説明

単一チャンバーで半導体素子を製造する装置及び方法

【課題】単一のチャンバーで多様な工程を行うことができる半導体製造装置を提供する。
【解決手段】1つ以上のパターンを有する半導体基板に対して、互いに異なる多数の工程が行われる工程チャンバー600、各工程を行うための工程ガスを工程チャンバーの内部に独立して提供されるガス供給部710、ガス供給部と連結され工程チャンバーの上部に配置される多数の上部電極720及び上部電極と一対一で対応するように工程チャンバーの下部に配置され上面に前記基板が搭載される多数の下部電極730及び上部電極に電源を供給する第1電源及び下部電極に電源を供給する第2電源を具備する電源供給部740を含む。このような構成を採用したことにより、真空断絶なしに互いに異なる工程を行うことにより工程欠陥を防止することができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体素子を製造する装置及び方法に関し、より詳細には、単一チャンバーで半導体素子を製造する装置及び方法に関する。
【背景技術】
【0002】
近年、半導体素子が高集積化されるに伴って、トランジスタのソース/ドレインサイズ及びゲート電極の線幅と金属配線の線幅が急激に縮小されてきている。特に、金属配線の線幅が縮小されると、コンタクトホールやビアホールの段差比が急激に増加して、既存の蒸着方法でコンタクトホールやビアホールを充分に埋め立てることが難しくなる。このため、最近では、化学気相蒸着工程によってコンタクトホールやビアホールを埋め立てることができる程度の充分な厚みを有する金属膜を蒸着した後、平坦化工程によってコンタクトホール又はビアホールの内部にのみ金属膜を残留させることによりコンタクトプラグや配線を形成する工程が広く利用されている。特に、最近では、コンタクトプラグや回路用配線としてポリシリコンよりは金属物質を利用する傾向が強くなってきている。
【0003】
しかし、金属物質を利用してコンタクトプラグや回路用配線を形成する場合には、コンタクトプラグや配線を形成するための工程から下部構造物が損傷されることを保護するために、コンタクトホールやビアホールの内側壁に沿って障壁層を形成することが一般的である。蒸着工程の容易性と相対的に低い電気抵抗からタングステンが配線物質として広く利用されているが、タングステンは大部分の酸化膜に対して接着性が低く、蒸着工程の工程ガスによってコンタクトホールやビアホールと隣接する膜が損傷されやすいという短所がある。これを防止するために、金属性コンタクトプラグや配線を形成する場合には、フッ素イオン(F)のような工程ガスの拡散を防止するための拡散防止膜とコンタクトプラグや配線の接触抵抗を低くするための接触層で構成される障壁層を形成する。
【0004】
拡散防止膜は、コンタクトホールやビアホールの内部に形成され、コンタクトプラグや配線の一部を形成するので、小さいサイズの空間で均一で平坦に蒸着されなければならないという制約と、できるだけ薄く蒸着されコンタクト抵抗を最小化しなければならないという制約を満足しなければならない。このような制約によって、接触層としてタングステン層(W−layer)を形成してタングステン層の上部に拡散防止膜としてタングステン窒化膜(WN−layer)を形成する工程が広く利用されている。
【0005】
酸化膜からなる絶縁膜を貫通するコンタクトホール又はビアホールの内側壁に沿って第1タングステン膜及びタングステン窒化膜からなる拡散防止膜を形成した後、酸化膜の上部にコンタクトホールやビアホールを埋め立てるに充分な厚みを有する第2タングステン膜を形成する。その後、酸化膜の上部面が露出されるように第2タングステン膜を平坦化すると、第2タングステン膜は拡散防止膜が形成されたコンタクトホールやビアホールの内部にのみ残存することにより、コンタクトプラグや配線に形成される。
【0006】
しかし、前述したような従来の配線形成方法によると、第1タングステン膜が平坦化工程中に使用されるスラリーのようなエッチング液によって共に除去されコンタクトプラグや配線がコンタクトホールやビアホールの内部に充分に埋め立てされないという問題点が発生する。
【0007】
実験によると、コンタクトプラグや配線形成工程で行われる平坦化工程によって除去されるのは第1タングステン膜で、タングステン窒化膜は平坦化工程が進行される間に充分な耐エッチング性を有している。しかし、拡散防止膜として使用されるタングステン窒化膜の抵抗は、コンタクトプラグを形成するタングステンの抵抗よりも顕著に大きいため、酸化膜とタングステン窒化膜との間に位置する第1タングステン膜を全部タングステン窒化膜で形成することは難しい。特に、コンタクトプラグとシリコン基板が接触するコンタクトホールの底面から第1タングステン膜を除去すると、シリコン基板とコンタクトプラグとの間の接触抵抗を顕著に上昇させて配線を短絡させ素子の不良を発生させる。
【0008】
このような問題点を解決するために、本願発明の出願人は特許文献1に開示されたように第1タングステン膜の上部一部を部分的に窒化する半導体製造方法を開示した。すなわち、第1タングステン膜の上部は、窒化工程によって窒化タングステン膜に転換させ下部は窒化工程が進行されることを抑制することにより、タングステン膜に維持される半導体製造方法を開示した。
【0009】
しかし、第1タングステン膜の蒸着工程、第1タングステン膜の上部に関する窒化工程及び以後のタングステン窒化膜の蒸着工程等が全部別個の工程チャンバーで行われる場合には、段階毎に工程チャンバーの真空断絶が発生して蒸着膜の品質を低下させるのみならず、蒸着工程の時間と費用を増加させる原因として作用する虞がある。
【特許文献1】韓国特許出願第2006−125310号
【発明の開示】
【発明が解決しようとする課題】
【0010】
従って、本発明の目的は、真空断絶なしに金属膜の蒸着工程と前記金属膜の一部に関する窒化工程を単一チャンバーで行うことができる半導体素子の製造装置及び方法を提供することにある。
【課題を解決するための手段】
【0011】
前記した目的を達成するために、本発明の一実施形態による半導体素子製造装置によると、1つ以上のパターンを有する半導体基板に対して互いに異なる多数の工程が行われる工程チャンバー、前記各工程を行うための工程ガスを前記工程チャンバーの内部に独立的に提供するガス供給部、前記ガス供給部と連結され前記工程チャンバーの上部に配置される上部電極、前記上部電極と対向するように配置され、前記基板が搭載される上面と前記上部電極との間隔を調節するための駆動ユニットが連結される下面を具備する下部電極、及び前記上部電極に電源を供給する第1電源及び前記下部電極に電源を供給する第2電源を具備する電源供給部を含む。
【0012】
一実施形態として、前記上部電極は、前記工程チャンバーの上部に多数配置され前記下部電極は前記上部電極と一対一で対応するように配置され、前記各上部電極及び下部電極間の空間で互いに異なる前記工程が独立的に行われる多数の工程処理ユニットを具備する。前記ガス供給部は、前記上部電極と一対一で対応して多数配置され、各ガス供給部は互いに一対一で対応される前記上部電極と下部電極との間で独立的に行われる各工程に適合する工程ガスを供給する。このとき、互いに一対一で対応する前記各上部電極及び下部電極の間の空間は独立的な工程処理ユニットを形成し、前記多数の工程処理ユニットは、可変性障壁によって前記工程チャンバーの内部空間で互いに個別的に区分され前記多数の工程が前記各処理ユニットの内部で独立的に行われる。前記可変性障壁は、エアカーテン又は不活性気体カーテンのうちのいずれか1つを含むことができる。一実施形態として、前記不活性気体カーテンは、ヘリウム、ネオン、アルゴン、クリプトン、窒素、及びこれらの混合物のうちのいずれか1つを含むことができる。
【0013】
一実施形態として、前記多数の工程処理ユニットは、前記パターンの形状に沿って金属膜を形成するための第1蒸着工程が行われる第1処理ユニット、前記パターンの形状に沿って金属窒化膜を形成するための第2蒸着工程が行われる第2処理ユニット、及び前記金属膜又は金属窒化膜を部分的に窒化するための窒化工程が行われる第3処理ユニットを含む。このとき、前記第1及び第2蒸着工程は、金属プラズマ工程、サイクリック化学気相蒸着工程、パルス膜質核(pulsed nucleation layer、PNL)蒸着工程、及び原子層蒸着(atomic layer deposition、ALD)工程を含み、前記窒化工程は窒素プラズマ処理工程を含む。前記窒素プラズマ処理工程が行われる第3処理ユニットの下部電極は、前記第2電源と電気的に断絶された状態になる。前記金属膜はタングステン膜を含み、前記金属窒化膜はタングステン窒化膜を含む。
