説明

分光イメージング装置

【課題】簡便に持ち運びできるように小型化でき、蛍光画像情報と形状画像情報とを両方検出可能にするとともに、測定対象物の温度上昇を防止できる分光イメージング装置を提供する。
【解決手段】2次元分光センサ30には、半導体光電変換素子が2次元アレイ状に並べられている。測定対象となる試料プレパラート31に半導体発光素子32から白色光を照射して、試料からの透過光を検出して、試料の構造や形状に関する可視画像を取得する。他方、半導体発光素子32から励起光を試料プレパラート31に照射して、試料からの蛍光を検出して、蛍光画像を取得する。上記可視画像及び蛍光画像を得るために、半導体光電変換素子は、光電変換領域の深さ方向の幅又は位置を変化させることで分光を行っている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、分光機能を有する光電変換素子を備えた分光イメージング装置に関する。
【背景技術】
【0002】
生化学分野では、その初期の研究が専ら光学顕微鏡に頼って染色した細胞を観測していいた歴史から、半導体分野などとは違い、主に蛍光や発光によるイメージングが、必須の実験手段として使われてきた。蛍光や発光は、特定の波長の光を放つため、イメージングを行うにはバンドパスフィルターを使うか、分光するかによって行われるが(以下これを「分光」と称する)、分光分析は、化学物質、バイオ関連物質の同定、反応解析において重要な手法である。たとえば、赤外線分光分析や紫外・可視分光分析により、シグマ結合・パイ結合の分子振動による吸収程度から分子官能基の特定や立体構造、さらに分子転位などを明らかにすることが可能となっている。また、バイオ分野において広く使用されている蛍光分析や発光分析は、細胞・DNA・タンパク・抗体などのイメージングや微量物質の量、反応活性、シーケンスの特定などの用途で必要不可欠なものとなっている。
【0003】
従来、上記のような分光分析装置内で光を電気に変換する素子としては、光電子倍増管(フォトマルチプライヤー:PM)やSiのPIN(P型/アンドープ/N型積層)型接合構造を有するPINフォトダイオード(PIN−PD)やデジタルカメラ等でも広く使用されている電荷結合型素子(Charge Coupled Device:CCD)が主に用いられている。
【0004】
PIN−PDおよびCCDは、ともにシリコンをベースとしたデバイスであるため、その感度は波長分散をあまり持たず、紫外から赤外まであらゆる波長で感度をもってしまう。そのため、分光分析装置に適用する場合など、画像を得る等の目的で分光が必要な場合には、一般に、分光フィルターを別途設けるか、もしくは光学プリズムなどを用いてRGBの光をそれぞれ別々の光電変換素子に入射するような装置構成が必要であった。また、入射光がどのような波長の光を含み、それらの波長の光がどの程度の強度を有しているかを示すスペクトルデータを取得しようとする場合には、グレーティングによる回折現象を利用した分光が必要であった。これらの事情はPMを使っても同じである。PMは感度が非常に高いが、感度が高いがゆえに必要以上に強い光が入らないような配慮が必要であるうえ、真空管ベースの素子なので常に壊れてしまう危険を伴うという別の厄介な性質があり、使用にあたっては細心の注意が必要である。
【0005】
しかしながら、分光フィルターを用いた場合、当該分光フィルターでの光強度減衰が起きることにより、微弱な光を検出できなくなるという問題がある。これを解決しようとして励起光を強くすると、励起光が発する熱により測定対象(例えば細胞)が温まり、細胞が劣化してしまう危険性を惹起してしまう。この温まりを防ぐため、冷却オイルを混合することも多いが、その場合は冷却効率を上げるため、オイルをフローさせねばならない。この場合、細胞がオイルとともにフローしてしまうので、特定の細胞の活動を時間を追って経過を記録することができなくなる。また、光学プリズムやグレーティングといった光学部品は、必ず焦点距離をとる必要があるため、装置自体が大きくなってしまう上、位置ズレに対して非常に弱いので壊れやすく、素人では修理できないという欠点を抱えていた。これでは装置を持っていることによって修理の機会が増え、ランニングコストが増加する。
