説明

樹脂組成物

【課題】熱膨張率が低く、かつスミアの除去が容易である有機絶縁層を与えることができる樹脂組成物を提供すること。
【解決手段】(1)シアネートエステル樹脂、(2)アントラセン型エポキシ樹脂、および(3)熱可塑性樹脂を含有する樹脂組成物。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、多層プリント配線板等の絶縁層形成に好適な樹脂組成物に関する。
【背景技術】
【0002】
近年、電子機器の小型化、高性能化が進み、多層プリント配線板は、電子部品の実装密度を向上させるため、導体配線の微細化が進んでいる。多層プリント配線板の絶縁層に使用する樹脂組成物としては、例えば、シアネートエステル樹脂を含有する樹脂組成物が誘電特性に優れた絶縁層を形成できることが知られている。例えば、特許文献1には、シアネートエステル樹脂、エポキシ樹脂およびフェノキシ樹脂を含有する多層プリント配線板用の樹脂組成物が開示されている。
【0003】
絶縁層上に高密度の微細配線を形成する方法としては、絶縁層表面を粗化処理後、無電解めっきで導体層を形成するアディティブ法や、無電解めっきと電解めっきで導体層を形成するセミアディティブ法などが知られている。これらの工法においては、一般に、アルカリ性過マンガン酸溶液等の酸化剤による湿式粗化を経て、絶縁層表面に粗化面を形成させ、該粗化面にめっきにより導体層を形成する。この湿式粗化工程は、絶縁層にレーザー等によりビアホール等を形成する際に発生するスミアを溶解除去する工程(デスミア工程)も兼ねているが、スミアの除去が十分でないと導通不良等により歩留まりが低下する問題が生じる。
【0004】
また配線が高密度化された多層プリント配線板では、銅配線と絶縁層との熱膨張係数の違いによるクラック発生等の問題が生じやすくなるため、絶縁層の熱膨張率を低く抑えることが要求される。
【0005】
【特許文献1】WO03/099952公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
本発明者等の知見によれば、上記シアネートエステル樹脂を含有する樹脂組成物は、特にビアホール底に残存するスミアが溶解除去されにくい傾向にある。一方、スミア除去性を向上させるためにデスミア条件を厳しくした場合、絶縁層表面の粗度が大きくなるため、該表面上に形成される回路間の幅の制限も大きくならざるを得ず、高密度配線には不利となる。
【0007】
従って、本発明は、絶縁層形成に適したシアネートエステル樹脂を含有する樹脂組成物であって、ビアホール底のスミアの除去性および熱膨張率が改善された樹脂組成物を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明者らは、上記課題を解決すべく鋭意検討した結果、シアネートエステル樹脂、アントラセン型エポキシ樹脂および熱可塑性樹脂を含有する樹脂組成物が、熱膨張率が低く、かつスミアの除去が容易である有機絶縁層を形成することができ、多層プリント配線板の製造に好適に使用できることを見出し、本発明を完成するに至った。
【0009】
すなわち、本発明は以下の内容を含むものである。
[1](1)シアネートエステル樹脂、
(2)アントラセン型エポキシ樹脂、および
(3)熱可塑性樹脂
を含有することを特徴とする樹脂組成物。
[2]シアネートエステル樹脂の含有量が、樹脂組成物(不揮発分100質量%)に対し5〜60質量%である、上記[1]記載の樹脂組成物。
[3]アントラセン型エポキシ樹脂の含有量が、樹脂組成物(不揮発分100質量%)に対し1〜50質量%である、上記[1]または[2]記載の樹脂組成物。
[4]熱可塑性樹脂の含有量が、樹脂組成物(不揮発分100質量%)に対し1〜60質量%である、上記[1]〜[3]のいずれか1記載の樹脂組成物。
[5]熱可塑性樹脂がフェノキシ樹脂である、上記[1]〜[4]のいずれか1記載の樹脂組成物。
[6]上記[1]〜[5]のいずれか1記載の樹脂組成物が支持フィルム上に層形成されてなる接着フィルム。
[7]上記[1]〜[5]のいずれか1記載の樹脂組成物が繊維からなるシート状補強基材中に含浸されてなるプリプレグ。
[8]上記[1]〜[5]のいずれか1記載の樹脂組成物の硬化物により絶縁層が形成されてなる多層プリント配線板。
【発明の効果】
【0010】
本発明によれば、多層プリント配線板の絶縁層形成に好適なシアネートエステル樹脂を含有する樹脂組成物であって、熱膨張率が低く、かつスミアの除去が容易である有機絶縁層を形成可能な樹脂組成物が提供される。
【発明を実施するための最良の形態】
【0011】
以下、本発明を詳細に説明する。
本発明の樹脂組成物は、(1)シアネートエステル樹脂、(2)アントラセン型エポキシ樹脂、および(3)熱可塑性樹脂を含有することを特徴とする。
【0012】
