説明

画像形成装置

【課題】湿度変化による画質低下を抑制することが可能な画像形成装置を提供する。
【解決手段】転写手段30と、その転写手段30に与える電流値を制御対象としてその制御対象値に応じた電力を転写手段39に供給する電力供給手段62と、電圧検出手段及73び電流検出手段83の両検出値を取得して、両検出値或いは電圧検出手段73の検出値と、制御対象の最適値との関係を示す特性線に基づき導き出した制御対象の最適値を、電力供給手段62における制御対象値として決定する決定手段61と、を備える画像形成装置1であって、特性線は、上記両検出値又は前記電圧検出手段73の検出値の増加に伴って、制御対象の最適値の絶対値変化が増加傾向から減少傾向に移行する関係を示す線である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、画像形成装置に関し、特に、それに備えられた転写手段への電力供給制御に関する。
【背景技術】
【0002】
この種の画像形成装置では、周囲環境(特に温度や湿度)によって転写手段、像担持体及びそれにニップされる被記録用紙の各電気抵抗値が大きく変動する。従って、この周囲環境変化に応じて適切な電力供給を行う必要がある。例えば電力供給不足になれば被記録媒体上のトナーの付着力が不足することにより像担持体上に転写しきれなかったトナーが残ってしまい、その転写残トナーが被記録媒体上の他の位置に転写されてしまうことになる。逆に電力供給過剰になればトナーが飛散したり、放電により像担持体が破損したりするおそれがあるからである。
【0003】
このような問題を解決するために、従来から、転写ローラに流す転写電流を、各周囲環境に応じた最適値になるように制御する画像形成装置がある(特許文献1)。具体的には、転写ローラを含んだ転写手段系の負荷抵抗値を測定しつつ、この負荷抵抗値に対応する転写電流の最適値を所定の特性曲線に基づき決定し、この最適値になるように転写電流を制御する。上記特性曲線は、周囲環境によって変化する転写手段系の各負荷抵抗値と、各負荷抵抗値に対応する転写電流の最適値との対応関係を示す曲線である。
【特許文献1】特開2006−53175公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
ところが、上記従来の画像形成装置において、上記特性曲線は予め製造メーカが提示する推奨使用条件での最低湿度(例えば20%)下で実験的に求めたのであった。このため、高湿度下では電力供給過剰によりトナーが飛散するなどして画質が低下するおそれがあった。
【0005】
本発明は上記のような事情に基づいて完成されたものであって、湿度変化による画質低下を抑制することが可能な画像形成装置を提供することを目的とする。
【課題を解決するための手段】
【0006】
上記の目的を達成するための手段として、第1の発明に係る画像形成装置は、像担持体に担持されたトナー像を被記録媒体に転写するための転写手段と、前記転写手段に与える電流値を制御対象としてその制御対象値に応じた電力を前記転写手段に供給する電力供給手段と、前記転写手段に対する電圧値を検出する電圧検出手段と、前記転写手段に流れる電流値を検出する電流検出手段と、前記電圧検出手段及び前記電流検出手段の両検出値を取得して、前記両検出値に基づく電気特性値或いは前記電圧検出手段の検出値と、前記制御対象の最適値との関係を示す特性線に基づき導き出した制御対象の最適値を、前記電力供給手段における制御対象値として決定する決定手段と、を備える画像形成装置であって、前記特性線は、前記電気特性値又は前記電圧検出手段の検出値の絶対値の増加に伴って、前記制御対象の最適値の絶対値変化が増加傾向から減少傾向に移行する関係を示す線である。
本発明の発明者は、低湿度下では、電流値及び電圧値に基づく電気特性値又は電圧検出手段の検出値(以下、単に「検出値」ということがある)の絶対値の増加に伴って制御対象の最適値の絶対値が減少傾向にあるのに対し、高湿度では、検出値の増加に伴って制御対象の最適値の絶対値が増加傾向にあることを、実験によって見つけ出した。
そこで、本発明では、検出値の絶対値の増加に伴って制御対象の最適値の絶対値変化が増加傾向から減少傾向に移行する関係を示す特性線を利用して、制御対象の最適値を決定する構成とした。これにより、単純な増加傾向の特性線を利用する従来の画像形成装置に比べて、湿度変化による画質低下を抑制することが可能になる。
【0007】
