時に存在することをより防ぐことができる。
【産業上の利用可能性】
【0062】
本発明のHMT装置は、例えば、ゲーム機や乗物等で用いられる頭部装着型表示装置付ヘルメットの現在位置及び現在角度を検出するものとして、利用される。
【図面の簡単な説明】
【0063】
【図1】本発明の一実施形態であるHMT装置の概略構成を示す図である。
【図2】図1に示す頭部装着型表示装置付ヘルメットの平面図である。
【図3】第二座標系の設定を説明するための図である。
【図4】制御部が実行する流れを説明するためのタイムチャートである。
【図5】頭部装着型表示装置付ヘルメットの移動を説明するための図である。
【図6】頭部装着型表示装置付ヘルメットの移動を説明するための図である。
【図7】頭部装着型表示装置付ヘルメットの移動を説明するための図である。
【図8】HMT装置による測定動作について説明するためのフローチャートである。
【図9】HMT装置による測定動作について説明するためのフローチャートである。
【図10】従来の頭部装着型表示装置付ヘルメットの移動を説明するための図である。
【図11】従来の頭部装着型表示装置付ヘルメットの移動を説明するための図である。
【図12】本発明の他の一実施形態であるHMT装置の概略構成を示す図である。
【符号の説明】
【0064】
1 ヘッドモーショントラッカ装置
2 カメラ装置
3 遊戯者
4 3軸ジャイロセンサ(対象物角速度検出センサ)
5 加速度センサ(対象物加速度検出センサ)
7 LED群(光学マーカー群)
10 頭部装着型表示装置付ヘルメット(対象物)
22 相対情報算出部
23 第一座標系角度移動量算出部
24 光学マーカー位置情報算出部
26 光学マーカー推定部
27 第一座標系位置移動量算出部
44 光学マーカー記憶領域

【特許請求の範囲】
【請求項1】
第一座標系が設定された対象物と、
前記第一座標系に位置決めされて対象物に取り付けられた3個以上の同一種の光学マーカーと、
第二座標系が設定され、前記光学マーカーからの光線を立体視で検出するカメラ装置と、
検出された光線に基づいて、前記第二座標系における3個以上の光学マーカーのそれぞれの現在位置を含む光学マーカー位置情報を算出する光学マーカー位置情報算出部と、
前記光学マーカー位置情報を記憶する光学マーカー記憶部と、
前記光学マーカー位置情報に基づいて、前記第二座標系における対象物の現在位置及び現在角度を含む相対情報を算出する相対情報算出部とを備えるモーショントラッカ装置であって、
前記第一座標系に位置決めされて対象物に取り付けられ、前記対象物に作用する対象物角速度を、前記カメラ装置での光線の検出間隔時間より短時間で検出する対象物角速度検出センサと、
前記第一座標系に位置決めされて対象物に取り付けられ、前記対象物に作用する対象物加速度を、前記カメラ装置での光線の検出間隔時間より短時間で検出する対象物加速度検出センサと、
前記対象物角速度に基づいて、前記第一座標系の角度移動量を算出する第一座標系角度移動量算出部と、
前記対象物加速度に基づいて、前記第一座標系の位置移動量を算出する第一座標系位置移動量算出部と、
前記光学マーカー記憶部に記憶された光学マーカー位置情報、第一座標系の角度移動量及び第一座標系の位置移動量に基づいて、前記第二座標系における光学マーカーの予想移動位置を推定する光学マーカー推定部とを備え、
前記光学マーカー位置情報算出部は、前記光学マーカーの予想移動位置に基づいて、前記3個以上の光学マーカーをそれぞれ識別することを特徴とするモーショントラッカ装置。
【請求項2】
前記第一座標系位置移動量算出部は、前記光学マーカー記憶部に記憶された少なくとも2つの光学マーカー位置情報に基づいて、前記第一座標系の原点の移動速度を算出し、
当該第一座標系の原点の移動速度と対象物加速度とに基づいて、前記第一座標系の位置移動量を算出することを特徴とする請求項1に記載のモーショントラッカ装置。
【請求項3】
前記光学マーカー位置情報算出部は、前記光学マーカーの予想移動位置に基づいて、前記光学マーカーの予想移動範囲を設定することで、前記3個以上の光学マーカーをそれぞれ識別することを特徴とする請求項1又は請求項2に記載のモーショントラッカ装置。
【請求項4】
前記光学マーカーの予想移動範囲は、各光学マーカーの予想移動位置を中心とする球状であることを特徴とする請求項3に記載のモーショントラッカ装置。
【請求項5】
前記第一座標系の角度移動量及び第一座標系の位置移動量に基づいて、前記光学マーカーの位置移動量を算出することで、前記光学マーカーの予想移動範囲の大きさを決定する予想移動範囲決定部を備えることを特徴とする請求項3又は請求項4に記載のモーショントラッカ装置。
【請求項6】
前記対象物は、搭乗者の頭部に装着されるヘルメットであり、かつ、
前記カメラ装置は、前記搭乗者が搭乗する移動体に取り付けられ、
前記移動体に取り付けられ、前記移動体に作用する移動体角速度を、前記対象物角速度検出センサと同時間に検出する移動体角速度検出センサと、
前記移動体に取り付けられ、前記移動体に作用する移動体加速度を、前記対象物加速度度検出センサと同時間に検出する移動体加速度検出センサとを備え、
前記第一座標系角度移動量算出部は、前記対象物角速度と移動体角速度とに基づいて、前記第一座標系の角度移動量を算出し、
前記第一座標系位置移動量算出部は、前記対象物加速度と移動体加速度とに基づいて、前記第一座標系の位置移動量を算出することを特徴とする請求項1〜請求項5のいずれかに記載のモーショントラッカ装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2010−38707(P2010−38707A)
【公開日】平成22年2月18日(2010.2.18)
【国際特許分類】
【出願番号】特願2008−201438(P2008−201438)
【出願日】平成20年8月5日(2008.8.5)
【出願人】(000001993)株式会社島津製作所 (3,708)
【Fターム(参考)】