本発明において使用されるシアネートエステル樹脂は、特に限定されるものではなく、例えば、ノボラック型(フェノールノボラック型、アルキルフェノールノボラック型など)シアネートエステル樹脂、ビスフェノール型(ビスフェノールA型、ビスフェノールF型、ビスフェノールS型など)シアネートエステル樹脂およびこれらが一部トリアジン化したプレポリマーなどが挙げられる。これらは、単独で使用してもよく、2種以上を組み合わせて使用してもよい。より低い粗度を示す絶縁層を得るという観点から、ノボラック型シアネートエステル樹脂とビスフェノール型シアネートエステル樹脂とを混合して使用するのが好ましく、これらのプレポリマーの混合物でもよい。ノボラック型シアネートエステル樹脂とビスフェノール型シアネートエステル樹脂との混合比は適宜選択すればよいが、質量比で好ましくは1:0.5〜1:10であり、より好ましくは1:1〜1:5である。シアネートエステル樹脂の重量平均分子量は、特に限定されるものではないが、好ましくは500〜4500であり、より好ましくは600〜3000である。
【0013】
シアネートエステル樹脂の具体例としては、例えば、ビスフェノールAジシアネート、ポリフェノールシアネート(オリゴ(3−メチレン−1,5−フェニレンシアネート)、4,4’−メチレンビス(2,6−ジメチルフェニルシアネート)、4,4’−エチリデンジフェニルジシアネート、ヘキサフルオロビスフェノールAジシアネート、2,2−ビス(4−シアネート)フェニルプロパン、1,1−ビス(4−シアネートフェニルメタン)、ビス(4−シアネート−3,5−ジメチルフェニル)メタン、1,3−ビス(4−シアネートフェニル−1−(メチルエチリデン))ベンゼン、ビス(4−シアネートフェニル)チオエーテル、ビス(4−シアネートフェニル)エーテル等の2官能シアネート樹脂、フェノールノボラック、クレゾールノボラック等から誘導される多官能シアネート樹脂、これらシアネート樹脂が一部トリアジン化したプレポリマーなどが挙げられる。
【0014】
市販されているシアネートエステル樹脂としては、下式(1)で表されるフェノールノボラック型多官能シアネートエステル樹脂(ロンザジャパン(株)製、PT30、シアネート当量124)、下式(2)で表されるビスフェノールAジシアネートがトリアジン化され三量体となったプレポリマー(ロンザジャパン(株)製、BA230、シアネート当量232)等が挙げられる。
【0015】
【化1】

【0016】
樹脂組成物中のシアネートエステル樹脂の含有量は、特に限定されるものではないが、樹脂組成物(不揮発分100質量%)に対し、好ましくは5〜60質量%であり、より好ましくは20〜40質量%である。シアネートエステル樹脂の含有量が少なすぎると、耐熱性が低下する傾向、熱膨張率が増加する傾向にある。シアネートエステル樹脂の含有量が多すぎると、ビアホール底のスミア除去性が低下する傾向にある。
【0017】
本発明において使用されるアントラセン型エポキシ樹脂は、分子内にアントラセン骨格を有するエポキシ樹脂である。アントラセン型エポキシ樹脂は、アントラセン骨格を有するものであれば特に限定されず、例えばアントラセン骨格には、アントラセンの他、アントラキノンなども含まれる。アントラセン型エポキシ樹脂は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。アントラセン型エポキシ樹脂の重量平均分子量は、特に限定されるものではないが、好ましくは350〜20000であり、より好ましくは350〜10000である。市販されているアントラセン型エポキシ樹脂の例としては、アントラキノン骨格を有するジャパンエポキシレジン(株)製のYX8800(エポキシ当量約178)等が挙げられる。
【0018】
樹脂組成物中のアントラセン型エポキシ樹脂の含有量は、特に限定されるものではないが、樹脂組成物(不揮発分100質量%)に対し、好ましくは1〜50質量%であり、より好ましくは5〜30質量%である。アントラセン型エポキシ樹脂の含有量が少なすぎると、絶縁層の穴あけ後のスミア除去性が低下する傾向や熱膨張率が増大する傾向にある。またアントラセン型エポキシ樹脂の含有量が多すぎると、絶縁層が脆くなる傾向にある。
【0019】
本発明の樹脂組成物においては、本発明の効果が発揮される範囲で、必要に応じてアントラセン型エポキシ樹脂と他のエポキシ樹脂とを併用してもよい。このようなエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、アルキルフェノールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、アラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、フェノール類とフェノール性ヒドロキシル基を有する芳香族アルデヒドとの縮合物のエポキシ化物、ナフタレン型エポキシ樹脂、フルオレン型エポキシ樹脂、キサンテン型エポキシ樹脂、トリグリシジルイソシアヌレート等を挙げることができる。これらのエポキシ樹脂は各々単独で用いてもよく、2種以上を組み合わせて使用してもよい。