【0014】
一実施形態として、前記多数の工程処理ユニット間の基板移送のための移送ユニットを更に含むことができ、前記移送ユニットは、コンベヤーシステム又は運送ロボットを含む。
【0015】
一実施形態として、前記ガス供給部、前記上部電極、及び前記下部電極は単一に配置され互いに異なる前記工程が前記工程チャンバーの内部で順次に行うことができる。このとき、前記ガス供給部は、前記各工程に使用される工程ガスを独立的に保存する多数のガス保存ユニット、前記ガス保存ユニットをそれぞれ個別的に制御して各工程ガスの流れを制御する流量制御バルブ及び前記流量制御バルブを通じて供給される工程ガスを前記工程チャンバーの内部に誘導する供給配管を含む。このとき、前記ガス保存ユニットは、前記工程チャンバー内部を洗浄するパージガスを保存する第1保存ユニット、前記パターンのプロファイルに沿って金属膜を形成するための金属ソース、窒素ソース、及び水素ソースをそれぞれ独立的に保存する第2保存ユニット、第3保存ユニット、及び第4保存ユニットを含み、前記供給配管は前記それぞれの保存ユニットと個別的に連結され独立的に各ソースを排出する排出ライン及び前記排出ラインと共通に連結され前記ソースを前記工程チャンバーに供給する共通供給ラインを含む。前記流量制御バルブを個別的に制御する中央制御ユニットを更に含み、前記中央制御ユニットは前記工程チャンバーの内部で行われる工程の進行順序によって前記流量制御バルブの開閉を調節する。
【0016】
一実施形態として、前記第1電源は、前記工程ガスを工程プラズマに形成するためのソース電源を含み、前記第2電源は、前記工程プラズマを前記基板に加速するためのバイアス電源を含む。前記バイアス電源は、直流バイアス又はラジオ周波数(RF)バイアスを生成することができる。
【0017】
一実施形態として、前記駆動ユニットは、前記下部電極と連結される第1駆動軸と前記第1駆動軸と電気的に連結され前記第1駆動軸を回転させるための動力を供給する動力源を含み、前記下部電極は前記第1駆動軸の回転によって前記上部電極に向かって移動することにより、前記上部電極と前記下部電極との間に形成される空間のサイズを調節する。前記第1駆動軸は、前記下部電極と連結される線形軸と前記線形軸を支持して回転力を伝達するベアリング部を含み、前記動力源は電気モーターを含む。前記駆動ユニットは、前記上部電極と連結される第2駆動軸を更に含み、前記上部電極は前記第2駆動軸の回転によって前記下部電極に向かって移動することにより、前記下部電極と前記上部電極との間に形成される空間のサイズを調節する。
【0018】
一実施形態として、前記上部電極は、前記第1電源と電気的に連結され前記ガス供給部と機械的に連結された第1電極及び前記第1電極の下面に結合され前記第1電極との間に前記工程ガスを収容することができるバッファ空間を提供する第2電極を具備し、前記下部電極は前記基板を加熱するための加熱手段を含む。
【0019】
前記パターンは、前記基板上に形成された多数の導電性構造物を覆う層間絶縁膜及び前記層間絶縁膜を貫通して前記導電性構造物を部分的に露出するコンタクトホールを含む。
【発明の効果】
【0020】
本発明によると、金属膜蒸着工程及び前記金属膜に対する部分窒化工程をチャンバーの変更なしに単一のチャンバーで行うことにより、チャンバー変更による真空断絶なしに連続的に行うことができるという長所がある。
【発明を実施するための最良の形態】
【0021】
以下、添付図面を参照して、本発明の好ましい実施形態を詳細に説明する。
【0022】
図1は、本発明の一実施形態による半導体素子製造装置を示す断面図である。図2は、図1に図示された半導体素子製造装置の底部を示す平面図で、図3は、図1に図示された半導体素子製造装置の上部を示す構成図である。
【0023】
図1乃至図3を参照すると、本発明の一実施形態による半導体素子製造装置1000は、1つ以上のパターンを有する半導体基板Sに対して互いに異なる多数の工程を行うための工程チャンバー600、前記各工程を行うための工程ガスを前記工程チャンバーの内部に独立して提供するガス供給部710、前記ガス供給部710と連結され前記工程チャンバー600の上部に配置される多数の上部電極及び前記上部電極と一対一で対応するように前記工程チャンバーの下部に配置され上面に前記基板が搭載される多数の下部電極及び前記上部電極に電源を供給する第1電源及び前記下部電極に電源を供給する第2電源を具備する電源供給部を含む。
【0024】
一実施形態として、前記ガス供給部は、前記上部電極と一対一に対応して多数配置され、各ガス供給部は、互いに一対一に対応される前記上部電極と下部電極との間で独立して行われる各工程に適合する工程ガスを供給する。このとき、互いに一対一で対応する前記各上部電極及び下部電極との間の空間は独立した工程処理ユニット700を形成し、前記多数の工程処理ユニット700は、可変性障壁780によって前記工程チャンバー600の内部空間で互いに個別に区分され前記多数の工程を前記各処理ユニット700の内部で独立させて行うことができる。
【0025】
本実施形態において、前記工程処理ユニット700は、第1工程を処理するための第1処理ユニット700a、第2工程を処理するための第2処理ユニット700b、第3工程を処理するための第3処理ユニット700c、及び第4工程を処理するための第4処理ユニット700dを含む。しかし、製造される半導体素子の特性によって多様な個数の処理ユニットを具備することができるのは自明である。以下では、各処理ユニットの構成は同様であり、同じ構成要素には同じ参照符号を付与する。但し、第1処理ユニット乃至第4処理ユニットの対応構成要素を互いに区別する必要がある場合には、a乃至dを参照符号に追加して区別する。
【0026】
前記処理ユニット700のそれぞれは、前記工程チャンバー600の内部に工程ガスを供給するためのガス供給部710、前記ガス供給部710と連結され前記工程チャンバー600の上部に配置される上部電極720、前記上部電極720と対向するように配置され前記基板Sが位置する下部電極730及び前記上部電極720と下部電極730に電源を供給する電源供給部740を含む。
【0027】
前記工程チャンバー600は外部から密閉された内部空間を含み、前記内部空間で基板Sの表面に互いに異なる多数の工程が行われる。一実施形態として、前記工程チャンバー600は工程ガスが供給され半導体基板Sが加工される上部空間602と前記基板の加工工程に使用された工程ガスと前記工程を行う途中に発生する反応副産物を排出するための下部空間604を具備する。前記下部空間604は、工程チャンバー600の内部に真空を形成するためのポンプシステム620と連結される。本実施形態において、前記ポンプシステムは、他の工程を行うための前記処理ユニットのそれぞれに対応して多数配置される。すなわち、前記第1乃至第4処理ユニットに対応する工程チャンバー600の内部に真空を形成するための第1乃至第4ポンプシステム(620a乃至620d)が配置される。従って、前記第1乃至第4処理ユニットに対応する前記工程チャンバー600の内部空間は、前記各ポンプシステム(620a乃至620d)によって真空に維持することができる。
【0028】
一実施形態として、前記各ポンプシステム620は、工程チャンバー600の内部に残存する物質を外部に除去するための動力を提供する真空ポンプ622、前記真空ポンプと前記下部空間を連結する真空配管624、及び前記工程チャンバー600の内部圧力を検出して制御するための真空圧調節バルブ626を含む。前記ポンプシステム620は、各処理ユニット700に対応する工程チャンバー内部で独立して稼動され前記処理ユニット700の内部に個別に一定の真空圧を維持させる。
【0029】