第2の発明は、第1の発明の画像形成装置であって、前記被記録媒体の種類を認識する認識手段を備え、前記特性線は、前記増加傾向の区間と前記減少傾向の区間との間に、前記最適値が所定範囲内である平坦区間を有し、前記決定手段は、前記認識手段にて認識された前記被記録媒体の種類に応じて前記平坦区間の長さが異なる特性線を利用して前記最適値を決定する構成である。
被記録媒体の種類(材質、厚み、サイズ等)によって、湿度変化によって制御対象の最適値が大きく異なるものとそれほど異ならないものがある。それほど異ならない領域が存在する場合、その領域については最適値をできるだけ所定範囲内に安定させて、電力供給制御を安定させるべきである。そこで、本発明では、被記録媒体の種類に応じて平坦区間の長さが異なる特性線を利用して最適値を決定する構成とした。
【0008】
第3の発明は、第1または第2の発明の画像形成装置であって、前記被記録媒体の種類を認識する認識手段を備え、前記決定手段は、前記電気特性値又は前記電圧検出手段の検出値の絶対値の増加に伴って前記制御対象の最適値の絶対値変化が増減反転しない単調線と、前記特性線とを、前記認識手段にて認識された前記被記録媒体の種類に応じて選択して前記最適値を決定する。
被記録媒体の種類(材質、厚み、サイズ等)によっては、湿度変化によって制御対象の最適値が大きく異なるものとそれほど異ならないものがある。そこで、本実施形態では、被記録媒体の種類によっては、増加傾向及び減少傾向の両方を有する特性線を利用せずに、増加傾向及び減少傾向のいずれかを有する単調線を利用して最適値を決定するようにした。これにより、被記録媒体の種類によっては電力供給制御を単純化することができる。
【0009】
第4の発明は、第1〜第3のいずれか一つの発明の画像形成装置であって、前記決定手段による前記制御対象値の決定動作は、1枚の前記被記録媒体に対する転写動作時間よりも短い所定の時間間隔で実行される。
1枚の被記録媒体における湿気状態にばらつきがある場合、その被記録媒体の各部位によって負荷抵抗が異なってくる。そこで、本発明では、1枚の被記録媒体に対する転写動作時間よりも短い時間間隔で制御対象値を制御し、各部位に対して最適な転写を行えるようにした。
【0010】
第5の発明は第4の発明の画像形成装置であって、前記所定の時間間隔は、前記転写手段及び前記像担持体の対向位置に対して前記被記録媒体の先端が到達してから当該被記録媒体の画像形成可能領域が到達するまでの時間よりも短い時間に設定されている。
通常、転写手段及び像担持体の対向位置(転写位置)に被記録媒体の先端が介在したときから転写手段に連なる回路系の負荷抵抗値が急激に変動する。そこで、本構成では、上記対向位置に対して被記録媒体の先端が到達してからその画像形成可能領域が到達するまでの時間よりも短い時間に設定し、画像形成可能領域に対して最適な転写動作を行うことができるようにした。
【発明の効果】
【0011】
本発明によれば、湿度変化による画質低下を抑制することができる。
【発明を実施するための最良の形態】
【0012】
本発明の一実施形態を図1〜図11を参照しつつ説明する。
1.画像形成装置の全体構成
図1は、本実施形態のレーザプリンタ1(画像形成装置の一例)を示す要部側断面図である。図1において、レーザプリンタ1は、本体フレーム2内に、用紙3(被記録媒体の一例)を給紙するためのフィーダ部4や、給紙された用紙3に画像を形成するための画像形成部5などを備えている。以下の説明では、図1の紙面右側を、レーザプリンタ1の前側として説明する。
【0013】
(1)フィーダ部
フィーダ部4は、本体フレーム2内の底部に、着脱可能に装着される給紙トレイ6と、給紙トレイ6内に設けられた用紙押圧板7と、給紙トレイ6の前端部の上方に設けられる給紙ローラ8および分離パッド9と、給紙ローラ8に対し用紙3の搬送方向の下流側に設けられる紙粉取りローラ10,11と、紙粉取りローラ10,11に対し用紙3の搬送方向の下流側に設けられるレジストローラ12とを備えている。
【0014】
用紙押圧板7は、用紙3を積層状にスタック可能とされ、給紙ローラ8に対して遠い方の端部(後端部)において揺動可能に支持されることによって、近い方の端部(前端部)が上下方向に移動可能とされている。また、その裏側から図示しないばねによって上方向に付勢されている。そのため、用紙押圧板7は、用紙3の積層量が増えるに従って、給紙ローラ8に対して後端部を支点として、ばねの付勢力に抗して下向きに揺動される。給紙ローラ8および分離パッド9は、互いに対向状に配設され、分離パッド9の裏側に設けられるばね13によって、分離パッド9が給紙ローラ8に向かって押圧されている。