【0020】
本発明におけるエポキシ樹脂においては、メッキ密着強度を高める観点から、ビフェニルアラルキル型エポキシ樹脂(ビフェニルアラルキル骨格を有するエポキシ樹脂)を併用するのが好ましい。ビフェニルアラルキル型エポキシ樹脂を併用する場合の配合量は、アントラセン型エポキシ樹脂に対し、質量比で通常1:0.1〜1:10、好ましくは1:1〜1:5の範囲である。ビフェニルアラルキル型エポキシ樹脂の重量平均分子量は、特に限定されるものではないが、好ましくは250〜20000であり、より好ましくは300〜15000である。市販されているビフェニルアラルキル型エポキシ樹脂としては、日本化薬(株)製のNC3000(エポキシ当量約291)、東都化成(株)製のGK3207(エポキシ当量約226)、ジャパンエポキシレジン(株)製のYX4000HK(エポキシ当量約190)などが挙げられる。
【0021】
シアネートエステル樹脂のシアネート当量と、アントラセン型エポキシ樹脂のエポキシ当量との比は、好ましくは1:0.5〜1:3であり、より好ましくは1:0.5〜1:1である。当量比が上記範囲外であると、絶縁層表面の粗化処理後の粗度が増大する傾向にある。なお、樹脂組成物中にシアネートエステル樹脂以外のシアネート基を有する化合物、アントラセン型エポキシ樹脂以外のエポキシ基を有する化合物が含まれる場合は、これらの化合物も含めてシアネート当量とエポキシ当量との比を上記の範囲内とするのが好ましい。すなわち、樹脂組成物全体のシアネート当量とエポキシ当量との比を1:0.5〜1:3とするのが好ましい。
【0022】
本発明において使用される熱可塑性樹脂としては、例えば、フェノキシ樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレンエーテル樹脂、ポリカーボネート樹脂、ポリエーテルエーテルケトン樹脂、ポリエステル樹脂などが挙げられるが、本発明の樹脂組成物における相溶性や樹脂組成物の保存安定性の観点から特にフェノキシ樹脂が好適である。
【0023】
フェノキシ樹脂としては、特に限定されず、例えば、ビスフェノール型フェノキシ樹脂(分子内にビスフェノール骨格を有するフェノキシ樹脂)、ノボラック型フェノキシ樹脂(分子内にノボラック骨格を有するフェノキシ樹脂)、ナフタレン型フェノキシ樹脂(分子内にナフタレン骨格を有するフェノキシ樹脂)、ビフェニル型フェノキシ樹脂(分子内にビフェニル骨格を有するフェノキシ樹脂)等のフェノキシ樹脂が挙げられる。これらは、単独で使用してもよく、2種以上を組み合わせて使用してもよい。フェノキシ樹脂としては、耐熱性や耐湿性の観点から、特にビフェニル型フェノキシ樹脂が好ましい。熱可塑性樹脂の重量平均分子量は、特に限定されるものではないが、好ましくは5000〜100000である。
【0024】
市販されているフェノキシ樹脂としては、東都化成(株)製フェノトートYP50(ビスフェノールA型フェノキシ樹脂)、ジャパンエポキシレジン(株)製E−1256(ビスフェノールA型フェノキシ樹脂)、東都化成(株)製FX280、FX293(フルオレン型フェノキシ樹脂)、ジャパンエポキシレジン(株)製YX8100、YL6954、YL6974(ビフェニル型フェノキシ樹脂)等が挙げられる。
【0025】
樹脂組成物中の熱可塑性樹脂の含有量は、特に限定されるものではないが、樹脂組成物(不揮発分100質量%)に対し、好ましくは1〜60質量%であり、より好ましくは2〜20質量%である。熱可塑性樹脂の含有量が少なすぎるとめっき密着強度が低下する傾向にあり、多すぎると絶縁層の粗度が増大する傾向および熱膨張率が増大する傾向にある。
【0026】
本発明の樹脂組成物中の上記成分(1)シアネートエステル樹脂、(2)アントラセン型エポキシ樹脂、および(3)熱可塑性樹脂の合計の含有量は、特に限定されるものではないが、好ましくは、当該樹脂組成物(不揮発分100質量%)に対し50〜100質量%の範囲である。
【0027】
本発明の樹脂組成物は、メッキ密着性の観点からゴム粒子をさらに含有していてもよい。本発明において使用され得るゴム粒子は、例えば、当該樹脂組成物のワニスを調製する際に使用する有機溶剤にも溶解せず、上記成分(1)シアネートエステル樹脂、(2)アントラセン型エポキシ樹脂、(3)熱可塑性樹脂などとも相溶しないものである。従って、該ゴム粒子は、本発明の樹脂組成物のワニス中では分散状態で存在する。このようなゴム粒子は、一般には、ゴム成分の分子量を有機溶剤や樹脂に溶解しないレベルまで大きくし、粒子状とすることで調製される。例えば、有機溶剤に溶解し、上記成分(1)シアネートエステル樹脂、(2)アントラセン型エポキシ樹脂、(3)熱可塑性樹脂などの他の成分と相溶するゴム成分を配合した場合、得られる樹脂組成物の硬化物の粗化処理後の粗度が顕著に増大し、また耐熱性も低下する。
【0028】