【0006】
このように、従来の分光分析装置においては、微弱な光に対する感度が低い、装置が大型で、初期投資およびランニングコスト共に高価であるという問題を有していた。具体例を挙げれば、たとえば、赤外線顕微鏡やラマン顕微鏡は、バイオ・製薬・化粧品分野で最近注目されているが、上記のような従来の光学系を用いており、装置が大型であるため、分析室での使用以外難しいのが現状である。また、バイオ・医療分野における蛍光・発光イメージングにおいても同様に、分光器と検出器が大型で熱変動も大きいため、装置の維持管理に多大な労力を要する。
【0007】
特許文献1では、分光フィルターや光学プリズムを使用しない光電変換素子が提案されている。
【特許文献1】特開2005−010114号公報
【発明の開示】
【発明が解決しようとする課題】
【0008】
しかしながら、従来の装置を用いると、細胞等の生体からの情報を得る場合に、一回の実験により十分な量の情報量を得ることができなかった。
【0009】
すなわち、例えば、細胞等の生体からの情報を得る場合には、顕微鏡像のような肉眼で観察した場合の形状画像情報と蛍光画像情報の両方を検出して、比較したり、違う色の蛍光、もしくは蛍光と発光を比較検討したり、これらを動画撮像したりすることにより、一回の実験で得られる情報量が飛躍的に増大する。しかしながら、上述した従来の装置ではこれらを実現することはできなかった。また、これらを同一のセンサで検出することは提案されていなかった。また、先に述べたように細胞組織等は、熱に弱く、長時間検出作業を行っていると、細胞組織の機能が低下することもある。
【0010】
また、蛍光を得るためには、励起光源が必要であるが、この光源にランプ等が使用されるため、ランプの放射熱により、細胞組織が熱せられ、ダメージを受けていた。ランプを部品に用いると、装置が大型化し、消費電力も高くなるという問題も発生する。
【0011】
本発明は、上述した課題を解決するために創案されたものであり、簡便に持ち運びできるように小型化でき、蛍光画像情報と形状画像情報とを両方検出可能にするとともに、測定対象物の温度上昇を防止できる分光イメージング装置を提供することを目的としている。
【課題を解決するための手段】
【0012】
上記目的を達成するために、請求項1記載の発明は、測定対象物からの発光、もしくは測定対象物に光を照射する発光装置により前記測定対象物からの透過光又は蛍光を検出するセンサと、前記センサに配置された複数の半導体光電変換素子とを備え、前記半導体光電変換素子は光電変換領域の深さ方向の幅又は位置を変化させることで分光を行い、前記センサの検出信号により、前記発光に基づく画像、もしくは透過光に基づく画像、もしくは蛍光に基づく画像、もしくは肉眼で見たままを再現する反射光による画像のいずれか、または前記画像の任意の組合せによる複数の画像を構成することを特徴とする分光イメージング装置である。
【0013】
また、請求項2記載の発明は、 前記発光装置は半導体発光素子により構成されていることを特徴とする請求項1に記載の分光イメージング装置である。
【0014】
また、請求項3記載の発明は、 前記半導体光電変換素子は、シリコン基板上に受光領域が形成されたCMOS型素子であることを特徴とする請求項1又は請求項2のいずれかに記載の分光イメージング装置である。
【0015】
また、請求項4記載の発明は、前記半導体光電変換素子の受光領域は、P型シリコン基板中のN−well中に形成されることを特徴とする請求項3に記載の分光イメージング装置である。
【0016】
また、請求項5記載の発明は、前記半導体光電変換素子には、素子への入射光の光電変換によって生じた電荷をフローティングディフュージョン部に転送する機能と、転送された電荷量を電圧変換して前記入射光の強さを測定する機能とを備えたことを特徴とする請求項1〜請求項4のいずれか1項に記載の分光イメージング装置である。
【0017】
また、請求項6記載の発明は、前記受光領域は絶縁膜を備えたゲート部を含むことを特徴とする請求項3〜請求項5のいずれか1項に記載の分光イメージング装置である。