【0015】
用紙押圧板7上の最上位にある用紙3は、用紙押圧板7の裏側から図示しないばねによって給紙ローラ8に向かって押圧され、その給紙ローラ8の回転によって給紙ローラ8と分離パッド9とで挟まれた後、1枚毎に給紙される。
【0016】
給紙された用紙3は、紙粉取りローラ10,11によって、紙粉が取り除かれた後、レジストローラ12に送られる。レジストローラ12は、1対のローラからなり、用紙3をレジスト後に、画像形成位置に送るようにしている。なお、画像形成位置は、用紙3に感光ドラム27(像担持体の一例)上のトナー像を転写する転写位置であって、本実施形態では、感光ドラム27と転写ローラ30との接触位置とされる。
【0017】
なお、このフィーダ部4は、さらに、マルチパーパストレイ14と、マルチパーパストレイ14上に積層される用紙3を給紙するためのマルチパーパス側給紙ローラ15およびマルチパーパス側分離パッド25とを備えている。マルチパーパス側給紙ローラ15およびマルチパーパス側分離パッド25は、互いに対向状に配設され、マルチパーパス側分離パッド25の裏側に設けられるばね25aによって、マルチパーパス側分離パッド25がマルチパーパス側給紙ローラ15に向かって押圧されている。
【0018】
マルチパーパストレイ14上に積層される用紙3は、マルチパーパス側給紙ローラ15の回転によってマルチパーパス側給紙ローラ15とマルチパーパス側分離パッド25とで挟まれた後、1枚毎に給紙される。
【0019】
(2)画像形成部
画像形成部5は、スキャナ部16、プロセスカートリッジ17および定着部18を備えている。
(a)スキャナ部
スキャナ部16は、本体フレーム2内の上部に設けられ、レーザ発光部(図示せず。)、回転駆動されるポリゴンミラー19、レンズ20,21、反射鏡22,23,24を備えている。レーザ発光部からの発光される画像データに基づくレーザビームは、鎖線で示すように、ポリゴンミラー19、レンズ20、反射鏡22,23、レンズ21、反射鏡24の順に通過あるいは反射して、プロセスカートリッジ17の感光ドラム27の表面上に高速走査にて照射される。
【0020】
(b)プロセスカートリッジ
プロセスカートリッジ17は、スキャナ部16の下方に設けられている。このプロセスカートリッジ17は、本体フレーム2に対して着脱自在に装着されるドラムカートリッジ26と、ドラムカートリッジ26に収容される現像カートリッジ28とを備えている。なお、本体フレーム2の前面には、図1に示すように、下端部側を中心軸として開閉可能な前面カバー2aが設けられており、プロセスカートリッジ17はこの前面カバー2aを開けて本体フレーム2内に着脱可能に収容される。
【0021】
現像カートリッジ28は、ドラムカートリッジ26に対して着脱自在に収容されており、現像ローラ31、層厚規制ブレード32、供給ローラ33、トナーホッパ34を備えている。
【0022】
トナーホッパ34内には、現像剤として、正帯電性の非磁性1成分のトナーが充填されている。このトナーとしては、重合性単量体、たとえば、スチレンなどのスチレン系単量体や、アクリル酸、アルキル(C1〜C4)アクリレート、アルキル(C1〜C4)メタアクリレートなどのアクリル系単量体を、懸濁重合などの公知の重合方法によって共重合させることにより得られる重合トナーが使用されている。このような重合トナーは、略球状をなし、流動性が極めて良好であり、高画質の画像形成を達成することができる。
なお、このようなトナーには、カーボンブラックなどの着色剤やワックスなどが配合されるとともに、流動性を向上させるために、シリカなどの外添剤が添加されている。
【0023】
そして、トナーホッパ34内のトナーは、トナーホッパ34の中心に設けられる回転軸35に支持されるアジテータ36により攪拌されて、トナーホッパ34の後側部に開口されたトナー供給口37から放出される。また、このアジテータ36は、図示しないモータからの動力の入力により、矢印方向(時計方向)に回転駆動される。なお、トナーホッパ34の両側壁(図1で紙面奥行き方向における両側壁)には、トナーの残量検知用の窓38が設けられており、回転軸35に支持されたワイパ39によって清掃される。
【0024】
トナー供給口37の後方位置には、供給ローラ33が回転可能に設けられており、また、この供給ローラ33に対向して、現像ローラ31が回転可能に設けられている。これら供給ローラ33と現像ローラ31とは、そのそれぞれがある程度圧縮するような状態で互いに当接されている。