本発明で使用され得るゴム粒子の好ましい例としては、コアシェル型ゴム粒子、架橋アクリロニトリルブタジエンゴム粒子、架橋スチレンブタジエンゴム粒子、アクリルゴム粒子などが挙げられる。コアシェル型ゴム粒子は、コア層とシェル層とを有するゴム粒子であり、例えば、外層のシェル層がガラス状ポリマーで構成され、内層のコア層がゴム状ポリマーで構成される2層構造、または外層のシェル層がガラス状ポリマーで構成され、中間層がゴム状ポリマーで構成され、コア層がガラス状ポリマーで構成される3層構造のものなどが挙げられる。ガラス層は、例えば、メタクリル酸メチルの重合物などで構成され、ゴム状ポリマー層は、例えば、ブチルアクリレート重合物(ブチルゴム)などで構成される。コアシェル型ゴム粒子の具体例としては、スタフィロイドAC3832、AC3816N(商品名、ガンツ化成(株)製)、メタブレンKW−4426(商品名、三菱レイヨン(株)製)が挙げられる。架橋アクリロニトリルブタジエンゴム(NBR)粒子の具体例としては、XER−91(平均粒径0.5μm、JSR(株)製)などが挙げられる。架橋スチレンブタジエンゴム(SBR)粒子の具体例としては、XSK−500(平均粒径0.5μm、JSR(株)製)などが挙げられる。アクリルゴム粒子の具体例としては、メタブレンW300A(平均粒径0.1μm)、W450A(平均粒径0.2μm)(三菱レイヨン(株)製)を挙げることができる。
【0029】
配合するゴム粒子の平均粒径は、好ましくは0.005〜1μmの範囲であり、より好ましくは0.2〜0.6μmの範囲である。本発明で使用されるゴム粒子の平均粒径は、動的光散乱法を用いて測定することができる。例えば、適当な有機溶剤にゴム粒子を超音波などにより均一に分散させ、濃厚系粒径アナライザー(FPAR−1000;大塚電子(株)製)を用いて、ゴム粒子の粒度分布を質量基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。
【0030】
ゴム粒子の含有量は、樹脂組成物(不揮発分100質量%)に対し、好ましくは1〜10質量%であり、より好ましくは2〜5質量%である。
【0031】
本発明の樹脂組成物にはさらに、必要に応じて、硬化時間を短縮する目的で、従来からエポキシ樹脂組成物とシアネート化合物とを併用した系で硬化触媒として用いられている有機金属化合物を添加してもよい。有機金属化合物としては、銅(II)アセチルアセトナート等の有機銅化合物、亜鉛(II)アセチルアセトナート等の有機亜鉛化合物、コバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナート等の有機コバルト化合物などが挙げられる。有機金属化合物の添加量は、シアネートエステル樹脂に対し、金属換算で通常10〜500ppm、好ましくは25〜200ppmの範囲である。
【0032】
本発明の樹脂組成物には、必要に応じてさらに、当該組成物から得られる絶縁層の熱膨張率をより低下させるために無機充填材を添加してもよい。無機充填材としては、例えば、シリカ、アルミナ、硫酸バリウム、タルク、クレー、雲母粉、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、ホウ酸アルミニウム、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、ジルコン酸バリウム、ジルコン酸カルシウムなどが挙げられ、特にシリカ、とりわけ球形のシリカが好ましい。無機充填材の平均粒径は、特に限定されるものではないが、絶縁層への微細配線形成の観点から好ましくは5μm以下である。
【0033】
無機充填材の平均粒径は、ミー(Mie)散乱理論に基づくレーザー回折・散乱法により測定することができる。具体的にはレーザー回折式粒度分布測定装置により、無機充填材の粒度分布を体積基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。測定サンプルは、無機充填材を超音波により水中に分散させたものを好ましく使用することができる。レーザー回折式粒度分布測定装置としては、株式会社堀場製作所製LA−500を使用することができる。
【0034】
無機充填材は、シランカップリング剤等の表面処理剤で表面処理してその耐湿性を向上させたものが好ましい。無機充填材の添加量は、樹脂組成物(不揮発分100質量%)に対し、通常0〜50質量%、好ましくは20〜40質量%の範囲である。無機充填材の含有量が多すぎると、硬化物が脆くなる傾向や、ピール強度が低下する傾向にある。
【0035】
本発明の樹脂組成物には、本発明の効果を阻害しない範囲で、必要に応じて他の成分を配合することができる。他の成分としては、例えば、有機リン系難燃剤、有機系窒素含有リン化合物、窒素化合物、シリコーン系難燃剤、金属水酸化物等の難燃剤、シリコンパウダー、ナイロンパウダー、フッ素パウダー等の有機充填剤、オルベン、ベントン等の増粘剤、シリコーン系、フッ素系、高分子系の消泡剤又はレベリング剤、イミダゾール系、チアゾール系、トリアゾール系、シラン系カップリング剤等の密着性付与剤、フタロシアニン・ブルー、フタロシアニン・グリーン、アイオジン・グリーン、ジスアゾイエロー、カーボンブラック等の着色剤等を挙げることができる。
