説明

多次元位置センサ

コントローラと、可動部と搬送経路とを有し前記コントローラと連通するワークピース搬送機と、前記可動部に固着した少なくとも1つの界生成プラテンと、搬送経路に沿って配置されコントローラと連通する少なくとも1つのセンサ群とを含み、前記界生成プラテンが位置計測とともに可動部を推進させるように構成される多次元測位装置とを備える装置であって、前記の少なくとも1つのセンサ群の各センサは、少なくとも1つの界生成プラテンで発生させる検知界内の単軸に沿ったばらつきに対応する1つのみの出力信号を提供するように構成され、前記コントローラは、前記の少なくとも1つのセンサ群の各センサに隣接した前記可動部の多次元位置を、前記の少なくとも1つのセンサ群内の少なくとも1つのセンサの前記1つのみの出力信号に基づいて、多次元位置には、少なくとも平面位置と、ワークピース搬送機と少なくとも1つの前記センサ群との間のギャップとを含めて算出するよう構成されている装置。

【発明の詳細な説明】
【技術分野】
【0001】
本出願は、2007年6月27日出願の米国特許仮出願第60/946,542号の利益を主張し、その開示内容全てを本明細書の一部を構成するものとしてここに援用する。
【0002】
本実施形態は、位置センサに関し、さらに詳細には、対象物の多次元の位置を検出する位置センサに関する。
【背景技術】
【0003】
移動する対象物の位置を求めるためにいくつかの方法が存在する。例えば、レーダ信号を道路上の縞模様と作用させて、自動車の位置を判定する車両誘導システムがある。他の測位システムでは、無線通信を利用している。しかしながら、このどちらのシステムも、移動対象物上で利用可能な動力源を必要とする。また無線は、介在する構造体や電気信号による劣化を受けやすい。
【0004】
位置は、例えば、円筒形のボビンの周りに巻いた単一の1次巻線と2つの2次巻線を使用する変位変換器の1つである、リニア可変差動トランス(LVDT)によっても求めることができる。可動のニッケル−鉄芯または電機子が巻線の内部に位置付けられ、この芯の移動を計測して、可動対象物の位置を得る。ホール効果センサを類似の態様で使用して変位を計測してもよい。一般に、LVDTおよびホール効果センサは、リニアアクチューエータやピストンの変位など、有限変位を計測するために使用される。
【発明の概要】
【発明が解決しようとする課題】
【0005】
ステッパ、サスペンション、および/または走査ステージなど高精度測位システムに関連する従来の測位方法では、容量センサ、誘導センサ、光センサ、およびレーザセンサを使用する。これらのセンサは一般に、高分解能と位置ノイズ低減とを併せて提供する。しかしながら、全体的な費用、移動範囲の限定、および所望の自由度が限定されることによって、これらのセンサの適用分野が狭められている。
【0006】
例として、従来のフィードバック装置では、これらのセンサが発生させる正弦および余弦信号など、使用する周期信号が、例えば、モータ制御装置のアナログデジタル変換器(ADC)に送られ、信号をADCのデジタル領域で処理して、対象物の位置を求める。しかしながら、正弦/余弦の周期およびADC分解能では、高度な位置解像度が要求される特定の用途用に求められる位置解像度を生成するのに十分でないこともありうる。
【課題を解決するための手段】
【0007】
前記の同じセンサおよび磁石を使用して、2次元の位置とギャップ幅の両方の計測値を求めることができるという利点をもつことになる。またコスト効率の良い、高分解能の、アブソリュートエンコーダを備えるという利点も持つことになる。さらに、位置フィードバック装置の分解能をモータ制御装置および/またはエンコーダの基本解像度より向上させるという利点も持つ。
【0008】
本明細書で開示する実施形態の前記の態様およびその他特徴を添付図面に関連して以下に説明する。
【図面の簡単な説明】
【0009】
【図1】1つの例示的実施形態による測位システムの一部分の概略図を示している。
【図2A】1つの例示的実施形態による測位システムの一部分の別の概略図を示している。
【図2B】1つの例示的実施形態による図2Aの測位システムのセンサ要素からの出力信号を示している。
【図2C】1つの例示的実施形態による図2Aの測位システムのセンサ要素からの出力信号を示している。
【図3A】1つの例示的実施形態による測位システムのさらに別の概略図を示している。
【図3B】1つの例示的実施形態による図3Aの測位システムの、センサ要素からの出力信号を示している。
【図4】1つの例示的実施形態による磁性プラテンとセンサ構成の例を示している。
【図5】1つの例示的実施形態による磁性プラテンとセンサ構成の別の例を示している。
【図6A】図5のセンサが検知した、磁性プラテンによって生成された磁界強度を示すグラフである。
【図6B】図5のセンサが検知した、磁性プラテンによって生成された磁界強度を示すグラフである。
【図7】1つの例示的実施形態による磁性プラテンとセンサ構成のさらに別の例を示している。
【図8A】図7のセンサが検知した、磁性プラテンによって生成された磁界強度を示すグラフである。
【図8B】図7のセンサが検知した、磁性プラテンによって生成された磁界強度を示すグラフである。
【図9A】1つの例示的実施形態によるセンサ出力を示すグラフである。
【図9B】1つの例示的実施形態によるセンサ出力を示すグラフである。
【図10A】別の例示的実施形態によるセンサ出力を示すグラフである。
【図10B】別の例示的実施形態によるセンサ出力を示すグラフである。
【図11A】別の例示的実施形態によるセンサ出力を示すグラフである。
【図11B】別の例示的実施形態によるセンサ出力を示すグラフである。
【図12A】例示的実施形態による、1つの磁気ピッチ上の異なる数のセンサによって生じるセンサ周期を示している。
【図12B】例示的実施形態による、1つの磁気ピッチ上の異なる数のセンサによって生じるセンサ周期を示している。
【図12C】1つの例示的実施形態による工程系統図を示している。
【図13】例示的実証形態による異なる位置での計測結果を示すグラフである。
【図14】例示的実証形態による異なる位置での計測結果を示すグラフである。
【図15A】例示的実施形態による磁性プラテンの構成を示している。
【図15B】例示的実施形態による磁性プラテンの構成を示している。
【図15C】例示的実施形態による磁性プラテンの構成を示している。
【図16A】他の例示的実施形態による磁性プラテンの構成を示している。
【図16B】他の例示的実施形態による磁性プラテンの構成を示している。
【図17】磁性プラテンによって生成される磁界のグラフである。
【図18】別の磁性プラテンによって生成される磁界のグラフである。
【図19A】1つの例示的実施形態による別の磁性プラテンの磁界形状を示している。
【図19B】1つの例示的実施形態による別の磁性プラテンの磁界形状を示している。
【図19C】1つの例示的実施形態による別の磁性プラテンの磁界形状を示している。
【図20A】1つの例示的実施形態による別の磁性プラテンの磁界形状を示している。
【図20B】1つの例示的実施形態による別の磁性プラテンの磁界形状を示している。
【図20C】1つの例示的実施形態による別の磁性プラテンの磁界形状を示している。
【図21】例示的実施形態による異なる磁性プラテンに関する図表およびグラフである。
【図22】例示的実施形態による異なる磁性プラテンに関する図表およびグラフである。
【図23】例示的実施形態による異なる磁性プラテンに関する図表およびグラフである。
【図24】例示的実施形態による異なる磁性プラテンに関する図表およびグラフである。
【図25】例示的実施形態による異なる磁性プラテンに関する図表およびグラフである。
【図26】1つの例示的実施形態による測位システムの一部分の概略図を示している。
【図27】1つの例示的実施形態によるセンサ出力のグラフである。
【図28】1つの例示的実施形態によるセンサ出力のグラフである。
【図29】1つの例示的実施形態によるセンサ出力のグラフである。
【図30】1つの例示的実施形態によるセンサ出力のグラフである。
【図31】1つの例示的実施形態によるセンサ出力のグラフである。
【図32】1つの例示的実施形態による追加センサの出力のグラフである。
【図33】1つの例示的実施形態による追加センサの出力のグラフである。
【図34】別の例示的実施形態によるセンサ出力のグラフである。
【図35】1つの例示的実施形態による信号処理の例を示している。
【図36】1つの例示的実施形態による信号処理を図示したブロック図である。
【図37】これらの例示的実施形態により処理された信号を示している。
【図38】これらの例示的実施形態により処理された信号を示している。
【図39】これらの例示的実施形態により処理された信号を示している。
【図40】1つの例示的実施形態による周波数信号を示している。
【図41】1つの例示的実施形態による誤差信号を考慮した入出力信号を示している。
【図42】1つの例示的実施形態による誤差信号を考慮した入出力信号を示している。
【図43】1つの例示的実施形態による誤差信号を考慮した入出力信号を示している。
【図44】1つの例示的実施形態による誤差信号を考慮した入出力信号を示している。
【図45】これらの例示的実施形態によるセンサとギャップの分解能関数を示している。
【図46】これらの例示的実施形態によるセンサとギャップの分解能関数を示している。
【図47】例示的実施形態によるプロセッサの例を図示している。
【図47A−1】1つの例示的実施形態による図47のブロック図の電気回路図を例示したものである。
【図47A−2】1つの例示的実施形態による図47のブロック図の電気回路図を例示したものである。
【図47A−3】1つの例示的実施形態による図47のブロック図の電気回路図を例示したものである。
【図47A−4】1つの例示的実施形態による図47のブロック図の電気回路図を例示したものである。
【図47A−5】1つの例示的実施形態による図47のブロック図の電気回路図を例示したものである。
【図47A−6】1つの例示的実施形態による図47のブロック図の電気回路図を例示したものである。
【図47A−7】1つの例示的実施形態による図47のブロック図の電気回路図を例示したものである。
【図47A−8】1つの例示的実施形態による図47のブロック図の電気回路図を例示したものである。
【図47A−9】1つの例示的実施形態による図47のブロック図の電気回路図を例示したものである。
【図47A−10】1つの例示的実施形態による図47のブロック図の電気回路図を例示したものである。
【図48】これらの例示的実施形態の特徴を取り込んだ処理装置の概略図を示している。
【図49】これらの例示的実施形態の特徴を取り込んだ処理装置の概略図を示している。
【図50】これらの例示的実施形態の特徴を取り込んだ処理装置の概略図を示している。
【図51】これらの例示的実施形態の特徴を取り込んだ処理装置の概略図を示している。
【図52】これらの例示的実施形態の特徴を取り込んだ処理装置の概略図を示している。
【図53】これらの例示的実施形態の特徴を取り込んだ処理装置の概略図を示している。
【図54】これらの例示的実施形態の特徴を取り込んだ処理装置の概略図を示している。
【図55】1つの例示的実施形態による1つの方法を工程系統図で示したものである。
【発明を実施するための形態】
【0010】
図1は、1つの例示的実施形態により、複数軸に沿って同時に計測するセンサ100の構成を例示した概略図である。図面を参照してこれらの例示的実施形態を説明していくが、これらの例示的実施形態は、多数の代替形態で実施されうることを理解されたい。さらに、任意の適切なサイズ、形状、またはタイプの構成要素や材料を使用することも可能である。
【0011】
これらの例示的実施形態は、閉ループ制御システム内で使用されうるようなセンサまたはセンサシステム100を提供するもので、例えば、以下に記載するように、少なくとも第1の軸(水平面に配置されるなど)に沿った無制限の長さの位置計測と、ギャップ幅など、少なくとももう1つの軸(例えば第1の軸に対して実質的に直交するか角度を持つ軸)に沿った計測とを提供するように構成される。前記センサシステムのセンサは、簡単かつ安価な単軸センサで、そのセンサの単軸の計測に対応して1つだけ出力を有するものであってよい。各単軸センサの出力は、例えば、1つだけの軸に沿った磁界(またはセンサで検知可能な任意の他の界または現象)の検知ばらつきに対応する。単軸計測から単一の出力を提供するこれらのセンサを、本明細書では例示目的で、リニアまたは単軸センサと称する。センサシステム100は、対象物の移動経路に沿って配置した1つまたは複数の単軸センサユニットを含むことができ、各センサユニットは、以下にさらに詳細を記載するように、その対象物の動きに応じて単一の信号を出力する。各単軸センサユニットの唯一の出力は、(以下にさらに詳細を記載する)方法で、例えば、各センサユニットに隣接または近接する対象物に対して(唯一の軸に沿った計測から)1つまたは複数の軸に沿った位置計測を生じさせるように処理される。後述するように、個々の単軸センサは、位置計測が任意の適切な軸に沿って同時に行われるように任意の適切な態様で配置することができる。非限定の例として、前記のセンサ100は、米国特許出願公開第2004/0151562号に開示されている、磁気浮上搬送機またはプラテンを有する搬送システムに使用しうるものである。前記特許の内容全てを本明細書の一部を構成するものとしてここに援用する。代替の実施形態では、センサ100を任意の適切な搬送システム内で利用することができる。本明細書で説明する測位システムは、任意の適切な距離を有する移動方向(例えば、X軸)に沿った搬送機の位置、または任意の適切な距離を有する第2の移動方向(例えば、Z軸)に沿った搬送機の位置、または例えば、磁性プラテン170と固定面180との間(例えば、Y軸)のギャップ幅G、あるいはその組み合わせを測定することができる。X、Y、およびZ軸に関する参照は、例示のみを目的としたものであること、かつ本明細書に記載した位置計測は、回転軸を含むがこれに限定されない他の適切な軸に同様に適用しうることに注意されたい。本明細書で開示する単軸位置センサを使用する例示的センサは、任意の適切な可動対象物の位置を検知するために利用しうるもので、この可動対象物には搬送機、アクチュエータ、および任意の適切な駆動システム構成要素を含むがこれらに限定されない、一次元または多次元の可動対象物を含むがこれらに限定されないことを認識されたい。測位センサが生成する信号は、例えば搬送機や任意の他の適切な可動対象物を、第1のロケーションから第2のロケーションまで駆動するモータの連通用に使用してもよい。本明細書に記載した例示的実施形態は、モータと併用するように限定されてなく、単一または多次元位置情報を必要とする任意の適切な装置内でも利用されうることを認識されたい。
【0012】
図1に示すように、1つの例示的実施形態において、センサ100は、磁性プラテン170の特徴を検知するように構成することができ、かつ1つまたは複数のセンサ群130a〜130nを含むことができる。これらのセンサ群には、後述する1つまたは複数の単軸センサを含むことができる。磁性プラテン170は、1つまたは複数の磁石140、150を含むことができ、これらの磁石は例えば一列、または格子状に配置され、磁極が、図1に示すように、交互になる構成(例えば、N−S−N−S、等)に配置する。磁石140、150の交互にした磁極によって、これらの磁石がセンサ130の近傍を通過すると、例えば正弦もしくは余弦のパターン(例えば正弦波信号)または任意の他の適切なパターンの、波形160を有する信号が生成される。この詳細について以下に説明する。磁石140、150は、任意の適切な磁界強度を有する任意の適切な磁石であってよい。1つの例示的実施形態では、これらの磁石を永久磁石にして、磁性プラテン170の位置計測用に動力をプラテン170に移動させる必要がないようにしてもよい。代替の実施形態では、これらの磁石が電磁石であってもよい。さらに他の代替の実施形態では、プラテン170が、任意の適切な磁界生成装置を含んで、センサ130a〜130nに検知させることを可能にすることもできる。プラテン170は、任意の適切な構成を有する任意の適切な数の磁石を含むことができる。例えば、プラテン170は、任意のタイプのリニアモータのプラテンであってよく、上述のとおり、プラテン上に配設する磁石は、モータの永久磁石であってもよいし、直線状に配置されてもよいし、また磁石を複数の段および/または列にしてもよいし、磁石を互い違いに構成してもよい。プラテン170は、被測位対象物120に固定してもよい。別の実施形態では、プラテン170と対象物120を同一体にしてもよい。対象物120は、搬送カート、ピストン/ピストン棒、アクチュエータ、ロボットのエンドエフェクタ、駆動シャフト、モータ回転子、または任意の他の被測位対象物を含むが、これらに限定されないものを含む、任意の適切な対象物であってもよい。
【0013】
センサ130a〜130nは、ホール効果センサ、または誘導センサ、または容量センサ、あるいはその組み合わせを含むがこれらに限定されない、任意の単軸センサであってもよい。1つの例示的実施形態では、センサ130a〜130nが互いにほぼ類似のものであってもよい。各センサは、例えば、プラテンの磁石アレイによって生成される界(例えば磁界)の単軸に沿って、ばらつきを検知しうる。センサの出力は、センサが検知する単軸に沿ったばらつきを示しうるもので、よって、記載した例示的実施形態では、これらの(1つまたは複数)センサを、リニアセンサまたは単軸センサと言及してもよい。センサ130a〜130nは、例えば、対象物の移動方向Tの一部構成要素に沿って配置されうる。移動方向には、例えば、デカルト座標系におけるX、Y、Z方向(もしくはその任意の組み合わせ)または極座標系におけるR、Θ(もしくはその任意の組み合わせ)など、任意の適切な数の次元が含まれうることに注意されたい。別の実施形態では、(1つまたは複数の)移動方向を任意の適切な座標系に対応させることができる。任意の適切な数のセンサを(1つまたは複数)移動方向に沿って配置し、任意の適切な移動範囲に対応させてもよい。センサ130a〜130nは、以下に詳細を記載するように、(1つまたは複数の)移動方向に沿って所定の間隔を隔てて配置することによって、対象物120の位置を求めることができる。センサ130a〜130nは、コントローラ190に接続することができ、コントローラ190で少なくとも前記のセンサ出力を受信して、例えば、センサ130a〜130nの単軸出力と所定のロケーションに基づいて移動方向に沿った対象物120の2次元の位置を算出するように構成することができる。代替の実施形態では、上記コントローラが算出する対象物の位置が2次元より多くても少なくてもよい。このコントローラは、例えば、磁性プラテン170が生成する、例えば磁界の強さ(磁束密度など)、および/または前記のセンサが出力する信号振幅に基づいて、ギャップ幅Gを算出することもできる。コントローラ190には、本明細書に記載した処理工程と命令を組み込んだソフトウェアおよびコンピュータプログラムを含むことができ、かつコンピュータで読み取り可能なプログラムコードを備えた記憶装置(例えば任意の適切なコンピュータ読取可能メディア)を利用することによって、例えば本明細書に記載する演算を行うこともできる。
【0014】
本明細書に記載した例示的実施形態によって、詳細を後述するような、例えば、製造工場内のファブ(ウェハ製造施設など)間、または処理ステーションに向かう搬送カートとロードポートとの間など、近距離または遠距離にわたり対象物の精密な位置決めが可能になる。他の例示的実施形態では、本明細書に記載した測位システムを、例えば、任意の適切な自動搬送システム(AMHS)などで対象物を搬送する施設の、任意の適切な箇所で使用することができる。
【0015】
さらに図2Aを参照すると、センサ100’の例示的構成が、1つの例示的実施形態により示されている。この例示的実施形態では、複数の単軸センサ対が、対象物120の移動方向Tに沿って配置されている。この例示的実施形態では、センサ200A〜200nを実質的にこの移動方向に沿って、または同一線上に配置してもよい。例えば、磁気センサ200A、200Bは、第1の対、または二重(ダブレット)センサとなり、センサ200C、200Dは第2の対、以下同様、となる。代替の実施形態では、センサ200A〜200nを移動方向に沿って互い違いになるように、センサの一部を他のセンサの上方および/または下方に配置することができる。他の代替の実施形態では、これらのセンサ200A〜200nを任意の適切な構成にしてもよい。センサ200A〜200nは、例えば、上述したように単軸ホール効果センサ、誘導センサ、容量センサを含むがこれらに限定されない、任意の適切なセンサであってもよい。
【0016】
この例示的実施形態では、各センサ対またはセンサダブレットのセンサを所定距離またはピッチPの間隔で配置する。各ダブレットは、ピッチPの約4倍の距離、または4Pの間隔を空ける。代替の実施形態では、これらのセンサ200A〜200nが、任意の適切な間隔を有することができる。センサ対200A〜200nは、可動対象物120に固着する、またはその他の方法でその一部となる磁極ピースまたは磁石210A〜210D、220A〜220Dに対向する。任意の適切な磁界生成器を使用してもよいこと、かつ磁石はN極とS極の両極を含まなくてもよいことを認識されたい。この例では、磁石210A〜210n、220A〜220Dの極が、センサ200A〜200nに対向して交互になるように配置する例えば、磁石210A〜210DのN極をセンサ200A〜200nに露出させ、磁石220A〜220DのS極をセンサ200A〜200nに露出させる。この例示的実施形態では、単軸センサを、磁石が生成する磁界の法線成分Bz(例えば、プラテンと参照フレームとの間の空隙の方向、図1参照)のばらつきを登録するために配向すること、またはその磁界の平行成分Bxのばらつきを登録するために配向することができる。磁極ピース210A〜210D、220A〜220Dの極を交互にすることによって、磁石210A〜210D、220A〜220Dがセンサ200A〜200nの近傍を移動すると、正弦波タイプのセンサ出力パターンが生じうる。代替の実施形態では、これらの磁石を任意の適切な構成にしてもよい。この例示的実施形態では、磁石210A〜210D、220A〜220Dは、ピッチPの約2倍の距離、または2Pの間隔でそれぞれ離間している。代替の実施形態では、磁極ピース210A〜210D、220A〜220Dが任意の適切な間隔を有することができる。
【0017】
上述のようにセンサ200A〜200nおよび磁石210A〜210D、220A〜220Dを離間することによって、図2Bおよび2Cに示すような、各センサダブレットを構成する2つのセンサ出力信号間の正弦/余弦関係を生じさせることができる。非限定の例として、センサ200Aは、図2Bに示す正弦波を生じさせることができる一方で、センサ200Bは図2Cに示す余弦波、またはその逆を生じさせる。センサ出力信号は、例えば、コントローラ190のプログラミングによって、センサ200A〜200nに対する対象物120の位置を補間するために使用することができる。例えば、センサ200Aと200Bなどの、2つの信号(例えばダブレットの各センサからの出力信号)の比率の逆正接によって求める1つの角度を採取すると、対象物120の補間位置を、前記センサ対間の距離4Pの割合に比例して求めることができる。各センサダブレットが所定の間隔を隔てて配置されているので、補間位置をこの所定間隔から減算することによって、またはこの所定間隔に加算することによって、対象物120の位置を得ることができる。例えば、センサダブレット200A、200Bが距離Cを隔てて位置し、センサダブレット200A,200Bと200C、200Dとの間の補間位置がピッチの2倍、または2Pであると判定される場合、対象物120の位置は、例えば、距離Cプラス位置2P(すなわち、C+2P)となる。
【0018】
この例示的実施形態では、コントローラ190をプログラムして、プラテンと参照フレームとの間の法線距離Z(例えば、ギャップ幅、図1参照)を判定するのに単軸センサ200A〜200nからの信号を使用することができる。センサ200A〜200nと磁極ピース210A〜210D、220A、220D(すなわち、磁石が取り付けられている対象物120)との間のギャップ幅Gは、例えば、各センサダブレットによる2つのセンサ信号出力の2乗の和の平方根を計算し、ギャップの磁束密度を得ることのよって求められる。代替の実施形態では、任意の適切な演算を使用して、このギャップを算出してもよい。この磁束密度によって、センサ200A〜200nと磁極ピース210A〜210D、220A〜220Dとの距離Gを求めることが可能になる。よって、実現しうるものとして、この例示的実施形態では、単軸センサ200A〜200n(例えば、共通の単軸に沿った磁界の変動を検知するように配向する)の少なくとも1つのダブレットによる信号は、単軸に沿って磁界変動を示す信号であり(例、図2B〜2Cを参照)、プロセッサ190によって処理され、プラテンの多軸位置(例えば、(X、Z)など、2つ以上の軸に沿った位置の変化)を判定する。代替の実施形態では、ギャップ幅Gを任意の適切な態様で求めてもよい。例えば、磁気ギャップGの範囲または幅は、測定した磁束対距離を含むルックアップテーブル(LUT)の使用を含むがこれに限定されない幾つかの方法、および減磁曲線上の磁気動作点と共に磁束に対するセンサ感度についての知識によって得ることが可能になる。この実施形態の例では、ダブレットまたは近接センサからの信号を、例示の目的のために使用してきたが、代替の実施形態では、任意のセンサダブレットからの信号を使用してもよい。プロセッサ190は、ギャップGを算出するように構成することができ、以下にその詳細を記載する。
【0019】
センサ200A〜200nの数によって、センサ100’の分解能はN−ビットセンサに対して次のように算出されうる。
【0020】
【数1】