【0025】
供給ローラ33は、金属製のローラ軸に、導電性の発泡材料からなるローラが被覆されている。この供給ローラ33は、図示しないモータからの動力の入力により、矢印方向(反時計方向)に回転駆動される。
【0026】
また、現像ローラ31は、金属製のローラ軸31aに、導電性のゴム材料からなるローラが被覆されている。より具体的には、現像ローラ31のローラは、カーボン微粒子などを含む導電性のウレタンゴムまたはシリコーンゴムからなるローラ本体の表面に、フッ素が含有されているウレタンゴムまたはシリコーンゴムのコート層が被覆されている。なお、現像ローラ31には、現像時に、所定の現像バイアス電圧が印加される。また、この現像ローラ31は、図示しないモータからの動力の入力により、矢印方向(反時計方向)に回転駆動される。
【0027】
また、現像ローラ31の近傍には、層厚規制ブレード32が設けられている。この層厚規制ブレード32は、金属の板ばね材からなるブレード本体の先端部に、絶縁性のシリコーンゴムからなる断面半円形状の押圧部40を備えている。層厚規制ブレード32は、現像ローラ31の近くにおいて現像カートリッジ28に支持されて、押圧部40がブレード本体の弾性力によって現像ローラ31上に圧接されている。
【0028】
そして、トナー供給口37から放出されるトナーは、供給ローラ33の回転により、現像ローラ31に供給され、この時、供給ローラ33と現像ローラ31との間で正に摩擦帯電される。さらに、現像ローラ31上に供給されたトナーは、現像ローラ31の回転に伴って、層厚規制ブレード32の押圧部40と現像ローラ31との間に進入し、一定厚さの薄層として現像ローラ31上に担持される。
【0029】
ドラムカートリッジ26は、感光ドラム27、スコロトロン型の帯電器29、転写ローラ30(転写手段の一例)およびクリーニング手段としてのクリーニングブラシ64を備えている。
【0030】
このうち、感光ドラム27は、現像ローラ31の後方において、その現像ローラ31と対向配置され、ドラムカートリッジ26において、矢印方向(時計方向)に回転可能に支持されている。この感光ドラム27は、筒状のドラム本体と、ドラム本体を支持し、そのドラム本体の軸心に設けられる金属製のドラム軸27aとを備えている。ドラム本体は、アルミニウム製の素管からなり、その表面には、ポリカーボネートなどから構成される正帯電性の感光層が形成されている。また、ドラム軸27aは接地されている(図2参照)。
【0031】
帯電器29は、図1に示すように、感光ドラム27の上方に、感光ドラム27に接触しないように所定間隔を隔てて対向配置され、ドラムカートリッジ26に支持されている。この帯電器29は、タングステンなどの帯電ワイヤ29aからコロナ放電を発生させる正帯電用のスコロトロン型の帯電器であり、その帯電ワイヤ29a及び感光ドラム27間にグリッド29bを備え、感光ドラム27の表面を一様に正極性に帯電させる。また、帯電ワイヤ29aには所定の帯電バイアス電圧が印加される。
【0032】
そして、感光ドラム27の表面は、その感光ドラム27の回転に伴って、まず、帯電器29により一様に正帯電された後、スキャナ部16からのレーザビームの高速走査により露光され、画像データに基づく静電潜像が形成される。
【0033】
次いで、現像ローラ31の回転により、現像ローラ31の表面上に担持されかつ正極性に帯電されているトナーが、感光ドラム27に対向して接触するときに、感光ドラム27の表面上に形成された上記静電潜像に供給され、選択的に担持されることで可視化され現像が達成される。
【0034】
転写ローラ30は、感光ドラム27の下方において、この感光ドラム27に対向配置され、ドラムカートリッジ26に、矢印方向(反時計方向)に回転可能に支持されている。この転写ローラ30は、金属製のローラ軸30aに、導電性のゴム材料からなるローラが被覆されている。
【0035】
この転写ローラ30のローラ軸30aには、高電圧電源回路基板52に実装されたバイアス印加回路60が接続されており、上記転写位置において現像ローラ31に担持されたトナー像を用紙3に転写するための転写動作(以下、「順転写動作」という)時には、このバイアス印加回路60から順転写バイアス電圧Va1(転写用バイアス電圧)が印加される。また、本実施形態では、画像形成動作の前後や、画像形成動作中における各用紙3への転写動作の間などにおいて、転写ローラ30をクリーニングする際には、転写ローラ30には上記順転写バイアス電圧Va1とは逆極性の逆転写バイアス電圧Va2(逆転写用バイアス電圧)がバイアス印加回路60から印加される(以下、このときの動作を「逆転写動作」という)。これにより、転写ローラ30に付着したトナーを、感光ドラム27上に電気的に吐出させて、感光ドラム27の表面上に残存する残存トナーとともに現像ローラ31によって回収するようになっている。