【0036】
本発明の樹脂組成物の調製方法は、特に限定されるものではなく、例えば、上記成分(1)シアネートエステル樹脂、(2)アントラセン型エポキシ樹脂および(3)熱可塑性樹脂、ならびに、必要に応じて上記その他の成分(ゴム粒子、無機充填材、硬化触媒(有機金属化合物)など)を、回転ミキサーなどを用いて混合する方法などが挙げられる。
【0037】
本発明の樹脂組成物は、多層プリント配線板の製造において有機絶縁層を形成するために好適に使用することができる。本発明の樹脂組成物は、ワニス状態で回路基板に塗布して絶縁層を形成することもできるが、工業的には一般に、接着フィルム、プリプレグ等のシート状積層材料の形態で用いるのが好ましい。
【0038】
本発明の接着フィルムは、当業者に公知の方法、例えば、有機溶剤に樹脂組成物を溶解した樹脂ワニスを調製し、この樹脂ワニスを、ダイコーターなどを用いて、支持体である支持フィルムに塗布し、更に加熱、あるいは熱風吹きつけ等により有機溶剤を乾燥させて樹脂組成物層を形成させることにより製造することができる。
【0039】
有機溶剤としては、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等が挙げられる。有機溶剤は2種以上を組み合わせて用いてもよい。
【0040】
乾燥条件は特に限定されないが、樹脂組成物層への有機溶剤の含有量が通常10質量%以下、好ましくは5質量%以下となるように乾燥させる。ワニス中の有機溶剤量、有機溶剤の沸点によっても異なるが、例えば30〜60質量%の有機溶剤を含むワニスを50〜150℃で3〜10分程度乾燥させることにより、樹脂組成物層が形成される。当業者であれば、簡単な実験により適宜、好適な乾燥条件を設定することができる。
【0041】
接着フィルムにおいて形成される樹脂組成物層の厚さは、通常、導体層の厚さ以上とする。回路基板が有する導体層の厚さは通常5〜70μmの範囲であるので、樹脂組成物層は10〜100μmの厚さを有するのが好ましい。
【0042】
本発明における支持フィルムは、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート(以下「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、ポリイミドなどからなるフィルム、更には離型紙や銅箔、アルミニウム箔等の金属箔などを挙げることができる。なお、支持フィルム及び後述する保護フィルムには、マッド処理、コロナ処理の他、離型処理が施してあってもよい。
【0043】
支持フィルムの厚さは特に限定されないが、通常10〜150μmであり、好ましくは25〜50μmである。
【0044】
樹脂組成物層の支持フィルムが密着していない面には、支持フィルムに準じた保護フィルムをさらに積層することができる。保護フィルムの厚さは、特に限定されるものではないが、例えば、1〜40μmである。保護フィルムを積層することにより、樹脂組成物層の表面へのゴミ等の付着やキズを防止することができる。接着フィルムは、ロール状に巻きとって貯蔵することもできる。
【0045】
次に、上記のようにして製造した接着フィルムを用いて多層プリント配線板を製造する方法の一例を説明する。
【0046】
まず、接着フィルムを、真空ラミネーターを用いて回路基板の片面または両面にラミネートする。回路基板に用いられる基板としては、例えば、ガラスエポキシ基板、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板等が挙げられる。なお、ここで回路基板とは、上記のような基板の片面又は両面にパターン加工された導体層(回路)が形成されたものをいう。また導体層と絶縁層とを交互に積層してなる多層プリント配線板において、該多層プリント配線板の最外層の片面又は両面がパターン加工された導体層(回路)となっているものも、ここでいう回路基板に含まれる。なお導体層表面には、黒化処理等により予め粗化処理が施されていてもよい。
【0047】
上記ラミネートにおいて、接着フィルムが保護フィルムを有している場合には該保護フィルムを除去した後、必要に応じて接着フィルム及び回路基板をプレヒートし、接着フィルムを加圧及び加熱しながら回路基板に圧着する。本発明の接着フィルムにおいては、真空ラミネート法により減圧下で回路基板にラミネートする方法が好適に用いられる。ラミネートの条件は、特に限定されるものではないが、例えば、圧着温度(ラミネート温度)を好ましくは70〜140℃、圧着圧力を好ましくは1〜11kgf/cm(9.8×10〜107.9×10N/m)とし、空気圧20mmHg(26.7hPa)以下の減圧下でラミネートするのが好ましい。また、ラミネートの方法は、バッチ式であってもロールでの連続式であってもよい。
