説明

樹脂製回転体成形用半加工品の製造方法及び樹脂製回転体の製造方法ならびに樹脂製歯車

【課題】1つの補強用繊維基材だけを用いた場合であっても、金属製ブッシュの外周部に設けた回り止め部と補強用繊維基材との結合強度を向上させた、信頼性の高い樹脂製回転体を作業性よく製造する。
【解決手段】抄造法により、ブッシュ2の外周部の周囲に補強繊維を集積させてブッシュ2の外周部を囲む補強繊維集積体8を形成する第1のステップと、補強繊維集積体8を回転軸の軸線方向に圧縮して補強用繊維基材5を形成する第2のステップとからなる。そして、第1のステップと第2のステップとを、ブッシュと補強繊維集積体を収容している同一装置7内で連続して行う。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、樹脂製回転体成形用半加工品の製造方法に関するものであり、また本発明は樹脂製回転体の製造方法に関するものである。さらに、樹脂製歯車に関するものである。
【背景技術】
【0002】
補強用繊維基材を用いた樹脂製回転体は耐久性能に優れ、車輌用部品、産業用部品等に用いられる樹脂製歯車などの樹脂製回転体として好適である。樹脂製歯車を成形するための補強用繊維基材として、筒状に織られた又は編まれた筒状体を端部より裏返しながら巻き込みドーナツ状に形成した補強用繊維基材が特許文献1に記載されている。特許文献1には、当該補強用繊維基材に樹脂を含浸して歯部を形成した樹脂製歯車も記載されている。しかしこの従来の技術では、補強用繊維基材と金属製ブッシュに設けた抜け止めとの結合強度を向上させるために、成形金型内で2つの補強用繊維基材を金属製ブッシュを間に介して2段に重ね、金属製ブッシュの抜け止めを図っている(特許文献1の段落[0013]〜[0015])。
また、熱硬化性樹脂と補強繊維を主成分とする抄造シートをプレス抜きした抄造紙シート素形体を複数枚積み重ねて、成形金型内で加熱加圧成形する樹脂製歯車の製造法が特許文献2に記載されている。
【0003】
これら樹脂製歯車は、2つの補強用繊維基材の重ね合わせ界面や抄造シート素形体の積層界面に、繊維の絡み合いが殆どなく、使用用途によっては、積層面で剥離が発生しやすいという心配がある。また、補強用繊維基材と金属製ブッシュとの結合強度が不足する心配がある。これらのことから、使用用途によっては樹脂製歯車の耐久性が不足する心配がある。
【0004】
これらの問題解決のために、補強繊維を用いて抄造法による金型で集積体を作ることも提案された。特許文献3には補強繊維と熱硬化性樹脂の混合スラリーを、透水性金型内で加圧ないしは減圧脱水して集積体を得る製造法が開示されている。しかし、水に分散できる樹脂は流動性が低く、樹脂と繊維界面での濡れが不充分なために実用に耐える耐久性が得られない。
【0005】
また、特許文献4には流体流出口を有する成型金型で繊維の充填、さらに樹脂注入も同一の金型で行って加熱加圧をして繊維強化樹脂複合体を形成する方法が開示されている。しかし、この方法では樹脂製回転体の中央部に金属製ブッシュを配置することが難しく、また、注入した樹脂が金網などからなる成型金型全体に洩れて硬化後に成型物を取り出すことが容易にはできない上に、成型金型は目詰まりするために、回数を重ねての使用ができなくなる難点がある。
【0006】
さらに、特許文献5には抄造法により得られる円筒状に継ぎ目なく形成された補強用繊維基材を成形金型内で加熱加圧成形する樹脂製歯車の製造法が開示されている。しかし、特許文献5においても、補強用繊維基材と金属製ブッシュとの結合強度を向上させる方法については、一切開示されていない。
【0007】
【特許文献1】特開2001−295913号公報
【特許文献2】特開平11−227061号公報
【特許文献3】特開2001−1413号公報
【特許文献4】特開2005−96173号公報
【特許文献5】特開2007−138146号公報
【発明の開示】
【発明が解決しようとする課題】
【0008】
中央部に金属製ブッシュを配置した樹脂製回転体において、金属製ブッシュの外周部に設けた回り止め部に補強繊維を充填させるために、金属製ブッシュを上下より2つのリング状補強用繊維基材で挟み込み、回り止めに繊維を喰い込ませて充填させる方法は既知の技術である(特許文献1)。しかし、かかる方法では補強用繊維基材の重ね合わせ界面での繊維の絡みがないために、使用用途によっては界面剥離による耐久性能が低下する心配がある。界面剥離の問題は、1個の補強用繊維基材を使用することにより解決されるが、金属製ブッシュに設けた回り止め部を挟み込むことができないために、回り止め部に繊維を喰い込ませた樹脂製回転体を作製することができなかった。
【0009】
この対策として、1個の補強用繊維基材を使用し、かつ回り止め部に繊維を喰い込ませた樹脂製回転体を作製するために、円筒形状に抄造可能な抄造装置内に金属製ブッシュを配置した後、金属製ブッシュの外周部に補強繊維を集積させる方法が考えられる。しかし、抄造後の補強用繊維基材は非常に嵩高いうえに強度が弱い(型崩れしやすい)ために、金属製ブッシュと一体化した状態を保持したまま抄造装置から取り出したり、加熱加圧成形するために成形金型に配置したりすることが難しいという問題がある。また前記抄造の際、上方から補強繊維を分散させたスラリーを投入し補強繊維を集積させるために、回り止め部自体が障害となり、回り止め部の下側に補強繊維を充填することが難しいという問題がある。さらに、回り止め部への補強繊維の喰い込みをより強固にするために圧縮操作を行う際、上側もしくは下側からの一方向のみから行うために、回り止め部の上側および下側の補強繊維密度が均等になるように圧縮することができないという問題がある。
