説明

可変伝動機

【課題】定馬力伝動型のベルト連続可変伝動機では出力回転数や速比とトルクの二制御機能は不可欠でしかも速比とトルクの同期操作以外に単独操作させて周囲温度変化や経年変化に依る速比又はトルクの誤差補償や低速域及び高速域での摩擦力過剰と摩擦力不足に対する効率補償を可能にさせた伝動機構を実現することである。
【解決手段】速比及びトルクに二つの制御機能を入力及び出力車加圧用の二つの加圧装置に相互配置ししかも調節装置の供給指令からプーリ可動車までの指令供給系路を速比とトルクとでは互に完全分離区分して個別化する思想であり、速比又はトルクの誤差補償の外に伝動機休止中の弾性体高圧縮状態を解放する指令操作を可能にする思想である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は一般産業機械、車両、電動機等に使う可変伝動機に関し特にプーリへの弾性力と加圧力の識別供給と指令制御形態とで摩擦力安定化と広帯域高効率伝動を果す可変伝動機に関する。
【背景技術】
【0002】
定馬力型ベルト無段変速機の動作は、米国特許第4,973,288号又は同第5,269,726号等で開発中だが満足な商品の実現に至らない。入出力車を後者は油圧でまた前者はネジ巻上機で夫々同時加圧する思想である。然しこれ等の思想は決定的かつ重大な機能上乃至原理上の欠陥を持つ。通常出力車が負荷に伝える出力馬力P〔W〕は該回転数N〔rpm〕とトルクT〔Kgm〕との伝動関係式P=1.027×N×Tで決る。回転数はベルトプーリ間接触位置即ち半径比で決まるのに対しトルクは両者間の接触摩擦圧と接触面積で決まる。この事は回転数がプーリ内ベルトの位置決め制御だけで決まるのに対し軸トルクが該プーリとの該面積と常時摩擦圧の可変加圧制御だけで決まる事を意味する。従って無段変速機での所望回転数とトルクの確保策は各プーリに可変径位置決め制御と摩擦圧の可変加圧制御とを識別適用し相互に同期操作すべき事を上述伝動関係式自体が示す。然し上述米国特許思想は仮に入出力車に同期した加圧力の位置決め機能を与えても常時適正なベルト位置を維持する保証は無くまして両車に常時所定摩擦力付与のトルク保証機能は全く無い。この事は上述両特許思想では適正な回転数とトルクの確保と維持ができず定馬力伝動が原理的に不可能な事を示す。
【0003】
これに対し本件出願人は欧州特許出願EP0931960A2号で入出力の二つの各プーリに可変加圧制御と可変径位置決め制御の各機能役割の分化を提案した。然しまだ幾つかの未解決な問題が残る。その第一はベルトプーリ間摩擦力の不安定性であり第二はそれに伴う伝動効率の悪化の問題である。前者は引張型ベルトの低速伝動を不能に到らせる。その原因は直接にプーリへの外部加圧による摩擦力確保策では接触半径又は面積の増大時に摩擦伝動面の摩擦係数が不安定化し摩擦力過剰を招く為である。後者では押込型ベルトでも伝動効率は速比ε=1付近で最大だがそれ以外の速比域は両プーリの接触面積の平衡が崩れて悪化する。即ち両プーリ中接触面積の増大側での摩擦力過剰でベルト食込みによるブレーキ発熱と、接触面積の減少側での摩擦力不足でスリップ発熱とが同時発生するのが原因と推測され制御形態を充実する対策が望まれる。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】米国特許第4,973,288号
【特許文献2】米国特許第5,269,726号
【特許文献3】欧州特許出願EP0931960A
【発明の概要】
【発明が解決しようとする課題】
【0005】
本発明の共通解決課題は、可変径車への加圧力は速比の弾性力はトルクの制御機能を果すが、従来技術の単一制御指令だけでは満足な操作が出来ないので調節装置で速比又は出力回転数指令やトルク指令等複数指令に分化し制御要素別に個別化する指令供給系路に関し、高効率伝動と長期安定伝動を果す可変伝動機を提供し、必要に応じ弾性体がトルク制御作用を持つ反面該高加圧が伝動部材劣化を招くので指令操作による防止策を提供する。
【0006】
本発明の第一解決課題は、速比とトルクの二制御機能を入力及び出力車の二加圧装置に個別付与する際に調節装置の指令供給も速比又はトルク制御機能が他制御機能から分離独立させ両者の同期操作の外に速比又はトルクを単独操作の誤差補償や各種操作させた思想である。
【0007】
本発明の第二解決課題は、定馬力伝動は上述伝動関係式の通り回転数(速比)制御とトルク制御を要するが調節装置から第一及び第二加圧装置に出力回転数制御する加圧力指令と出力トルク制御する弾性力指令とを入力又は出力車に個別に並列供給する思想である。
【0008】
本発明の第三解決課題は入出力車の一方に加圧力で速比を他方に弾性力でトルクを制御すると加圧力供給側伝達車は指令供給の停止後は弾性力供給側伝達車に摩擦力過剰に成り摩擦力の平衡が崩れて伝動の不安定化を招くので両車で摩擦力を安定化する思想である。
【0009】
本発明の第四解決課題は、トルクと速比の指令供給系路を互に分離独立する事で、弾性体を用いた弾性力供給思想は常時摩擦力の維持と正確な摩擦圧付与で任意の最適トルク付与が可能な反面、高加圧状態を長期継続で弾性体等伝動部材の変形劣化を招くがこの劣化回避して長期の安定伝動を保証する思想である。
【0010】
本発明の第五解決課題は入出力車の一方で速比と他方でトルクの同期操作で変速するが高負荷トルク時に速比制御側伝達車で弾性力が無く摩擦力不足とトルク制御側伝達車の摩擦力過剰で招く不安定伝動や伝動不能を阻止し両車で摩擦力平衡を操作する思想である。
【課題を解決するための手段】
【0011】
本発明の共通解決手段は、調節装置から各伝達車への指令供給を速比指令経路とトルク指令経路に分離区分し途中の駆動源、圧縮装置、弾性装置等の加圧装置を総て独立個別化すると共に必要に応じ各指令供給経路を除加圧指令等の他加圧指令にも共用可能な構成にしたことである。
【0012】
本発明の第一解決手段は、調節装置が速比及びトルク制御する第一及び第二圧縮装置に夫々施す第一及び第二駆動源を経て互に分離独立した速比及びトルク指令を直接施す事で速比又はトルクを単独操作可能にサーボ制御し低速域又は高速域で高効率操作する機構である。
【0013】