【0048】
真空ラミネートは、市販の真空ラミネーターを使用して行うことができる。市販の真空ラミネーターとしては、例えば、ニチゴー・モートン(株)製バキュームアップリケーター、(株)名機製作所製真空加圧式ラミネーター、(株)日立インダストリイズ製ロール式ドライコータ、日立エーアイーシー(株)製真空ラミネーター等を挙げることができる。
【0049】
接着フィルムを回路基板にラミネートした後、室温付近に冷却してから、支持フィルムを剥離する場合は剥離し、熱硬化することにより回路基板に絶縁層を形成することができる。熱硬化の条件は、樹脂組成物中の樹脂成分の種類、含有量などに応じて適宜選択すればよいが、好ましくは150℃〜220℃で20分〜180分、より好ましくは160℃〜200℃で30〜120分の範囲で選択される。
【0050】
絶縁層を形成した後、硬化前に支持フィルムを剥離しなかった場合は、ここで剥離する。次いで必要により、回路基板上に形成された絶縁層に穴開けを行ってビアホール、スルーホールを形成する。穴あけは、例えば、ドリル、レーザー、プラズマ等の公知の方法により、また必要によりこれらの方法を組み合わせて行うことができるが、炭酸ガスレーザー、YAGレーザー等のレーザーによる穴あけが最も一般的な方法である。
【0051】
次いで、乾式メッキ又は湿式メッキにより絶縁層上に導体層を形成する。乾式メッキとしては、蒸着、スパッタリング、イオンプレーティング等の公知の方法を使用することができる。湿式メッキの場合は、まず、硬化した樹脂組成物層(絶縁層)の表面を、過マンガン酸塩(過マンガン酸カリウム、過マンガン酸ナトリウム等)、重クロム酸塩、オゾン、過酸化水素/硫酸、硝酸等の酸化剤で粗化処理し、凸凹のアンカーを形成する。酸化剤としては、特に過マンガン酸カリウム、過マンガン酸ナトリウム等の水酸化ナトリウム水溶液(アルカリ性過マンガン酸水溶液)が好ましく用いられる。次いで、無電解メッキと電解メッキとを組み合わせた方法で導体層を形成する。また導体層とは逆パターンのメッキレジストを形成し、無電解メッキのみで導体層を形成することもできる。その後のパターン形成の方法として、例えば、当業者に公知のサブトラクティブ法、セミアディティブ法などを用いることができる。
【0052】
本発明のプリプレグは、本発明の樹脂組成物を繊維からなるシート状補強基材にホットメルト法又はソルベント法により含浸させ、加熱して半硬化させることにより製造することができる。すなわち、本発明の樹脂組成物が繊維からなるシート状補強基材に含浸したプリプレグとすることができる。繊維からなるシート状補強基材としては、例えば、ガラスクロスやアラミド繊維等のプリプレグ用繊維として常用されている繊維からなるものを用いることができる。
【0053】
ホットメルト法は、樹脂を、有機溶剤に溶解することなく、該樹脂との剥離性の良い塗工紙に一旦コーティングし、それをシート状補強基材にラミネートする、あるいは樹脂を、有機溶剤に溶解することなく、ダイコーターによりシート状補強基材に直接塗工するなどして、プリプレグを製造する方法である。またソルベント法は、接着フィルムと同様にして樹脂を有機溶剤に溶解して樹脂ワニスを調製し、このワニスにシート状補強基材を浸漬し、樹脂ワニスをシート状補強基材に含浸させ、その後乾燥させる方法である。
【0054】
次に、上記のようにして製造したプリプレグを用いて多層プリント配線板を製造する方法の一例を説明する。回路基板に本発明のプリプレグを1枚あるいは必要により数枚重ね、離型フィルムを介して金属プレートで挟み、加圧・加熱条件下でプレス積層する。加圧・加熱条件は、好ましくは、圧力が5〜40kgf/cm(49×10〜392×10N/m)、温度が120〜200℃で20〜100分である。また接着フィルムと同様に、プリプレグを真空ラミネート法により回路基板にラミネートした後、加熱硬化することも可能である。その後、上記で記載した方法と同様にして、硬化したプリプレグ表面を粗化した後、導体層をメッキにより形成して多層プリント配線板を製造することができる。
【実施例】
【0055】
以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
【0056】
(実施例1)
ビスフェノールAジシアネートのプレポリマー(ロンザジャパン(株)製「BA230S75」、シアネート当量約232、不揮発分75質量%のメチルエチルケトン(以下MEKと略す)溶液)40重量部、アントラセン型エポキシ樹脂(ジャパンエポキシレジン(株)製「YX8800」、エポキシ当量約178)の不揮発分50質量%のMEK溶液40重量部、ビフェニル骨格含有フェノキシ樹脂溶液(ジャパンエポキシレジン(株)製「YL6954BH30」、不揮発分30質量%のMEKとシクロヘキサノンとの混合溶液)20重量部、硬化触媒としてコバルト(II)アセチルアセトナート(以下Co(II)acacと略す)(東京化成(株)製)の1質量%のN,N−ジメチルホルムアミド(DMF)溶液4質量部、および球形シリカ((株)アドマテックス製「SOC2」、平均粒子径0.5μm)40質量部を混合し、高速回転ミキサーで均一に分散して、熱硬化性樹脂組成物ワニス(不揮発分中のシリカ含量は40質量%)を作製した。