【0010】
本発明が解決しようとする第1の課題は、基材の重ね合わせ界面のない1つの補強用繊維基材を用いた場合であっても、金属製ブッシュの外周部に設けた回り止め部と補強用繊維基材の結合強度を向上させた、信頼性の高い樹脂製回転体成形用半加工品または樹脂製回転体を作業性よく製造することである。また、本発明が解決しようとする第2の課題は、回り止め部の上側および下側の補強繊維密度を均等にした樹脂製回転体成形用半加工品または樹脂製回転体を製造することである。
【課題を解決するための手段】
【0011】
本発明が改良の対象とする樹脂製回転体成形用半加工品の製造方法では、まず外周部に1以上の回り止め部が形成されて回転軸を中心にして回転するブッシュを用意するステップを実施する。次に、ブッシュの外周部に、補強繊維によって形成され且つ1以上の回り止め部を囲むように嵌った状態で配置された補強用繊維基材を形成するステップを実施する。
【0012】
本発明では、補強用繊維基材を形成するステップを次の二つのステップにより構成する。第1のステップでは、抄造法により、ブッシュの外周部の周囲に補強繊維を集積させて1以上の回り止め部を含むブッシュの外周部を囲む補強繊維集積体を形成する。抄造法により補強繊維集積体を製造すれば、補強繊維集積体の中央部に剥離の原因となるような境界部が形成されることはない。またブッシュに対して予め作った補強繊維集積体を嵌め込むような作業が必要ないため、作業工程が少なくても済む。さらに抄造の際に、1以上の回り止め部の周囲に補強繊維が確実に回り込むため、ブッシュに対して予め作った補強繊維集積体を嵌め込む場合と比べて、補強繊維集積体とブッシュの回り止め部との結合強度を高めることができる。そして第2のステップでは、前記第1のステップと同一の装置を用いて、補強繊維集積体を回転軸の軸線方向に圧縮して補強用繊維基材を形成する。この圧縮によって、回り止め部への補強繊維の喰い込みを確実なものとするとともに、回り止め部の補強用繊維基材の密度が高まり、ブッシュと補強用繊維基材との結合がさらに高まる。
【0013】
本発明では、前記第1のステップと前記第2のステップとを、ブッシュと補強繊維集積体を収容している同一装置内で連続して行うことを特徴とする。抄造した補強用繊維基材を同一の装置を用いて連続して圧縮まで行うので、嵩高く強度が弱い(型崩れしやすい)抄造後の補強用繊維基材を取り扱う作業が必要ないため、作業工程が少なくて済む。また、前記第2のステップで行う圧縮により補強繊維基材の密度が高まるので、補強用繊維基材の強度を高めることができ、作業性(取り扱い性)が大幅に向上する。
【0014】
前記第2のステップは、ブッシュが一対の圧縮用金型の間の中央に位置する状態で、補強繊維集積体を回転軸の軸線方向に上下方向から圧縮することが好ましい。これにより、回り止め部の上側および下側の補強繊維密度が均等になるように圧縮することができ、樹脂製回転体の機械強度のばらつきを低減することができる。さらに、前記圧縮は加熱した状態で行うことが好ましい。これにより、抄造後の補強用繊維基材に含まれる水分を取り除く時間を短縮することができるとともに、圧縮後の補強用繊維基材の経時変化による厚みの変化を抑えることができる。また、前記圧縮は、ブッシュと補強繊維集積体の収容空間を減圧吸引した状態で行うことが好ましい。これにより、抄造後の補強用繊維基材に含まれる水分を取り除く時間を短縮することができる。
【0015】
前記第1のステップと第2のステップとを行う装置の構成は任意である。例えば、補強繊維集積体がブッシュの径方向外側及び径方向内側に広がるのを規制した状態で、補強繊維集積体を軸線方向に圧縮する装置を用いると、圧縮過程において、補強繊維はブッシュの径方向内側に向かって移動することになる。その結果、補強繊維はブッシュの外周部に押し付けられて、1以上の回り止め部の周囲の補強繊維の密度を高くすることができる。
なおこのような装置は、例えば、圧縮動作時に補強用繊維基材がブッシュの径方向外側に広がるのを規制する筒状金型と、筒状金型の内部に配置されてブッシュの外周部よりも内側に位置する部分を軸線方向の両側から挟み且つ圧縮動作時に補強繊維集積体がブッシュの径方向内側に広がるのを規制する一対のブッシュ支持用金型と、筒状金型と一対のブッシュ支持用金型の間に位置して、圧縮動作時に補強繊維集積体を軸線方向両側から挟んで圧縮する一対の圧縮用金型とを備え、少なくとも下側の圧縮用金型が透水性を有しているのが好ましい。
【0016】
このような装置で一対のブッシュ支持用金型を用いると、ブッシュの位置決めと支持を簡単に行うことができる。また補強繊維集積体の外周面の形状は、筒状金型の内周面の形状によって定めることになる。その結果、筒状金型の内周面を歯車形状とすることにより、補強繊維集積体の外周面に歯車形状の凹凸を形成することも可能になる。なお筒状金型の周壁部が透水性を有していてもよいのは勿論である。この場合には、筒状金型及び下側の圧縮用金型に複数の透水孔を形成して透水性を付与することができる。そして補強繊維を水中分散させたスラリーを、筒状金型及び下側の圧縮用金型を通して吸引しながら補強繊維を下側の圧縮用金型上に集積させて補強繊維集積体を形成すればよい。