本発明の第二解決手段は入出力車の一方に弾性体を他方に速比制御の第一加圧装置とトルク制御の第二加圧装置とを並設する事で、入出力車への両弾性力で両者の摩擦力に平衡を施しながら調節装置からの速比指令及びトルク指令の個別操作で伝動する思想である。
【0014】
本発明の第三解決手段は入出力車の一方に加圧力指令を他方に弾性力指令を施すと共に加圧力供給する伝達車にもう一つ別の弾性体から弾性力供給して入出力車双方に弾性力を適正付与して常時摩擦力の平衡が崩れない様に他方の弾性体で加圧制御する構成である。
【0015】
本発明の第四解決手段は、調節装置が伝動運転中は加圧装置が弾性装置を直列圧縮し生じた弾性力供給で可変加圧制御するトルク指令又は該補償指令を供給し、伝動機停止時は休止中の弾性装置の高圧縮状態を解除し起動時に加圧する除加圧指令を供給する指令供給形態の構成である。
【0016】
本発明の第五解決手段は、速比制御機能を果す第一加圧装置を持つ伝達車に対し更に弾性力供給でトルク制御機能を果す第二加圧装置を別途に並設し調節装置が入出力車双方に個別に制御したトルク指令を施す事で負荷トルクの変動に対しても高効率伝動を果す構成である。
【発明の効果】
【0017】
本発明は定馬力伝動に要する回転数(速比)制御する第一加圧装置とトルク制御する第二加圧装置に施す調節装置の指令供給系路に関し、調節装置の段階からプーリ可動車の段階に至る指令供給系路を速比指令供給系路とトルク指令供給系路とに分離区分したので、第一に該両加圧装置を単一指令で共用する際の制約が無く同期操作も単独操作も調節装置で選定でき、第二に指令共用すると加圧装置の構造にも制約が残るが指令分離すると調節装置側で指令操作方向や極性を任意に選択でき、第三に指令供給系路相互間での誤信号要因を排除でき各指令の反転逆転を阻止でき、第四に速比又はトルク指令供給系路に調節指令の外に誤差補償や劣化阻止等他指令付与でき、第五に単一可動車に加圧力と弾性力とを同時供給し又は入出力車双方に加圧力の同時供給は伝動不能に至るが弾性力の同時供給は良好な高効率伝動を果す等の効果がある。
【0018】
特に(1)速比及びトルクの両制御機能を入力及ぶ出力車用の両加圧装置に個別配置しさえすればその同期又は単独操作で定馬力伝動も定トルク伝動も更にトルク変換伝動も実現できしかも速比やトルクの補償演算が瞬時かつ高精度管理できるので安定伝動と高効率伝動が常時にしかも長期に渡り保証される。(2)一つの可動車に第一及び第二加圧装置を並設すると調節装置で速比又はトルクの制御機能の一方を選択したり或いは双方を同時供給できるので、負荷の必要に応じて入出力車双方で同時に個別にトルク制御操作可能なので常時両車の高精度トルク管理により高効率伝動が、特に摩擦力不足と過剰を招き易い低速域と高速域での効率改善し結果的に広帯域も実現する。(3)入出力車の一方又は双方の弾性装置が内外で生じる誤差要因を瞬時に吸収能力し安定伝動に復帰するので次の変速動作を促し結果的に常時高速度の変速応答性も確保できる。(4)二伝達車双方に第一及び第二加圧装置を施すと入力及び出力車が夫々トルク及び速比を制御する第一伝動形態と夫々速比及びトルクを制御する第二伝動形態との二つの伝動形態が一台の伝動機で果せる結果、両形態からより高効率の伝動帯域を選択すると著しく広帯域高効率伝動機が実現する。
【0019】
上述以外に複数の制御要素を個別独立化する利点は、(イ)ベルト周長の伸びやベルトプーリ摩擦面の磨耗は速比及びトルクの誤差要因になるが、これ等の各制御要素が分離独立している為回転数及び摩擦圧等の検出器を用いて誤差補償が可能で又速比の誤差補償だけでなく弾性体のヘタリ劣化した際のトルク誤差補償も加圧装置を個別設置の思想により実現する。(ロ)また入出力車の双方でトルク制御する際には高負荷トルク時や軽負荷トルク時など負荷の要求に応じ両トルクを調節装置の二つの指令供給だけで常時最適なトルク制御の付与が実現するので結果的に高負荷時でも軽負荷時でも常時高効率を果す効果がある。
【0020】
(ハ)更に可変伝動機の制御要素には上述可変制御要素以外にも可変を要しない制御要素が存在し、この場合に既存加圧装置の指令供給系路を共用する事でそこに他指令による他機能の動作を付与する事も可能である。例えば弾性体を用いる伝動機では運転中に弾性体がトルク制御の付与に有効に働く反面停止中は高加圧状態の弾性力が弾性体を含む伝動部材の変形劣化を促進するので、その劣化阻止策として停止時に高加圧状態にある弾性体の高圧縮を解除し起動の際に加圧する除加圧指令を弾性体の加圧装置に強制的に供給して各伝動部材保護と長期の安定伝動を果す効用が働く利点がある。
【図面の簡単な説明】
【0021】
【図1】本発明の第1実施例可変伝動機の全体構成断面図を、
【図2】同第1実施例の入力車及び入力操作器の断面図を、
【図3】同第1実施例の出力車及び出力操作器の断面図を、
【図4】同第1実施例の各操作器用の駆動源及び調節装置の構成図を、
【図5】同第1実施例の出力操作器に施した圧力検出器の断面図を、
【図6】同第1実施例の速比対接触半径・摩擦力特性で図6Aは入力車側の図6Bは出力車側の夫々の動作特性説明図を、さらに
【図7】同第1実施例の速比対伝動効率特性図を夫々示す。
【図8】本発明の第2実施例可変伝動機の全体構成断面図を、さらに
【図9】同第2実施例の入力車及び入力操作器の断面図を夫々示す。
【図10】本発明の第3実施例可変伝動機の入力車及び入力操作器の断面図を、更に
【図11】同第3実施例の出力車及び出力操作器の断面図を夫々示す。
【発明を実施するための形態】
【0022】
本発明思想は変速伝動装置と変速制御装置を共に油層に納めた湿式型に限定されず、両者を空中に納めた乾型でも又夫々を個別収納しても良い。又伝動形態として本発明は特に定馬力伝動型可変伝動機で大きな効力を発揮するが速比制御のみ単独操作して定トルク伝動型可変伝動機に適用してもよい。制御形態として変速制御装置の操作器は、加圧力と弾性力の識別に際し第一及び第二加圧装置で成る個別加圧方式と、複合装置による複合加圧方式とを開示したが、入出力両操作器を共に個別加圧装置による加圧方式にしても良く又入力側を複合加圧装置による加圧方式に出力側を個別加圧装置による等各種の加圧方式にしても良い。その際出力車に図6Bの予備圧は当然可変制御しても良く又必ずしも与える事を要しない。プーリを押圧する加圧装置、複合装置、圧縮装置、弾性装置又は当接装置は全て非回転配置の例を示したが回転状態で使用しても良く、取付位置もプーリの周囲に制約されず油圧ジャッキや梃子の圧力伝達装置にて任意位置に配しても良い。