【0018】
また、請求項7記載の発明は、前記受光領域は埋め込みチャネルを有することを特徴とする請求項3〜請求項6のいずれか1項に記載の分光イメージング装置である。
【0019】
また、請求項8記載の発明は、前記ゲート部に印加する電圧を変化させることにより、光学的なフィルター無しに分光が行われることを特徴とする請求項6又は請求項7のいずれかに記載の分光イメージング装置である。
【0020】
また、請求項9記載の発明は、前記ゲート部は複数の異なる電源電圧もしくは供給電圧を印加される光電変換素子を配置することにより分光が行なわれることを特徴とする請求項6又は請求項7のいずれかに記載の分光イメージング装置である。
【0021】
また、請求項10記載の発明は、前記ゲート部は複数の異なるゲート絶縁膜容量を有する光電変換素子を配置することにより、分光が行われることを特徴とする請求項6又は請求項7のいずれかに記載の分光イメージング装置である。
【0022】
また、請求項11記載の発明は、前記ゲート部は複数の埋め込みチャネルを有する光電変換素子を配置することにより分光が行われることを特徴とする請求項6又は請求項7のいずれかに記載の分光イメージング装置である。
【0023】
また、請求項12記載の発明は、前記光電変換領域の基準となるPN接合の深さ方向位置が異なる半導体光電変換素子を複数配置することにより、分光が行われることを特徴とする請求項1〜請求項7のいずれか1項に記載の分光イメージング装置である。
【0024】
また、請求項13記載の発明は、前記半導体光電変換素子は、前記絶縁膜の下に光電変換作用により発生した電荷を捕獲する第1の拡散層を備え、前記第1の拡散層の一方の端部には捕獲された電荷を取り出すための第2の拡散層が配置され、前記第1の拡散層の他方の端部には該第1の拡散層の電位を決定するための電極が配置されていることを特徴とする請求項3〜請求項6のいずれか1項に記載の分光イメージング装置である。
【0025】
また、請求項14記載の発明は、前記ゲート部のゲート電極が可視光波長域において70%以上の透過率をもつ材料で構成されていることを特徴とする請求項6〜請求項13のいずれか1項に記載の分光イメージング装置である。
【発明の効果】
【0026】
本発明によれば、測定対象物からの透過光や蛍光等を分光して検出するセンサに、半導体光電変換素子を用いている。この半導体光電変換素子では、可視光で吸収を持つ半導体材料(シリコン、ガリウムヒ素など)を使えば、光電変換領域の深さ方向の幅又は位置を変化させることで光の波長に応じた検出が行えるので、分光フィルターや光学プリズム等の分光のための装置一式が不要となり、小型化することができる。
【0027】
また、測定対象物に照射する光の発光源に半導体発光素子を用いると、装置全体をさらに小型化できる。半導体発光素子は赤外線を放射しないために、測定対象物に不必要な熱を与えないので、既述したような熱による細胞の劣化抑制に効果的で、熱に弱い物の観察には好ましい。また、本発明素子の分光機能により、測定対象物からの透過光もしくは反射光のR,G,B成分を分光計測することにより構造や形状の画像等を作成し、一方蛍光・発光の波長に基づいてその特定波長を分光測定することにより、蛍光画像を作成することができる。測定の間、光学フィルターの取替えやそれに伴う焦点の取り直しなどを行わなくても済むため、演算のためのコンピューターに十分な能力があれば作業を短時間で行える。また、構造や形状の画像と蛍光・発光画像をすぐに比較することができる。また、分光機能を有する以外は基本的にはカラーフィルタ付きのCCD/CMOS撮像素子と同様な機能を持つようにして、動画を取得することもできる。
【発明を実施するための最良の形態】
【0028】
以下、図面を参照して本発明の一実施形態を説明する。図1は本発明による分光イメージング装置の構成例を概念的に示す。30は、2次元分光センサであり、半導体光電変換素子が2次元アレイ状に並べられている。31は測定対象となる試料プレパラートであり、細胞等の試料をスライドガラスに貼り付け又は載せ、所定のマウント液あるいは封入剤とともにカバーグラスにより封じたもの等が用いられる。これらは本発明の概念を説明するものであり、相対的な大きさなどは本質ではない。