【0017】
また、このような装置で圧縮を行うと、一対の圧縮用金型で補強繊維集積体を圧縮した場合に、ブッシュの径方向の内側及び外側の両方向に補強繊維が膨出するのを確実に阻止することができる。この場合、一対の圧縮用金型の少なくとも一方の圧縮用金型の補強用繊維基材と接触する接触面は、他方の圧縮用金型の補強繊維集積体と接触する接触面との間の距離が、筒状金型から一対のブッシュ支持用金型に近付くに従って長くなるように傾斜する傾斜面であってもよい。
【0018】
なお補強用繊維基材に樹脂を含浸させ、樹脂を硬化して樹脂成形体を形成するステップを追加すれば、樹脂製回転体を製造することができる。
【0019】
なお補強繊維としては、種々の材質のものを用いることができる。しかし補強繊維として、アラミド繊維をフィブリル化処理した微細繊維を含み、微細繊維のフリーネスが100ml以上400ml以下であって、微細繊維の含有量が補強繊維中の30質量%以下となるものを用いるのが好ましい。このような補強繊維を用いると、圧縮が容易でしかも、補強用繊維基材と回り止め部との間に必要十分な結合強度を得ることができる。
【0020】
金属製ブッシュの外周部に設ける1以上の回り止め部の数及び形状は任意である。例えば、1以上の回り止め部は、金属製ブッシュの中央部分から軸の径方向に向かって突出する複数の突出部から構成することができる。この場合、隣り合う二つの突出部の間には凹部が形成される。すなわち、突出部と凹部は、周方向に交互に並ぶように配置される。これら突出部と凹部は、突出部の突出寸法と2つの突出部間に形成された凹部の底部の高さ寸法とが異なるように構成することができる。この場合には、突出部の突出寸法をh1とし、凹部の底部の高さ寸法をh2とし、h1>h2であるとしたときには、補強繊維の長さを、0.5×h1mm及び1×h2mmの小さいほうの値以上とし、5×h1mm及び10×h2mmの大きいほうの値以下とするのが好ましい(h1,h2は、図2参照)。このような長さの補強繊維を用いると、隣接する突出部の間に補強繊維が入り込んだ状態でも、補強用繊維基材の一部に裂け目が発生することがなく、補強用繊維基材の機械的強度の低下を抑制することができる。
【0021】
なお樹脂成形体に対する補強繊維の割合は、30体積%以上50体積%以下であることが望ましい。この範囲の値であれば、樹脂成形体に必要とされる機械的強度を、確実に得ることができる。
【0022】
樹脂成形体に機械加工を施して複数の歯を形成すれば、機械的に強度が高く、しかも、使用時の騒音の発生が少ない歯車を得ることができる。なお本発明の樹脂製回転体を用いて、歯車の他に、プーリ等の回転部品を製造してもよいのは勿論である。
【0023】
また、金属製ブッシュは焼結法により製造されたものを用いることができる。また回り止め部として用いる突出部は、軸線方向に沿って測定した頂部の厚み寸法が基部の厚み寸法よりも大きいアンダーカット形状であり、金属製ブッシュの軸線方向に対向する一対の側面の横断面に対する角度が5°以上40°以下であるのが好ましい。
【0024】
本発明の方法により形成される補強用繊維基材は、補強用繊維基材の重ね合せ界面がなく、剥離することがない。これらのことから、樹脂製歯車などの樹脂製回転体の耐久性能は大幅に向上する。
【発明の効果】
【0025】
本発明によれば、抄造によりブッシュの外周部に補強繊維集積体を形成する過程で、補強繊維をブッシュの回り止めの周囲に必要な量集積させてブッシュの回り止め部を補強繊維集積体で完全に囲むことができる。さらにこれを圧縮することによって、ブッシュの回り止め部への補強繊維の喰い込みを確実なものとするとともに、ブッシュの外周部近傍の補強用繊維基材の密度を高めることができる。このため、従来のように、補強用繊維基材の内部に繊維層の境界面を形成することなく、補強用繊維基材とブッシュの回り止め部との結合強度を向上させることができて、樹脂製歯車などの樹脂製回転体の耐久性能を大幅に向上することができる利点が得られる。
【0026】
また、前記抄造と前記圧縮を同一の装置を用いて連続して行うことによって、嵩高く強度が弱い(型崩れしやすい)抄造後の補強用繊維基材を取り扱う作業を省くことができ、作業工程を大幅に短縮することができる。さらに、前記圧縮を、ブッシュが中央に位置する状態で、補強繊維集積体を回転軸の軸線方向に上下方向から行うことにより、回り止め部の上側および下側の補強繊維密度が均等になるように圧縮することができ、樹脂製回転体の機械強度のばらつきを低減することができる。
【発明を実施するための最良の形態】
【0027】
以下図面を参照して、本発明の実施の形態を詳細に説明する。