【0023】
操作器の加圧力と弾性力を切換する例では速比ε=1で優先的に切換える例を示したが任意の速比の時点で切換えを行っても良く、切換操作の基準を速比で無く出力回転数又は出力トルクを優先的な基準に切換えても良い。その際望ましくは該出力回転数とトルクとが共に瞬時の衝撃なく安全にバンプレス切換させる事が好ましい。更に入力動力が内燃機関や直流電動機等の如き該出力回転数が変速する時は可変伝動機の速比制御を或る定速比のままで出力トルクのみを該回転数に応じ入力操作器の単独操作で可変トルク制御を施してトルク変換機にしても良い。尚基準車機能のプーリは回転数制御をまた追従車機能のそれはトルク制御を夫々果すので、操作器が各機能切換した時は当然調節装置から供給される速比及びトルク指令でもある制御指令も同時切換えるべきは明白で該指令も増速・減速の回転数指令と、増圧・減圧のトルク指令とを夫々識別選択して供給制御すべきは当然である。従って伝動部材のベルトプーリ摩擦面劣化等には該補償した回転数指令を弾性体劣化等には該補償したトルク指令を夫々識別供給すべきである。
【0024】
次に、各装置、部品等の代替化、兼用共用化は各種変更が可能である。加圧装置は圧縮装置が弾性装置又は/及び当接装置と直列連結ならば配列順序は任意である。圧縮装置は指令信号の供給停止後も該押圧位置を安定保持できるなら他の巻上機や油圧ジャッキ又はカム機構等でも良い。弾性装置も皿バネに限る事なく他の如何なる型でも良い。当接装置も他形態で良く例えば各弾性体自体に当接具をもたせ直列配列させても良い。尚夫々の加圧手段である摺動具、摺動体、摺動材等は相互に兼用、共用したり本体、車、圧力伝達装置等の他伝動部材類と代替兼用しても良い。圧力伝達装置や第一及び第二検出器も他の如何なる型式でも良く、例えば圧力伝達装置はプーリ回転軸の中空軸芯内を伝達させても良い。入出力駆動源の制御モータは入力及び出力側の各加圧装置毎に個別配置の例を示したが、駆動源には周知の伝達機や歯車同期嵌合装置等切換器を用いて共用化又は単一化できモータ種類も交流又はステップモータでも良い。尚可動車と弾性体の同時加圧装置では圧縮装置操作量と円板車相対距離間で比例又は反比例し且つ弾性体と弾性力間で夫々反比例又は比例する構成であれば良い。また各操作器は、該各圧縮装置を該第一及び第二各加圧装置に対して夫々個別に又は共用単一に持っても良い。
【0025】
該モータと圧縮装置をもつ加圧装置では、プーリ高圧力に耐えて長期間の高精度の位置決めと加圧値の供給制御を要する。故に操作器の各加圧系路にセルフロック機能即ち逆転阻止機能とモータのオーバラン阻止機能等各制御指令への誤信号要因を積極的に排除する事を要す。従って台形ネジ等金属面接触摩擦手段やウォーム伝達機等一方向伝達機を用いたり、更にクラッチ、ブレーキ機能付モータや逆転阻止機能をもつステップモータの適用がされるべきである。尚圧縮装置の摺動量は、基準車機能の出力車移動量lではプーリ移動分1pのみだが追従車機能の入力車移動量lではプーリ移動分1pと弾性体圧縮量1sが加わり合計移動量は1p+1sとなる。従って回転数指令とトルク指令では操作量も操作方向も互に異なるため、ネジ又はカム等の巻上摺動装置の場合は巻上ピッチ、回転方向、右ネジ・左ネジ等のネジ溝加工方向、歯車伝達機の速比等周知要素を設計に応じて選択すれば良い。
【0026】
次に調節装置90の制御形態は各種考えられ、出力回転数N0又は出力トルクT0に精度を要しない時は予め初期設定した操作量として単一の制御指令を供給すれば良い。それ等に高精度を維持し安定伝動させて変速動作の高速度応答性を優先する時はベルト周長又は弾性体ヘタリの劣化誤差を定期感知し劣化量に応じて回転数又はトルクの各指令に、予めメモリに定めた値となる様に補償量をCPUにて算出加味して入力及び出力操作器に与え実質的な回転数又は摩擦圧の該検出値を帰還させて閉ループにてサーボ制御しても良い。更に、トルクと速比の高精度管理を要する場合には、各検出値と予めメモリに定めた基準値とを実質的に比較し負帰還制御を入力又は出力側の各操作器に供給する事により高負荷伝動にも極めて高い効率の長期運転を果す。
【実施例1】
【0027】
図1乃至図6に於いて、車両用の可変伝動機10は、入力車1と出力車2間に施すベルト3で成る変速伝動装置10Aと、該同一平面側に入力操作器9と出力操作器8を図4で示す調節装置90で調節する変速制御装置10Bとで構成される。本例では入力操作器9は第一及び第二入力加圧装置11,51でなる個別加圧装置50を更に出力操作器8は出力加圧装置21でなる複合加圧装置40を有し夫々図4に示す駆動源60で付勢される。各加圧装置11,51,21は夫々圧縮装置14,54,24を有し入力弾性装置31と、入力当接装置35と、出力複合装置20とを夫々操作する。入力操作器9は入力車1に第一及び第二入力加圧装置11,51とで調節装置90が個別に又出力操作器8は出力車2に加圧装置21が単一で速比に応じ夫々弾性力と加圧力を識別供給する能力を有する。尚入出力側に略同等機能部品が存在する為本明細書では各部品名称に「入力」、「出力」の区別を要す時は付すが、前後の記述や図面等で解る時は省く。
【0028】
変速伝動装置10Aは夫々可動車1a,2a と固定車1b,2b を相対向しキーを経て前者が後者に対し軸芯方向に摺動可能に配された可変径プーリ1,2
を含み、夫々入力軸1cと出力軸2cに互に逆向きに配される。各プーリ1,2 は夫々一対の軸受7,6で軸支されて回転し、更に本体10と各可動車1a,2aとの間を夫々一対の軸受5,4で回転力を分離しながら各加圧装置11,51,21で夫々該プーリ可動車を加圧操作している。本体10は、車両等の他伝動機器等を収める第一本体10aと、可変伝動機10を収める第二本体10bとが分離可能に組付される。
【0029】