【0029】
図1(a)は、試料プレパラート31上の試料に白色光を照射して、試料の構造や形状に関する可視画像を取得する様子を示す。白色光は、発光装置32もしくは35から試料プレパラート31に向かって放射され、試料を透過した透過光もしくは反射光が、2次元分光センサ30で検出される。この検出信号に基づいて、赤(R)、緑(G)、青(B)の色調が算出され、カラーの可視画像が得られる。また、図1(a)−(c)は概念的な内容を説明するためのものであり、図のようにR,G,Bが空間的に分離されたところで検出されるわけではなく、画素一つ一つに入射した光をR,G,Bに分光することをイメージ的に表したものである。また、R,G,Bと記された矩形図形は半導体中での吸収の長さを概念的に表したものであり、実際の照射形態を表しているのではない。分光の詳細については後述する。
【0030】
図1(b)では、試料プレパラート31の試料は、蛍光染色処理が施されており、蛍光色素で標識したり、試薬で処理して蛍光性の物質に転換させたりしている。このように処理された試料に対して、蛍光を起こさせるための励起光を照射するために、発光装置33が配置されている。発光装置33は半導体発光素子で構成されていると細胞への熱の影響を抑制でき好ましい。発光装置33の励起光は蛍光色素や蛍光物質に照射され、発生した蛍光は、2次元分光センサ30で測定され、カラーの蛍光画像を取得することができる。異なる波長を発する複数の蛍光標識が有る場合は、光学フィルターを使わなくても素子の分光機能によりそれらを一度の実験中に連続的に観測することができる。これは、既存装置では通常は細胞の劣化などを招いてしまうため、実現することが大変難しい観測である。
【0031】
図1(c)は、発光装置34により励起光を発生させて、試料プレパラート31の試料からの励起光を2次元分光センサ30で測定するとともに、半導体発光素子34からの励起光が試料を透過した後の散乱光(透過光)も2次元分光センサ30で測定するものである。この散乱光により、試料の濁度を測定することができる。濁度は、例えば、試料への入射光の強度と、試料からの透過光との強度の比を用いれば良い。
【0032】
半導体発光素子32〜34には、LEDやレーザ等を用いることができ、半導体材料として、InGaAs系材料、GaAs系材料、AlGaAs系材料、InGaAlP系材料、InAlGaN系材料等を、必要な発光波長に応じて用いることができる。
【0033】
2次元分光センサ30の構成例を示すのが、図2である。図2で、PDと記載しているのが、光電変換素子となるフォトダイオードである。2次元状に配列されたPDを個々に独立して駆動するために、縦列のPDを選択する列選択信号を発生させるためのデコード回路42と、横列のPDを選択する行選択信号を発生させるためのデコード回路41が設けられている。
【0034】
デコード回路41より、行選択信号が、トランジスタTR1〜TR4のいずれかに与えられ、オンになる。一方、デコード回路42より、列選択信号がTR11〜TR41、TR12〜TR42、TR13〜TR43、TR14〜TR44のいずれかのラインに与えられ、オンとなる。このようにして、特定のPDからの光検出信号を読み出すことができる。また、図2に示すように、各PDとTR11〜TR44との間には、増幅器が個々に接続されている。なお、各PDへのゲート供給電圧VGの供給ラインなどは図示していない。また、ここでは簡単のために4×4の構成のみを示しているが、これに限るものではない。
【0035】
図2で示されるPDの構成例を図3に示す。図3に示されるように、PDは、MOS(metal oxide semiconductor)構造となっている。周辺回路も含め、CMOS(Complementary Metal Oxide Semiconductor)型に形成されている。p型シリコン基板1中にn型拡散層2が形成され、n型拡散層2中にp型拡散層(p型ウェル)3が形成される。p型拡散層3の一部にn拡散層4が形成される。Al等で構成される取り出し電極8は、基準電圧Vresが印加されている。また、電極7は、p型拡散層3の電位を決定するために設けられたもので、一方の面がp型拡散層3に接触しており、他方が接地されている。ここで、p型拡散層3が第1の拡散層に、n拡散層4が第2の拡散層に相当する。