【0036】
クリーニングブラシ64は、感光ドラム27のドラム本体と対向接触するように設けられている。クリーニングブラシ64は、導電性部材から構成されており、所定のクリーニングバイアス電圧が印加され、感光ドラム27に付着する紙紛を除去する役割を果たす。
【0037】
(c)定着部
定着部18は、図1に示すように、プロセスカートリッジ17の後方に設けられ、加熱ローラ41、加熱ローラ41を押圧する押圧ローラ42、および、これら加熱ローラ41および押圧ローラ42の下流側に設けられる1対の搬送ローラ43を備えている。加熱ローラ41は、金属製で加熱のためのハロゲンランプを備えており、図示しないモータからの動力の入力により、矢印方向(時計方向)に回転駆動される。また、押圧ローラ42は、この加熱ローラ41を押圧した状態で、この加熱ローラ41に従動して矢印方向(反時計方向)に回転される。そして、定着部18では、プロセスカートリッジ17において用紙3上に転写されたトナーを、用紙3が加熱ローラ41と押圧ローラ42との間を通過する間に熱定着させ、その後、その用紙3を搬送ローラ43によって、排紙パス44に搬送するようにしている。排紙パス44に送られた用紙3は、排紙ローラ45に送られて、その排紙ローラ45によって排紙トレイ46上に排紙される。
【0038】
なお、このレーザプリンタ1には、用紙3の両面に画像を形成するために、反転搬送部47が設けられている。この反転搬送部47は、排紙ローラ45と、反転搬送パス48と、フラッパ49と、複数の反転搬送ローラ50とを備えており、これらが協働することにより、片面に画像が形成された用紙3を再度感光ドラム27と転写ローラ30との間に送ることで、用紙3の両面に画像を形成する構成になっている。
【0039】
2.バイアス印加回路
さて、図2には、バイアス印加回路60の要部構成のブロック図が示されている。前述したように、このバイアス印加回路60は、転写ローラ30に対して、上記順転写動作時に順転写バイアス電圧Va1(負極性の電圧)を、上記逆転写動作時に逆転写バイアス電圧Va2(正極性の電圧)をそれぞれ印加するためのものである。
【0040】
このバイアス印加回路60は、制御手段としてのCPU61と、順転写バイアス印加回路62(電力供給手段の一例)と、逆転写バイアス印加回路63とを備えている。各バイアス印加回路62,63は、転写ローラ30のローラ軸30aに接続される接続ライン90に、順転写バイアス印加回路62及び逆転写バイアス印加回路63の順序で直列に接続されている。また、バイアス印加回路60には、上記接続ライン90に流れる電流値(以下、出力電流値Iという)に応じた検出信号S4を出力する出力検出回路83(電流検出手段の一例)を備えている。そして、順転写バイアス印加回路62は、CPU61のPWM(Pulse Width Modulation。パルス幅変調)制御によって電流制御され、一方、逆転写バイアス印加回路63は、CPU61のPWM制御によって定電圧制御される。また、CPU61にはユーザが各種の操作を行う操作部95及びメモリ100が接続されている。このメモリ100には、後述する特性曲線Z(特性線の一例)の情報が記憶されている。
【0041】
(1)順転写バイアス印加回路
順転写バイアス印加回路62は、順転写PWM信号平滑回路70、順転写トランスドライブ回路71、順転写昇圧・平滑整流回路72、順転写出力電圧検出回路73(電圧検出手段の一例)を備えている。
このうち、順転写PWM信号平滑回路70は、CPU61のPWMポート61aからのPWM信号S1を受けて平滑し順転写トランスドライブ回路71に与える役割を果たす。順転写トランスドライブ回路71は、受けたPWM信号S1に基づき、順転写昇圧・平滑整流回路72の1次側巻線75bに発振電流を流すよう構成されている。
【0042】
順転写昇圧・平滑整流回路72は、トランス75、ダイオード76、平滑コンデンサ77などを備えている。トランス75は、2次側巻線75a,1次側巻線75b及び補助巻線75cを備えている。2次側巻線75aの一端は、ダイオード76を介して転写ローラ30のローラ軸30aに接続される接続ライン90に接続されている。一方、2次側巻線75aの他端は、逆転写バイアス印加回路63の出力端に接続されている。また、平滑コンデンサ77及び放電抵抗78がそれぞれ2次側巻線75aに並列に接続されている。