図1は、模式的に示した本発明の樹脂製回転体の実施の形態の一例の縦断面図である。この樹脂製回転体1は、図示しない回転軸を中心にして回転する金属製ブッシュ2を備えている。金属製ブッシュ2の中央部には、図示しない軸が嵌合される貫通孔3が形成されている。また金属製ブッシュ2の外周部には、複数の回り止め部を構成する突出部4Aが周方向に所定の間隔をあけて一体に形成されている。なお金属製ブッシュ2に軸が一体に形成されていてもよい。複数の突出部4Aの軸線方向に測った厚み寸法L2は、金属製ブッシュ2の軸線方向に測った厚み寸法L1よりも小さい。本実施の形態で用いる金属製ブッシュ2は焼結法により製造されたものである。そして回り止め部を構成する突出部4Aは、頂部の厚さが厚く基部の厚さが薄いアンダーカット形状である。そして金属製ブッシュ2の横断面に対する角度θが5°以上40°以下のものを用いている。そして図2に示すように、回転方向への負荷に耐える回り止め部の作用を高めるためには、好ましくは、回り止め部となる突出部4Aは、少なくとも高さh1の突出部4Aと二つの突出部4A間に形成されて高さh2の底部を有する凹部4Bとが交互に配列されたものが好ましい。このようなアンダーカットの形状を持ち、角度θが5°以上40°以下の突出部4Aを用いると、後述する補強用繊維基材5内に回り止め部としての複数の突出部4Aが完全に埋まった状態となり、両者間の機械的結合の強度を十分なものとすることができる。なお隣り合う二つの突出部4A間に形成される凹部4B内に補強用繊維基材5の一部が入ることによっても、前述の機械的強度は当然にして増加する。
【0028】
本実施の形態では、1つの補強用繊維基材5が、金属製ブッシュ2の外周部4の外側の位置に、外周部4に嵌った状態で配置されている。そして補強用繊維基材5に樹脂が含浸され且つ樹脂が硬化して形成された樹脂成形体6が形成されている。
【0029】
補強用繊維基材5は、図3に概略的に示すように、抄造と圧縮を連続して行うことができる抄造圧縮装置7を用いて金属製ブッシュ2の外周部の外側位置に補強繊維集積体8を形成し、この補強繊維集積体8を回転軸の軸線方向に圧縮することにより形成されている。
【0030】
まず、抄造法によりブッシュの外周部の周囲に補強繊維を集積させて1以上の回り止め部を含むブッシュの外周部を囲む補強繊維集積体を形成する第1のステップについて説明する。
図3(A)に示すように、この抄造圧縮装置7で用いる金型は、圧縮動作時に補強繊維集積体8が金属製ブッシュ2の径方向外側に広がるのを規制する筒状金型10と、筒状金型10の内部に配置されて金属製ブッシュ2の外周部よりも内側に位置する部分を軸線方向の両側から挟み且つ圧縮動作時に補強繊維集積体8が金属製ブッシュ2の径方向内側に広がるのを規制する一対のブッシュ支持用金型11及び12と、筒状金型10と一対のブッシュ支持用金型11及び12の間に位置して、圧縮動作時に補強繊維集積体8を軸線方向両側から挟んで圧縮する一対の圧縮用金型13及び14とを備えている。そしてこの金型では、下側の圧縮用金型14に透水性を付与するために、下側の圧縮用金型14には水を排水するための貫通孔15が形成されている。この貫通孔15に真空吸引するためのポンプを取付けると排水を短時間で完了することができ好ましい。なおこの例では、排水時の補強繊維の流出防止のために、下側の圧縮用金型14上には底部材16が配置されている。
【0031】
一対のブッシュ支持用金型11及び12は、金属製ブッシュ2の外周部よりも内側に補強繊維が入り込まないように金属製ブッシュ2の外周部よりも内側に位置する部分を筒状金型10の中心線が延びる方向の両側から挟んで支持する。なおこの例では、下側のブッシュ支持用金型12、上側のブッシュ支持用金型11、下側の圧縮用金型14、上側の圧縮用金型13、及び筒状金型10はそれぞれ単独で上下に移動可能に構成されている。
【0032】
なおこの底部材16には金網を使用でき、そのメッシュサイズは、250メッシュより大きくなると水と繊維の濾過抵抗が大きくなり、金型の内部に入れた補強繊維を含む後述のスラリーを、ポンプで吸引して水分を金型から排水させても、繊維と水の分離に要する時間が長くなり、製造サイクルが長くなる。またメッシュサイズが10メッシュより小さいと、繊維長が長い補強繊維を使用しても網目(貫通孔)が大きいために補強繊維の多くが水と共に流出してしまう。そのために、補強繊維集積体8の繊維密度が著しく低下してしまう問題が発生する。よって使用するメッシュサイズは10メッシュ以上250メッシュ以下が好ましい。
【0033】
金属製ブッシュ2を一対のブッシュ支持用金型11及び12の間に挟む場合には、図3(A)に示すように、上側のブッシュ支持用金型11が上方向に移動する。そして金属製ブッシュ2を下側のブッシュ支持用金型12の上に位置決めした後に、図3(B)に示すように、上側のブッシュ支持用金型11を下方向に移動して、一対のブッシュ支持用金型11及び12の間に金属製ブッシュ2を挟持する。
【0034】
補強繊維と水とを混合して形成したスラリーは、図3(B)に示すように、筒状金型10の上側の開口部から供給される。そして真空吸引をして、下側の圧縮用金型14に設けた複数の貫通孔15から水分を排出することにより、金属製ブッシュ2の外周部の周囲を囲む補強繊維集積体8を形成する。このように一対のブッシュ支持用金型11及び12を用いると、金属製ブッシュ2の位置決めと支持を簡単に行うことができる。また補強繊維集積体8の外周面の形状は、筒状金型10の内周面の形状によって定まる。その結果、筒状金型10の内周面を歯車形状とすることにより、補強繊維集積体8の外周面に歯車形状の凹凸を形成することも可能になる。なおスラリーの供給は、前記開口部の複数の場所から行ってもよい。
【0035】
次に、補強繊維集積体を回転軸の軸線方向に圧縮して補強用繊維基材を形成する第2のステップについて説明する。
前述の抄造圧縮装置7で用いる金型であれば、一対の圧縮用金型13及び14で補強繊維集積体8を圧縮した場合に、金属製ブッシュ2の径方向の内側及び外側の両方向に補強繊維が膨出するのを確実に阻止することができる。
【0036】