【0036】
シリコン基板1、p型拡散層3の各上側は、酸化絶縁膜5で覆われている。酸化絶縁膜5は例えば、シリコン酸化(SiO)膜で構成される。酸化絶縁膜5上には、透明電極6が形成されており、外部からの光を透過させて、フォトダイオード内に導くようにしている。透明電極6には、例えば、2族(IIA族)元素、12族(IIB族)元素または13族(IIIB族)元素のいずれかを含む導電性酸化物や不純物が添加された多結晶シリコン膜(poly−Si)等を用いることができる。poly−Siは本来不透明であるため、poly−Siを用いる場合はその膜厚は10μm以下でなければならない。
【0037】
導電性酸化物の場合は、屈折率も一般に3程度以下であるため、かかる材料を用いることにより透明電極6表面での光の反射も抑制することができる。2族元素、12族元素または13族元素のいずれかを含む導電性酸化物の好適な例を挙げれば、特に制限されないが、たとえば、ZnO、MgZnO、ITO(インジウム−スズ酸化物)およびIGZO(インジウム−ガリウム−亜鉛酸化物)などを挙げることができる。なかでもMgZnOを用いると、分光に供される光が紫外光を含む場合でも、高い透過率で透過させることができるとともに、耐水性に優れる。
【0038】
n型拡散層2とp型拡散層3のPN接合により形成される空乏層が、光電変換領域に相当し、この空乏層に光が入射すると、正孔・電子対生成により、電荷が発生する。電荷のうち電子が、取り出し電極8から取り出されることにより、光を検出することができる。
【0039】
ここで、p型拡散層3に入射した光の強度が、p型拡散層3中で減衰すること、および、その減衰の程度が光の波長に依存することを利用し、p型拡散層3の表面からのキャリアの捕獲される深さを変化させ、当該キャリアの捕獲される深さまでに発生する電流を測定することにより、p型拡散層3に入射された光のうち、ある特定波長の光の強度を測定することができる。複数の波長についての光強度を測定するためには、測定したい波長の数だけキャリアの捕獲される深さを変化させて測定すればよい。キャリアの捕獲される深さは、ゲート電極9に印加するゲート供給電圧の調整により変化させることができる。
【0040】
ここで、電子を捕獲するp型拡散層3の表面からの深さ(位置)を変化させることは、光電変換領域となる空乏層の深さ方向の幅又は位置を変化させることに等しい。ゲート電極9に印加されるゲート供給電圧VGを変化させることによって、p型拡散層3に電子のウェルが作られるが、ゲート供給電圧VGが小さいとウェルが浅いため、赤い光による光電流は小さくなる。ゲート供給電圧VGを大きくしていくとウェルが深くなり、同じ光が当たっていても赤い光による光電流は大きくなるが、青い光による光電流はあまり変わらない。この現象を利用して分光する(このような、半導体中に侵入した光の強度が、その波長に応じて次第に減衰する現象を利用した分光原理の詳細については、上記特許文献1を参照)。
【0041】
図3の右側に示したように、ゲート供給電圧VGの電圧を大きくすれば、p型拡散層3の深い位置からバンドプロファイルの変化が発生し、表面にかけての変化が大きい。例えば、図3の右側に示した光の波長λ1、λ2、λ3をλ1<λ2<λ3とすると、より赤色の波長に近いλ3までの波長を検出するためには、ゲート供給電圧VGの電圧を大きくする必要がある。
【0042】
図4は、図3のようにp型基板を使用するが、光の検出部分となるPN接合をp型基板内に埋め込んだ埋め込みPDの構造例を示す。p型シリコン基板10にn型拡散層11とp型拡散層12が形成され、このn型拡散層11とp型拡散層12とで光検出領域を構成している。p型シリコン基板10の上部は酸化絶縁膜15で被覆されている。酸化絶縁膜15には、例えばシリコン酸化(SiO)膜等を用いる。また、図4では、p型シリコン基板10内にn拡散層13とn拡散層14が形成されている。n拡散層14の方は供給電圧VDDに接続されており、n拡散層13は、増幅器となるトランジスタTRAに接続されている。電極19には、基準電圧Vresが接続されている。