前記ガス供給部710は、互いに異なる種類の工程を行うための工程ガスを前記工程チャンバー600内部の各処理ユニット(700a乃至700d)に供給する。本実施形態では、各処理ユニットと一対一で対応され互いに独立して配置される第1乃至第4ガス供給部(710a乃至710d)を開示する。一実施形態として、前記ガス供給部710は、対応する処理ユニットで行われる工程のソースガスを個別的に保存する多数のガス保存ユニット712、前記ガス保存ユニットのそれぞれを個別的に制御して各ソースガスの流れを制御する流量制御バルブ714及び前記流量制御バルブ714を通じて供給されるソースガスを各処理ユニットに対応した前記工程チャンバー600の内部に誘導するための供給配管716を含む。このとき、各ガス供給部(710a乃至710d)は、各処理ユニットで行われる工程の種類によって互いに異なる工程ガスを要求するので、行われる工程によって互いに異なる構造を有する。
【0030】
例えば、前記加工対象基板Sは、所定の導電性構造物が配置された層間絶縁膜に形成されたコンタクトホールを具備し、前記第1処理ユニット700aで前記コンタクトホールのプロファイルに沿って金属膜を蒸着する工程が行われる。前記第2処理ユニット700bでは、前記コンタクトホールの上部と隣接する金属膜を部分的に窒化させるための窒化工程が行われ、前記第3処理ユニット700cでは部分的に窒化された前記金属膜の上部に前記コンタクトホールのプロファイルに沿って金属窒化膜を形成するための蒸着工程が行われる。最後に、第4処理ユニット700dでは、前記コンタクトホールの内部を埋め立てる金属膜蒸着工程が行われる。
【0031】
一実施形態として、前記第1処理ユニット700aで前記金属膜を形成するための原子層蒸着工程が行われる場合には、前記第1ガス供給部710aは、原子層蒸着工程を行うための金属ソース、水素ソース、及びパージガスを保存するために、前記ガス保存ユニット712を多数含むことができる。他の実施形態として、前記金属膜が金属プラズマ工程やPLN工程で形成される場合には、前記ガス保存ユニット712はプラズマソースや核膜ソースを保存するための単一なガス保存ユニットを具備することができるのは自明である。又、前記第2処理ユニット700bで窒化工程が行われる場合には、前記第2ガス供給部710bは窒素ソースを保存することができる単一なガス保存ユニット712bを含むことができ、前記第3処理ユニット700cで前記金属窒化膜を形成するための原子層蒸着工程が行われる場合には、前記第3ガス供給部710cは金属ソース、窒素ソース、水素ソース、及びパージガスを保存するための多数のガス保存ユニット712cを具備することができる。前記第4処理ユニットで金属プラグを形成するための化学気相蒸着工程が行われる場合には、前記第4ガス供給部710dは、金属ソースガスとキャリアガスを保存する多数のガス保存ユニット712dを具備することができる。
【0032】
前記第1乃至第4ガス供給部710a、710b、710c、710dの各ガス保存ユニット712a、712b、712c、712dは、前記工程ガスを各処理ユニットと連結された供給配管718に運搬するための排出ライン716と連結され、前記排出ライン716には前記工程ガスの流量を調節する流量調節バルブ714がそれぞれ配置される。
【0033】
このとき、前記第1ガス供給部710aは、多数のガス保存ユニット712aとそれぞれ連結された多数の排出ライン716a及び前記移送配管のそれぞれに設けられた多数の流量調節バルブ714aを含む。前記第2ガス供給部710bは、単一のガス保存ユニット712b及び排出ライン716bと前記排出ライン712b上に設けられた単一の流量調節バルブ714bを具備する。第3乃至第4ガス供給部も多数のガス保存ユニット712c、712d及び多数の排出ライン716c、716d及び前記多数の排出ラインのそれぞれに配置された多数の流量調節バルブ714c、714dをそれぞれ含む。
【0034】
前記各供給配管718a、718b、718c、718dは、各処理ユニット700と一対一に対応するように配置され、各保存ユニットから独立的に前記工程ガスを各処理ユニット700の内部空間に供給する。このとき、前記流量制御バルブ714は、各保存ユニット712から排出される各工程ガスの供給流量を個別に調節する。
【0035】
好ましくは、各制御バルブ714は、中央制御ユニット(Central Control Unit、CCU)によって制御され前記工程チャンバー600の内部で進行される工程の進行順序に合うように開閉が調節されることができる。
【0036】
本実施形態によると、工程ガスは個別的なガス供給部を通じて各処理ユニットに独立して供給されるが、単一のガス供給部を通じて各処理ユニット700に供給されることができるのも自明である。但し、単一ガス供給部を利用する場合には、各処理ユニット700に該当工程ガスを分岐することができる分岐ラインを更に含むことができる。
【0037】
前記工程チャンバー600の上部には、前記ガス供給部710と連結される上部電極720が多数配置され、前記上部電極720と一対一で対向する下部電極730が前記工程チャンバー600の底部に配置される。このとき、前記基板Sは、前記下部電極730の上面に配置される。従って、前記上部電極720と一対一に連結されるガス供給部710及び前記上部電極720と一対一に対向して位置する下部電極730が1つの処理ユニット700を構成して、前記工程チャンバー600の内部空間を部分的に分割して占有する。
【0038】
一実施形態として、前記上部電極720はディスク形状を有し、前記工程チャンバー600の上部に配置されソース電源が印加される第1電極721、前記第1電極と対応するディスク形状を有して第1電極721の下面に結合され前記上部空間602と隣接する第2電極722を含む。前記上部電極720は、第1スイッチSw1を通じてソース電源742と電気的に連結される。
【0039】
前記第1電極721の中央部位には、工程ガス又はパージガスを前記工程チャンバー600の内部に供給するための供給配管718と連結される第1貫通孔H1が形成されており、前記第1電極721と第2電極722との間には前記工程ガス又はパージガスを収容するためのバッファ空間723が形成される。
【0040】
前記第2電極722は、前記バッファ空間723から工程ガス又はパージガスを工程チャンバー600の内部に均一に供給するための多数の第2貫通孔H2を有し、第2電極722の上部面には前記バッファ空間723を形成するための溝が形成されている。本実施例では、ディスク形状を有する上部電極が図示されているが、コイル形状を有する上部電極が使用されることもできるのは自明である。
【0041】
前記下部電極730は工程チャンバー600の底面に支持され、前記上部電極720と対応する上面に前記基板Sが配置され真空又は静電気力によって固定される。従って、前記上部電極720の下面と前記下部電極730の上面との間の空間で前記プラズマ空間602が定義され、前記工程チャンバー600の底面と前記下部電極730の上面との間の空間で前記排出空間604が定義される。一実施形態として、前記基板Sと前記下部電極730の上面との間に前記基板Sを加熱することができる熱源760を更に含むことができる。これによって、前記各処理ユニット700で行われる工程の種類によって前記基板Sの温度をそれぞれ異なるように設定することができる。例えば、前記熱源は、電気エネルギーを熱エネルギーに変換することができる電熱装置を含む。
【0042】
前記下部電極730を前記工程チャンバー600の内部で垂直方向に移動するための駆動ユニット750が前記下部電極730の底面と連結される。一実施形態として、前記駆動ユニット750は、前記下部電極730と連結される第1駆動軸752及び前記第1駆動軸752と電気的に連結され前記第1駆動軸752を回転させるための動力を供給する動力源754を含む。このとき、前記第1駆動軸752は、前記下部電極730を支持する軸部と動力を伝達するためのベアリング及びギアで構成される動力伝達部で構成され、前記動力源754は、前記動力伝達部に伝達される電動力を生成するモーターを含む。
【0043】
前記第1処理ユニット700aの第1駆動軸752aによって前記第1下部電極730aが前記第1上部電極720a方向に移動すると、第1プラズマ空間602aのサイズが縮小される。従って、隣接する第2乃至第4処理ユニット700b、700c、700dで互いに異なる工程が行われても、第2乃至第4プラズマ空間602b、602c、603dに位置する工程ガス又は工程プラズマによって前記第1処理ユニット700aに配置された基板Sが影響を受けることを最小化することができる。