次に、かかる樹脂組成物ワニスをポリエチレンテレフタレートフィルム(厚さ38μm、以下PETフィルムと略す)上に、乾燥後の樹脂組成物層の厚みが40μmとなるようにダイコーターにて均一に塗布し、80〜120℃(平均100℃)で6分間乾燥した(樹脂組成物層中の残留溶媒量:約1質量%)。次いで、樹脂組成物層の表面に厚さ15μmのポリプロピレンフィルムを貼り合わせながらロール状に巻き取った。ロール状の接着フィルムを幅507mmにスリット(slit)し、507×336mmサイズのシート状の接着フィルムを得た。
【0057】
(実施例2)
ビスフェノールAジシアネートのプレポリマーを、フェノールノボラック型多官能シアネートエステル樹脂(ロンザジャパン(株)製「PT30」、シアネート当量約124)の不揮発分85質量%の石油ナフサ(沸点が180℃〜217℃の分留物)溶液40重量部に変更したこと以外は、実施例1と同様にして接着フィルムを得た。
【0058】
(実施例3)
ビスフェノールAジシアネートのプレポリマー40重量部を30重量部に変更し、さらにフェノールノボラック型多官能シアネートエステル樹脂(ロンザジャパン(株)製「PT30」、シアネート当量約124)の不揮発分85質量%の石油ナフサ(沸点が180℃〜217℃の分留物)溶液を10重量部加えたこと以外は、実施例1と同様にして接着フィルムを得た。
【0059】
(比較例1)
アントラセン型エポキシ樹脂をナフタレン型エポキシ樹脂(大日本インキ化学工業(株)製「HP4032」、エポキシ当量約149)20重量部に変更したこと以外は、実施例1と同様にして接着フィルムを得た。
【0060】
(比較例2)
アントラセン型エポキシ樹脂をナフタレン型エポキシ樹脂(大日本インキ化学工業(株)製「HP4032」、エポキシ当量約149)20重量部に変更したこと以外は、実施例2と同様にして接着フィルムを得た。
【0061】
(比較例3)
アントラセン型エポキシ樹脂をビスフェノールS型エポキシ樹脂(大日本インキ化学工業(株)製「EXA1517」、エポキシ当量約201)の不揮発分50質量%のMEK溶液40重量部に変更したこと以外は、実施例1と同様にして接着フィルムを得た。
【0062】
(比較例4)
アントラセン型エポキシ樹脂をフルオレン型エポキシ樹脂(大阪ガスケミカル(株)製「EX1040」、エポキシ当量約196)の不揮発分70質量%のMEK溶液28重量部に変更したこと以外は、実施例1と同様にして接着フィルムを得た。
【0063】
<熱膨張率の評価>
実施例1〜3および比較例1〜4で得られた接着フィルムを180℃で90分熱硬化させてシート状の硬化物を得た。その硬化物を、幅約5mm、長さ約15mmの試験片に切断し、(株)リガク製熱機械分析装置(Thermo Plus TMA8310)を使用して、引張加重法で熱機械分析を行った。試験片を前記装置に装着後、荷重1g、昇温速度5℃/分の測定条件にて連続して2回測定した。2回目の測定における25℃から150℃までの平均線熱膨張率を算出した。得られた結果を表1に示す。
【0064】
<ビアホールの残渣評価>
実施例1〜3および比較例1〜4で得られた接着フィルムについて、以下に従ってビアホールの残渣評価を行った。
(1)回路基板の作製
ガラス布基材エポキシ樹脂両面銅張積層板[銅箔の厚さ18μm、基板厚み0.8mm、松下電工(株)製R5715ES]の両面にエッチングにより回路パターンを形成し、さらにマイクロエッチング剤(メック(株)製CZ8100)で粗化処理を行い、回路基板を作製した。
【0065】
(2)接着フィルムのラミネート
各実施例および各比較例で作製した接着フィルムを、バッチ式真空加圧ラミネーターMVLP−500(商品名、名機(株)製)を用いて、上記(1)で作製した回路基板の両面にラミネートした。ラミネートは、30秒間減圧して気圧を13hPa以下とし、その後30秒間、圧力0.74MPaでプレスすることにより行った。
【0066】
(3)樹脂組成物層の硬化
ラミネートされた接着フィルムからPETフィルムを剥離し、170℃、30分の硬化条件で樹脂組成物層を硬化して、絶縁層を形成した。
【0067】
(4)ビアホール形成
松下溶接システム(株)製COレーザー加工機(YB−HCS03T04)を使用し、周波数1000Hzでパルス幅13μ秒、ショット数3の条件で絶縁層を加工して、絶縁層表面における直径が60μm、絶縁層底面における直径が50μmのビアホールを形成した。
【0068】
(5)粗化処理
回路基板を、膨潤液であるアトテックジャパン(株)のスエリングディップ・セキュリガントPに80℃で10分間浸漬した。次に、粗化液であるアトテックジャパン(株)のコンセントレート・コンパクトP(KMnO:60g/L、NaOH:40g/Lの水溶液)に80℃で20分間浸漬した。最後に、中和液であるアトテックジャパン(株)のリダクションソリューション・セキュリガントPに40℃で5分間浸漬した。