【0043】
n型拡散層11とp型拡散層12で形成された空乏層で光を検出すると、正孔及び電子が発生する。この電子をn拡散層13から外部に取り出すためには、読み出し用電極18に所定のバイアスを印加する。読み出し用電極18にバイアスが印加されると、電子は電流として、n拡散層13から外部に取り出される。このとき、電流をトランジスタTRAで増幅し、列選択信号がトランジスタTRLに供給されている場合には、トランジスタTRLがオンとなり、光検出電流が通過する。
【0044】
ここでも、空乏層の深さ方向の幅又は位置を変化させて、電子を捕獲する位置を変えるためには、ゲート電極17に印加されるゲート供給電圧Vgを変化させる。ゲート供給電圧Vgを変化させることによって、p型拡散層12に電子のウェルを作るが、ゲート供給電圧Vgが小さいとウェルが浅いため、赤い光による光電流は小さくなる。ゲート供給電圧Vgを大きくしていくとウェルが深くなり、同じ光が当たっていても赤い光による光電流は大きくなるが、青い光による電流はあまり変わらない。このように、図2で説明した分光の原理と同じ原理で分光する。
【0045】
図4の右側に示したように、ゲート供給電圧Vgの電圧を大きくすれば、空乏層の深さ方向の幅は大きくなる。例えば、図4の右側に示した光の波長λ1、λ2、λ3をλ1<λ2<λ3とすると、より赤色の波長に近いλ3までの波長を検出するためには、ゲート供給電圧Vgの電圧を大きくすれば良い。
【0046】
さて、ゲート供給電圧VG、Vgを変化させた場合に、空乏層の深さ方向の幅の変化の傾向を示す一例が図8である。横軸が、ゲート電圧(V)を、縦軸が空乏層幅(nm)を示す。図3又は図4の構造で、酸化絶縁膜5、15を、膜厚100nmのSiOとした。ただし、0Vはフラットバンド状態(0Vのときに空乏していない)であると仮定して記載している。したがって、実際のデバイスのときには印加電圧は図8のグラフの電圧値Vと同じにはならない。
【0047】
図2では、1画素に1個のPDを対応させて、ゲート供給電圧VGを変えることで、検出可能な波長領域を調整した。そして、それぞれのVGで得られる電流量から演算により色調を再現する構成とした。次では、1画素に、例えば、光の青色(B)までを検出することができるPD、光の緑色(G)までを検出することができるPD、光の赤色(R)までを検出することができるPDの3つを配置して、ゲート供給電圧VGを変化させずに、これらの3個のPDから演算により色調を再現する方式を示す。
【0048】
図5(a)〜(c)は、図3、4に示す構造を用い、ゲート供給電圧VGを印加する部分のゲート容量を変化させた場合の構成を示す。TR−B、TR−G、TR−Rは、各々青色領域までの光の検出可能なPD、緑色領域までの光の検出可能なPD、赤色領域までの光の検出可能なPDを示す。前述したように、光電変換素子は、MOSFET構造を有しているので、トランジスタの記号を用いて記載している。また、DATA−B、DATA−G、DATA−Rは各PDに対する供給電圧を示すもので、これらは同一電圧に設定される。また、各ゲート供給電圧VG、VG、VGは、同じ電圧に設定され、例えば、同じ電池に接続して使用する。
【0049】
一方、それぞれのゲート静電容量C、C、Cを異なるように構成している。ゲート静電容量C、C、Cを異なるようにするには、酸化絶縁膜5、15を各々異なる材料で形成するか、同一の材料であれば、膜厚を変化させることにより達成することができる。3つのPDを上記のように構成することにより、インピーダンスが変化するので、出力電流値を変化させることができる。
【0050】
すなわち、電子を捕獲するp型拡散層の表面からの深さ、すなわち空乏層の深さ方向の幅又は位置を変化させることができ、異なる出力電流値ID[R]、ID[G]、ID[B]を得ることができる。これを演算すれば、R、G、Bの各色調を算出することができる。ゲート静電容量は、通常C<C<Cとなる。