【0044】
図示していないが、前記上部電極720と連結され前記上部電極720を下部電極730方向に駆動することができる第2駆動軸(図示せず)を更に含むことができる。前記動力源754から電動力が伝達されると、第2駆動軸によって前記上部電極720が前記下部電極730方向に移動して前記プラズマ空間のサイズを縮小することができる。
【0045】
各処理ユニット700に配置される上部電極720及び下部電極730には、電源供給部740によって個別的に電源が供給される。一実施形態として、前記電源供給部740は、前記工程ガスをプラズマに形成するためのソース電源742及び前記工程プラズマを前記基板Sに加速するためのバイアス電源744を含む。前記バイアス電源は、直流バイアス又はラジオ周波数(RF)バイアスを前記下部電極730に印加することができる。一実施形態として、前記ソース電源742は、前記第1スイッチSw1を通じて前記上部電極720の第1電極721と電気的に連結され、前記バイアス電源744は、第2スイッチSw2を通じて前記下部電極730と電気的に連結される。従って、前記ソース電源742及びバイアス電源744は、それぞれ個別的なスイッチSw1、Sw2で独立的に前記上部電極720及び下部電極730にそれぞれ印加され、前記各処理ユニット700で行われる工程の種類によってソース電源及びバイアス電源を選択的に印加することができる。例えば、前記バイアス電源744は、窒化工程が行われる処理ユニットの下部電極にのみ印加され、残り処理ユニットの下部電極に印加されることを遮断することができるように構成することができる。これによって、前記第2処理ユニット700bで窒素プラズマを利用して窒化工程を行う場合に、前記基板Sに形成されたコンタクトホールの底部よりパターンの上面にプラズマを加速させることにより、基板に形成された金属膜に対する部分窒化工程を行うことができる。
【0046】
前記各処理ユニットの下部電極(730a乃至730d)の間には前記下部電極上に配置された基板Sを移送するための移送ユニットが配置される。一実施形態として、前記移送ユニットは、前記下部電極間を連結するコンベヤーシステム732、734、736、738を含む。従って、各処理ユニットで工程が完了された基板Sは、前記コンベヤーシステムを経由して次の処理ユニットに移送される。例えば、前記基板Sは、前記工程チャンバー600の内部で第1下部電極730a、第2下部電極730b、第3下部電極730c、第4下部電極730dの順序で進行され、一連の工程を行うことができる。本実施形態の場合、前記第1乃至第4処理ユニットでそれぞれ金属膜蒸着工程、窒化工程、金属窒化膜蒸着工程、及び金属プラグ形成工程が行われるので、前記基板Sに対して前述したような順序で工程が進行され金属プラグが形成される。他の実施形態として、前記移送ユニットは、前記工程チャンバー600の内部に配置された運送ロボット(図示せず)を含む。前記運送ロボットは、前記各処理ユニットの下部電極までロボットアームを駆動して各処理ユニットで工程が完了された基板Sを搬出して定められた順序によって隣接した他の処理ユニットの下部電極に移送することができる。
【0047】
このとき、前記第1乃至第4処理ユニットのそれぞれは互いに区分され工程が進行される間、工程ガスが混合されることを防止することができる。例えば、前記各処理ユニット間には、エアカーテンやアルゴンカーテンのような可変性障壁780が形成され各処理ユニットで工程が進行される間、工程ガスの混合及び工程条件が混じることを防止することができる。
【0048】
しかし、このような順序は、製造される半導体の特性と工程必要によって変更されることができる。本実施形態の場合には、第2処理ユニットで窒化工程を行うことによって、金属膜に対する部分窒化工程を行うことを開示しているが、第2処理ユニットで金属窒化膜蒸着工程を行い、第3処理ユニットで窒化工程を行うことにより、金属膜及び金属窒化膜が積層された薄膜に対して部分窒化工程を行うこともできる。
【0049】
前述したような構造を有する半導体素子製造装置1000は、次のように駆動される。図4は、本発明の一実施形態による半導体素子製造装置の内部で加工される基板S及び前記基板Sの表面に形成されるパターンを示す図である。
【0050】
図1乃至図4を参照すると、蒸着対象基板Sを前記工程チャンバー600の内部にローディングして前記第1処理ユニット700aの第1下部電極730aの上面に固定する。前記基板Sには、1つ以上のパターンが形成され、前記パターンは前記基板上に形成された多数の導電性構造物を覆う層間絶縁膜及び前記層間絶縁膜を貫通して前記導電性構造物を部分的に露出するコンタクトホールを含む。前記基板Sをローディングするためにロボットアームのような多様な移送手段(図示せず)を利用することができる。このとき、前記基板Sは、真空圧や静電チャックによって前記第1下部電極730aの上面に固定される。
【0051】
その後、前記処理ユニット700aの内部の温度と圧力を調節して適正な工程条件に制御する。まず、前記第1ポンプシステム620aを稼働させて工程チャンバー内部の残留物質を除去して第1工程に適正な第1真空圧を形成する。本実施形態において、前記処理ユニット700aの内部は、約10Torr乃至約350Torrの範囲に内部圧力が調節される。その後、前記第1下部電極700aの内部に配置されたヒーターを稼働して前記基板Sを第1温度まで加熱する。本実施形態の場合、前記第1温度は約250℃乃至約350℃まで加熱する。その後、前記基板Sに対する第1工程として、金属膜蒸着工程を行う。本実施形態の場合、前記金属膜は、原子層蒸着工程によって形成されるタングステン(W)膜を含む。前記第1ガス供給部710aを通じて原子層蒸着工程に必要な金属ソース及びパージガス等を供給する。前記金属ソースは、タングステン前駆体を含む物質として、WF6、WCl5、WBr6、WCo6、W(C2H2)6、W(PF3)6、W(allyl)4、(C2H5)WH2、[CH3(C5H4)2]2WH2、(C5H5)W(Co)3(CH3)、W(butadiene)3、W(methylvinyl−ketone)3、(C5H5)HW(Co)3、(C7H8)W(Co)3、及びこれらの化合物で構成されるグループから選択されるいずれか1つを含み、前記パージガスは化学的に安定された非活性ガスを利用し、He、Ne、Ar、Xe、N2で構成されるグループから選択されるいずれか1つを含む。金属ソースの供給と前記パージガスの供給を周期的に反復することにより、前記基板Sの表面に必要な厚みを有する金属膜を蒸着することができる。
【0052】
本実施形態の場合には、原子層蒸着工程を利用して前記金属膜を形成したが、前記金属膜は金属プラズマ工程又はパルス膜質核(PNL)蒸着工程を利用して形成されることができる。前記金属プラズマ工程が利用される場合には、前記ソース電源742を利用して前記金属ソースを金属プラズマに形成して、前記バイアス電源744によって前記基板Wが位置した下部電極にバイアス電源を印加することにより、前記基板Wの表面に前記金属プラズマを加速することができる。従って、コンタクトホールを具備する前記基板Wの表面に前記コンタクトホールのプロファイルに沿って金属膜を均一に形成することができる。
【0053】
前記基板Sの表面に金属膜を蒸着する前記第1工程が完了されると、前記移送ユニットは金属膜が蒸着された前記基板Sを隣接した第2処理ユニット700bの第2下部電極730bに移送する。
【0054】
このとき、前記第2処理ユニット700bは、第2工程である窒化工程に適合な条件に設定する。本実施形態の場合、前記第2処理ユニット700bに対応する工程チャンバーの内部は、約0.1Torr乃至約10Torrの圧力を有するように制御され、前記基板Sは約300℃乃至約700℃の温度まで加熱される。その後、前記第2ガス供給部を駆動して前記第2処理ユニット700bの第2プラズマ空間602bに前記窒素ソースを供給し、前記第2ソース電源742bを駆動して前記窒素ソースを窒素プラズマに形成する。例えば、約1.3MeVのソース電源が前記第2上部電極721bに提供され、前記窒素ソースとして窒素ガス又はアンモニアガスが利用される。このとき、前記金属膜が形成された基板Sが配置された第2下部電極730bを前記第2上部電極720b方向に上昇させて前記第2プラズマ空間602bの容積を縮小させることができる。これによって、前記基板Sの表面近所に形成されたプラズマシース(plasma sheath)は、隣接した他の処理ユニットに影響を与えずに、前記第2下部電極730bの上面に配置された基板Sの表面と接触する。