【0021】
上式で、Nはビット数である。本明細書に記載した測位システムの分解能は、例えば、環境アナログノイズおよびシステムの出力ビット(アナログ/デジタルビット)数に起因する測定の不確かさによって影響されうるものである。実現しうるものとして、センサ200A〜200nの間隔またはピッチ(すなわち、これらダブレット内の各センサ間の距離Pおよびこれらダブレット間の約4Pの距離)および磁石210A〜210D、220A〜220Dの間隔(すなわち、約2Pの距離)を拡大または縮小することによって、センサ100’の分解能を高めるまたは下げることが可能である。
【0022】
作動時に、センサ200A〜200nのラインを順次走査することによって、例えばセンサ200Aなど、最初のセンサが走査されるとコントローラ190が出力し、センサの走査ラインに沿った基準距離を判定することができる。このようにセンサ200A〜200nを走査することによって、高度または最大限の分解能で対象物120の絶対位置計測が可能になる。
【0023】
ここで図1および3を参照すると、1つの例示的実施形態による、センサ100’’の別の概略図が示されている。この例示的実施形態では、単軸センサ300A〜300nが、対象物120の移動方向Tに沿って配置されている。この例示的実施形態では、センサ300A〜300nを直線上または移動方向と共線に配置することができる。代替の実施形態では、センサ300A〜300nを移動方向に沿って互い違いに配置し、一部のセンサを他のセンサの上方に配置してもよい。他の代替の実施形態では、これらのセンサ300A〜300nを任意の適切な構成にしてもよい。センサ300A〜300nは、上述したように、ホール効果センサ、誘導センサ、および容量センサを含むが、これらに限定されない任意の適切なセンサであってもよい。
【0024】
図3に示すように、センサ300A〜300nは、移動方向に沿って所定の間隔、またはピッチPを隔てて配置する。代替の実施形態では、これらのセンサに任意の適切な間隔を持たせてもよい。センサ300A、300B、300Eは、例えば低感度を有する第1のタイプの単軸センサであってもよい。低感度単軸センサは、on/off信号を生じさせられる程度の感度を有するものでよく、従って、一般に安価なものになりうる。対象物の位置をより長い区間にわたり追跡する場合は、センサ100’’がその一部をなすシステムの形状的特長によって、センサ300C、300Dの1つまたは複数のダブレット(すなわち、1つのセンサダブレット)が、例えば、単軸センサであるが、第1のタイプのセンサ300A、300B、300Eと比べると、より高感度を有する第2のタイプのセンサであってもよく、図3に示したセンサラインのより低感度のセンサの1つと置き替えて配置することができる。代替の実施形態では、センサ300C、300Dと類似の、より高感度のセンサダブレットを1つ以上使用することも、1つも使用しないこともできる。他の例示的実施形態では、センサダブレットのセンサも含めてセンサ全てが、低感度のセンサであっても、高感度のセンサであってもよい。さらに他の代替実施形態では、これらセンサを任意の適切な態様で、低感度と高感度のセンサを混合させてもよい。低感度センサを1つ以上のセンサダブレットと組み合わせて使用すると、概略位置(例えば、センサダブレットを使用して取得する測位よりも精度の低い位置)を検出する測位システムになりうる。この概略位置は、単数センサまたはセンサシングレットを使用して探知しうるもので、位置がより懸念される領域では、対象物の位置をより精密に判定するためにダブレットを使用することができる。対象物を単数センサだけで探知すると測位時に一部ドリフトやばらつきをもたらすことがあるため、センサダブレットを利用して対象物の位置を”較正する”こともできる。センサ300C、300Dの出力信号が、図2Bと2Cに関連して上述したものと実質的に類似の態様で、正弦/余弦の関係を持つ信号を生成するように、より高感度のセンサ300C、300Dを、所定の距離を隔てて配置することができ、例えば、この距離をピッチPの約4分の1、またはP/4とする。
【0025】
センサ300A〜300nは、上述のように、移動対象物120に固着した、または一部を成す磁極ピースまたは磁石320A〜320nに対向させる。これらの磁石がNS両極を含む必要がないように任意の適切な磁界生成器を使用することができることを認識されたい。センサ300A〜300nに対向するこれら磁石の極は、交互に配置され、この構成において、磁石320A、320C、320E、320GのN極をセンサ300A−300nに露出し、磁石320B、320D、320FのS極をセンサ300A−300nに露出させる。磁極ピース320A〜320nの極を交互にすることによって、センサ300A〜300nの近傍を磁石320A〜320nが移動すると、図3Bに示すような正弦波タイプのパターンが生じる。代替の実施形態では、これらの磁石を任意の適切な構成にしてもよい。この例では、磁石が単数センサ300A、300B、300Eを通過すると、正弦波センサ出力SWが生成される。磁石がセンサダブレット300C、300Dを通過すると、センサ300Cが正弦波出力SWを発生させうる一方で、センサ300Dは、センサ300Cの出力または距離Pと相対的な余弦波タイプの出力CW(すなわち、正弦/余弦の関係)を生成する。この例示的実施形態では、磁石320A〜320nが、ピッチPの約2倍の距離、または2Pの間隔でそれぞれ離間している。代替の実施形態では、磁石320A〜320nの間隔が2Pより大きくても小さくてもよい。
【0026】
プロセッサ190は、センサ300A〜300nからの出力信号を数学的な処理によって、1つの基準ピッチ(この例ではP)内で対象物120がどこに位置しているかを求めるように構成することができる。センサ300A〜300nの各センサのロケーションは、上述の通り、既知のものなので、基準ピッチP内で求めた位置を、各センサ300A〜300nの既知のロケーションの1つに加算するか、または既知のロケーションの1つから減算することによって、対象物120のセンサ300A〜300nに対する位置を得ることができる。ギャップGは、上述したものと実質的に類似の態様で、かつ以下に図7および平行磁界による測位アプローチに関してさらに詳細に述べるように、プロセッサ190により求めることができる。代替の実施形態では、ギャップGは、本明細書に記載するものを含むが、これらに限定されない任意の適切な態様で求めることができる。センサ300A〜300nの出力信号を使用して、センサ間の対象物の距離の補間目安を求めてもよい。
【0027】
作動時に、センサ300A〜300nのラインをコントローラ190によって順次走査出力し、例えばセンサ300Aなど、走査された最初のセンサにより、センサの走査ラインに沿った基準距離を決めることができる。このようにセンサ300A〜300nを走査することによって、高度または最大限の分解能での対象物120の絶対位置計測が可能になる。
【0028】
1つの例示的実施形態では、図3Aに例示したセンサ構成によって、詳細を後述するような、製造セル間、またはファブ間など、長い距離にわたって対象物の精密な位置決めが可能になる。別の例示的実施形態では、図3Aに示したセンサ構成を、例えば、対象物が搬送される任意の適切な施設の任意の適切な部分で使用することができる。施設の例には、半導体処理プラント、自動車生産プラント、または例えば、マテリアlハンドリングが機械化されている任意の他の適切な施設を含むが、これらに限定されないものとする。
【0029】
次に図4を参照すると、磁性プラテン400および単軸センサS1〜S4の概略図が示されている。この例示的実施形態では、例示のみを目的とし、磁性プラテン400がZ方向およびX方向で2次元配列された磁極ピースを含んでいる。実現されうるものとして、図4に示した磁極ピース列は、プラテン400上に含まれる磁石の単なる一部位であってもよい。代替の実施形態では、プラテン400が任意の適切な数の段および/または列の磁極ピースを有することができる。この例では、図4から理解できるように、磁極ピース段の磁極が交互になっており、互い違いにかつ約P/2の距離を隔てて配置されている。同様に、列も、磁極を交互にして、約P/2の距離を隔てて、互い違いに配置する。各磁極間のピッチは、どの特定の段または列においてもPとして図4に示している。代替の実施形態では、これらの磁極ピースが任意の適切な配列および任意の適切な間隔を有しうる。
【0030】
この例示的実施形態では、4つの単軸センサS1〜S4を、例えば、磁性プラテン400によって発生する実質的に軸対称の磁界内に位置付け、それによってセンサS1〜S4がその磁界の同軸を検知するように配向する。代替の実施形態では、4つより多いまたは少ないセンサを使用しうる。センサS1〜S4は、図2Aおよび3Aに関して上述したものと実質的に類似のものであってもよい。図4に示すように、センサS1およびS2は、実質的にX方向の共線であり、かつ互いに約P/2またはピッチの2分の1の距離を隔てている第1のセンサ対を形成する。センサS3およびS4は、実質的にX方向の共線であり、かつ同様に約P/2の距離を互いに隔てている第2のセンサ対を形成する。センサ対S3、S4は、センサ対S1、S2からX方向にピッチの約4分の1またはP/4の距離分ずらしてある。センサ対S3、S4は、センサ対S1、S2からZ方向にピッチの約4分の1またはP/4の距離分ずらしてある。代替の実施形態では、センサ対内のセンサが任意の適切な間隔関係を有してもよい。さらに他の代替の実施形態では、センサ対が任意の適切な間隔を隔てた関係を有してもよい。
【0031】
この例示的実施形態では、センサS1〜S4は、磁極ピース面の法線方向にある磁極成分を検知することができる(すなわち、”法線磁界アプローチ”による測位)。センサ対S1とS2およびS3とS4は、図2Bおよび2Cに関連して上述したものと実質的に類似の正弦/余弦関係を有する出力信号をそれぞれ提供する。例えば、この実施形態例では、センサS2からの信号が、例えばプロセッサ190によって、センサ1からの信号から減算されると、X軸に沿った距離の正弦に比例する信号となる。X軸に沿った距離の正弦に比例するこの信号が、磁石ピッチPに相当する空間周期で繰り返す。センサS4からの信号が、例えばプロセッサ190によって、センサS3からの信号から減算されると、X軸に沿った距離の余弦に比例する信号となる。X軸に沿った距離の余弦に比例するこの信号も、磁石ピッチPに相当する空間周期で繰り返す。
【0032】
X軸に沿った位置計測に加えて、この例示的実施形態のセンサS1〜S4およびプラテン400の構成により、Z軸に沿った位置計測を提供することもできる。例えば、センサS2からの出力信号が、例えばプロセッサ190によって、S1からの出力信号に加算されると、Z軸に沿った距離の正弦に比例する信号となる。Z軸に沿った距離の正弦に比例するこの信号が、磁石ピッチPに相当する空間周期で繰り返す。センサS4からの出力信号が、例えばプロセッサ190によって、センサS3からの出力信号に加算されると、Z軸に沿った距離の余弦に比例する信号となる。Z軸に沿った距離の余弦に比例するこの信号も、磁石ピッチPに相当する空間周期で繰り返す。
【0033】
この正弦信号および余弦信号は、プロセッサ190を使用して、磁界ピッチに相当する距離にわたって0〜360度の異なる角度の値を生成し、磁石アレイに対するセンサアレイの位置、またはその逆の位置の正確な測定を可能にしうる。
【0034】
次に図5を参照して、図4の測位システムをさらに詳細に説明する。実現しうるものとして、センサ対S1とS2およびS3とS4の相互の位置を変えることもできる。例えば図5では、センサ対S3とS4は、センサ対S1とS2の下側に位置しているが、図4では、センサ対S3とS4が、センサ対S1とS2の上側に位置するとして図示されている。代替の実施形態では、これらのセンサ対が、センサ対間に正弦/余弦関係が存在するように任意の適切な構成および/または間隔を有することができる。図5に示すように、センサ群530は、図4に関連して上述したものと実質的に類似の単軸センサS1〜S4を含んでおり、磁極要素510、520を含む磁性プラテン540に隣接または近接して配置する。磁極要素は、1つの代替の実施形態において図5に示すように、磁極要素510のN極をセンサ群530に露出し、磁極要素520のS極をセンサ群530に露出する配置をすることができる。磁極要素の間隔は、図4に関連して上述したものと実質的に類似であってもよい。代替の実施形態では、磁極要素510、520が任意の適切な間隔を有することができる。
【0035】
この例示的実施形態では、4つの単軸センサS1〜S4が、例えば正弦/余弦関係を有する、たとえば2組の信号を生成する(すなわち、センサS1、S2からの出力信号が正弦/余弦関係を有し、センサS3、S4からの出力信号が正弦/余弦関係を有する)。上述したように、図5に示したセンサS1〜S4の構成によって、これらの各センサが、例示的座標系500に図示した磁性プラテン540に直交する磁界を検知することが可能になる。磁性プラテン540によって生成された磁界の3次元プロットを図6Aおよび9Aに示す。これらの図では、Y方向の磁界強度を、X軸およびZ軸に沿った位置に対してプロットする。図6Bおよび9Bは、図6Aおよび9Aにそれぞれ示した磁界によるセンサ出力の2次元プロットを示している。
【0036】
図4および5に示した法線磁界測位アプローチでは、各センサ対S1とS2およびS3とS4との間の正弦および余弦の関係を使用して、プロセッサ190で磁性プラテン540が固着されている対象物120の位置を算出する。例えば、プロセッサ190で、次の例式を使用してX軸に沿ったセンサ信号の正弦を算出することができる。
【0037】
【数2】