Vベルト3は、入力車が出力車を引張伝動する引張型と押込伝動する押込型との二種類のベルトが周知で本発明にはこの両者が適用可能である。その構造説明は省略し例えば前者は米国特許第4,493,681号等で又後者は同第3,949,621号等の例示を記述するに留める。尚本実施例思想は特に引張ベルトでもカム機構等の不安定摩擦力の補償対策を付せずに安定伝動を果すので、金属芯体3aを耐熱樹脂、セラミック、金属等の複合材3bを囲む構造の引張型ベルト3で図示する。本発明の変速伝動装置10Aは次に述べる変速制御装置10Bの操作により図7に示す通り広い可変速可変トルク帯域の全帯域で定馬力の動力伝動を高効率で果すものである。
【0030】
各操作器9,8は、対応する各伝達車1,2の可動車1a,2aに加圧力又は弾性力を制御指令に応じて個別に識別供給可能に構成されている。即ち第一加圧装置による加圧力供給は対応伝達車を基準車機能に又第二加圧装置による弾性力供給は対応伝達車を追従車機能に夫々働かせる。ここで、基準車・追従車機能とは、摩擦伝動時の安定要因の設定を基準車側で定め又不安定要因を追従車側で自己収束し整定する機能を云う。即ち基準車機能は摩擦伝動時のベルトの基準位置を定めて出力回転数や速比を決定する機能で、ベルト接触半径を定めるプーリV溝の位置決め制御を意味する。変速操作時はプーリからベルトに加圧力を付与して可変径位置決め制御するが速比が決まると実質的に加圧力印加も停止し可動車によるV溝位置は固定されるので通常の定速比プーリと同一条件のV溝を形成する。追従車機能はベルトプーリの接触面摩粍や内外の外乱振動等の誤差要因が生じても上述位置決め制御とは全く無関係に両者間に常時所定摩擦力の供給維持しその誤差要因を正規伝動状態に瞬時に復帰させる自己整定乃至自動調芯機能を弾性力の働きで果し各軸の軸トルクを決定する機能である。
【0031】
入力操作器9は、本例では入力車1への加圧力供給用の第一入力加圧装置11と弾性力供給用の第二入力加圧装置51と夫々個別に持つ個別加圧装置50の入力加圧装置と駆動源60a,60bとで構成される。第一加圧装置11は入力切換器の当接装置35と第一圧縮装置14との直列構造で、又第二加圧装置51は弾性装置31と第二圧縮装置54との直列構造で夫々構成し両者は共用の摺動体36と軸受5を経てプーリ1の可動車1aを互に回転軸芯方向に平行に加圧する。当接装置35と弾性装置31は入力車1の軸1cの外周に同軸で同芯円上に並列で軸芯方向に平行に配され、又各圧縮装置14,54は同軸上に縦続配列される。従って各加圧装置の加圧形態は、車1aに対し装置14が第二本体10bの内壁から又装置54が外壁から図2の圧力伝達装置70を経て弾性装置31に圧力伝達する。
【0032】
各加圧装置11,51の各圧縮装置14,54は共に摺動装置13,53とこれを付勢する付勢装置12,52とで成る。各摺動装置13,53は、二つの摺動具16,17と56,57並びに両者間を摺動させる押圧装置15,55を有し本例ではボールネジである。摺動装置13は管状形成し入力車1の周囲に又摺動装置53は棒状形成され該軸1の延長上に離隔して位置する。付勢装置12,52は本例では共にウォーム18,58とホイール19,59から成るウォーム伝達機で成り、夫々軸18a,58aに駆動源60a,60bからの速比,トルク指令が入力され摺動装置13,53が一旦位置決めされると制御指令の供給を停止しても該位置を保つセルフロック機能を果す。各加圧装置11,51はテーパローラ5とスラスト軸受5bとの間で非回転状態で車1を加圧する。歯車19のキー19aを経た雄ネジの摺動具16と歯車59に直結の雌ネジの摺動具57とは回転に伴って上下に摺動する事はなく、加圧装置11では摺動具17が又加圧装置51では摺動具56が上下動する。
【0033】
第一加圧装置11の当接装置35は切換器として働き、間隙38を経て配される二つの摺動材36,37で成り、圧縮装置14の作動指令の選択に応じ両者を互に当接する当接動作時と、両者間を離隔させる当接解除時とを調節装置90の制御指令で加圧力の供給と停止を制御される。当接動作時は圧縮装置14が摺動材36,37と軸受5を介し入力車1に直接加圧力を与えるので該車1が可変径位置決め制御の基準車機能を果す事になる。当接解除時は間隙38を生じ圧縮装置14は入力車1には作用しないので追従車機能のトルク制御が選択できる。本例では摺動材37は圧縮装置14の摺動具17と共用し摺動材36は弾性装置31の摺動体34と共用する。77は自転阻止の回止具である。
【0034】
第二加圧装置51の弾性装置31は中心貫通孔を施され、四枚の皿バネの直列構造で示す弾性体32と、これを両端で加圧する二つの摺動体33,34とで成り、第一摺動装置13の第一摺動具16、17と当接装置35の外周に該貫通孔が同芯配置される。弾性体は弾性振動の伝達を一端で可能で他端で不能に構成し且つ両端が摺動可能な為浮遊状態に支持される。図2の通り弾性装置31は本例では圧縮装置51との間に圧力伝達装置70が配されて弾性体32を直列圧縮し同時に生じた弾性力を摺動体34と軸受5を介し供給するので、この時該車1が可変加圧制御の追従車機能を果す事になる。従って第一加圧装置11の加圧力と第二加圧装置51の弾性力とは共に共通の摺動体34と軸受5を経て互に車1を並列印加する。
【0035】
図2の圧力伝達装置70は、圧縮装置54の摺動具56の端部56aに連結しこれを中心受加圧点から左右対称に延長した第一伝達手段71と摺動体33を兼ねる第二伝達手段74とでなる横伝達手段78と、その両端に連結し摺動具56の軸芯方向に平行に二本の加圧軸72でなる縦伝達手段73と、更に弾性装置31の押圧用加圧軸72,72の摺動方向を円滑案内する軸受と本体貫通孔でなる支持装置79と成る。各手段71,72,73は四角形枠を形成し高加圧でも四角形を保守させる為各軸72,72はリニヤボール軸受75,76を介して本体10dで支持し摺動具56と同方向に加圧する。尚本例では摺動体33と加圧環74を共用し弾性装置31を直列加圧する。
【0036】