【0055】
特に、前記バイアス電源744bは、前記第2下部電極730bに弱く印加されるか、印加されないように調整することにより、前記コンタクトホールの下部Bより上部Tが前記プラズマに集中的に露出されるように調整する。従って、前記パターンの上面(T)及び前記コンタクトホールの上部側壁に位置する金属膜は、前記窒素プラズマによって窒化工程が行われるが、前記コンタクトホールの底部(B)及びこれと隣接したコンタクトホールの下部側壁に位置する金属膜は窒化工程が殆ど行われない。これによって、前記金属膜の上部にのみ部分的に窒化工程が行われ、部分窒化金属膜を形成することができる。特に、金属膜形成工程が完了された後、工程チャンバーを変更することなく連続的に窒化工程を行うことによって、真空損傷のような工程不良誘発要因を予め除去することができる。
【0056】
本実施形態の場合、前記金属膜に対する部分窒化工程は、窒素プラズマを利用したプラズマ工程によって行われることを開示しているが、前記窒素ソースを供給した後、前記基板Sに対する追加的な熱処理によって行うこともできる。例えば、前記基板Sを前記窒素ソース雰囲気で約300℃乃至約950℃の温度で加熱することにより、前記パターンの上面と隣接した金属膜の一部を窒化させることができる。
【0057】
前記金属膜に対する部分窒化工程である第2工程が完了されると、前記移送ユニットは、部分窒化工程が完了された前記基板Sを隣接した第3処理ユニット700cの第3下部電極730cに移送する。
【0058】
このとき、前記第3処理ユニット700cは、第3工程である金属窒化膜形成工程に適合する条件に設定する。本実施形態の場合、前記金属窒化膜は原子層蒸着工程によって形成されるタングステン窒化膜を含み、前記第3処理ユニット700cの内部に対応する工程チャンバー600の内部は、約0.1Torr乃至約350Torrの圧力を有するように制御され、前記基板Sは約250℃乃至約550℃の温度まで加熱される。
【0059】
その後、前記第3ガス供給部720cを利用して金属ソース、パージガス、水素ソース、及び窒素ソースを順序に前記第3処理ユニット700cの内部に供給する。これによって、原子層蒸着工程によって前記部分窒化金属膜の上部にコンタクトホールのプロファイルに沿ってタングステン窒化膜が形成される。このとき、前記金属窒化膜は原子層蒸着工程のみならず、金属プラズマ工程やPNL工程によって形成されることもできる。金属プラズマ工程で前記金属窒化膜を形成する場合には、前記バイアス電源を前記下部電極730に印加して前記基板Sの全面にかけて均一なバイアスが印加されるように制御する。
【0060】
前記金属窒化膜形成工程である第3工程が完了されると、前記移送ユニット780は、金属窒化膜が形成された前記基板Sを隣接した第4処理ユニット700dの第4下部電極730dに移送する。
【0061】
このとき、前記第4処理ユニット700dは、第4工程である金属膜形成工程に適合する条件に設定する。本実施形態の場合、前記工程チャンバー100の内部は、約10Torr乃至約350Torrの圧力を有するように制御され、前記基板Sは約250℃乃至約550℃の温度まで加熱される。前記金属膜は原子層蒸着工程、メタルプラズマ工程、又はPNL工程によって形成されるタングステン膜を含む。
【0062】
一実施形態として、前記第4ガス供給部710dを利用して金属ソース及びパージガスを順次の前記第4処理ユニット700dの内部に供給する。これによって、原子層蒸着工程によって前記タングステン窒化膜が形成されたコンタクトホールを埋め立てるタングステン窒化膜が形成される。このとき、金属プラズマ工程で前記金属窒化膜を形成する場合には、前記バイアス電源を前記下部電極730に印加して前記基板Sの全面にかけて均一なバイアスが印加されるように制御する。
【0063】
本実施形態では、前記金属膜に対する部分窒化工程が完了された後、金属窒化膜を形成する工程を開示しているが、前記金属膜及び金属窒化膜を順次に形成した後、前記金属窒化膜に対して部分窒化工程を行うこともできる。前記部分窒化工程は、後述するような金属プラグ形成のための平坦化工程でスラリーに対する抵抗力を向上させてコンタクトホールの側壁と金属プラグの離隔を防止することが目的なので、障壁層を形成する金属膜又は金属窒化膜のうち、どんな膜を部分窒化させるかは製造される半導体素子の特性によって選択的に決定することができる。従って、前記部分窒化工程は、前記金属膜に対して行うこともでき、前記金属膜上に形成された金属窒化膜に対して行うこともできる。
【0064】
本発明の一実施形態による半導体素子製造装置1000によると、金属膜形成工程と前記金属膜に対する部分的な窒化工程及び前記部分窒化金属膜上に金属窒化膜を形成する工程を1つの工程チャンバーで連続的に行うことにより、真空断絶なしに金属プラグを形成するための単位工程を行うことができる。特に、パターンの上部に隣接する金属膜に対してのみ窒化工程を行うことにより、前記金属プラグを形成するための平坦化工程が進行される間、前記金属プラグとコンタクトホールの側壁との間に位置する障壁層が共に除去されることを防止することができる。
【0065】
図5は、本発明の他の実施形態によって半導体素子製造装置を示す構成図である。
【0066】
図5を参照すると、本発明の他の実施形態による半導体素子製造装置900は、対象基板Sに対する互いに異なる多数の工程を行うための密閉空間を提供する工程チャンバー100、前記工程チャンバー100の内部に供給される工程ガスを供給するためのガス供給部200、前記ガス供給部200と連結され前記工程チャンバー100の上部に配置される上部電極300、前記上部電極300と対向するように配置され上部に前記基板Sが位置する下部電極400及び前記上部電極300及び下部電極400に電源を供給する電源供給機500を含む。
【0067】
前記工程チャンバー100は、外部から密閉された状態でプラズマを利用して金属膜の蒸着工程を行う内部空間を含む。前記内部空間は工程ガスが供給され半導体基板Sが加工されるプラズマ空間102と前記基板加工工程に使用された前記プラズマと前記工程を行う途中に発生する反応副産物を排出するための排出空間104を具備する。
【0068】
前記排出空間104は、工程チャンバー100の内部に真空を形成するためのポンプシステム120と連結される。一実施形態として、前記ポンプシステム120は、工程チャンバー100の内部に残存する物質を外部に除去するための動力を提供する真空ポンプ122、前記真空ポンプと前記排出空間を連結する真空配管124、及び前記工程チャンバー100の内部圧力を検出して制御するための真空圧調節バルブ126を含む。
【0069】
前記ポンプシステム120は、工程チャンバー内部での工程遂行前後に稼働され前記工程チャンバー100の内部に一定な真空圧を維持させる。
【0070】
前記ガス供給部200は、互いに異なる種類の工程を行うための工程ガスをそれぞれ独立的に保存する多数のガス保存ユニット210、前記ガス保存ユニットをそれぞれ個別的に制御して各工程ガスの流れを制御する流量制御バルブ220、及び前記流量制御バルブ220を通じて供給される工程ガスを前記工程チャンバーの内部に誘導するための供給配管230を含む。
【0071】
一実施形態として、前記ガス保存ユニット210は、前記工程チャンバー100の内部を洗浄するためのパージガスを保存する第1保存ユニット212、前記基板S上に金属膜を蒸着するための金属ソース、窒素ソース、及び水素ソースをそれぞれ独立して保存する第2保存ユニット214、第3保存ユニット216、及び第4保存ユニット218を含む。前記供給配管230は、各保存ユニットから独立して前記工程ガスを排出する連結ライン232a、232b、232c、232d及び前記排出ラインと共通で連結され前記工程ガスを工程チャンバー100に供給するための共通供給ライン234を含む。このとき、前記流量制御バルブ220は、前記各引出配線上に多数位置して各保存ユニットから排出される各工程ガスの供給流量を個別に調節する。