【0038】
上式で、S1とS2が各センサS1とS2の出力を表す。X軸に沿ったセンサ信号の余弦は、プロセッサ190で次の例式を使用して算出することができる。
【0039】
【数3】

【0040】
上式で、S3とS4が各センサS1とS2の出力を表す。ピッチP内の対象物120の位置は、プロセッサ190で次のようにsinXおよびcosXを使用して算出することができる。
【0041】
【数4】

【0042】
上式で、Xは磁石ピッチPに沿った距離に比例する。各センサ群530が所定の間隔を隔てて配置されているので、Xに対応する補間位置DXをこの所定間隔から減算することによって、またはこの所定間隔に加算することによって、対象物120の位置を得ることができる。例えば、センサ群530がX軸に沿って距離Cに位置し、補間位置DXがP/3に相当する場合、対象物120のX方向の位置は、例えば距離Cプラス位置DX(すなわち、C+P/3)となる。
【0043】
同様にZ軸に沿った位置も、プロセッサ190で、次のようにZ方向のセンサ信号の正弦および余弦を算出して求めることができる。
【0044】
【数5】

【0045】
【数6】

【0046】
上記のS1〜S4は、各センサS1〜S4の出力を表している。ピッチP内の対象物120のZ方向の位置は、プロセッサ190でsinXおよびcosXを使用して次のように算出することができる。
【0047】
【数7】

【0048】
上式で、Zは磁石ピッチに沿った距離に比例する。実現しうるものとして、(1つまたは複数の)センサ群530をZ軸に沿った所定の距離に配置することによって、対象物120のZ軸の位置を、その所定の位置までまたはその所定の位置からの比率Zに対応する距離DZを加算または減算して得ることが可能である。例えば、センサ群530がZ軸に沿って距離Bに位置し、補間位置DZがP/3に相当する場合、対象物120のZ方向の位置は、例えば距離Bプラス位置DZ(すなわち、B+P/3)となる。
【0049】
プロセッサ190は、正弦の2乗と余弦の2乗の和の平方根を算出して、磁束密度の目安を得るように構成することもできる。磁束密度は、磁石アレイまたはプラテン540とセンサ530との間の距離Gに比例させてもよい。従って、センサ群530と磁性プラテン540との間のギャップG(すなわち、Y軸に沿った位置)は、例えば、次のように求めることが可能である。
【0050】
【数8】

【0051】
上式で、tとAは、磁石の形状に応じた定数である。上述したように、対象物の3次元位置は、各センサが1軸のみに沿って主力信号を生成する単軸センサを使用する、前記の例示的実施形態により求めることができる。
【0052】
ここで図7を参照すると、別の実施形態で、測位システムが磁界の平行成分を計測するように構成することができる(すなわち、”平行磁界アプローチ”)。図7に示すように、測位システムはセンサ群730と磁性プラテン740を含む。磁性プラテン740は、図5に関連して上述したものと実質的に類似のものであってよく、図7に示すように、プラテン740は、磁極要素740(N極要素)、720(S極要素)を含み、交互に配置する。この例示的実施形態では、センサ群730が、図4および5に関連して上述したものと実質的に類似の4つの単軸センサS1〜S4を含んでいる。代替の実施形態では、任意の適切な数のセンサを、このセンサ群730に含むことができる。センサS1〜S4は、任意の適切なセンサであってよく、上述の通り、単軸ホールセンサ、誘導センサ、または容量センサを含むがこれらに限定されないものとする。センサS1、S2は、第1センサ対を成し、センサS3、S4は第2センサ対を成す。センサS1、S2は、(例示的座標系表現700からわかるように)実質的にZ方向の同一線上に、磁石ピッチの約4分の1またはP/4の間隔を隔てて配置する。センサS3、S4は実質的にX方向の同一線上に、磁石ピッチの約4分の1またはP/4の間隔を隔てて配置する。図7に示すように、センサS1、S2は、X方向でS3とS4の間に位置しているが、センサS3、S4はZ方向でS1とS2の間に位置している。代替の実施形態では、センサS1とS2を、センサS3とS4に対して任意の適切な位置に置くことができる。センサと磁石ピッチPとの間の約P/4の距離によって、正弦/余弦関係を有するセンサ出力を提供することができる。例えば、センサS1、S2はZ軸に沿った正弦/余弦関係を有し、センサS3、S4はX軸に沿った正弦/余弦関係を有しうる。
【0053】
図8A、10A、および11Aを参照すると、平行磁界の検知から得たX軸およびZ軸に沿った磁界強度の3次元プロットが示されている。図8B、10B、および11Bは、図8A、10Aおよび11Aに示した平行磁界検知から得た磁界強度に応じた、センサ出力対XまたはZ位置の2次元プロットを示す。図8Bに示すように、センサS3、S4の間およびセンサS1、S2間には正弦/余弦関係が見られる。
【0054】
これらの正弦/余弦関係をプロセッサ190で使用して、X軸およびZ軸に沿ったセンサ群730に対する磁性プラテン740の相対的位置を求めてもよい。これらのセンサ出力間の正弦/余弦関係は、プラテン740とセンサ群730の間のY軸に沿ったギャップGをプロセッサで算出するのにも使用しうる。例えば、プラテン740のX軸に沿った位置は、プロセッサで次のように算出することができる。
【0055】
【数9】

【0056】
上式で、Xは磁石ピッチに沿った距離に比例し、S3、S4は、各センサS3、S4の出力を表している。各センサ群730は所定の距離を置いて配置されているので、Xに対応する補間位置DXを所定距離から減算または所定距離に加算して、センサ群730に対す磁性プラテン740(およびプラテン740に固着する対象物120)の相対位置を得ることができる。例えば、センサ群730がX軸に沿って距離Cに位置し、補間位置DXがP/3に相当する場合、対象物120のX方向の位置は、例えば距離Cプラス位置DX(すなわち、C+P/3)となる。
【0057】
プラテン740のZ軸に沿った位置は、プロセッサで次のように算出されうる。
【0058】
【数10】

【0059】
上式で、Zは磁石ピッチに沿った距離に比例し、S1、S2は各センサS1、S2からの出力信号を表している。各センサ群730が所定の距離を置いて配置されているので、Xに対応する補間位置DZを所定距離から減算または所定距離に加算して、センサ群730に対す磁性プラテン740(およびプラテン740に固着する対象物120)の相対位置を得ることができる。例えば、センサ群730がZ軸に沿って距離Bに位置し、補間位置DZがP/3に相当する場合、対象物120のZ方向の位置は、例えば距離Bプラス位置DZ(すなわち、B+P/3)となる。
【0060】
センサ群730と磁性プラテン740の間のギャップ(すなわちY軸に沿った位置)は、例えば、プロセッサ190で次のように算出されうる。
【0061】
【数11】

【0062】
上式で、tとAは磁石の形状に応じた定数である。この場合、上述したように、対象物の3次元位置を、各センサが1軸のみに沿って主力信号を生成する単軸センサを使用する、前記の例示的実施形態により求めることができる。
【0063】
次に図26〜34を参照すると、1つの例示的実施形態では、測位システムが、磁極要素2601、2602を含む磁性アレイMと、単軸センサの第1バンクA1〜A5と、単軸センサの第2バンクB1〜B5と、アナログエレクトロニクス2630と、ADC2640、2645とを含むことができる。単軸センサは、上述のものと実質的に類似であってもよい。アナログエレクトロニクス2630とADC2640、2645はコントローラ190の一部であってもよいことに注意されたい。代替の実施形態では、アナログエレクトロニクス2630とADC2640、2645を、コントローラ190から分離しても、接続してもよい。他の代替の実施形態では、センサA1〜A5、B1〜B5がデジタル出力を提供するように構成してもよい。この例示的実施形態では、各センサバンク内のセンサ間の距離Dが磁性アレイの磁石のピッチ(P)を各バンク内のセンサ数(n)で除算したP/nに相当する。前記式のPは磁石ピッチであり、nは各バンク内のセンサ数である。代替の実施形態では、各バンク内のセンサ間の距離が、任意の適切な距離であってよく、P/nより大きくても小さくてもよい。2つのバンクのセンサA1〜A5、B1〜B5は、それぞれ約D/2の距離分ずらすことができる。代替の実施形態では、各バンク内のセンサ間の距離および2つのセンサバンク間のオフセットが任意の適切な距離であってよい。上述したように、磁性アレイMがセンサの近傍を、例えばX方向などの方向に移動すると、センサバンクA1〜A5、B1〜B5によって周期的な信号が発生されうる。この例示的実施形態では、センサ1A〜A5、B1〜B5は、各センサA1〜A5、B1〜B5がそれぞれ飽和限界に達するように、磁性アレイMに十分に近接させて配置する。センサA1〜A5からの信号の例を図27〜31に示す。図27〜31に示すように、正弦波信号2700、2800、2900、3000、3100の平坦部または水平部は各センサの飽和限界を表している。実現しうるものとして、センサB1〜B5は図27〜31に示したものと類似の飽和限界を有してもよい(ただし、その出力は、例えばX軸、または任意の他の適切な軸に沿って移動させてもよい)。アナログエレクトロニクス2630は、センサA1〜A5からの信号を合計し、図32に示す信号Aを生成することができる。前記アナログエレクトロニクスは、センサB1〜B5の信号の合計をして、図33に示す信号Bを生成することもできる。代替の実施形態では、このアナログエレクトロニクスをデジタルエレクトロニクスに取り換えて、センサにデジタル出力を提供させてもよい。センサからの信号を合計するときに、例えばセンサA2およびA4からの信号(例えば、1つおきのセンサ信号)など、信号の一部が反転させてもよいことに注意されたい。代替の実施形態では、任意の適切なセンサ(1つまたは複数)からの信号を反転させてもよい。他の代替の実施形態では、前記信号を反転させても、反転させてなくてもよい。飽和信号の総量は、図32および33に示すような、各センサバンクA1〜A5、B1〜B5の位相後鋸波信号3200、3300を発生させる。これらの信号A3200、B3300を使用して、磁性アレイまたはプラテンMのセンサA1〜A5、B1〜B5に対する相対位置を以下に述べるように判定することができる。さらに、飽和信号の総量は、図34に示した不飽和正弦/余弦波対と比べて、より短い周期をもたらし、磁性アレイMに対するセンサ応答の変化率の上昇と、センサの高分解能とを可能にしうることにも注意されたい。
【0064】
起こりうるものとして、本開示実施形態で実施される位置計測は、不均一磁場を含む様々な理由による影響を受けるかもしれない。法線磁界アプローチの場合は、位置計測が例えば、磁界を生成するモータコイルを介して影響を与されうる。平行磁界アプローチの位置計測では、例えば磁気プロテンそれ自体によって影響されうる。位置計測が、例えば、不均一磁場またはモータコイルに影響される場合は、追加センサ、またはルックアップテーブル、または磁石の成形、あるいはその組み合わせを含むがこれらに限定されない幾つかの方法で補正することができる。
【0065】
追加センサを測位システムに加えることによって、センサ間のピッチを例えば狭めて、センサの分解能やノイズ耐性を向上させることができる。例にすぎないが、法線磁界による計測アプローチの場合は、2つの追加センサにより、角度または正接の4つの組み合わせが、例えばプロセッサ190で算出されうる。これらの4つの角度が、図12Aに示すように、1つの磁石ピッチ内の正接の4つの周期を発生させる。同様に、例でしかないが、4つの追加センサを上述のセンサ群530、730に加えると、図12Bに示すように、正接の8周期が1つの磁石ピッチ対して発生する。
【0066】
補正係数を利用して、センサのノイズ耐性および精度を向上させることもできる。例えば、平行磁界アプローチでは、図12Cを参照すると、単軸センサの読み出しS1〜S4が行われ(図12C、ブロック1200)、初期測位値がプロセッサで次のように算出される(図12C、ブロック1210)。
【0067】
【数12】

【0068】
【数13】

【0069】
上式で、αは、補正前のX軸に沿った位置を表し、βは補正前のZ軸に沿った位置を表し、S1〜S4は、各センサS1〜S4からの出力を表している。補正係数δ1、δ2、δ3、δ4...δnを、例えばルックアップテーブルから取得する(図12C、ブロック1220)。補正係数δ1〜δnは、任意の適切な補正係数であってよく、これらの補正係数は、例えば、実験、センサ感度の知識、減磁曲線の磁石動作点、または/および任意の他の適切な情報により取得することができる。補正係数δ1〜δnを使用して、補正後のセンサ出力値S1’〜S4’を次のように算出する(図12C、ブロック1230)。
【0070】
【数14】