図3の出力操作器8は、本例では出力車2への第一加圧装置の加圧力供給と第二加圧装置の弾性力供給とを単一の出力加圧装置21が駆動源60cへの制御指令に応じて両者を夫々識別供給する。操作器9と異なり、出力弾性装置41と出力切換器である出力当接装置45を並列組付した複合装置20を更に単一の出力圧縮装置24で直列組付した複合加圧装置40である出力加圧装置21を持つ。圧縮装置24は2つ摺動具26,27とボールネジ26aの押圧装置25とでなる摺動装置23、更にウォーム28とホイール29で成りセルフロック機能を持つウォーム伝達機の付勢装置22で成る。圧縮装置24及び54の相違点は、摺動装置53は右ネジ加圧されるが摺動装置23は左ネジ加圧された事と、摺動具56は非回転で上下動するが、摺動具26は回転しかつ上下動する為軸受49が配される事と、更に圧縮装置54の全体が振動不能に本体10bに設置されるが、圧縮装置24では摺動装置23のみは伝達車2と弾性装置41との間を弾性振動伝達可能な連動状態又は浮遊状態に支持する為摺動具26は付勢装置22のホイール29との間に軸芯方向に摺動可能にスプライン結合26cを延長配置して回転伝動を可能にした事等がある。
【0037】
軸受49を経て加圧される弾性装置41は環状鍋に形成した摺動体43と、摺動体44との間で収納加圧する複数の皿バネでなる弾性体42を持つ。本例では図2の弾性体32は伝達車側に又図3の弾性体42は本体側に夫々配されるが、共に弾性体32,42の一端は弾性振動可能に他端は振動不能に支持させて摩擦伝動面での振動抑制を効果的に実施する。当接装置45は、二つの摺動材46,47で成り、本例では摺動材47が摺動体43の鍋状外縁で又摺動材46は摺動体44で夫々共用している。図3は中心線の左半分で弾性装置41の軽負荷時には間隙48が介在し当接装置45が当接解除状態で弾性力を又右半分で弾性装置41が所定値を越え当接装置45が当接動作状態で加圧力を夫々伝達車2に識別供給する状態を示す。尚本例の当接動作状態では弾性体42の弾性力Psは加圧力に加わり常時供給する。
【0038】
尚加圧装置21でも加圧装置51と同一構造の縦伝達手段83と横伝達手段88と支持装置89とで成り左右対称に四角形枠の圧力伝達装置80を持つ為類似参照符号を付し説明を省く。相違点は本例では全加圧機構を固定車2bの裏側に配し弾性振動も相互に伝える事である。又図5は加圧装置21の本体10dと複合装置20の一端間に配した第一検出器の圧力検出器94の断面図である。環状の弾性体42と摺動材47とが液封した主ダイヤフラム104を同時に圧縮可能に構成した環状検出端101と、この検出端101の一箇所から放射状に延長して副ダイヤフラム106を変位する導出端102と、この端部に配し半導体歪ゲージをもった圧力−電気信号変換部103と、更に油媒体105とで成る。単に印加弾性力又は加圧力だけで無く定速比運転時での出力摩擦伝達面での摩擦力の値を適正に感知し且つ摩擦圧によるトルクの負帰還制御が可能となる。
【0039】
図4の通り各操作器8,9は、各加圧装置11,51及び21に夫々個別に駆動源60a,60b及び60cを隣接して施し電子調節装置90から制御指令が個別に供給される。各駆動源60には夫々にギヤヘッド64、直流サーボの可逆モータ65,ブレーキ66,エンコーダ67を持ち各対応する参照部品番号に符号a,b,cを付して示す。両操作器には互に同期したサーボ制御を要するが、各圧縮装置14,54及び24の移動操作量は夫々異る為対応の各軸18a,58a及び28aへの制御指令は調節装置90から個別に設けた速比の異なる歯車伝達機61a,61b,61cをもち必要に応じ歯車68,69を付設する。
【0040】
調節装置90は、CPU又は演算処理装置95及び各種RAM,ROMでなる記憶装置96,97を中心としてA/D乃至D/A等の変換増幅器98、伝送バスをもつ入出力装置91を経て入力及び出力情報を導出入する。入力情報はエンジン等のスタータスイッチ等の変速機10の起動指令と、変速指令又は除加圧指令などの制御指令と、図1で第二検出器として伝達車1,2の回転数検出器92,93の回転数と、圧力検出器94からフィルタ99を経たベルトプーリ摩擦接触圧と、更に各エンコーダ操作量Ra,Rb,Rc等である。出力情報は変換増幅器98a,98b,98cから各モータ65a,65b,65cへの操作指令Ea,Eb,Ecとブレーキ指令Ba,Bb,Bcである。
【0041】
記憶装置96は演算処理装置95がプログラマブル制御を実行する基礎情報を持つ。記憶装置97は三つの処理情報で成りメモリ97aはプーリ1が追従車機能でプーリ2が基準車機能で作動する時の制御情報を、メモリ97bはプーリ1が基準車機能でプーリ2が追従車機能で作動する時の制御情報を、メモリ97cは両プーリ1,2の機能切換時の同期操作情報や各操作器8,9を非同期で個別の単独操作した時の定トルク型伝動機、トルク変換型伝動機の制御情報を予め記憶される。フィルタ99は弾性力から弾性振動分を除く。上述の各駆動源60および調節装置90の各機器は例えば山洋電気(株)出版「1998〜99サーボシステム総合カタログ」等で既に開示され市販中なので詳細説明は省く。
【0042】
次に第1実施例の動作を述べる。本例の思想は、引張型ベルトを用いて入力又は出力車のいずれの伝達車に対してもベルトプーリ間の接触半径が大きい時は常に該伝達車を基準車機能に、接触半径が小さい時は常に該伝達車を追従車機能に夫々働かせる為に、対応する各操作器からの加圧力又は弾性力を識別して供給制御する事である。本例では入力及び出力回転数N1,N0の速比ε(=N1/N0)が中間域のε=1を基準に切換える場合を述べる。即ち変速領域が、ε>1の大速比域又は低速域では入力車1に追従車機能を出力車2に基準車機能を与え個別操作して成る第一伝動装置Aの伝動形態で、逆にε<1の小速比域又は高速域では入力車1に基準車機能を出力車2に追従車機能を与え個別操作して成る第二伝動装置Bの伝動形態で夫々作動する様に、両操作器8,9と伝動装置の動作形態を切換える。図1は入力車1が最小半径r10で出力車2が最大半径r00なので、操作器9では入力切換器の当接装置35は当接解除状態で弾性装置31の弾性力を、操作器8では出力切換器の当接装置45が当接動作状態で加圧力を夫々供給し第一伝動装置Aを成し、この伝動中に増速指令が供給されたとする。
【0043】