【0072】
好ましくは、各制御バルブ222、224、226、228は、中央制御ユニット(CCU)によって制御され前記工程チャンバー100内部で進行される工程の進行順序に合うように開閉が調節される。
【0073】
このとき、前記各排出ラインは前記共通供給ラインに沿って垂直に配置され、最上部にパージガスを供給する第1排出ライン232aを配置する。従って、前記パージガスは、前記工程チャンバー100の上部に延長される前記共通供給ラインの大部分で残留ガスを除去することができる。
【0074】
従って、前記工程チャンバー100の内部では、金属膜の蒸着工程と前記金属膜に対する窒化工程を同時に行うことができるという長所がある。特に、後述するように前記基板Sが配置される下部電極400の位置を前記上部電極300方向に移動させて前記基板Sに形成されたパターンの底面と比較して上面がプラズマに集中的に露出されるように誘導することができる。
【0075】
前記工程チャンバー100の上部には蒸着用工程ガスを供給してこれを利用して前記工程プラズマを形成するための上部電極300及び前記半導体基板Sを支持して前記工程プラズマを半導体基板Sの表面に誘導するために前記工程プラズマの挙動を調節するための下部電極400を含む。
【0076】
一実施形態として、前記上部電極300はディスク形状を有し、前記工程チャンバー100の上部に配置されソース電源が印加される第1電極310、前記第1電極と対応するディスク形状を有して第1電極310の下面に結合され前記プラズマ空間102と隣接する第2電極320を含む。前記上部電極300は、第1スイッチ522を通じてソース電源供給機520と電気的に連結される。
【0077】
前記第1電極310の中央部位には、工程ガス又はパージガスを前記工程チャンバー100の内部に供給するための共通供給ライン234と連結される第1貫通孔310aが形成されており、前記第1電極310と第2電極320との間には前記工程ガス又はパージガスを収容するためのバッファ空間330が形成される。
【0078】
前記第2電極320は、前記バッファ空間330から工程ガス又はパージガスを工程チャンバー100の内部に均一に供給するための多数の第2貫通孔320aを有し、第2電極320の上部面には前記バッファ空間330を形成するための溝が形成されている。本実施形態では、ディスク形状を有する上部電極が図示されているが、コイル形状を有する上部電極を使用することもできる。
【0079】
前記下部電極400は、工程チャンバー100の底面に支持され底面から垂直方向に移動することができる駆動部420を具備し、前記上部電極300と対応する上面に前記基板Sが配置され真空又は静電気力によって固定される。従って、前記上部電極の下面と前記下部電極の上面との間の空間で前記プラズマ空間102が定義され、前記工程チャンバー100の底面と前記下部電極400の上面との間の空間で前記排出空間104が定義される。一実施形態として、前記基板Sと前記下部電極の上面との間に前記基板Sを加熱することができる熱源410を更に含むことができる。例えば、前記熱源は、電気エネルギーを熱エネルギーに変換することができる電熱装置を含む。
【0080】
前記下部電極400の下面には、前記下部電極を前記上部電極300方向に移動して前記プラズマ空間102のサイズを調節することができる駆動ユニット420を含む。一実施形態として、前記駆動ユニット420は前記下部電極400と連結される第1駆動軸422と前記第1駆動軸と電気的に連結され前記第1駆動軸を回転させるための動力を供給する動力源424を含み、前記下部電極400は、前記第1駆動軸422の回転によって前記上部電極300に向かって移動することにより、前記上部電極300と前記下部電極400との間に形成されるプラズマ空間102のサイズを調節することができる。例えば、前記第1駆動軸422は、前記下部電極400と連結される線形軸と前記線形軸を支持して回転力を伝達するベアリング部を含み、前記動力源は電気モーターを含むことができる。前記駆動ユニットは、前記上部電極300と連結される第2駆動軸(図示せず)を更に含み、これによって前記上部電極300は前記第2駆動軸の回転によって前記下部電極400に向かって移動することにより前記下部電極400と前記上部電極300との間に形成されるプラズマ空間のサイズを調節することができる。
【0081】
前記電源供給機500は前記上部電極300と連結され前記工程ガスを工程プラズマに形成するためのソース電極を供給する第1電源520及び前記下部電極400と連結され前記工程プラズマを前記基板Sの表面に誘導するためのバイアスを印加する第2電源540を含む。
【0082】
前記ソース電源520は、前記第1スイッチ522を通じて前記上部電極の第1電極310と電気的に連結され、前記バイアス電源540は第2スイッチ542を通じて前記下部電極400と電気的に連結される。
【0083】
前記バイアス電源540は、前記下部電極400にバイアスを均一に印加して前記プラズマ空間102に形成された工程用プラズマガスが前記基板Sに向かって均一に加速されるように誘導する。一実施形態として、コンタクトホールを具備するパターンに形成された金属膜を窒化するためのプラズマ窒化工程が行われる場合には、前記第2スイッチを短絡させて前記下部電極400にバイアスが印加されないように制御する。これにより、前記プラズマ空間に生成された工程プラズマは、前記パターンの底部より上面に集中的に接触してパターン上面での窒化を相対的に促進することができる。このとき、前記下部電極400の下面に連結された駆動ユニット400によって前記プラズマ空間102のサイズを縮めて、上部電極300と下部電極400の間隔を縮めることにより、前記パターンの表面に対する窒化を促進することができる。
【0084】
前述したような構造を有する半導体素子製造装置900は、次のように駆動される。図5に図示された半導体素子製造装置は、単一の処理ユニットで多数の工程が行われることを除いては、図1乃至図3に図示された半導体素子製造装置と同様に作動する。
【0085】
蒸着対象基板Sを前記工程チャンバー100の内部にローディングして前記下部電極400の上面に固定する。前記基板Sをローディングするためにロボットアームのような多様な移送手段(図示せず)が利用されることができる。このとき、前記基板Sは真空圧や静電チャックによって前記下部電極400の上面に固定される。
【0086】
その後、前記工程チャンバー100の内部の温度と圧力を調節して適正な工程条件に制御する。まず、前記ポンプシステム120を稼働させて工程チャンバー内部の残留物質を除去して第1工程に適正な第1真空圧を形成する。本実施形態において、前記工程チャンバー100は約10Torr乃至約350Torrの範囲に内部圧力が調節される。その後、前記下部電極400の内部に配置されたヒーターを稼働して前記基板Sを第1温度まで加熱する。本実施形態の場合、前記第1温度は約250℃乃至約350℃まで加熱する。本実施形態では、前記基板Sの下部で直接基板を加熱することで温度を設定したが、他の実施形態として前記工程チャンバー100内部の圧力を調節する段階で工程チャンバー外部の熱源を利用して前記工程チャンバー100の内部全体を第1温度に予め設定することができる。
【0087】