【0071】
【数15】

【0072】
【数16】

【0073】
【数17】

【0074】
X軸、Z軸に沿った補正後の位置およびセンサ群730と磁性プラテン740の間の補正後のギャップは、次の例式を使用してプロセッサ190で算出することができる(図12C、ブロック1240)。
【0075】
【数18】

【0076】
【数19】

【0077】
【数20】

【0078】
上式で、tとAは磁石の形状に応じた定数である。図13および14は、補正係数を使用した後のギャップ計測およびZ軸計測グラフの例を示している。平行磁界アプローチに関連して補正係数の応用を説明したが、これらの補正係数は、上述したものと実質的に類似の方法で、法線磁界アプローチに応用されうることを認識されたい。
【0079】
上述の通り、磁石を成形することによって、本明細書に記載した測位システムの精度を上げることもできる。図示した例示的実施形態では、磁性プラテン上の磁石が円形状、またはひし形を有している。しかしながら、これらの磁石は、四角、ひし形、楕円形、長方形、台形、円形、三角形などを含むがこれらに限定されない、任意の適切な形状を有してよいものであることを認識されたい。
【0080】
磁性プラテン上の磁石の形状は、例えば正弦波タイプの波形を生成する一方で、不均一磁界が誘因となる計測誤差を最小限にするように構成することが可能である。磁石の形状は、以下にひし形および円形状の磁石について説明するが、本明細書に記載した態様の最適化は、どんな適切な形状の磁石にも応用されうるものである。
【0081】
ここで図15A〜15Cおよび16A〜16Bを参照して、磁性プラテンの例を示す。図15Aに示すように、磁性プラテンは、円形または円筒形の磁石のアレイを含んでいる。図15Bおよび15Cは、磁石アレイの各磁石が実質的に(平坦な上面を持つ)円錐形を有するような形状の円筒状磁石を示している。図15Bは、約50度の端面またはトリム角を有する磁石を図示しているが、図15Cは約60度の端面またはトリム角を有する磁石を図示している。図16Aは、ひし形状の磁石であるが、図16Bは約50度の端面またはトリム角を有するひし形状の磁石を示している。代替の実施形態では、これらの磁石が任意の適切な端面角度を有することができる。さらに他の代替の実施形態では、磁石が、実質的に円錐形以外の任意の適切な形状を有してもよい。
【0082】
図17は、プラテンがセンサの近傍を通過するときの、例えば図15Aの円筒状磁石によって発生する正弦波を示している。図17に示すように、平滑な正弦波ではなく、全ての軸(X、Z、および磁界強度軸)に沿った波形にゆらぎが見られる。ひし形状磁石に関しては、図19A〜19Cに、磁性プラテン1900(図16Aも参照)によって発生する信号が平行磁界アプローチに関連して詳細に示されている。図19Aのグラフ1910、1920から理解できるように、Z方向およびX方向の磁界の強さは、X軸およびZ軸に沿った位置に対してプロットされるもので、不均一な凹凸形状を有している。不均一な凹凸形状は、磁界強度をX軸およびZ軸に沿った位置に対してプロットした2次元グラフ1930上でも示されている。XまたはZ軸に沿った位置が判定され、その結果が図19Bに示したグラフにプロットされると、正弦波の角度に対応する位置データ点として最良適合線1950が示される。同様に、磁性プラテンとセンサの間のギャップ距離がプロットされると、ギャップは均一の距離計測を有するもとして示されていないことが図19Cから理解できる。
【0083】
図18は、プラテンがセンサの近傍を通過するとき、例えば図15B、15C、および16Bの形状の磁石によって発生する正弦波を示している。図18に示すように、この正弦波は平滑であり、従って、その最適波形からは、非平滑正弦波から取得するよりも精度の高い位置計測を検出することが可能である。図20Aは、最適化された磁性プラテン2000の例を示している。磁性プラテン2000は図4に関連して上述したものと実質的に類似の構成を有することができる。図20Aに示すように、磁界強度をX軸、Z軸、またはXおよびZの両軸に対してプロットすると、その結果生じる正弦波2010、2020、2030は平滑であり、それによって、非平滑な正弦波による計測と比べて誤差が最小限の計測を行うことが可能になる。図20Bに示すように、正弦波の角度に対応する位置データ点は、実質的に線2050に沿ったものとなる。同様に、磁性プラテンとセンサの間のギャップ距離がプロットされると、図20Cから理解できるように、ギャップは、実質的に均一の距離計測値を有するもとして示されていない。
【0084】
磁界の平滑化は、例えば磁性プラテンの個々の磁石の端面または側面をトリムすることによって実現することができる。トリム角度は、標準偏差σをセンサ位置での磁界歪みの目安として使用することによって求めることができる。例えば、図22を参照すると、標準偏差σは、ひし形磁石の端面角度が約50度(点”J”参照)で、円錐形状磁石が約60度(点”K”参照)のとき、ゼロに最も近接する。また図21に示すように、磁界の規格化効率は、ひし形状磁石のトリム角度が約50度で、円錐形磁石のトリム角度が約60度のときに最大になる。ここでの規格化効率(NE)は、次のように定義される。
【0085】
【数21】

【0086】
上式でσは標準偏差、Weightは磁性プラテン(1つまたは複数)の重量、およびRMSは磁界強度の2乗平均平方根である。(図25のNE値の例も参照)。さらに図23は、磁性プラテンの磁石からの距離に対する磁界強度間の関係を示し、図24は、非平坦な磁界を発生させるひし形磁石ならびに平坦な磁界を発生させる成形したひし形および円錐形状磁石の磁界効果を示している。代替の実施形態では、任意の適切な態様で磁界を平坦化することができる。
【0087】
別の例示的実施形態によると、位置検出分解能エンハンサ(PSRE)を備えることにより、アナログ領域で、本明細書に記載したような位置フィードバック装置の分解能を(これらフィードバック装置の基本分解能に比べて)向上させることが可能になる。1つの例示的実施形態では、PSREがプロセッサ190の一部であってもよく、また別の実施形態ではPSREがコントローラ190から分離したものであってもよい。1つの例示的実施形態では、PSREを、例えば、1つまたは複数のフィードバックセンサの出力とモータコントローラの入力との間に位置づけることもできる。代替の実施形態では、PSREを任意の適切な位置に配置してセンサの生成する信号を改変することができる。前記の例の中ではモータコントローラが使用されているが、任意の適切なコントローラで位置センサから信号を受信してもよいことに注意されたい。この例示的実施形態では、PSREは、位置センサの信号を操作して、1回または複数回の乗算、除算、および増幅を介して、例えば位置信号の正弦波分布頻度を2倍、4倍などにし、2、4などの係数により位置検出分解能を向上させる。他の例示的実施形態では、PSREによって信号振幅の最適化モニタリングを可能にすることもでき、例えば、回転子−固定子のギャップ測定装置として使用することができる。代替の実施形態では、例えば本明細書に記載したもののように(これに限定されない)、回転またはリニアアプリケーションにおいて任意の適切な診断用に信号振幅の最適化モニタリングを使用することができる。
【0088】
以下に詳細を説明するように、1つの例示的実施形態では、センサからの正弦および余弦信号両方を2乗することによって(上述したセンサからのように)、正弦波信号であるが、その各原信号のほんの半分の周期を持つ信号を得る結果となり、この例では、センサの分解能を2倍にする。しかしながら、磁気センサを用いる場合など、例えばギャップおよび/または温度の変化に起因して信号振幅が変わりやすい場合、ADCは一般に、より振幅の小さい、より少数の有意ビットを生成し、効果的に位置解像度を低下させる。可変振幅に起因する信号は、その振幅に比例する値でオフセットしなければならない。可変振幅に起因する問題を避けるために、これらの例示的実施形態は、1つの例において、位相を信号の振幅から分離している。これは、正弦および余弦信号の両方を2乗して、これらの2乗値を加算して振幅の2乗を得ることによって実行されうる。振幅のばらつきは、2乗した信号を2乗した振幅で除算することによって実質的に除去され、それによって、信号関連の位相がADCのレンジ内に留まり、信号のばらつきに左右されない同じ角度の分解能を提供する。前述のように、信号を連続して2乗にすることにより、それに応じた位置分解能を2倍にする。
【0089】
センサの振幅を、磁気ギャップのばらつきの検知または任意の他の適切な目的などの処理に使用する場合は、純粋な振幅2乗信号をアナログ領域で前処理して、対象レンジ内の線形性および分解能の最適化を実現する。
【0090】
次に図35を参照すると、上述のPSREで実施する高分解能化が示されている。1つの例では、信号の分解能を2倍(4倍、など)にするために、単軸センサで正弦波分布している磁界を検知して得た信号を二乗して、オフセットし、例えば、所望の直流レベルを得る。図35に示すように、線50100は、原信号を表し、線50101は、本明細書に記載する2倍後の信号を表している。図から理解できるように、2倍の信号50101は、原信号50100の実質的に半分の周期を有する。図35は、例示的実施形態により、センサの分解能を、例えば、2倍および4倍にする例示的処理のブロック図である。代替の実施形態では、センサの分解能は、任意の適切な態様で2倍(4倍など)にすることができる。図36のS1、S2は、単軸センサの原信号または基本信号を表しており、図37に示すように、次の、
【0091】
【数22】

【0092】
および
【0093】
【数23】

【0094】
では、Φは、2つの信号間の固定位相シフトであり、Aは振幅である。1つの例示的実施形態では、Φが、例えば、ハードウェアで求めた位相シフトであってもよい。代替の実施形態では、Φの値を、任意の適切な態様で求めることができる。説明を容易にするために、正弦波の信号分布に関連した位置を、本明細書内では”周波数”と呼ぶ。1つの例示的実施形態では、4倍の周波数の正弦および余弦信号を得るために、Φの値を約22.5゜にすることができる。代替の実施形態では、Φの値を任意の他の適切な値にして、所望の周波数を得ることができる。図36に示したS12、S22は、オフセットおよび補正2乗に対応した後の信号S1、S2を表している。S12、S22の周波数は、実質的に2倍になっていることに注意されたい。
【0095】
1つの例示的実施形態では、オフセット値がPSREによって、次の例示的数学的関係を使用する、初期のsin(x)およびsin(x+Φ)信号に基づく余弦信号を構成することによって補正されうることに注意されたい。
【0096】
【数24】

【0097】
上式で、sinΦとcosΦは、例えばセンサの間隔によって決まる既知の一定係数である。代替の実施形態では、sinΦとcosΦが任意の適切な値を有することができる。
【0098】
上記の例式[24]は、次の式によって物理的に表してもよい。
【0099】
【数25】

【0100】
上式で、Aは信号電圧振幅の振幅である。従って、
【0101】
【数26】

【0102】
sin(x)、cos(x)のどちらの関数も、振幅を算出するために、次のように2乗にすることができる。
【0103】
【数27】

【0104】
この振幅は、補正をオフセットし、信号を調節するために使用されうるもので、それによって、例えば、振幅をさらに処理する上で最適なレベルに変えるために、両方の信号をA2で除算することによって、
【0105】
【数28】