下側の圧縮用金型14に設けた複数の貫通孔15から水分を排出した後、図3(C)に示すように、金属製ブッシュ2が一対の圧縮用金型13と14の間の中央に位置する状態となる位置まで、上側の圧縮用金型13を下降させる。その後、図3(D)に示すように、金属製ブッシュ2が一対の圧縮用金型13及び14の中央に位置する状態で、一対の圧縮用金型13及び14をそれぞれ移動させ、補強繊維集積体8が所定の厚みとなるまで圧縮する。なお圧縮を行う時間、温度は使用する補強繊維の種類によって任意であるが、前記圧縮の際、上側の圧縮用金型13にヒータを取り付け、加熱した状態で圧縮することにより、抄造後の補強用繊維基材に含まれる水分を取り除く時間を短縮することができるとともに、圧縮後の補強用繊維基材5の厚みの経時変化を抑えることができる。好ましくは使用する溶媒、本例では水の沸点以上の温度100〜180℃で、0.5〜10分間圧縮することにより、厚みの経時変化のほとんど無い補強用繊維基材5を得ることができる。また前記圧縮の際、下側の圧縮用金型14の貫通孔15から真空吸引した状態で圧縮することにより、抄造後の補強用繊維基材に含まれる水分を取り除く時間を短縮することができる。
【0037】
補強用繊維基材5または補強繊維集積体8を形成するために用いる補強繊維の種類は後述するように、種々のものを用いることができる。そして補強繊維の長さは、例えば、図2に示すような金属製ブッシュ2を用いる場合には、次のように定める。すなわち突出部4Aの突出寸法(金属製ブッシュ2の中央部分2Aから径方向へ測った突出部4Aの高さ)をh1、凹部4Bの底部の高さ(金属製ブッシュ2の中央部分2Aから径方向へ測った凹部4Bの底部の高さ)をh2としたとき、補強繊維の長さは、0.5×h1mmと1×h2mmの小さいほうの値以上であり、5×h1mmと10×h2mmの大きいほうの値以下であるのが好ましい。ここで、高さ寸法h1とh2が同じ場合は、回り止めの効果が弱くなる。突出部4Aまたは凹部4Bの底部の高さ寸法h1またはh2に対しては、補強繊維が覆いかぶさるのに充分な繊維長さが必要であり、補強繊維の長さが0.5×h1mmと1×h2mmの小さいほうの値以上であることが適当である。また、補強繊維は、長すぎてもスラリーの均一分散を妨げる原因となり、強度の増強に寄与しない不均一な繊維分布になる。そのため補強繊維の長さは、5×h1mmと10×h2mmの大きいほうの値以下が適当である。なお、突出部として、突出凹部の底部の高さ寸法がh1よりも大きなh3となる突出部(2種類以上の突出寸法の異なる突出部)を組み合わせて使用してもよいのは勿論である。
【0038】
このようにして定めた補強繊維の繊維長は、好ましくは2mmから5mmであり、さらに好ましくは3mmである。繊維長が2mm未満の場合、繊維強化樹脂成形体の機械特性が低下する。また、繊維長が6mmを超えると、繊維束を水中で解離し分散させるときに、繊維束の解離が困難になる。また、これまで説明した補強繊維(繊維チョップ)のほかに、アラミド繊維等のパルプを併用してもよい。これにより、繊維同士の絡み合いが増し、補強用繊維基材の取り扱い性が良好となるので好ましい。
【0039】
また、金属製ブッシュ2の外周部4に設けた回り止め部と樹脂部の結合を強固たるものとするためには、回り止め部は頂部の厚さが厚く基部の厚さが薄いアンダーカット形状であり、金属製ブッシュ2の横断面に対する角度が5°以上40°以下、好ましくは、10°以上35°であるものが効果的である。これは外径方向への抜け阻止に作用するものである。
【0040】
上記アンダーカット形状をもった回り止め部を構成する突出部4Aは、焼結法で成型すれば、精度よく設計どおりに作ることができる。突出部4Aの最適構造は、たとえば外径60mmの樹脂製歯車の場合、突出部(山)の数が30であり、突出部の間に形成される凹部すなわち谷部分の数は29である。なおこれらの数は、樹脂製歯車の径や厚さ、歯の構造に応じて適宜変更されることは当然である。
【0041】
使用する補強繊維は、融点、あるいは分解温度が250℃以上の繊維からなるものが好ましい。このような補強繊維を用いて補強繊維集積体8を形成することで、成形時の成形温度や加工温度、実使用時の雰囲気温度において、樹脂製回転体内の補強繊維が熱劣化を起こすことなく、耐熱性に優れた樹脂製回転体とすることができる。このような繊維としては、パラ系アラミド繊維、メタ系アラミド繊維、炭素繊維、ガラス繊維、ボロン繊維、セラミック繊維、超高強力ポリエチレン繊維、ポリケトン繊維、ポリパラフェニレンベンゾビスオキサゾール繊維、全芳香族ポリエステル繊維、ポリイミド繊維、およびポリビニルアルコール系繊維から選ばれた少なくとも1種以上の繊維を使用するのが好ましい。
【0042】
また、補強繊維には、引張強度15cN/dtex以上、引張弾性率350cN/dtex以上の高強度高弾性率繊維を少なくとも20体積%以上含むことが好ましい。このようにして得られる補強繊維集積体8を用いた樹脂製回転体は、使用中にかかる高負荷に耐え得るものとすることができる。
【0043】