図6は、変速域の速比εを横軸に、ベルトプーリ間摩擦力Pと接触半径rを夫々左右の縦軸に示す動作特性図で、図6Aは入力車の又図6Bは出力車の各特性を示す。起動時は図1の最大速比εmaxの為に入力車1には弾性体32の最大圧縮圧により最大摩擦力が施される。最大張力のVベルト3を経て出力車2のV溝には張力による最大摩擦力が保証される。本例の場合は出力当接装置45が当接動作中でも弾性体42の弾性加圧力は軸受49、摺動装置23及び圧力伝達装置80を経て、図6Bの二点鎖線の基礎圧Ps0は供給され続ける。従って出力車2の摩擦力はベルト張力と基礎圧Ps0が重畳した最大値P0maxになる。増速指令が加わり三つのモータ67が動くと各軸18a,58a,28aが回動し、入力車側では当接装置35の間隙38は挾まるが影響は無く、弾性体32が圧縮装置54により図6Aの通り圧縮がP11に減圧されるのでトルク指令としての供給弾性力も減り入力摩擦力も減る。出力車側ではベルト張力による摩擦力分が減少する為出力摩擦力もP01に減圧し同時圧縮装置21により複合装置20はそのままの状態で圧縮装置21の摺動具26,27間のみが相対変位し、圧力伝達装置80を経て可動車2aを速比指令としての供給加圧力で強制移動しベルト半径をr01に減ずる。この時同時に弾性力の働きで減圧に拘わらず入力車1の半径r10は増しr11に移動する。この一連の動作が同時に同期して行われる。以下同様に再度増速指令が加わると同じ動作を繰返し、速比ε=1に達するまで繰返す。
【0044】
更に増速指令がε=1に達すると当接装置35、45が両切換器として働き二つの操作器8,9の動作が瞬時に切換わる。即ち入力側では当接装置35の僅かに残された間隙38は調節装置90の指令で瞬時に消去し摺動材36,37は当接動作状態に入り弾性体32の弾性力は当接装置35の加圧力に優先的に速比を固定して切換が行われる。出力側では同時に付勢装置22の働きで摺動具26は上昇し複合装置20を減圧するので当接装置45は圧力検出器94から当接解除状態に入り、弾性体42の弾性力が摺動装置23、圧力伝達装置80を経て車2に伝えられる。従ってε<1の小速比域では、入力車1が接触半径を増大し基準車機能で又出力車2が接触半径を減少し追従車機能で成る第二伝動装置Bとして働く事になる。第一伝動装置Aでは出力回転数は出力操作器8で直接制御し、出力トルクは入力操作器9でベルト張力を経て間接制御したのに比し、切換後は第二伝動装置Bでは出力回転数が操作器9の速比指令で間接制御され出力トルクが操作器8のトルク指令で直接制御される。従って以後は調節装置90による各制御指令と該各補償信号の供給切換がある以外は全く同様に安定伝動を続ける。図3の左半分は増速指令が更に加わり出力回転数での速比εs の出力車2及び加圧装置21の状態を示す。最小速比εminまで同じ動作をする。
【0045】
逆に再び最大速比εmaxに復帰するには上述と逆回転の減速指令を各モータ65に与える事で上述と逆の動作手順で達成できる。速比ε=1での機能切換は、ベルト3の長手方向の伸びと幅方向の厚味の経年変化の悪影響を無くす為に本例では調節装置90が常時入出力車回転数検出器92,93と圧力検出器94から算出する速比信号εとトルク信号を基準に各加圧装置へのトルク及び速比指令の指令供給の切換をする例を述べる。然も実際には速比ε=1付近での伝動装置A及びB間のハンチングを阻止する為各指令は図6A,6Bに示す通り動作スキ間(Differential)を施して制御される。尚上述の例では操作器9の弾性装置31又は当接装置35の一方のみしか車1の加圧に影響しないので両圧縮装置14,54を常に駆動しても良いが必ずしもそうする必要は無く、車1に影響しない圧縮装置は図2の左側摺動体の如くその期間弾性体への制御指令の供給を停止し又は外部加圧を停止しある圧縮状態で待機しても良くまた切換時のみだけでなく常時両者を同時駆動させれば良い。更に弾性体31,41、プーリ1,2、ベルト3等の伝動部材が長期間の高圧縮圧で磨耗やヘタリ変形劣化した時に各車1,2で所定摩擦力が継続維持でき無くなる恐れが残るが、本例では図1の最大速比状態で伝動運転を停止する際でも調節装置90から加圧装置51,21の高加圧を低加圧に強制的に解除又は加圧する除圧又は加圧指令を与え長期間の運転停止の時の強制解放による経年劣化の阻止対策を施し得る。又各増幅器98は両操作器の切換時のみ直流モータ65を供給電圧又はパルス量操作で急速切換動作でき瞬時速動指令を供給して機能切換しても良い。
【0046】
更に本例では、出力トルクを入力及び出力操作器9、8の間接又は直接加圧制御で果す場合を持つが、各弾性体32,42の劣化した時にも高精度の所望摩擦力を出力車2で保証する為圧力検出器94がトルクの算出に使用される。出力車2が基準車機能で働く時でも弾性力供給しても良くクサビ摩擦力は同検出器で常時感知できるので、当然サーボ制御させても良い。摩擦力の低下時のトルク補償制御は、予め弾性体31の劣化の検出値からトルクを知りCPU95とメモリ97aとで定めた摩擦力に適するように入力又は出力操作器9、8にサーボ制御すれば良く、これを更に開ループ乃至閉ループ制御を施すことによって所定摩擦力供給での可変トルク制御を任意に利用する事が達成できる。出力回転数を入力又は出力操作器9、8の間接又は直接位置決め制御で行う際回転数検出器93を用いた時も同様である。
【0047】
本例の効用は、両車1,2のベルトプーリ間の接触半径又は面積が減少時は高圧の弾性力の常時供給を維持し続けるので加圧不足に因る滑りを解消し、接触半径又は面積が増大時は変速動作時以外には弾性力を全く印加しないか又は可変制御した弾性力を加えるだけなので摩擦係数変動や摩擦力過剰の不安定化を招く事が無く、必要以上の外部加圧に因るベルトの巻込み現象に伴う伝動不良が解消する。故に本明細書及び請求項で「実質的な非加圧」とは摩擦伝動に悪影響の無い範囲内で積極的に弾性力を可変制御しても良い事を意味する。その結果図7の通り二つの効率特性の各最高効率域のズレを利用して大速比域での第一伝動装置Aと小速比域での第二伝動装置Bとを両最高効率域間の中間域で単に安定連結するだけで無く両変速領域を安定のまま大幅に拡大し広帯域化ができる事を示し、所望摩擦力の安定維持が確立する為に高速度の変速応答性を果しかつ低速域及び高速域の該変速領域の両端域でも高効率伝動を果す。然も最大の利点はベルト巻込み現象が解消する為従来周知の押込型ベルトだけで無く引張型ベルトを、カム機構等の調整装置を全く付さずに適用できる点に有る。尚各操作器の機能切換位置は必ずしも速比ε=1に制約されず任意に変更可能である。