【0106】
【数29】

【0107】
振幅のばらつきに左右されない信号を生成する。第2のオフセット補正および2つの正弦/余弦信号の乗算後、図39に示すように、入力原信号S1、S2に対する4倍の周波数が得られる。これらの信号は、2倍の信号S12、S22が再度2倍にされ、4倍の信号(S12)2、(S22)2となる図36に示すような所望の精度を得るために、繰り返し調節してもよいことに注意されたい。
【0108】
本明細書に記載した周波数乗算(逓倍)によって、位置精度を引き上げることができ、例えば理想的な信号であれば、図40のように示される。図40に示すように、線50200、50201はどちらも、位置算出に使用される逆正接(正弦/余弦)関数を表している。線50200は、周波数f(または磁性ピッチP)を伴う信号に対して予期されうるもので、線50201は周波数4*f(またはピッチP/4)に対して予期されうるものである。図40に示すように、例示的実施形態は磁性ピッチを仮想的に低くし、本明細書に記載したセンサのような位置センサの分解能を向上させる。
【0109】
本明細書に開示する高分解能化の安定性について、図41〜44に関連して説明する。以下の例では、入力信号に応じてランダムに発生させた外乱を導入する。1つの例において、図41では、例えば約5%の誤差を有する入力信号、また図42ではこれに対応する出力信号を示す。起こりうるものとして、上述の通り、センサ信号のチャンネル用に2回2乗することによって、任意の加法性ノイズが4倍になるかもしれない。このノイズの増幅は、単一振幅をADCのレンジに適合させるダイナミック自動利得制御(AGC)によって削減しうるもので、信号の処理前に、2値化固有の誤差を最適化することで、これらのチャンネル(例えば、振幅算出)を少なくとも部分的に弱められた残留ノイズに対して交差相関し、非同期残留ノイズを4倍にした位置分解能に関連させてノイズの高周波数帯域を除去することができる。代替の実施形態では、雑音の増幅を任意の適切な態様で削減することができる。さらに、場合によっては、センサエレクトロニクスによって導入されるノイズを無視できることに注意されたい。
【0110】
例示的実施形態によると、位置分解能は、位置に依存する正弦波関数を使用する位置フィードバックシステムに対して推定することができる。この例では、例示のためだけに、フィードバックシステムが、1/4磁性ピッチの間隔(すなわち90°の位相シフト)で配置された2つの固定されたホール効果センサ(または任意の他の適切な単軸センサ)を使用して、永久磁石を持つ回転子/プラテンによって発生する正弦波磁界を検知する。代替の実施形態では、このシステムが任意の適切な数またはタイプのセンサを使用することができる。実現しうるものとして、2つの単軸センサが、回転子/プラテン依存正弦波信号(例えば、正弦および余弦信号)を生成する。これら2つの信号値比の逆正接を取ることにより、
【0111】
【数30】

【0112】
モータの周期的な位置(角度で)を求めることができる。式[30]のsinおよびcosは、関数ではなく、周期的な信号を表している。代替の実施形態では、このフィードバックシステムに任意の適切な数の単軸センサを使用して、モータの位置を任意の適切な計測単位で求めてもよい。位置分解能の誤差εαを算出するために、PSREが式[30]から変動関数∂/∂sinおよび∂/∂cosを求めることができる。
【0113】
【数31】

【0114】
上式で、εsinおよびεcosは、それに対応する正弦および余弦信号の個別誤差である。次の単純化を使用し、
【0115】
【数32】

【0116】
【数33】

【0117】
【数34】

【0118】
以下に相当するεαを求めることができる。
【0119】
【数35】

【0120】
正弦および余弦信号を正弦および余弦関数に置き換える場合には、式[35]を、以下のように書き直すことができる。
【0121】
【数36】

【0122】
上式で、Aはこれら信号の振幅である。ADCのレンジが2*A(ボルト)に等しく(すなわち、ADCの全レンジが使用され)、かつ信号の不確定性誤差の主な出所がADCの分解能N(bits)=(2*A)/2N(ボルト)と仮定すると、リニア位置分解能εX次のように説明されうる。
【0123】
【数37】

【0124】
上式で、Pは正弦/余弦信号の周期(例えば磁性ピッチ)である。式[37]に示すように、センサの全体的な分解能は、最大値が、例えば、図45に示した、45、135、225、および315度の周期関数である。
【0125】
センサが、図47のブロック図の形で示したような分解能乗算器を介してADCに連結される場合(図47は乗算器の例を示すもので、代替の実施形態では、乗算器が任意の適切な構成および構成要素を有して本明細書に記載した信号の逓倍を実行してもよいことに注意されたい)、乗算器から出力されるノイズレベルは、ADCの分解能を超えるべきではないことを認識されたい。図47Aは、図47のブロック図の電気回路図の例を示している。実現しうるものとして、代替の実施形態では、任意の適切な電気回路を使用して図47のブロック図を実行することができる。ノイズは信号の連続逓倍数に基づき、次のように表すことができる。
【0126】
【数38】

【0127】
上式で、nは逓倍数である。上述の通り、正弦波関数の2乗により、2倍の周波数(例えば半分の周期)を持つ正弦波関数が生成され、それによってリニア位置分解能εXを次のように書き直すことができる。
【0128】
【数39】

【0129】
上式で、Pは原信号の周期である。実現しうるものとして、信号の乗算(逓倍)を追加するごとにフィードバック装置のリニア分解能が2倍になる。PSREがリニア位置分解能を示すのに使用する上式は単に例示的なものであり、位置分解能は任意の適切な式を使用して求められうることを認識されたい。
【0130】
例示的実施形態の位置分解能の向上は、信号振幅のばらつきにも耐性を持ち、ギャップ情報の計測を可能にする。例えば、入力信号が、ギャップ変動、ノイズおよび磁界の不完全性(または他の要因)などのために変化する場合に、上述した高分解能化によりその振幅上の信号を正規化し、実質的に歪みのない正弦/余弦出力信号を提供することができる。例えば、図43は、入力振幅に約20%のノイズを印加した入力信号を示している。図44は、図43の信号を上述の高分解能化により処理した後の出力信号である。図44に示したような信号振幅の算出から、高分解能化によってギャップ計測の分解能を向上させる、ギャップ計測値やその他の情報を求めることができる。例えば、ひとたびギャップレンジが画定すると、確定されたギャップレンジのみを分析するためにADCのフルスケールが使用されうる。非限定の例として、このギャップが、例えば約5mmを上回りかつ約8mm未満の場合に、ADCのレンジにより約5mm〜約8mmの領域を分析することができる。
【0131】
すでに説明したように、正弦波信号の振幅がギャップに依存する場合は、そのギャップは例えば次のように画定されうる。
【0132】
【数40】

【0133】
上式で、Bおよびtは、例えば、ハードウェア依存定数、sinおよびcosは正弦波信号(関数ではない)、かつAは信号の振幅である。代替の実施形態では、Bおよびtが任意の適切な定数値であってよい。式[40]の偏導関数をとることによって、ギャップ計測の分解能εGは、
【0134】
【数41】

【0135】
となり、上式で、εsinおよびεcosは、それぞれ正弦信号と余弦信号の個別誤差である。次のように単純化して、
【0136】
【数42】

【0137】
【数43】

【0138】
【数44】

【0139】
ギャップ分解能の計測は、以下のように説明することができる。
【0140】
【数45】

【0141】
ADCのレンジが2*A(ボルト)に等しく(すなわち、ADCの全レンジが使用され)、かつ信号の不確定性/誤差の主な出所がADCの分解能N(bits)=(2*A)/2N(ボルト)と仮定すると、式[45]を次のように書き直すことができる。
【0142】
【数46】

【0143】
正弦信号および余弦信号を正弦関数および余弦関数に置き換えると、
【0144】
【数47】

【0145】
または
【0146】
【数48】

【0147】
となる。上述した位置分解能と同様に、式[48]からわかるように、全体的なギャップ分解能は、図46に示されるように、最大値が約45、135、225、および315度の周期関数である。センサを、例えば、上述の分解能エンハンサを介しADCに連結する場合、ギャップ情報は、コントローラ190(PSREを含んでもよい)によって、例えばアナログ領域で抽出/前処理済みの、正弦および余弦信号の振幅など、向上した位置分解能などから取得することができる。アプリケーションに応じて、信号増幅をギャップ情報に変換し、上述のように対象領域内に拡大し、ADCに送ることが可能である。この場合、ギャップ分解能は、例えば次のように近似させることができる。
【0148】
【数49】