【0043】
このような構成により、1次側巻線75bの発振電流は、順転写昇圧・平滑整流回路72において昇圧及び整流され、このバイアス印加回路60の出力端Aに接続された転写ローラ30のローラ軸30aに順転写バイアス電圧Va1として印加される。
【0044】
順転写出力電圧検出回路73は、順転写昇圧・平滑整流回路72のトランス75の補助巻線75cとCPU61とに接続されている。CPU61は、順転写バイアス印加回路62による順転写動作時において、補助巻線75cの間で発生する出力電圧Vbを検出して、その検出信号S2をCPU61のA/Dポート61bに入力するように構成されている。
【0045】
(2)逆転写バイアス印加回路
逆転写バイアス印加回路63は、逆転写PWM信号平滑回路80、逆転写トランスドライブ回路81、逆転写昇圧・平滑整流回路82を備えている。
【0046】
このうち、逆転写PWM信号平滑回路80は、CPU61のPWMポート61cからのPWM信号S3を受けて平滑し逆転写トランスドライブ回路81に与える役割を果たす。逆転写トランスドライブ回路81は、受けたPWM信号S3に基づき、逆転写昇圧・平滑整流回路82の1次側巻線85bに発振電流を流すよう構成されている。
【0047】
逆転写昇圧・平滑整流回路82は、トランス85、ダイオード86、平滑コンデンサ87などを備えている。トランス85は、2次側巻線85a,1次側巻線85b及び補助巻線85cを備えている。2次側巻線85aの一端は、ダイオード86を介して上記順転写バイアス印加回路62の2次側巻線75aの他端に接続されている。一方、2次側巻線85aの他端は抵抗91を介してグランドに接続されている。また、この2次側巻線85aに対し平滑コンデンサ87及び1対の抵抗88,89がそれぞれ並列に接続されている。本実施形態では、1対の抵抗88,89のうちの一方の抵抗89が検出抵抗とされ、この検出抵抗89に流れる出力電流値Iに応じた検出信号S4がCPU61のA/Dポート61dにフィードバックさせる構成になっている。
【0048】
このような構成により、1次側巻線85bの発振電流は、逆転写昇圧・平滑整流回路82において昇圧及び整流され、やはりこのバイアス印加回路60の出力端Aに接続された転写ローラ30のローラ軸30aに逆転写バイアス電圧Va2として印加される。
【0049】
以上により、CPU61は、順転写動作時には、PWM信号S1を順転写バイアス印加回路62に与えて駆動させつつ、上記検出信号S4に基づき出力電流値Iが後述する制御目標値である最適出力電流値Ibになるように、デューティ比を適宜変更したPWM信号S1を順転写PWM信号平滑回路70に出力する電流制御を実行する。
【0050】
また、CPU61は、逆転写動作時には、PWM信号S3を逆転写バイアス印加回路63に与えて駆動させつつ、検出抵抗89の負荷電圧に応じた検出信号S4に基づきこの負荷電圧値が所定の定電圧値になるように、デューティ比を適宜変更したPWM信号S3を逆転写PWM信号平滑回路80に出力する定電圧制御を実行する。
【0051】
3.順転写動作の詳細
さて、本実施形態のレーザプリンタ1においても、温度や湿度などの周囲環境(特に湿度)によって転写ローラ30、感光ドラム27及びそれらにニップされる用紙3の各抵抗値が変動し得る。従って、順転写動作時においては特に、これらの周囲環境の変化に応じた適切な電力供給を行わなければ転写不良が生じるおそれがある。ここで、転写不良とは、転写電力不足による飛散または転写残、及び、転写電力過剰による放電のうちいずれかが発生する状態であり、印刷品質に実質的に影響を与える状態をいう。
【0052】
そこで、本実施形態では、転写ローラ30、感光ドラム27及び用紙3に流れる電流値、即ち、出力検出回路83からの検出信号S4が示す出力電流値I(転写手段に与える電流値の一例)を制御対象としている。そして、この出力電流値Iを、次述する特性曲線Zを用いて導き出された最適な値になるよう、PWM信号S1のデューティ比を増減させるようになっている。
【0053】
(1)特性線について
本実施形態の特性曲線Zは、転写ローラ30、感光ドラム27及びそれらにニップされる用紙3の負荷抵抗値Ri(電気特性値の一例)に対応する、最適出力電流値Ib(制御対象の最適値の一例)をそれぞれ実験的に求め、これを近似した曲線である。