【0051】
図5では、ゲート静電容量を変化させる場合を示したが、図6では、ゲート供給電圧ラインとゲート電極9、17との間に抵抗を挿入した構成例を示す。TR−B、TR−G、TR−R、VG、VG、VG、DATA−B、DATA−G、DATA−R、ID[R]、ID[G]、ID[B]の意味は、図4と同じである。図4ではゲート供給電圧ラインとゲート電極との間に挿入した抵抗値を変えている。抵抗R、R、Rの値を異なるように構成することで、ゲート電極に印加される電圧の値が変化するので、空乏層の深さ方向の幅又は位置を変化させることができ、R、G、Bの各波長領域に応じた出力電流値ID[R]、ID[G]、ID[B]を得ることができる。これを演算すれば、R、G、Bの各色調を算出することができる。通常、抵抗値の大小は、R>R>Rとなる。
【0052】
図7は、PDの空乏層幅を変化させる構成例を示す。図7は、図3と同じ構成なので、符号の説明は省略する。p型拡散層3に入射した光の強度が、p/n間に存在する空乏層中で光電変換されること、その空乏層中で減衰すること、および、その減衰の程度が光の波長に依存することを利用している。空乏層幅はゲート電圧で制御できるので、光の波長が長くなるに従って、ダイオードに印加する逆バイアスを大きくして空乏層を広げていけば同じ原理で分光できることになる。特に短い波長の時は必要に応じて1V以下の順バイアスを加えて空乏層幅を縮めても良い。
【0053】
光電変換領域は、PN接合位置を基準とした空乏層である。なぜならば空乏層にだけ電場が発生しており、この電場によって光吸収で生じた電子ホール対が空間的に分離されるからである。電子ホール対は半導体内部に電場がかかっていないと外部電流として寄与させることができない。このため、ゲート供給電圧VGを変えれば、上記同様R、G、Bの色調を演算により算出することができる。この場合、光電変換される場所が半導体内にあるため、キャリアが表面準位などでなくなってしまうことが少なくなる。
【0054】
次に、図1の分光イメージング装置を用いて検出されたデータの一例を図9、10に示す。図9は、図1(b)のように、励起光を照射して、試料から発生する蛍光を測定した例である。遺伝子増幅の例であり、横軸が反応時間を、縦軸がコピー数を示す。正常遺伝子のみ増幅して増えるので、反応時間の経過にしたがって蛍光強度が上がっているのが正常遺伝子となる。一方、異常遺伝子は増幅しないので、反応時間が経過しても、蛍光強度が上がっていないのが異常遺伝子となる。遺伝子増幅に伴う蛍光の測定には、栄研化学社LOOPAMP試薬を使用した。
【0055】
図10は、図1(c)のように、濁度を測定した例を示す。蛍光・目視検出試薬を添加して遺伝子増幅過程における濁度をリアルタイムで測定した。これも、遺伝子増幅の例であるが、上述したように、正常遺伝子のみ増幅して増えるので、その数が多くなり、正常遺伝子を透過する励起光は、時間経過とともに非常に小さくなる。すなわち、濁度は上昇することになるが、図10では、正常遺伝子の濁度は上昇している。一方、異常遺伝子は、増幅しないので、励起光は透過しやすく、濁度に変化はない。
【図面の簡単な説明】
【0056】
【図1】本発明の分光イメージング装置の全体構成例を示す模式図である。
【図2】分光イメージング装置の2次元分光センサの構造例を示す図である。
【図3】2次元分光センサに用いられる光電変換素子の構成例を示す図である。
【図4】2次元分光センサに用いられる光電変換素子の他の構成例を示す図である。
【図5】光電変換素子の空乏層の厚みを変化させる構成例を示す図である。
【図6】光電変換素子の空乏層の厚みを変化させる構成例を示す図である。
【図7】光電変換素子の空乏層の深さ方向の位置を変化させる構成例を示す図である。
【図8】空乏層の厚みとゲート電圧との関係を示す図である。
【図9】本発明の分光イメージング装置を用いて行った蛍光測定例を示す図である。
【図10】本発明の分光イメージング装置を用いて行った濁度測定例を示す図である。
【符号の説明】
【0057】
30 2次元分光センサ