【0149】
上式で、AGは対象領域である。
【0150】
実現しうるものとして、上記例は信号の2逓倍(例えば、原信号を2倍にする、またはすでに逓倍した信号を倍にする)について記載したが、例示的実施形態は、任意の適切な逓倍係数(例えば1、2、3、4、など)を使用して、原信号や、任意の後続逓倍信号を逓倍するのにも応用されうる。
【0151】
運用時には、上述のような、本明細書に記載した単軸位置センサを含む例示的測位システムを、搬送部が機械化されている任意の適切な施設内で使用し、例えば1つのロケーションから別のロケーションに製品を移動することができる。例示のみを目的とし、半導体処理施設に関連して測位システムの運用例を説明するが、この例示的測位システムは、上述のように任意の適切な施設で利用できることを認識されたい。
【0152】
ここで図48を参照すると、例示的半導体基盤処理装置3510に本明細書で開示する態様を使用することができる。複数のロードポート3512を有する環境フロントエンドモジュール(EFEM)3514に接続された処理装置3510が示されている。これらのロードポート3512は、複数の基板収納キャニスタを支持することが可能で、これらの基板収納キャニスタは、任意の他の適切なタイプを充当しうるが、例えば、従来型のFOUPキャニスタなどである。EFEM3514は、前記の処理装置に連結するロードロック3516を介して処理装置と連通する。EFEM3514(大気に開放されるものであってもよい)は、ロードポート3512からロードロック3516に基板を搬送する基板搬送装置(図示せず)を有する。EFEM3514はさらに、基板配置機能、バッチハンドリング機能、基板およびキャリア識別機能、またはその他の機能を含むことができる。代替の実施形態では、ロードロックがバッチハンドリング機能を有する場合、またはロードロックがウェハをFOUPからロックに直接移送する機能を有する場合のように、ロードロック3516をロードポート3512に直接インターフェース接続してもよい。前記装置のいくつかの例は、米国特許第6,071,059号、第6,375,403号、第6,461,094号、第5,588,789号、第5,613,821号、第5,607,276号、第5,644,925号、第5,954,472号、第6,120,229号、および2002年7月22日に出願された米国特許出願第10/200,818号に開示されており、これら全特許の内容全てを本明細書の一部を構成するものとしてここに援用する。代替の実施形態では、他のロードロックオプションを提供してもよい。
【0153】
さらに図48を参照すると、処理装置3510は、上述したように半導体基板(例えば、200/300mmのウェハ、またはそれより大きいか小さいサイズの他の適切なウェハ)、フラットパネルディスプレイ用のパネル、または任意の他の種類の基板を処理するために使用されうるもので、一般に、搬送チャンバ3518と、処理モジュール3520と、少なくとも1つの基板搬送装置3522を備える。実施形態に示された基板搬送装置3522は、チャンバ3518と一体化されている。この実施形態では、処理モジュールがチャンバ3518の両側面に取り付けられている。他の実施形態では、処理モジュール3520を、例えば図50に示すように、チャンバ3518の1つの側面に取り付けてもよい。図48に示した実施形態では、処理モジュール3520を対向させて、列Y1、Y2、または垂直面に取り付けている。他の代替の実施形態では、この処理モジュールを、搬送チャンバの両側に互い違いに位置をずらしてもよいし、または垂直方向に相対させて重ねてもよい。搬送装置3522は、チャンバ3518内を移動してロードロック3516と処理チャンバ3520との間の基板搬送を行うカート3522Cを有する。例示した実施形態では、1つのカート3522Cのみが備えられているが、代替の実施形態では、これより多くのカートを備えてもよい。図48に示したように、搬送チャンバ3518(その内部が真空、または不活性雰囲気、または単にクリーンな環境、あるいはその組み合わせを条件にするもの)の有する構成および使用する基板搬送装置3522は、処理モジュールをデカルト配置でチャンバ3518に取り付け、モジュールを実質的に平行な垂直面または列に並べることが可能なものである。この結果、処理装置3510は、同等の従来の処理装置(すなわち、同じ数の処理モジュールを持つ従来の処理装置)よりコンパクトなフットプリントを有することになる(例えば図54を参照)。さらに搬送チャンバ3522は、以下に詳細を述べるように、スループットを向上させるために、任意の長さを有して任意の数の処理モジュールを追加することが可能である。またこの搬送チャンバは、任意の数の搬送装置を支持し、搬送装置が互いに干渉せずに搬送チャンバ上の任意の処理チャンバに到達することも可能にしている。これは実際に、処理装置のスループットを搬送装置の可搬能力から切り離すもので、従って、処理装置のスループットが可搬限界でなく処理限界となる。それに応じて、処理モジュールを追加し、同じプラットフォーム上の可搬能力に対応することによって、スループットを向上させることができる。
【0154】
さらに図48を参照すると、この実施形態の搬送チャンバ3518は一般的な長方形を有しているが、代替の実施形態ではこのチャンバが任意の他の適切な形状を有してよい。チャンバ3518は細長い形状(すなわち、長さが幅よりもはるかに長い)を有し、一般にそのチャンバ内の搬送装置のリニア搬送経路を画定する。チャンバ3518は、長手方向の側壁3518Sを有する。側壁3518Sは、搬送開口部またはそれを介して形成されるポート3518Oを有する。搬送ポート3518Oは、(弁を介すことが可能な)これらのポートを介して搬送チャンバに基板を出し入れするのに十分な大きさのものである。図48に示すように、この実施形態の処理モジュール3520は、側壁3518Sの外側に取り付けられ、各処理モジュールを対応する搬送チャンバ3518内の搬送ポート3518Oに合わせて配置する。実現しうるものとして、各処理モジュール3520は、チャンバ3518の側部3518Sに対して、その対応する搬送ポート3518Oの周辺部の周りを封止して、搬送チャンバ3518内の真空を維持することも可能である。各処理モジュール3520に弁をつけて、任意の適切な手段によって制御し、所望により搬送ポート3518Oを閉じることもできる。搬送ポート35180Oは、同じ水平面に配置してもよい。それに応じて、チャンバ3518の処理モジュール3520も、同じ水平面に位置合わせする。代替の実施形態では、搬送ポート3518Oを異なる水平面に配設することもできる。図48に示すように、この実施形態では、ロードロック3516が、最前面の2つの搬送ポート3518Oでチャンバの側部3518Sに取り付けられている。こうすることによって、ロードロック3516が処理装置の前でEFEM3514に近接させることが可能になる。代替の実施形態では、図50に例示したように、ロードロック3516を搬送チャンバ3518上の任意の他の搬送ポート3518Oに配置してもよい。6面体形状の搬送チャンバ3518によって、チャンバ3518の長さを所望通りに選択して、所望の列数分の処理モジュールを装着することが可能になる(例えば、図49、および図51〜53を参照。これらの図のその他実施形態では、搬送チャンバの長さが任意の適切な数の処理モジュールを収容できるようになっている)。
【0155】
すでに述べたように、図48に示した実施形態の搬送チャンバ3518は、単一のカート3522Cを備えた1つの基板搬送装置3522を有する。搬送装置3522はチャンバと一体化して、カート3522Cをチャンバ内の前部3518Fと後部3518Bとの間で平行移動させる。搬送装置3522が有するカート3522Cは、1つまたは複数の基板を把持するエンドエフェクタを有する。また搬送装置3522のカート3522Cは、多関節アームまたは可動搬送機構3522Aも有しており、エンドエフェクタを伸長および退避して処理モジュール3520またはロードロック3516で基板の取り上げまたは取り外しを行う。処理モジュール/ロードポートから基板の取り上げまたは取り外しを行うために、搬送装置3522を所望のモジュール/ポートと位置合わせすることができ、アームを対応するポート3518Oを介して伸長/退避し、モジュール/ポート内部にエンドエフェクタを位置付け、基板を取り上げる/取り外す。
【0156】
図48に示した搬送装置3522は、典型的な搬送装置であり、リニア支持/駆動レールに支えられるカート3522Cを含む。搬送装置は、すでに援用した米国特許公報第2004/0151562に記載される磁気浮上搬送装置と実質的に類似のものであってよいが、任意の適切な搬送装置を使用することができる。リニア支持/駆動レールは、搬送チャンバの側壁3518Sまたは頂部に取り付けてもよいし、またチャンバを長くしてもよい。こうすることによって、カート3522C、すなわち装置がチャンバを横断することが可能になる。カート3522Cは、アームを支持するフレームを有する。このフレームは、フレームと一緒またはフレームに相対して移動するキャスターマウントまたはプラテン3522Bも支持する。例えば順次同期リニアモータなど、任意の適切なモータによってプラテン3522B、すなわちカート3522Cをレールに沿って駆動することができる。この例示的実施形態では、アームを適切な連係/伝送を介してプラテン3522Bに作動連結し、その結果、プラテン3522Bが駆動モータによって互いに対して相対的に動くとき、アームが伸長または退避するようにする。例えば、伝送を、プラテン3522Bがレールに沿って離れると、アームを左に伸長し、逆に戻って距離が縮まると、アームを左から退避させるように構成することができる。プラテン3522Bをリニアモータで適切に作動させて、アーム3522Aを右へ伸長/右から退避させることもできる。 スライドレール上のプラテン3522Bのリニアモータによる移動の制御、ならびにプラテン3522Bすなわちカート3522Cおよびアームの伸長/退避位置の位置検知を、上述の測位システムを介して実現することが可能である。例えば、例示的プラテン400のような磁性プラテンMPを、各搬送プラテン3522に固定または一体化させ、それによってプラテンMPが発生する磁界を、例えばチャンバ3518の側部に向けさせることができる(図55、ブロック4200)。(複数の)単軸センサ群Q(その各単軸センサ群は、図4、5、および7に示した1つのセンサ群、または図2Aおよび3Aに示したセンサダブレット、または図3Aに関連して上述した個別センサ、またはこれらの任意の組み合わせを含むことができる)を、上述の態様で、チャンバ3518の側部3518Sに沿ってカート3522Cおよび搬送プラテン3522A、3522Bの移動経路沿いに配置することができる。図を見やすくするために図には少数のセンサ群Qしか示していないことに注意されたい。さらに、上述の異なる位置検知システムの任意のものを個別に使用、またはその任意の組み合わせを使用して、カート3522Cの位置を精密に求めることも可能であることにも注意されたい。
【0157】
コントローラ3590は、単軸センサ群Qを順に走査して、例えばポイント3580に位置するセンサを最初に走査されるセンサとして構成し、カート3522Cの位置をポイント3580を基準に参照して、絶対位置計測が提供されるように構成することができる(図55、ブロック4210)。上述のように、各センサ群Qは、チャンバ3518内において任意の適切な基準点から所定の距離を置いて配置され、それによって磁性プラテンMPが任意のセンサを通過すると、磁性プラテンの位置の概略を得る。磁性プラテンMPすなわちカート3522Cの位置をより精密な判定は、センサの出力を上述のように数学的に処理することによって得られる。この例では、各プラテン3522Bに磁性プラテンMPが含まれているので、各プラテン3522Bの位置を個別に求めることができ、それによって、プラテン3522Bを一斉に1つの方向に駆動し、カート/装置全体を搬送チャンバ3518内部の長手方向に移動させるか、個別に駆動し、カート3522Cが担持するアーム3522Aを伸長または退避させることができる。さらに、カート3522Cのチャンバ壁3518Sに対する位置(例えば、壁とカートとの間隙)を計測し、それに応じて調整することにより、カート3522Cが壁3518S間の所定置で、処理モジュール3520内に基板を正確に載置するのを補助することができることにも注意されたい。
【0158】
図49は、装置3510とほぼ類似の、別の実施形態の基板処理装置3510’を示している。この実施形態では、搬送チャンバ3518’が2つの搬送装置3622A、3622Bを有している。搬送装置3622A、3622Bは、上述した図48の装置3522と実質的に同じものである。搬送装置3622A、3622Bの両方を、共通の、上記のような一連の長手方向サイドレールで支持してもよい。各装置に対応するカートのプラテンは、同じリニアモータ駆動装置によって駆動してもよい。リニアモータの駆動ゾーンが異なることによって、各カート3622A、3622B上プラテンの個別独立駆動が可能になり、従って、各カート3622A、3622Bの個別独立駆動も可能になる。すなわち、実現しうるものとして、前記のものと類似した態様でリニアモータを使用し、各装置のアームをそれぞれ独立して伸長/退避させることが可能である。しかしながら、この場合、基板搬送装置3622A、3622Bは、別々のスライドシステムを使用しない限り、搬送チャンバで擦れ違うことができない。上述のように、カートの各プラテンには磁性プラテンMPを含むことができ、磁性プラテンMPは、1つまたは複数の単軸センサを含み、チャンバ壁3518S’に固定されるセンサ群Qと相互作用する。この例示的実施形態では、処理モジュールを搬送チャンバ3518’の長さに沿って配置し、その結果、処理モジュール3518’内で搬送装置3622A、3622Bが互いの妨げとなるのを回避する順に処理するように基板を搬送することができる。例えば、コーティング処理モジュールを加熱モジュールの前に配置すること、または冷却モジュールとエッチングモジュールを最後に配置することができる。