前記工程チャンバー100に対する温度及び圧力条件が満足されると、前記中央制御ユニット(CCU)は前記基板Sに対する第1工程として金属膜蒸着工程を行う。本実施形態の場合、前記金属膜は原子層蒸着工程によって形成されるタングステン(W)膜を含む。一実施形態として、前記中央制御ユニット(CCU)は、前記第2流量制御バルブ224を開放して第2保存ユニット214に保存された金属ソースを前記工程チャンバー100の内部に供給する。前記金属ソースはタングステン前駆体を含む物質であって、WF6、WCl5、WBr6、WCo6、W(C2H2)6、W(PF3)6、W(allyl)4、(C2H5)WH2、[CH3(C5H4)2]2WH2、(C5H5)W(Co)3(CH3)、W(butadiene)3、W(methylvinyl−ketone)3、(C5H5)HW(Co)3、(C7H8)W(Co)3、及びこれらの化合物で構成されるグループから選択されるいずれか1つを含む。その後、前記中央制御ユニット(CCU)は、前記第2流量制御バルブ224を密閉させ、前記第1流量制御バルブ222を開放して第1保存ユニット212に保存されたパージガスを前記工程チャンバー100の内部に供給して前記工程チャンバー100内部に残存する前記金属ソースを除去する。残存ガスは、前記ポンプシステム120を通じて工程チャンバーの外部に排出される。このとき、前記パージガスは、化学的に安定された非活性ガスを利用し、He、Ne、Ar、Xe、N2からなるグループから選択されるいずれか1つを含む。前記第1流量制御バルブ222は密閉され前記第4流量制御バルブ228は開放され水素ソースが前記工程チャンバー100の内部に供給される。前記水素ソースは前記基板Sの表面に化学吸着されたタングステン前駆体と化学反応してタングステン前駆体のタングステン原子を除いた残り物質と反応した反応物質を生成する。その後、前記第4流量制御バルブ228を密閉させ更に第1流量制御バルブ222を開放してパージガスによって前記反応物質を前記工程チャンバー100から排出する。前記中央制御ユニット(CCU)はこのような過程を反復することにより、前記基板Sの表面に必要な厚みを有する金属膜を蒸着することができる。
【0088】
前記基板Wの表面に金属膜を蒸着する前記第1工程が完了されると、前記中央制御ユニット(CCU)は、前記第1流量制御バルブ222を開放して前記パージガスを工程チャンバーの内部に供給して前記プラズマ空間102に残留するガスを工程チャンバー100の外部に完全に排出する第1チャンバークリニング工程を行う。本実施形態の場合、前記原子層蒸着工程の最後パージ段階の遂行時間を延長することにより、前記チャンバークリニング工程を代替することができる。しかし、PNLや金属プラズマ工程によって前記金属膜を形成した場合には、前記チャンバークリニング工程を充分に行って第1工程による残留ガスをプラズマ空間から完全に除去する。
【0089】
前記第1流量制御バルブ212を密閉させ前記第1チャンバークリニング工程を完了した後、前記中央制御ユニット(CCU)は、前記工程チャンバー100の内部を第2工程である窒化工程に適合する条件に制御する。本実施形態の場合、前記工程チャンバー100の内部は、約0.1Torr乃至約10Torrの圧力を有するように制御され、前記基板Sは約300℃乃至約700℃の温度まで加熱される。その後、前記第3流量制御バルブを開放させて前記工程チャンバー100のプラズマ空間102に前記窒素ソースを供給し、前記ソース電源部520を駆動して前記窒素ソースを窒素プラズマに形成する。例えば、約1.3MeVのソース電源が前記上部電極300に提供され、前記窒素ソースとして窒素ガス又はアンモニアガスが利用される。このとき、前記基板Sが配置された下部電極400を前記上部電極300方向に上昇させて前記プラズマ空間102の容積を縮小させることができる。これにより、前記基板Sの表面近所で前記工程プラズマの密度を増加させて前記パターンの上面でプラズマによる反応性を増大させる。
【0090】
従って、前記パターンの上面(T)及び前記コンタクトホールの上部側壁に位置する金属膜は前記窒素プラズマによって窒化工程が行われるが、前記コンタクトホールの底部(B)及びこれと隣接したコンタクトホールの下部側壁に位置する金属膜は窒化工程が殆ど行われない。これにより、前記金属膜の上部にのみ部分的に窒化工程が行われ部分窒化金属膜を形成することができる。特に、金属膜形成工程が完了された後、工程チャンバーを変更することなく連続的に窒化工程を行うことにより、真空損傷のような工程不良誘発要因を予め除去することができる。
【0091】
前記金属膜に対する部分窒化工程である前記第2工程が完了されると、前記中央制御ユニット(CCU)は、前記第1流量制御バルブ222を開放して前記パージガスを工程チャンバー100の内部に供給して前記窒素プラズマ及びこれの反応副産物を工程チャンバー100の外部に完全に排出する第2チャンバークリニング工程を行う。これにより、前記第2工程完了後、前記工程チャンバーの内部に残留する前記窒素ソース又は窒素プラズマは、前記工程チャンバー100の外部に排出される。
【0092】
前記第1流量制御バルブ212を密閉させ前記第2チャンバークリニング工程を完了した後、前記中央制御ユニット(CCU)は前記工程チャンバー100の内部を第3工程である窒化膜形成工程に適合する条件で制御する。本実施形態の場合、前記工程チャンバー100の内部は約0.1Torr乃至約350Torrの圧力を有するように制御され、前記基板Sは約250℃乃至約550℃の温度まで加熱される。
【0093】
その後、前記第2保存ユニット214に保存された金属ソース、第1保存ユニット212に保存されたパージガス、第4保存ユニット218に保存された水素ソース、第1保存ユニット212に保存されたパージガス、及び第3保存ユニット216に保存された窒素ソースを順次に前記工程チャンバー100の内部に供給する。これにより、原子層蒸着工程によって前記部分窒化金属膜の上部にコンタクトホールのプロファイルに沿って金属窒化膜が形成される。
【0094】
このとき、前記金属窒化膜は原子層蒸着工程のみならず、金属プラズマ工程やPNL工程によって形成されることもできる。金属プラズマ工程で前記金属窒化膜を形成する場合には、前記基板Sの全面にかけて均一なバイアス電圧が印加されることができるように制御する。
【0095】
前記金属窒化膜を形成する前記第3工程が完了されると、前記中央制御ユニット(CCU)は、前記第1流量制御バルブ222を開放して前記パージガスを工程チャンバー100の内部に供給して前記窒素ソース及びこの反応副産物を工程チャンバー100の外部に完全に排出する第3チャンバークリニング工程を行う。これによって、前記第3工程完了後、前記工程チャンバーの内部に残留する前記窒素ソース、水素ソース、パージガス、又はこれらの反応副産物は前記工程チャンバー100の外部に排出される。
【0096】
前記第1流量制御バルブ212を密閉させ前記第3チャンバークリニング工程を完了した後、前記中央制御ユニット(CCU)は、前記工程チャンバー100の内部を第4工程であるコンタクトプラグ形成工程に適合な工程で制御する。本実施形態の場合、前記工程チャンバー100の内部は、約10Torr乃至約350Torrの圧力を有するように制御され、前記基板Sは約250℃乃至約550℃の温度まで加熱される。
【0097】
その後、前記第2保存ユニット214に保存された金属ソースを、金属プラズマ工程を利用して前記コンタクトホールを埋め立てることができる程度の充分な厚みを有するように前記基板S上に形成する。金属プラズマ工程のみならずこれと類似する工程によっても前記金属プラグを形成することができる。例えば、サイクリック化学蒸着工程を利用して同じチャンバー内で前記金属プラグを形成することができる。
【0098】
本発明の一実施形態による半導体素子製造用蒸着装置900によると、金属膜形成工程と前記金属膜に対する部分的な窒化工程及び前記部分窒化金属膜上に金属窒化膜を形成する工程を1つの工程チャンバーで連続的に行うことにより、真空断絶なしに金属プラグを形成するための単位工程を行うことができる。特に、パターンの上部に隣接する金属膜に対してのみ窒化工程を行うことにより、前記金属プラグを形成するための平坦化工程が進行される間、前記金属プラグとコンタクトホールの側壁との間に位置する障壁層が共に除去されることを防止することができる。
【0099】
前述したように本発明によると、金属膜蒸着工程及び前記金属膜に対する窒化工程を、チャンバーを変更することなく単一のチャンバーで行うことにより、チャンバー変更による真空断絶なしに連続的に行うことができるという長所がある。又、中央制御ユニット又はコンベヤーシステムの簡単な修正によって単一のチャンバー内部で行われる互いに異なる工程の遂行順序を変更することにより工程遂行を弾力的に調節することができるという長所がある。
【0100】
以上、本発明の実施形態によって詳細に説明したが、本発明はこれに限定されず、本発明が属する技術分野において通常の知識を有するものであれば本発明の思想と精神を離れることなく、本発明を修正または変更できる。