【0069】
(6)ビアホール底部の残渣評価
ビアホールの底部の周囲を走査電子顕微鏡(SEM)にて観察し、得られた画像からビアホール底部の壁面からの最大スミア長を測定した。得られた結果を表1に示す。なお、表1中、○は最大スミア長が3μm未満、△は最大スミア長が3μm以上4μm未満、×は最大スミア長が4μm以上を表す。
【0070】
【表1】

【0071】
表1から、実施例1〜3で得られた接着フィルムは、比較例1〜4で得られた接着フィルムに比べて低い平均線熱膨張率を示し、さらにビアホールの残渣評価も良好であったことが分かる。
【0072】
(実施例4)
アントラセン型エポキシ樹脂40質量部を10質量部に変更し、ビフェニルアラルキルエポキシ樹脂(日本化薬(株)製「NC3000」、エポキシ当量約291)の不揮発分70質量%の石油ナフサ(沸点が180℃〜217℃の分留物)溶液20質量部およびコアシェルゴム粒子(三菱レイヨン(株)製「KS3406」、平均粒子径0.2μm)を4質量部加えたこと以外は、実施例3と同様にして接着フィルムを得た。
ガラス布基材エポキシ樹脂両面銅張積層板[銅箔の厚さ18μm、基板厚み0.8mm、松下電工(株)製R5715ES]の両面にマイクロエッチング剤(メック(株)製CZ8100)で粗化処理を行った。
上記で得られた接着フィルムを、バッチ式真空加圧ラミネーターMVLP−500(商品名、名機(株)製)を用いて、上記で粗化処理した積層板の両面にラミネートした。ラミネートは、30秒間減圧して気圧を13hPa以下とし、その後30秒間、圧力0.74MPaでプレスすることにより行った。
ラミネートされた接着フィルムからPETフィルムを剥離し、170℃、30分の硬化条件で樹脂組成物層を硬化して、絶縁層を形成した。
積層板を、膨潤液であるアトテックジャパン(株)のスエリングディップ・セキュリガンドPに80℃で10分間浸漬し、次に、粗化液であるアトテックジャパン(株)のコンセントレート・コンパクトP(KMnO:60g/L、NaOH:40g/Lの水溶液)に80℃で20分間浸漬し、最後に、中和液であるアトテックジャパン(株)のリダクションソリューション・セキュリガントPに40℃で5分間浸漬し、粗化処理を行った。
非接触型表面粗さ計(ビーコインスツルメンツ社製WYKO NT3300)を用いて、絶縁層表面のRa(10点平均粗さ)を求めたところ160nmであった。
積層板を、PdClを含む無電解メッキ用溶液に浸漬し、次に無電解銅メッキ液に浸漬した。150℃にて30分間加熱してアニール処理を行った後に、硫酸銅電解メッキを行い、25±10μmの厚さで銅層を形成した。次に、アニール処理を180℃にて30分間行った。積層板のメッキ銅層に、幅10mm、長さ100mmの矩形の切込みを入れ、この切込みの長手方向の一方の端部を剥がしてつかみ具で掴み、室温中にて、50mm/分の速度で垂直方向に35mm引き剥がした時の荷重を測定した。その結果、メッキ銅層のメッキ引き剥がし強さ(ピール強度)は0.7kgf/cmであった。
【産業上の利用可能性】
【0073】
本発明の樹脂組成物は、熱膨張率が低く、かつスミアの除去が容易である有機絶縁層を形成するため、多層プリント配線板の製造に好適に使用することができる。

【特許請求の範囲】
【請求項1】
(1)シアネートエステル樹脂、
(2)アントラセン型エポキシ樹脂、および
(3)熱可塑性樹脂
を含有することを特徴とする樹脂組成物。
【請求項2】
シアネートエステル樹脂の含有量が、樹脂組成物(不揮発分100質量%)に対し5〜60質量%である、請求項1記載の樹脂組成物。
【請求項3】
アントラセン型エポキシ樹脂の含有量が、樹脂組成物(不揮発分100質量%)に対し1〜50質量%である、請求項1または2記載の樹脂組成物。
【請求項4】
熱可塑性樹脂の含有量が、樹脂組成物(不揮発分100質量%)に対し1〜60質量%である、請求項1〜3のいずれか1項記載の樹脂組成物。
【請求項5】
熱可塑性樹脂がフェノキシ樹脂である、請求項1〜4のいずれか1項記載の樹脂組成物。
【請求項6】
請求項1〜5のいずれか1項記載の樹脂組成物が支持フィルム上に層形成されてなる接着フィルム。
【請求項7】
請求項1〜5のいずれか1項記載の樹脂組成物が繊維からなるシート状補強基材中に含浸されてなるプリプレグ。
【請求項8】
請求項1〜5のいずれか1項記載の樹脂組成物の硬化物により絶縁層が形成されてなる多層プリント配線板。

【公開番号】特開2007−291368(P2007−291368A)
【公開日】平成19年11月8日(2007.11.8)
【国際特許分類】
【出願番号】特願2007−84230(P2007−84230)
【出願日】平成19年3月28日(2007.3.28)
【出願人】(000000066)味の素株式会社 (887)
【Fターム(参考)】