【実施例2】
【0048】
図8及び図9は第2実施例可変伝動機を示す。第2実施例が第1実施例との相違点は入力操作器9の構成のみにあり実質的な第一及び第二伝動装置A,B
の機能切換による可変トルク制御及び可変径位置決め制御動作は全く同一である。そこで同一又は類似機能の部材には第1実施例と同じ参照番号を付し相違点を述べる。構造上の相違点は、入力操作器9が出力操作器8と同様に単一の圧縮装置14と複合装置30の直列連結で複合加圧装置50′の入力加圧装置11を形成した点である。複合装置30は第二入力加圧装置51の弾性装置31と第一入力加圧装置11の当接装置35とを予め並列に圧縮組付してある。本例では摺動装置13の摺動具17と、弾性装置31の摺動体33と、更に当接装置35の摺動材37が一体共用化して複合装置20に相異し圧縮状態で両端閉止した円環鍋型収納枠を成す。該室内に複数皿バネの弾性体32を収め摺動体34を兼用する摺動材36及び37とで弾性体32を圧縮収納してある。図6A,6Bの各摩擦力特性の実線で示す通り入力弾性体32は高加圧域特性Ps1を出力弾性体42は低加圧域特性Ps0を夫々担うので、第1実施例と同様に通常は前者が後者より大きい弾性圧縮圧の皿バネが選定されるがベルトプーリ間摩擦係数によっても変化する。摺動材37は可動材37aと可動材37bとの間でネジ39が施され当接装置35の当接又は解除状態の動作点を可調整にしてある。当接装置45も同様に構成しても良い。
【0049】
複合装置30と20の相違点は弾性体の圧縮動作方向が互に逆である。複合装置30が予め圧縮収納した弾性体閉止型だが同装置20では開放型である。動作上も図6A,6B と同様に変速機10が第一伝動装置Aで作動中は操作器8が加圧力でベルト3を位置決め制御する為、当接装置35では図8の間隙38が生じ弾性体32が有効に働く。然し第二伝動装置Bに移ると、操作器8が弾性力の可変加圧制御域に入り同時に当接装置35も間隙38は消失し操作器9が図9の当接動作状態に移るので、小速比域では実質的に弾性体32の機能は無効になり、入力車1が基準車機能として作動する。尚ベルト3は無端帯体3aと多数ブロック3bとの押込型で示す。
【0050】
本例の効用は第1実施例と略同様だが更に小型軽量化が果せる。然し複合装置30が閉止型の為変速機の停止中に劣化防止策用の弾性体32を除圧操作できないが弾性体32に圧縮圧に経年変化が生じても出力トルク制御に圧力検出器94を使う為CPU95とメモリ97cが出力車2での所定摩擦力を常時調節するので弾性力の劣化減少分は入力操作器9の操作量を増す補償操作で障害を克服できる。検出器無しでも少ない劣化の弾性材を使用して長期伝動に耐えさせ又はネジ39で再調整すれば良い。
【実施例3】
【0051】
図10及び11は、本発明の共通ベース思想を示す第3実施例であり、両操作器とも常時機能切換せずに第一伝達装置Aを構成する可変伝動機の夫々入力車及び出力車断面図である。本例では変速領域の全域で、入力操作器9はトルク指令で常時弾性力供給する可変加圧制御によるトルク制御の追従車機能を又出力操作器8は変速時の速比指令で加圧力供給し定常時に無加圧の可変位置決め制御による速比制御の基準車機能を夫々果す。ベルトプーリ間で大摩擦力を得る為に伝達車に巨大外部圧を施す方法は摩擦係数が安定せず摩擦力過剰による伝動不能に到る。特にこの傾向は入力車1よりも出力車2で生じ易い。その理由は出力回転数Nの方がより小さくなり逆に出力トルクTはその分増大する事を要するからである。本例では制御指令供給時は加圧力供給してもそれ以外の定速比運転時は出力車2のV溝に対し加圧装置による外部圧を全く与えず単に定速比プーリのV溝と同等の構成である。所定出力トルクの確保は入力操作器9で追従車機能する入力車1の弾性摩擦力にて与えたベルト張力のみで決定させた思想である。図中のチェーンベルト3の様にプーリ内巻込現象が生じ易い引張型ベルトでも又生じ難い押込型ベルトでもその型式に因らず、大速比域での安定伝動と高効率伝動を果す。
【0052】
構造的には入力操作器9は、図9の操作器9から当接装置35を除去して弾性装置31を圧縮装置14が直列圧縮する弾性加圧装置51と駆動源60bとでなる。出力操作器8は、図1,3又は図8の操作器8から複合装置20を除去し、摺動装置23と付勢装置22を直結した圧縮装置24にて変速動作時だけ加圧力を施し出力車2を可変径位置決め制御の基準車機能を果す構造である。他の構造は第1,第2実施例と同一なので同一の参照符号を付して詳細な説明を省く。尚圧力検出器94の検出端101はホイール29のスラスト軸受4bでの圧力を感知する為摩擦力の値は可動車2a、圧力伝達装置80を経て圧縮装置24と本体10d間で常時感知でき他実施例と同様調節装置90にて操作器9にサーボ制御を施しそれを更に開又は閉ループ制御を施す事で適正な摩擦力管理による任意のトルク制御が達成できる。
【実施例4】
【0053】
上述実施例で入出力車のいずれか一方が弾性力による追従車機能を持つ理由はベルトの周長伸びや厚味摩粍等の誤差要因の吸収能力を弾性力自体に持たせて常時安定伝動の維持を果させる為である。従って入力操作器9を図10の構造で又出力操作器8を図3の構造で夫々組立てた可変伝動機であっても又入力弾性体32が出力弾性体42よりバネ圧を大きく選定し実質的に加圧力として機能する時は安定伝動を果す。そこで本発明では入力及び出力車に同時に弾性力供給して両車でトルク制御を行ってもよいが少なくとも同時に加圧力供給状態にすべきでは無い。従って、両操作器8、9の一方を個別加圧装置又は複合加圧装置で他方を圧縮装置が弾性装置を直列圧縮する弾性加圧装置として両操作器でトルク用に可変加圧制御しても良いので負荷に応じた可変トルク制御が可能である。従ってこの時各加圧装置が第3実施例等の様に当接装置等の切換器を持つ必要は無く、更に入力車1に図10の操作器9を又出力車に図示しない定速比プーリを施しても出力トルクを入力操作器で調節する本発明思想は達成できるので共に本発明の範囲に含むのは当然である。