【0159】
しかしながら、搬送チャンバ3518’は、2つの搬送装置の擦れ違いを可能にする別の搬送ゾーン3518A’、3518B’を有してもよい(サイドレール、バイパスレール、またはレールを必要としない磁気浮上型ゾーンと同種のもの)。この場合、他方の搬送ゾーンは、処理モジュールが位置する水平面(1つまたは複数)の上下いずれかに配置することができる。この場合、搬送ゾーン3518A’、3518B’はそれぞれ自ゾーンのセンサ群セットQを有して、搬送ゾーン3518A’、3518B’カートの各ゾーン内の3622A、3622Bの位置をそれぞれ別個に探知することもできる。この実施形態では、搬送装置が、2つのスライドレールを有し、各搬送装置がそれぞれ1つのスライドレールを有する。一方のスライドレールを搬送チャンバの床または側壁に配置して、他方のスライドレールをチャンバの頂部に配置してもよい。代替の実施形態では、リニア駆動システムを使用してカートを同時に駆動し、カートを水平方向および垂直方向に独立可動することができるように懸架し、そうしてカートが互いに独立して基板の引き渡しや移送ができるようにする。センサ群Qを磁性プラテンMPと併用することによって、カート3622A、3622Bが互いの上方/下方を通過するとき、各カートの垂直位置を探知し、搬送機または搬送機が担持する基板に損傷を与えうる衝突を避けることができることに注意されたい。電気巻線を使用する全実施形態では、例えば水蒸気を除去する場合のように、ガス放出のためにチャンバを加熱することが望まれる場合など、これらの巻線を抵抗発熱体として使用することもできる。この場合、各搬送装置は、上記のもの類似した専用のリニア駆動モータまたはカートを備えた専用の駆動ゾーンによって駆動することができる。
【0160】
次に図52および53を参照すると、他の例示的実施形態により本明細書内に記載した測位システムを組み込んだ、他の基板処理装置が示されている。図52および53からわかるように、これらの実施形態の搬送チャンバは細長く伸ばして、追加処理モジュールを収容する。図52に示した装置は、12の処理モジュールが搬送チャンバに連結され、図53の各装置(2つの装置が図示されている)は、24の処理モジュールが搬送チャンバに連結されている。これらの実施形態に示した処理モジュールの数は、単に例示のためのものであり、前記の装置は、前述したように、任意の数の処理モジュールを有することができる。これらの実施形態の処理モジュールは、上述のものと同様に、搬送チャンバの側部に沿って、デカルト配置で配設されている。ただし、この場合、処理モジュールの列数が大幅に増えている(例えば図52の装置では6列で、図53の各装置は12列である)。図52の実施形態では、EFEMを取り外して、ロードポートを直接ロードロックに係合してもよい。図52および53の装置の搬送チャンバは、ロードロックと処理チャンバとの間で基板を取り扱うために、複数の搬送装置を有する(すなわち、図52では3つの装置、また図53では6つの装置)。図示されている搬送装置の数は単なる例示にすぎず、それよりも多いまたは少ない装置を使用することができる。これらの実施形態の搬送装置は、前述のものとほぼ類似のもので、アームとカートを備え、カートおよびアームの伸長/退避の位置を先に述べた多次元測位システムで探知する。ただし、この場合、カートは、搬送チャンバの側壁のゾーン指定リニアモータ駆動装置から支持される。この場合のリニアモータ駆動装置は、2つの直交軸(すなわち、搬送チャンバの長手方向および搬送チャンバの垂直方向)においてカートの平行移動を提供する。それに応じて、搬送装置は、搬送チャンバ内で擦れ違うことができる。搬送チャンバは、処理モジュール面の上方および/または下方に”通過”エリアまたは搬送エリアを有することができ、搬送装置がそこを経由することによって静止状態の搬送装置(すなわち、処理モジュールでの基板の取り上げ/取り外しをしている)または逆方向への移動を回避することができる。実現しうるものとして、基板搬送装置が、複数の基板搬送装置の移動を制御するコントローラを有している。
【0161】
さらに図53を参照すると、この場合、基板処理装置3918Aおよび3918Bをツール3900に直接結合することができる。
【0162】
図49、50、および52−53から実現しうるように、搬送チャンバ3518を任意に延長し、処理施設PF全域を走行させることもできる。図53からわかるように、かつ以下に詳細を説明するように、搬送チャンバを処理施設PF内の、例えば保管ベイ、リソグラフィツールベイ、金属蒸着ツールベイ、または任意の他のツールベイなど、様々なセクションまたはベイ3918A、3918Bに連結および連通させることができる。搬送チャンバ3518に接続するベイを処理ベイまたはプロセス3918A、3918Bとして構成してもよい。各ベイは所望のツール(例えばリソグラフィ、金属蒸着、均熱、洗浄)を有し、半導体ワークピースに所与の製造処理をする。いずれの場合も、搬送チャンバ3518は、前述の通り、施設ベイの様々なツールに対応し、これらに連通接続する処理モジュールを有し、半導体ワークピースのチャンバと処理モジュール間の移送を可能にする。従って、搬送チャンバは、その全長にわたって、搬送チャンバに連結された各種処理モジュールの環境に対応する、大気、真空、超高真空、不活性ガス、または任意の他の環境など、異なる環境条件を含むことができる。従って、所与のプロセスまたはベイ3518A、3518B内、またはそのベイの一部内にあるチャンバのセクション3518P1は、例えば1つの環境条件(大気など)を有し、チャンバの別のセクション3518P2、3518P3は異なる環境条件を有することができる。上述の通り、内部に異なる環境を備えたチャンバのセクション3518P1、3518P2、3518P3は、施設の異なるベイ内にあってもよいし、全てが施設の1つのベイ内にあってもよい。図53は、例示のみを目的として、異なる環境を持つ3つのセクション3518P1、3518P2、3518P3を有するチャンバ3518を示している。この実施形態のチャンバ3518は、任意の数の異なる環境を持つセクションを任意の数だけ有することができる。セクション3918A、3918B、3518P1、3518P2、3518P3のそれぞれに、上述の通り各搬送セクションの壁に沿って配置された、1つまたは複数の単軸センサを含むセンサ群Qを備えてもよい。これらの搬送セクションは、3518P2のようにカート3266Aの高精度な配設を必要としないところでは、図3Aに関連して上述したセンサの構成を使用し、カート3266Aを低コストで精密に探知することができる。代替の実施形態では、本明細書内に記載した例示的測位システムの任意の組み合わせを、搬送セクション3918A、3518P1、3518P2、3518P3のどのセクションに使用してもよい。
【0163】
図53からわかるように、搬送装置は、装置3622Aと類似のもので(図49も参照)、チャンバ3518内で、内部に異なる環境を持つセクション3518P1、3518P2、3518P3との間を通過することが可能である。よって、図53から実現しうるものとして、搬送装置3622Aは、1回の取り上げで、半導体ワークピースを処理施設の1つのプロセスまたはベイ3518A内のツールからその処理施設の異なるプロセスまたはベイ3518B内の異なる環境を持つ別のツールに移動することができる。例えば、搬送装置3622Aは、基板を処理モジュール3901内で取り上げることができ、この処理モジュールは、搬送チャンバ3518の大気モジュール、リソグラフィ、エッチング、またはセクション3518P1内の任意の他の処理モジュールであってもよい。搬送装置3622Aは次に、図53の矢印X3が指示する方向に、チャンバのセクション3518P1からセクション3518P3へと移動する。セクション3518P3内で、搬送装置3622Aは基板を処理モジュール3902(任意の処理モジュールであってよい)内に載置することができる。
【0164】
図53から実現しうるものとして、搬送チャンバはモジュール式であってもよく、チャンバのモジュールを任意に接続し、チャンバ3518を形成してもよい。モジュールには、図48の壁3518F、3518Rに類似した内壁3518Iが含まれ、チャンバのセクション3518P1、3518P2、3518P3、3518P4を分離する。内壁3518Iにはスロット弁、または任意の他の適切な弁を含んで、チャンバ3518P1、3518P4の1つのセクションを1つまたは複数の隣接セクションと連通できるようにすることもできる。スロット弁3518Vは、1つまたは複数のカートがこれら弁を介して1つのセクション3518P1、3518P4から別のセクションへ通過できる大きさにすることができる。この方法で、カート3622Aはチャンバ3518全域のどこにでも移動することができる。弁は閉鎖して、チャンバのセクション3518P1、3518P2、3518P3、3518P4を隔離し、異なるセクションが上述のような異種環境を含むことができる。さらに、チャンバモジュールの内壁は、図48に示すようにロードロック3518P4を形成する配置にしてもよい。ロードロック3518P4(図53では例示のために1つだけしか図示していない)は、チャンバ3518内に任意に配置することができ、かつチャンバ内で任意の数のカート3622Aを保持することができる。
【0165】
次に図54を参照すると、自動搬送システム(AMHS)4120を使用する製造施設のレイアウトの例が示されている。この例示的実施形態では、ワークピースはストッカ4130からAMHSで1つまたは複数の処理ツール4110に搬送される。AMHSは、1つまたは複数の搬送カート4125および搬送軌道4135を組み入れている。搬送軌道4130は任意の適切な軌道であってよい。搬送軌道には、上述のように1つまたは複数の単軸センサを含み、軌道に沿って離間配置するセンサ群Qを含んでもよい。搬送カート4125に、センサ群Qと相互作用する1つまたは複数の磁性プラテンMPを含めて、上述のようにカート4125の位置計測を提供することができる。
【0166】
実現しうるものとして、位置を計測または探知する被対象物120の位置は、その対象物の各端部近くにあるセンサを使用して探知され、コントローラが同じ搬送経路に沿ってそれぞれ追跡可能な複数対象物を調整し、対象物間の接触を回避させることができる。代替の実施形態では、対象物120は、対象物120の1つの端部のセンサを使用し、対象物の長さを認知して探知することができる。この場合、コントローラは、本明細書に記載した測位システムで取得する対象物の第1の端部の位置を使用して、その対象物の長さを加算または減算し、対象物が占めている搬送経路に沿ったスペースの大きさを求めることができる。
【0167】
本明細書に記載した例示的実施形態はリニア駆動システムに関して説明しているが、例示的実施形態は回転駆動でも利用可能であることを認識されたい。例えば、本明細書で開示する実施形態を使用して、シリンダ内の対象物の回転速度および軸方向位置を探知しながら、同時に回転対象物とシリンダの1つの壁との間の距離を計測することができる。
【0168】
本明細書に記載した例示的実施形態は、単軸位置センサを使用して上述のように対象物の多軸位置を求める測位システムを提供する。この測位システムは、第1の軸に沿ってあらゆる長さを計測する一方で、同時に第2および第3の軸に沿った位置を計測することができる。本明細書に記載したこの測位システムは、任意の適切な搬送装置に組み入れることができる。本明細書に記載した実施形態は3軸同時計測として開示しているが、複数の計測システムを組み合わせてそれより多軸を計測することも可能であることを認識されたい。逆に、例示的実施形態を使用し、3つより少ない軸の計測をするように構成することもできる。これらの例示的実施形態によって実現する測位システムは、そのシステム内で、対象物の位置情報を得るために、可動対象物に動力を伝達する必要がない。しかしながら、上述の例示的実施形態は、磁性プラテンが可動対象物に固定されたものとして説明されているが、磁性プラテンは、例えば、実質的に対象物の搬送経路に沿った静止表面に固定して、単軸センサおよび/またはセンサ群を可動対象物に固定してもよいことを認識されたい。
【0169】
本明細書に記載した例示的実施形態は、個別に使用することも、その任意の組み合わせでも使用できることを理解されたい。また、上記の説明は、これら実施形態の単なる実施例であると理解されたい。様々な代用手段及び変形が、当業者によって本発明から逸脱することなく考案され得る。従って、本実施形態は、添付の特許請求の範囲内に入る、全てのそのような代用手段、変形、および派生物の包含を意図するものである。