また、抄造圧縮装置7を用いて補強繊維集積体8を金属製ブッシュ2と一体化して形成したものを次工程に移動、又は搬送する際に形状を維持するための強度を付与するためには、補強繊維がアラミド繊維をフィブリル化処理した微細繊維を含み、微細繊維のフリーネスが100ml以上400ml以下であって、微細繊維の含有量が補強繊維中の30質量%以下になるように配合することが望ましい。望ましい態様としては、パラアラミド繊維の機械的剪断で繊維軸方向に裂開させたフィブリル化処理のアラミド微細繊維を混合することが好ましい。フリーネスが400mlを超えるとフィブリル化が不充分のため補強用繊維基材の形状を維持するための強度を付与する上で好ましいものでなくなる。またフリーネスが100ml未満になると繊維軸方向に裂開させるだけでなく、径方向に剪断されて粉末状態になってしまうために繊維の絡みが悪くなって、補強用繊維基材の形状を維持するための強度を付与する上で好ましいものでなくなる。また濾水性が悪化し、樹脂含浸の妨げとなる。またフィブリル化処理したアラミド微細繊維が30質量%を超えると繊維間の隙間にフィブリル化した微細繊維が充填され、樹脂注入成形時に、樹脂の樹脂含浸が阻害され、含浸不良などの不具合が生じてしまう。好ましくは適度な強度を付与し、樹脂含浸性を阻害しない5〜10質量%のフィブリル化した微細繊維を配合するのが好ましい。
【0044】
上記補強繊維を水中に分散させる際の濃度は、0.3g/リットル以上20g/リットル以下が好ましい。繊維長が短い繊維を使用する場合、繊維同士の絡みが少なく、分散が良いため濃度20g/リットルの高濃度のスラリーで分散させることができる。一方、繊維長が長い繊維を使用する場合、繊維長が長すぎるため0.3g/リットルの低濃度でないと充分分散させることができない。
【0045】
ちなみに、前述の補強繊維がアラミド繊維をフィブリル化処理した微細繊維を含む場合において、金属製ブッシュ2の直径が5cmの場合に使用する補強繊維集積体8の厚み寸法(軸線方向寸法)は、約8cmである。そして後述する圧縮作業により、補強繊維集積体8は約1.5cm程度まで圧縮されて補強用繊維基材5に成形される。
【0046】
次に、補強用繊維基材に樹脂を含浸させ、樹脂を硬化して樹脂成形体を形成するステップについて説明する。
図4に示すように、補強用繊維基材5を備えた樹脂製回転体成形用半加工品21を金型23内に配置した後に金型23に液状樹脂を注入して補強用繊維基材5に樹脂を含浸させ、その後硬化させて、樹脂成形体を備えた樹脂製回転体を成形する。金型23は固定金型25と、固定金型25の中心に配置されて上下方向に変位する移動金型27と、この移動金型27と対になって金属製ブッシュ2を挟持する上金型29とを備えている。上金型29の押圧部29Aが、固定金型25内に挿入されて、金属製ブッシュ2を押圧すると、移動金型27は、上金型29の挿入量に応じて下方に変位する。上金型29で、固定金型25の開口部を完全に塞いだ後に、固定金型25内に液状樹脂が注入される。その後、樹脂が硬化したら、補強用繊維基材5を芯材として成形された樹脂成形体を備えた樹脂製回転体を金型23から取り出して、樹脂製回転体の製造を完了する。
【0047】
このようにして成形した樹脂製回転体の樹脂成形体の外周部に機械加工を施して歯を形成すれば樹脂製歯車を得ることができる。また外周面に沿って溝を形成すれば、プーリを得ることができる。
【0048】
前述の液状樹脂としては、熱硬化性樹脂、熱可塑性樹脂等いずれのものでも良く、エポキシ樹脂、ポリアミノアミド樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、ポリエーテルサルフォン樹脂、ポリエーテルエーテルケトン樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリフェニレンサルファイド樹脂、ポリエチレン樹脂、ポリプロピレン樹脂等から選ばれた1以上の樹脂と該樹脂の種類に応じて硬化剤を組み合わせたものが使用できる。
【0049】
これらの中でも、樹脂硬化物の強度、耐熱性等の点からポリアミノアミド樹脂が好ましく、耐熱性、強度が優れる2,2’−(1,3フェニレン)ビス2−オキサゾリンとアミン硬化剤の混合物100質量部に対し5質量部以下の触媒とからなる樹脂を使用することが好ましい。なお、この触媒を5質量部以上添加すると、硬化時間が短くなって補強用繊維基材5に樹脂が充分含浸される前に樹脂が硬化してしまうため、樹脂含浸不良の問題が発生する。
【0050】
補強繊維の樹脂成形体に含まれる割合は、所望する樹脂製回転体の強度等によって異なるが、30体積%以上50体積%以下であることが好ましい。樹脂成形体に占める補強繊維の割合が30体積%未満である場合、樹脂を繊維で補強する効果がほとんど見られず、また金属製ブッシュ2の回り止め部への繊維の充填も不充分となる。また、補強繊維の割合が50体積%を越えた場合は、繊維の占める割合が高すぎるため、樹脂注入成形時に樹脂の樹脂含浸不足が発生しやすくなるなどの問題がおこる。そのため樹脂成形体に含まれる繊維の割合は樹脂製回転体の強度があり、及び2つの突出部4Aの間に形成される回り止め用の凹部4B内に繊維が確実に充填され、しかも樹脂の含浸を阻害しない35〜45体積%がさらに好ましい。
【実施例】
【0051】
以下、本発明の実施例を説明する。
実施例1
スラリーを製造するために、繊維チョップ投入時の濃度が4g/リットルとなる量の水を満たしたタンクを用意する。そしてこのタンク内に、樹脂成形体中の補強繊維の繊維総量が40体積%となる量の補強繊維を入れる。具体的には、補強繊維として用いる繊維チョップとして、アスペクト比200のパラ系アラミド繊維“帝人(株)製「テクノーラ(商標)」”を50質量%、アスペクト比200のメタ系アラミド繊維“帝人(株)製「コーネックス(商標)」”を45質量%、そしてフリーネス値300mlまでフィブリル化処理した微細繊維“デュポン(株)製「ケブラー(商標)」”を5質量%となる量をそれぞれ投入する。次に攪拌機でタンク内の水を攪拌し繊維チョップを分散させる。