【0054】
図3及び図4には、各実験結果のプロット(各図中の丸印、四角印)、それを近似して導出された上記特性曲線Zが示されている。図3の各プロットは、各湿度(例えば20%、50%、80%)、各温度下における、負荷抵抗値Riの最大値と最適出力電流値Ibの下限値との測定結果である。具体的には、各湿度、各温度下で出力電流値Iの絶対値を比較的に小さい値から徐々に増大させつつ上述の両面印刷を実行する。そして、この印刷過程における負荷抵抗値Riの最大値を測定すると共に、用紙3の印刷結果に実質的に転写不良が生じなくなったときの出力電流値Iを測定し、これを最適出力電流値Ibの下限値とする。
【0055】
一方、図4の各プロットは、各湿度(例えば20%、50%、80%)、各温度下における、負荷抵抗値Riの最大値と最適出力電流値Ibの上限値との測定結果である。具体的には、各湿度、各温度下で出力電流値Iの絶対値を比較的に大きい値から徐々に減少させつつ両面印刷を実行する。そして、この印刷過程における負荷抵抗値Riの最大値を測定すると共に、用紙3の印刷結果に実質的に転写不良が生じなくなったときの出力電流値Iを測定し、これを最適出力電流値Ibの上限値とする。なお、各図において、白抜き印のプロットは用紙3の1面目の印刷時の実験結果であり、黒塗り印のプロットは用紙3の2面目の印刷時の実験結果である。
【0056】
上記図3及び図4の実験結果から次のことが分かった。
負荷抵抗値Riが大きい区間では、高湿度(例えば80%)時の最適出力電流値Ibの領域(上限値と下限値との間の領域)と、低湿度(例えば20%)時の最適出力電流値Ibの領域との乖離は小さい。
負荷抵抗値Riが小さい区間では、高湿度時の最適出力電流値Ibの領域と、低湿度時の最適出力電流値Ibの領域とは大きく乖離することがある。
【0057】
この点について、従来、本発明者は、負荷抵抗値Riが小さくなるほど、転写ローラ30の抵抗値に対して用紙3の抵抗値が大きくなり、その結果、最適出力電流値Ibの絶対値が大きくなる傾向にあると考えていた。ところが、上記実験結果から、特に高温高湿度下では負荷抵抗値Riが小さくても、転写ローラ30の抵抗値と用紙3の抵抗値とが同程度となり、必ずしも最適出力電流値Ibの絶対値が大きくなるとは限らないことが分かったのである。
【0058】
そこで、本実施形態で採用する特性曲線Zは、負荷抵抗値Riの増加に伴って、最適出力電流値Ibの絶対値変化が増加傾向から減少傾向に移行する関係を示す線とされている。以下、特性曲線Zのうち増加傾向の区間を単に「増加区間」といい、減少傾向の区間を単に「減少区間」という。
(a)減少区間について
減少区間は、上述したように、負荷抵抗値Riが比較的に大きい区間であり、高湿度時の最適出力電流値Ibの領域と低湿度時の最適出力電流値Ibの領域との乖離が小さい区間である。
この特性曲線Zの減少区間は、レーザプリンタ1の製造メーカが提示する推奨使用条件での最低湿度(本実施形態では例えば20%)下で周囲温度を変化させたときの各プロット(例えば黒塗り印)を累乗関数(y=AxB。係数B<0。)によって近似した曲線である。
【0059】
最低湿度下のプロットを利用した理由を次の通りである。通常、用紙3への転写動作時における負荷抵抗値Riは、温度よりも湿度によって大きく変動する。また、各負荷抵抗値Riに対する最適出力電流値Ibを、温度及び湿度を変化させた場合の実験結果は、概ね図5のようになる。同図中のグラフXは、上記推奨使用条件での最低湿度(例えば20%)下で温度を変化させた場合の実験結果を近似して得られた曲線である。一方、グラフYは、同推奨使用条件での最高湿度(例えば80%)下で温度を変化させた場合の実験結果を近似して得られた曲線である。
【0060】
これらの結果から分かるように、最高湿度下での実験結果を基に導き出した特性曲線Yを採用した場合、低湿度下になったときに転写電流不足となって、前の用紙3への転写が十分されずに残留したトナーが感光ドラム27の1周後に当該感光ドラム27に当接する次の用紙3上に乗る、いわゆる転写残ゴーストなどの転写不良が生じるおそれがある。
【0061】
これに対して、最低湿度下での実験結果を基に導き出した特性曲線Zを採用した場合、たとえ高湿度になったとしても、負荷抵抗値Riがある程度大きい減少区間では、高湿度時と低湿度時とで最適出力電流値Ibの領域の乖離が小さいので、転写電力過剰による放電が印刷品質に影響を与えることは実質的にないことが実験的に確かめられている。そこで、特性曲線Zの減少区間に、最低湿度下での実験結果に基づく曲線(以下、減少区間線Z1という)を採用しているのである。