【産業上の利用可能性】
【0101】
本発明は、半導体を製造する装置に適用することができる。
【図面の簡単な説明】
【0102】
【図1】本発明の他の実施形態による半導体素子製造装置を示す断面図である。
【図2】図1に図示された半導体素子製造装置の底部を示す平面図である。
【図3】図1に図示された半導体素子製造装置の上部を示す構成図である。
【図4】本発明の一実施形態による半導体素子製造装置の内部で加工される基板S及び前記基板Sの表面に形成されるパターンを示す図である。
【図5】本発明の他の実施形態によって半導体素子製造装置を示す構成図である。
【符号の説明】
【0103】
600 工程チャンバー、
620 ポンプシステム、
622 真空ポンプ、
624 真空配管、
710 ガス供給部、
712 ガス保存ユニット、
720 上部電極、
730 下部電極、
740 電源供給部、
1000 半導体素子製造装置。

【特許請求の範囲】
【請求項1】
1つ以上のパターンを有する半導体基板に対して互いに異なる多数の工程を行うことができる工程チャンバーと、
前記各工程を行うための工程ガスを前記工程チャンバーの内部に提供するガス供給部と、
前記ガス供給部と連結され前記工程チャンバーの上部に配置される上部電極と、
前記上部電極と対向するように配置され前記基板を支持する下部電極と、
前記上部電極及び下部電極のうちの少なくとも1つと連結され、前記上部電極及び下部電極のうちの少なくとも1つを駆動させて前記基板が搭載される上面と前記上部電極との間隔を調節するための駆動ユニットと、
前記上部電極に電源を供給する第1電源及び前記下部電極に電源を供給する第2電源を具備する電源供給部と、
を含むことを特徴とする半導体素子製造装置。
【請求項2】
前記上部電極は、前記工程チャンバーの上部に多数配置され前記下部電極は前記上部電極と一対一で対応するように配置され、前記各上部電極及び下部電極間の空間で互いに異なる前記工程が独立的に行われる多数の工程処理ユニットを具備することを特徴とする請求項1記載の半導体素子製造装置。
【請求項3】
前記ガス供給部は、前記上部電極と一対一で対応して多数配置され、各ガス供給部は互いに一対一で対応される前記上部電極と下部電極との間で独立的に行われる各工程に適合する工程ガスを供給することを特徴とする請求項2記載の半導体素子製造装置。
【請求項4】
前記工程ガスは、前記各処理ユニットによって限定されることを特徴とする請求項3記載の半導体素子製造装置。
【請求項5】
前記多数の工程処理ユニットは、可変性障壁によって前記工程チャンバーの内部空間で互いに個別的に区分され前記多数の工程ガスが前記各処理ユニットの内部で互いに混合されることを防止することを特徴とする請求項2記載の半導体素子製造装置。
【請求項6】
前記可変性障壁は、エアカーテン又は不活性気体カーテンのうちのいずれか1つを含むことを特徴とする請求項5記載の半導体素子製造装置。
【請求項7】
前記多数の工程処理ユニットは、前記パターンの形状に沿って金属膜を形成するための第1蒸着工程が行われる第1処理ユニット、前記パターンの形状に沿って金属窒化膜を形成するための第2蒸着工程が行われる第2処理ユニット、及び前記金属膜又は金属窒化膜を部分的に窒化するための窒化工程が行われる第3処理ユニットを含むことを特徴とする請求項2記載の半導体素子製造装置。
【請求項8】
前記第1及び第2蒸着工程は、金属プラズマ処理工程、サイクリック化学気相蒸着工程、パルス膜質核(pulsed nucleation layer、PNL)蒸着工程、及び原子層蒸着(atomic layer deposition、ALD)工程を含み、前記窒化工程は窒素プラズマ処理工程を含むことを特徴とする請求項7記載の半導体素子製造装置。
【請求項9】
前記金属膜はタングステン膜を含み、前記金属窒化膜はタングステン窒化膜を含むことを特徴とする請求項7記載の半導体素子製造装置。
【請求項10】
前記多数の工程処理ユニット間の基板移送のための移送ユニットを更に含むことを特徴とする請求項2記載の半導体素子製造装置。
【請求項11】
前記移送ユニットは、コンベヤーシステム又は運送ロボットを含むことを特徴とする請求項10記載の半導体素子製造装置。
【請求項12】
前記互いに異なる前記工程が前記工程チャンバーの内部で順次に行われることを特徴とする請求項1記載の半導体素子製造装置。
【請求項13】
前記ガス供給部は、前記各工程に使用される工程ガスを独立的に保存する多数のガス保存ユニット、前記ガス保存ユニットをそれぞれ個別的に制御して各工程ガスの流れを制御する流量制御バルブ及び前記流量制御バルブを通じて供給される工程ガスを前記工程チャンバーの内部に誘導する供給配管を含むことを特徴とする請求項12記載の半導体素子製造装置。
【請求項14】
前記ガス保存ユニットは、前記工程チャンバー内部を洗浄するパージガスを保存する第1保存ユニット、前記パターンのプロファイルに沿って金属膜を形成するための金属ソース、窒素ソース、及び水素ソースをそれぞれ独立的に保存する第2保存ユニット、第3保存ユニット、及び第4保存ユニットを含み、前記供給配管は前記それぞれの保存ユニットと個別的に連結される排出ライン及び前記排出ラインと共通に連結され前記ソースを前記工程チャンバーに供給する共通供給ラインを含むことを特徴とする請求項13記載の半導体素子製造装置。
【請求項15】
前記流量制御バルブを個別的に制御する中央制御ユニットを更に含み、前記中央制御ユニットは前記工程チャンバーの内部で行われる工程の進行順序によって前記流量制御バルブの開閉を調節することを特徴とする請求項13記載の半導体素子製造装置。
【請求項16】
前記第1電源は前記工程ガスを工程プラズマに形成するためのソース電源を含み、前記第2電源は前記工程プラズマを前記基板に加速するためのバイアス電源を含むことを特徴とする請求項1記載の半導体素子製造装置。
【請求項17】
前記バイアス電源は、直流バイアス又はラジオ周波数(RF)バイアスを生成することを特徴とする請求項16記載の半導体素子製造装置。
【請求項18】
前記駆動ユニットは前記下部電極と連結される線形軸と前記線形軸を支持して前記動力を伝達するベアリング部を含む第1駆動軸及び前記第1駆動軸と連結され前記第1駆動軸に動力源を供給する動力源を含むことを特徴とする請求項1記載の半導体素子製造装置。
【請求項19】
前記駆動ユニットは、前記上部電極と連結される第2駆動軸を更に含み、前記上部電極は前記第2駆動軸の回転によって前記下部電極に向かって移動することにより、前記下部電極と前記上部電極との間に形成される空間のサイズを調節することを特徴とする請求項18記載の半導体素子製造装置。
【請求項20】
前記上部電極は、前記第1電源と電気的に連結され前記ガス供給部と機械的に連結された第1電極及び前記第1電極の下面に結合され前記第1電極との間に前記工程ガスを収容することができるバッファ空間を提供する第2電極を具備し、前記下部電極は前記基板を加熱するための加熱手段を含むことを特徴とする請求項1記載の半導体素子製造装置。
【請求項21】
前記パターンは、前記基板上に形成された多数の導電性構造物を覆う層間絶縁膜及び前記層間絶縁膜を貫通して前記導電性構造物を部分的に露出するコンタクトホールを含むことを特徴とする請求項1記載の半導体素子製造装置。
【請求項22】
単一のチャンバー内で真空断絶なしに基板のコンタクトホール内部に金属膜を蒸着して前記金属膜の一部を窒化させる段階を含むことを特徴とする半導体素子製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2009−38380(P2009−38380A)
【公開日】平成21年2月19日(2009.2.19)
【国際特許分類】
【出願番号】特願2008−198403(P2008−198403)
【出願日】平成20年7月31日(2008.7.31)
【出願人】(390019839)三星電子株式会社 (8,520)
【氏名又は名称原語表記】SAMSUNG ELECTRONICS CO.,LTD.
【住所又は居所原語表記】416,Maetan−dong,Yeongtong−gu,Suwon−si,Gyeonggi−do 442−742(KR)
【Fターム(参考)】