【0052】
次に図3(A)に示す抄造圧縮装置7を用いて、下側のブッシュ支持用金型12上に金属製ブッシュ2を位置決めする。使用する金属製ブッシュ2の突出部4A及び凹部4Bの形状は、h1=2mm、h2=0.5mmであり、アンダーカット形状であり、金属製ブッシュ2の仮想中心横断面と側面SFとの間の角度θが20°である。そして、図3(B)に示すように、上側のブッシュ支持用金型11を下方向に移動して、一対のブッシュ支持用金型11及び12の間に金属製ブッシュを挟持する。ここで、下側の圧縮用金型14の位置は、金属製ブッシュ2の軸方向中央から底部材16上面までの距離が40mmとなる位置とした。この抄造圧縮装置7内に、分散させた繊維チョップを含むスラリーを充填する。そして、真空吸引をして下側の圧縮用金型14に設けた複数の貫通孔15から水を排水することにより、繊維チョップと水を分離して円筒状の補強繊維集積体8を得る。なお排水時に貫通孔15より繊維チョップが流出するのを防止するために、下側の圧縮用金型14上には底部材16を配置した。この底部材16としては金属製100メッシュの金網を用いた。
【0053】
次に金属製ブッシュ2の回り止め部にさらに強固に繊維を喰い込ませるために圧縮を行う。まず図3(C)に示すように、150℃に加熱した上側の圧縮用金型13を、金属製ブッシュ2の軸方向中央から上側の圧縮用金型13下面までの距離が40mmとなる位置まで下降させる。この位置は、金属製ブッシュ2が一対の圧縮用金型13と14の間の中央に位置する状態となる位置である。そして、図3(D)に示すように、金属製ブッシュ2が一対の圧縮用金型13と14の間の中央に位置する状態で、一対の圧縮用金型13及び14をそれぞれ速度1〜5mm/sで相互に近づく方向に移動させ、補強繊維集積体8が厚み10mmとなるまで圧縮する。そして、加熱した状態で2分間圧縮することにより、金属製ブッシュ2と一体化した補強用繊維基材5を得た。前記圧縮の際、下側の圧縮用金型14の貫通孔15から真空吸引した状態で圧縮している。
【0054】
次に図4に示すように、上記の工程で得られた金属製ブッシュ2と一体化した補強用繊維基材5を200℃に加熱した成形金型27に配置して型締めする。そして、成形金型27内部を圧力90kPa以下に減圧した後、2,2’−(1,3フェニレン)ビス2−オキサゾリン69質量部、4,4’−ジアミノジフェニルメタン31質量部を混合した樹脂を温度140℃で溶解し、オクチルブロマイド1質量部を加えて撹拌した樹脂を金型内部に注入して補強用繊維基材5に含浸させ、成形金型27内で加熱硬化し歯車素材を得る。この歯車素材を切削加工により歯を形成することにより樹脂製歯車を得る。
【0055】
実施例2
図3(B)において、下側の圧縮用金型14の位置を、金属製ブッシュ2の軸方向中央から底部材16上面までの距離が10mmとなる位置とし、
図3(C)において、上側の圧縮用金型13を、金属製ブッシュ2の軸方向中央から上側の圧縮用金型13下面までの距離が70mmとなる位置まで下降させ、
図3(D)において、上側の圧縮用金型13のみを移動させて圧縮する以外は実施例1と同様にして樹脂製歯車を製造した。
【0056】
従来例1
水を満たしたタンクを用意し、実施例1と同様の繊維配合、濃度で繊維チョップを分散させる。図5(A)に示すように、抄造装置307は、底面部313および角筒状の抄造用筒体309を備えている。なお底面部313のみを金網で構成した。使用した金網は、100メッシュのシート状金網であった。そして、前述の分散させた繊維チョップを含むスラリーを抄造装置307に導入して、集積物310を得た。集積物310を取り出して、これを脱水、乾燥した。その後、図5(B)に示すように、外径φ80mm×内径φ55mmのドーナツ状に打ち抜き、補強繊維集積体308を得た。
【0057】
次に図6(A)に示すように、上記の工程で得られた補強繊維集積体308を2個使用して、金属製ブッシュ2に設けた突出部4Aを挟み込み、加熱した成形金型323内に配置して型締めをした。その後の工程は、実施例1と同様にして、樹脂製歯車を製造した。図6(B)は、このようにして製造した樹脂製回転体の概略縦断面図である。この樹脂製回転体の樹脂成形体306中にある2つの補強用繊維基材305の重ね合せ界面BSには、補強繊維の絡み合いが殆どない。
【0058】
上記実施例1〜2及び従来例1で得られた樹脂製歯車について、ボス抜き強度及びモータリング耐久寿命を測定した結果を表1に示す。測定方法は以下に示すとおりである。
ボス抜き強度:図7に示すように樹脂成形体部のみに接し、かつ金属製ブッシュ2の外径サイズより大きい内径の円筒形状の台55の上に樹脂製歯車51を配置する。上方より金属製ブッシュ2を押さえる金具56を取付け、金具56に荷重を加えて、樹脂製歯車51が破壊に至る最大荷重を測定した。
モータリング耐久寿命:表1に示す試験条件により樹脂製歯車を連続回転させ、樹脂製歯車が破壊するまでの時間を測定した。
【0059】
【表1】

【0060】
【表2】

【0061】