従って本発明は「特許請求の範囲」から当業者が容易に創作しうる範囲内に於いて各種の変更、変形を加えても該範囲に包含される。
【符号の説明】
【0054】
1,2 プーリ
3 ベルト
8,9 操作器
10 可変伝動機又は本体
11,21,51 加圧装置
12,22,52 付勢装置又はウォーム伝達機
13,23,53 摺動装置
14,24,54 圧縮装置
15,25,55 押圧装置
30,20 複合装置
31,41 弾性装置
35,45 当接装置又は切換器
40 複合加圧装置
50 個別加圧装置
60 駆動源
70,80 圧力伝達装置
90 調節装置
92,93 第二検出器又は回転数検出器
94 第一検出器又は圧力検出器







【特許請求の範囲】
【請求項1】
ベルトを巻掛し可変径車でなる入力及び出力車と、指令に応じ上記入力又は出力車の一方に加圧力を施す入力及び出力加圧装置とで摩擦伝動制御する可変伝動機において、
第一圧縮装置が該加圧力で速比制御する第一加圧装置と、第二圧縮装置が弾性装置を直列圧縮で得た弾性力でトルク制御する第二加圧装置と、上記第一及び第二圧縮装置に連結する第一及び第二駆動源を持つ上記入力及び出力加圧装置と、更に上記第一及び第二駆動源に夫々速比及びトルク指令を識別供給し速比又はトルクを単独操作可能に個別にサーボ制御し低速域又は高速域の出力トルクを誤差補償する調節装置とを有する可変伝動機。
【請求項2】
ベルトを巻掛し可変径車で成る入力及び出力車と、駆動源を経た指令で入力又は出力車に加圧力を施す入力又は出力加圧装置とを持つ可変伝動機において、
上記入力及び出力車に夫々弾性力を施す入力及び出力弾性装置と、第一圧縮装置が該加圧力で可変速比制御する第一加圧装置と、第二圧縮装置が上記両弾性装置の一方を直列加圧で得た圧縮弾性力で可変トルク制御する第二加圧装置と、上記第一及び第二圧縮装置に夫々連結する第一及び第二駆動源と、上記入力又は出力車に該加圧力と該圧縮弾性力を施す上記第一及び第二加圧装置を並設する上記入力又は出力加圧装置と、更に上記第一及び第二駆動源に夫々速比及びトルク指令を識別供給する調節装置とを有する可変伝動機。
【請求項3】
ベルトを巻掛し可変径車で成る入力及び出力車と、駆動源を経た指令で入力又は出力車に加圧力を施す入力又は出力加圧装置とを持つ可変伝動機において、
上記入力及び出力車に夫々弾性力を施す入力及び出力弾性装置と、第一圧縮装置が該加圧力で可変速比制御する第一加圧装置と、第二圧縮装置が上記両弾性装置の一方を直列加圧で得た圧縮弾性力で可変トルク制御する第二加圧装置と、上記第一及び第二圧縮装置に夫々連結する第一及び第二駆動源と、上記入力及び出力車の一方に該加圧力を又他方に該圧縮弾性力を施した上記入力及び出力加圧装置と、更に上記第一及び第二駆動源に夫々速比及びトルク指令を識別供給しサーボ制御する調節装置とを有する可変伝動機。
【請求項4】
請求項1、2又は3において、上記調節装置は、上記伝動機運転停止時に休止中高加圧状態にある上記弾性装置の高加圧を強制解除状態に保ち起動時に加圧する除加圧指令を、上記弾性装置を圧縮する上記各加圧装置の対応駆動源に施す可変伝動機。
【請求項5】
入力及び出力軸に夫々施す入力及び出力車と、該両車間に施すベルトと、可動車を持つ上記入力又は出力車と、該可動車に弾性力を施す弾性装置とを持つ可変伝動機において、
圧縮装置が上記弾性装置を直列重畳して生じた圧縮弾性力の供給で上記可動車にトルク制御を施す加圧装置は、調節装置から駆動源を経て上記圧縮装置に上記伝動機運転時に独立してトルク又は制御指令或いはトルク補償指令をかつ停止時に休止中は上記弾性装置の高加圧状態を解除状態に保ち起動時に加圧する除加圧指令を施される可変伝動機。
【請求項6】
入力及び出力軸に夫々施す入力及び出力車と該両車間に施すベルトとを駆動源を経て指令に応じ夫々入力及び出力加圧装置で可変の摩擦伝動制御した可変伝動機において、
上記入力及び出力車の一方に一方圧縮装置が一方弾性装置を直列圧縮し得た弾性力でトルク制御を施す一方加圧装置と、他方に第一圧縮装置の加圧力で速比制御する第一加圧装置及び第二圧縮装置が他方弾性装置を直列圧縮し得た弾性力でトルク制御する第二加圧装置を並設した他方加圧装置と、更に上記伝動機運転時に上記第一圧縮装置に連結する第一駆動源へ速比指令を上記一方及び第二圧縮装置に夫々連結する一方及び第二駆動源へ個別にトルク指令をかつ停止時に休止中は上記弾性装置の高加圧状態を解除状態に保ち起動時に加圧する除加圧指令を施す調節装置とを有する可変伝動機。
【請求項7】
請求項1、2、3、5又は6において、上記調節装置は、高負荷トルク時又は軽負荷トルク時で変化するトルク負荷に伴い上記入力又は/及び出力車の軸トルクを増減する為上記出力加圧装置に出力摩擦圧の圧力検出器を有する可変伝動機。
【請求項8】
請求項1、2、3又は6において、上記入力又は出力加圧装置は、円環状をなす上記一方又は他方弾性装置の内側又は外側に上記第一又は第二圧縮装置の摺動具を互に同芯円状に貫通配置した可変伝動機。
【請求項9】
請求項8において、上記入力又は出力加圧装置は、円環状に形成した上記摺動具又は受容器一方又は他方弾性装置の貫通孔内に夫々上記入力又は出力車回転軸を中心とする同軸同芯円状に貫通配置した可変伝動機。
【請求項10】
請求項1、2及び6において、上記第一及び第二加圧装置は、上記第一及び第二圧縮装置の両摺動装置の双方を上記入力又は出力車回転軸と同軸配置しかつ該両摺動装置の少なくとも一方を円環状に形成して該回転軸を貫通配置した可変伝動機。














【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2011−174616(P2011−174616A)
【公開日】平成23年9月8日(2011.9.8)
【国際特許分類】
【出願番号】特願2011−82609(P2011−82609)
【出願日】平成23年4月4日(2011.4.4)
【分割の表示】特願2000−213513(P2000−213513)の分割
【原出願日】平成12年6月9日(2000.6.9)
【出願人】(593006320)東京自動機工株式会社 (7)
【Fターム(参考)】