【特許請求の範囲】
【請求項1】
コントローラと、
可動部と搬送経路とを有し前記コントローラと連通するワークピース搬送機と、
多次元測位装置であり、前記可動部に固着した少なくとも1つの界生成プラテン、および搬送経路に沿って配置されコントローラと連通する少なくとも1つのセンサ群を含み、前記界生成プラテンが位置計測とともに可動部を推進させるように構成される多次元測位装置と、
を含み、前記の少なくとも1つのセンサ群の各センサは、少なくとも1つの界生成プラテンで発生させる検知界内の単軸に沿ったばらつきに対応する1つのみの出力信号を提供するように構成され、前記コントローラは、前記の少なくとも1つのセンサ群の各センサに隣接した前記可動部の多次元位置を、前記の少なくとも1つのセンサ群内の少なくとも1つのセンサの前記1つのみの出力信号に基づいて、多次元位置には、少なくとも平面位置と、ワークピース搬送機と少なくとも1つの前記センサ群との間のギャップとを含めて算出するよう構成されている装置。
【請求項2】
前記の少なくとも1つの界生成プラテンが、実質的に歪みのない正弦波磁界を提供するように構成される成形磁石を備える、請求項1に記載の装置。
【請求項3】
前記の少なくとも1つのセンサ群の少なくとも1つが、前記界生成プラテンで発生させる界の、法線方向成分が前記界生成プラテンの表面と直交する、前記法線方向成分を検知するように構成される、請求項1に記載の装置。
【請求項4】
前記の少なくとも1つのセンサ群の少なくとも1つが、前記界生成プラテンで発生させる界の、平行成分が前記界生成プラテンの表面と平行する、前記平行成分を検知するように構成される、請求項1に記載の装置。
【請求項5】
前記の少なくとも1つのセンサ群の少なくとも1つが、特異センサを備え、前記の少なくとも1つのセンサ群の別の少なくとも1つがセンサダブレットを備え、前記センサダブレットのセンサによって提供される出力信号が正弦/余弦関係を有する、請求項1に記載の装置。
【請求項6】
前記の少なくとも1つのセンサ群の少なくとも1つがセンサダブレットを備え、前記センサダブレットのセンサによって提供される出力信号が正弦/余弦関係を有する、請求項1に記載の装置。
【請求項7】
前記の少なくとも1つのセンサ群の少なくとも1つが、第1のセンサ対と第2のセンサ対を備え、第1のセンサ対が第2のセンサ対の上方に互い違いの関係に配置される、請求項1に記載の装置。
【請求項8】
前記の少なくとも1つのセンサ群の少なくとも1つが、第1のセンサ対と第2のセンサ対を備え、第1のセンサ対が第2のセンサ対の間で直交関係に配置される、請求項1に記載の装置。
【請求項9】
前記の少なくとも1つのセンサ群が、前記の少なくとも1つの界生成プラテンの近接に位置し、前記の少なくとも1つのセンサ群内のセンサが飽和限界に到達する、請求項1に記載の装置。
【請求項10】
前記コントローラが、前記の少なくとも1つのセンサ群から受信する出力の正弦波周期を調節するように構成され、それによって前記調節後の信号から取得する位置計測が、調整されていない正弦波周期を有する出力から取得する位置計測よりも精密となる、請求項1に記載の前記測位システム。

【図1】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図2C】
image rotate

【図3A】
image rotate

【図3B】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6A】
image rotate

【図6B】
image rotate

【図7】
image rotate

【図8A】
image rotate

【図8B】
image rotate

【図9A】
image rotate

【図9B】
image rotate

【図10A】
image rotate

【図10B】
image rotate

【図11A】
image rotate

【図11B】
image rotate

【図12A】
image rotate

【図12B】
image rotate

【図12C】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15A】
image rotate

【図15B】
image rotate

【図15C】
image rotate

【図16A】
image rotate

【図16B】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19A】
image rotate

【図19B】
image rotate

【図19C】
image rotate

【図20A】
image rotate

【図20B】
image rotate

【図20C】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate

【図34】
image rotate

【図35】
image rotate

【図36】
image rotate

【図37】
image rotate

【図38】
image rotate

【図39】
image rotate

【図40】
image rotate

【図41】
image rotate

【図42】
image rotate

【図43】
image rotate

【図44】
image rotate

【図45】
image rotate

【図46】
image rotate

【図47】
image rotate

【図47A−1】
image rotate

【図47A−2】
image rotate

【図47A−3】
image rotate

【図47A−4】
image rotate

【図47A−5】
image rotate

【図47A−6】
image rotate

【図47A−7】
image rotate

【図47A−8】
image rotate

【図47A−9】
image rotate

【図47A−10】
image rotate

【図48】
image rotate

【図49】
image rotate

【図50】
image rotate

【図51】
image rotate

【図52】
image rotate

【図53】
image rotate

【図54】
image rotate

【図55】
image rotate


【公表番号】特表2011−517766(P2011−517766A)
【公表日】平成23年6月16日(2011.6.16)
【国際特許分類】
【出願番号】特願2010−515199(P2010−515199)
【出願日】平成20年6月27日(2008.6.27)
【国際出願番号】PCT/US2008/068661
【国際公開番号】WO2009/003186
【国際公開日】平成20年12月31日(2008.12.31)
【出願人】(398029692)ブルックス オートメーション インコーポレイテッド (81)
【Fターム(参考)】