31 試料プレパラート
32 半導体発光素子
33 半導体発光素子
34 半導体発光素子

【特許請求の範囲】
【請求項1】
測定対象物からの発光、もしくは測定対象物に光を照射する発光装置により前記測定対象物からの透過光又は蛍光を検出するセンサと、
前記センサに配置された複数の半導体光電変換素子とを備え、
前記半導体光電変換素子は光電変換領域の深さ方向の幅又は位置を変化させることで分光を行い、前記センサの検出信号により、前記発光に基づく画像、もしくは透過光に基づく画像、もしくは蛍光に基づく画像、もしくは肉眼で見たままを再現する反射光による画像のいずれか、または前記画像の任意の組合せによる複数の画像を構成することを特徴とする分光イメージング装置。
【請求項2】
前記発光装置は半導体発光素子により構成されていることを特徴とする請求項1に記載の分光イメージング装置。
【請求項3】
前記半導体光電変換素子は、シリコン基板上に受光領域が形成されたCMOS型素子であることを特徴とする請求項1又は請求項2のいずれかに記載の分光イメージング装置。
【請求項4】
前記半導体光電変換素子の受光領域は、P型シリコン基板中のN−well中に形成されることを特徴とする請求項3に記載の分光イメージング装置。
【請求項5】
前記半導体光電変換素子には、素子への入射光の光電変換によって生じた電荷をフローティングディフュージョン部に転送する機能と、転送された電荷量を電圧変換して前記入射光の強さを測定する機能とを備えたことを特徴とする請求項1〜請求項4のいずれか1項に記載の分光イメージング装置。
【請求項6】
前記受光領域は絶縁膜を備えたゲート部を含むことを特徴とする請求項3〜請求項5のいずれか1項に記載の分光イメージング装置。
【請求項7】
前記受光領域は埋め込みチャネルを有することを特徴とする請求項3〜請求項6のいずれか1項に記載の分光イメージング装置。
【請求項8】
前記ゲート部に印加する電圧を変化させることにより、光学的なフィルター無しに分光が行われることを特徴とする請求項6又は請求項7のいずれかに記載の分光イメージング装置。
【請求項9】
前記ゲート部は複数の異なる電源電圧もしくは供給電圧を印加される光電変換素子を配置することにより分光が行なわれることを特徴とする請求項6又は請求項7のいずれかに記載の分光イメージング装置。
【請求項10】
前記ゲート部は複数の異なるゲート絶縁膜容量を有する光電変換素子を配置することにより、分光が行われることを特徴とする請求項6又は請求項7のいずれかに記載の分光イメージング装置。
【請求項11】
前記ゲート部は複数の埋め込みチャネルを有する光電変換素子を配置することにより分光が行われることを特徴とする請求項6又は請求項7のいずれかに記載の分光イメージング装置。
【請求項12】
前記光電変換領域の基準となるPN接合の深さ方向位置が異なる半導体光電変換素子を複数配置することにより、分光が行われることを特徴とする請求項1〜請求項7のいずれか1項に記載の分光イメージング装置。
【請求項13】
前記半導体光電変換素子は、前記絶縁膜の下に光電変換作用により発生した電荷を捕獲する第1の拡散層を備え、前記第1の拡散層の一方の端部には捕獲された電荷を取り出すための第2の拡散層が配置され、前記第1の拡散層の他方の端部には該第1の拡散層の電位を決定するための電極が配置されていることを特徴とする請求項3〜請求項6のいずれか1項に記載の分光イメージング装置。
【請求項14】
前記ゲート部のゲート電極が可視光波長域において70%以上の透過率をもつ材料で構成されていることを特徴とする請求項6〜請求項13のいずれか1項に記載の分光イメージング装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2010−122087(P2010−122087A)
【公開日】平成22年6月3日(2010.6.3)
【国際特許分類】
【出願番号】特願2008−296399(P2008−296399)
【出願日】平成20年11月20日(2008.11.20)
【出願人】(000116024)ローム株式会社 (3,539)
【Fターム(参考)】