表2から明らかなように、本発明に係る樹脂製回転体は、補強用繊維基材とブッシュの回り止め部との結合強度を向上させることができ、ボス抜き強度が向上している。また、補強用繊維基材の内部に繊維層の境界面を形成することがないため、モータリング耐久寿命が大幅に向上している(実施例1〜2と従来例1の対照)。なお、抄造後の補強用繊維基材を圧縮する際、ブッシュが一対の圧縮用金型の間の中央に位置する状態で、補強繊維集積体を回転軸の軸線方向に上下方向から行うことにより、回り止め部の上側および下側の補強繊維密度が均等になるように圧縮することができ、樹脂製回転体の機械強度のばらつきが低減している(実施例1と実施例2の対照)。
【図面の簡単な説明】
【0062】
【図1】模式的に示した本発明の樹脂製回転体の実施の形態の一例の縦断面図である。
【図2】(A)及び(B)は金属製ブッシュの平面図及び縦断面図である。
【図3】(A)乃至(D)は、補強用繊維基材の抄造及び圧縮工程を順番に示す図である。
【図4】樹脂注型用の金型の一例を示す概略断面図である。
【図5】(A)及び(B)は、従来例を製造するために用いる抄造装置の一例と、従来の補強用繊維基材の製造例を示す図である。
【図6】(A)は従来例を製造するために用いる樹脂注型用の金型の一例を示す概略断面図であり、(B)は従来例で製造した樹脂製回転体の縦断面図である。
【図7】ボス抜き強度を測定する装置の構成を示す図である。
【符号の説明】
【0063】
1 樹脂製回転体
2 金属製ブッシュ
3 貫通孔
2B 外周部
4A 突出部(回り止め部)
4B 凹部
5 補強用繊維基材
7 抄造圧縮装置
8 補強繊維集積体
10 筒状金型
11、12 ブッシュ支持用金型
13、14 圧縮用金型
15 貫通孔
16 底部材

【特許請求の範囲】
【請求項1】
外周部に1以上の回り止め部が形成されて回転軸を中心にして回転するブッシュを用意するステップと、
前記ブッシュの前記外周部に、補強繊維によって形成され且つ前記1以上の回り止め部を囲むように嵌った状態で配置された補強用繊維基材を形成するステップとからなる樹脂製回転体成形用半加工品の製造方法であって、
前記補強用繊維基材を形成するステップが、
抄造法により、前記ブッシュの前記外周部の周囲に前記補強繊維を集積させて前記1以上の回り止め部を含む前記ブッシュの前記外周部を囲む補強繊維集積体を形成する第1のステップと、
前記補強繊維集積体を前記回転軸の軸線方向に圧縮して前記補強用繊維基材を形成する第2のステップとからなり、
前記第1のステップと前記第2のステップとを、ブッシュと補強繊維集積体を収容している同一装置内で連続して行うことを特徴とする樹脂製回転体成形用半加工品の製造方法。
【請求項2】
前記第1のステップと前記第2のステップとを行う装置は、
圧縮動作時に前記補強繊維集積体が前記ブッシュの径方向外側に広がるのを規制する筒状金型と、
前記筒状金型の内部に配置されて前記ブッシュの前記外周部よりも内側に位置する部分を前記軸線方向の両側から挟み且つ圧縮動作時に前記補強繊維集積体が前記ブッシュの径方向内側に広がるのを規制する一対のブッシュ支持用金型と、
前記筒状金型と前記一対のブッシュ支持用金型の間に位置して、圧縮動作時に前記補強繊維集積体を前記軸線方向両側から挟んで圧縮する一対の圧縮用金型とを備え、少なくとも下側の圧縮用金型が透水性を有している請求項1に記載の樹脂製回転体成形用半加工品の製造方法。
【請求項3】
前記第2のステップは、前記ブッシュが一対の圧縮用金型の間の中央に位置する状態で、前記補強繊維集積体を前記回転軸の軸線方向に上下方向から圧縮することを特徴とする請求項1または2に記載の樹脂製回転体成形用半加工品の製造方法。
【請求項4】
前記第2のステップは、加熱した状態で、前記補強繊維集積体を前記軸線方向に圧縮することを特徴とする請求項1〜3のいずれか1項に記載の樹脂製回転体成形用半加工品の製造方法。
【請求項5】
前記第2のステップは、ブッシュと補強繊維集積体の収容空間を減圧吸引した状態で、前記補強繊維集積体を前記軸線方向に圧縮することを特徴とする請求項1〜4のいずれか1項に記載の樹脂製回転体成形用半加工品の製造方法。
【請求項6】
前記補強繊維集積体が、歯車の形状をしたものである請求項1〜5のいずれか1項に記載の樹脂製回転体成形用半加工品の製造方法。
【請求項7】
外周部に1以上の回り止め部が形成されて回転軸を中心にして回転するブッシュを用意するステップと、
前記ブッシュの前記外周部に、補強繊維によって形成され且つ前記1以上の回り止め部を囲むように嵌った状態で配置された補強用繊維基材を形成するステップと、
前記補強用繊維基材に樹脂を含浸させ、前記樹脂を硬化して樹脂成形体を形成するステップとからなる樹脂製回転体の製造方法であって、
前記補強用繊維基材を形成するステップが、請求項1〜6のいずれか1項に記載の方法であることを特徴とする樹脂製回転体の製造方法。
【請求項8】
請求項7記載の方法により製造された樹脂製回転体の樹脂成形体に歯切り加工が施されて形成された樹脂製歯車。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2009−250364(P2009−250364A)
【公開日】平成21年10月29日(2009.10.29)
【国際特許分類】
【出願番号】特願2008−99987(P2008−99987)
【出願日】平成20年4月8日(2008.4.8)
【出願人】(000001203)新神戸電機株式会社 (518)
【Fターム(参考)】