【0062】
減少区間線Z1は、最低湿度下での各実験結果のプロットPから、累乗関数(y=AxB。係数B<0。)によって近似した曲線であり、次の数式1で示すことができる。
(数式1)
最適出力電流値Ib=A・(Ri−B)2+C
但し、RiがB以下のとき、Ib=D
RiがC以上のとき、Ib=E
Ri:検出された負荷抵抗値
A〜E:係数 A,D,E<0 B,C>0
(但し、順転写バイアス電圧Va1が正極性のときはA,D,E>0)
【0063】
(b)増加区間について
増加区間は、上述したように、負荷抵抗値Riが比較的に小さい区間であり、高湿度時の最適出力電流値Ibの領域と低湿度時の最適出力電流値Ibの領域との乖離が大きい区間である。このため、仮に、この増加区間でも、上記減少区間線Z1を延長した線(図3の湿度20%の黒塗り四角形のプロットを結ぶ線参照)を利用すると、次のような問題が生じる。減少区間線Z1は、あくまでも最低湿度の実験結果に基づき導出されたものである。従って、この減少区間線Z1延長線を利用して最適出力電流値を決定すると、その最適出力電流値が、特に高温高湿度下における本来の最適出力電流値Ibの上限値を大きく上回ってしまうことがある。具体的には、図3,図4に示すように、例えば湿度80%で負荷抵抗値Riが100[MΩ]付近の場合、減少区間線Z1延長線で定まる最適出力電流値は、本来の最適出力電流値Ibの上限値の約3倍以上になり、転写不良が生じる可能性が極めて高くなる。
【0064】
一方、図3、図4の実験結果から、この増加区間における各湿度下での最適出力電流値Ibの領域群には、負荷抵抗値Riが増加するほど最適出力電流値Ibが増加する傾向にあることを把握することができる。そこで、この増加区間では、この区間内のプロット(高低湿度でのプロットを含む)を近似した線(以下、増加区間線Z2という)を採用している。この増加区間線Z2は、次の数式2で示すことができる。
(数式2)
最適出力電流値Ib=F・Ri+G
F、G:係数 F、G<0
(但し、順転写バイアス電圧Va1が正極性のときはF、G>0)
【0065】
(c)減少区間線と増加区間線との関係
減少区間線Z1と増加区間線Z2とには次の関係がある。
|Z1の最適出力電流値Ib|(絶対値)が、|Z2の最適出力電流値Ib|よりも小さい場合には、Z1の最適出力電流値Ibを採用し、|Z1の最適出力電流値Ib|(絶対値)が、|Z2の最適出力電流値Ib|以上である場合には、Z2の最適出力電流値Ibを採用する。
【0066】
増加区間線Z2の平均傾き(単位負荷抵抗値当たりの最適出力電流値の増減量)は、減少区間線Z1の平均傾きよりも大きくなるよう設定されている。
特性曲線Zは、低湿度(例えば20%)下での2面目印刷時のプロットを境に、増加区間線Z2から減少区間線Z1への移行するように設定している。
【0067】
(d)被記録媒体の種類と特性曲線との関係
図6から図8は、被記録媒体が厚紙(例えばはがき、ボンド紙)、封筒、普通紙(例えば一般に使用されるコピー用紙)である場合について、各被記録媒体の幅(搬送方向に直交する副走査方向における幅 以下、単に「用紙幅」という)と特性曲線との関係を示したグラフである。各特性曲線は、被記録媒体の種類(材質、用紙幅、厚み)を変えつつ上述した実験を同様に行って得たものである。なお、各図において、A幅>B幅>C幅である。
【0068】
各図から分かるように、用紙幅がA幅の場合、負荷抵抗値Riが変化しても最適出力電流値Ibはほとんど変化しない。これに対して、用紙幅が狭くなるほど特性曲線Zは山形に起伏した形状になる。また、特にB、C幅の特性曲線では、増加区間線Z2と減少区間線Z1との間に、最適出力電流値Ibが略一定である平坦区間が顕著に現れている。
【0069】
この平坦区間では、高湿度時の最適出力電流値Ibの領域と、低湿度時の最適出力電流値Ibの領域とがほぼ重なり、負荷抵抗値Riにかかわらず最適出力電流値Ibをある一定に設定することが可能である。このような区間では、最適出力電流値Ibをできるだけ所定範囲内に安定させて電力供給制御を安定させることが好ましい。このため、各特性曲線Zに、平坦区間が含まれているのである。そして、この平坦区間の長さL(L1〜L7)は、被記録媒体の種類(特に用紙幅)によって異なる。なお、被記録媒体がある程度厚みのある厚紙や封筒の場合は、用紙幅が狭いほど平坦区間の長さLは短くなる傾向にある。
【0070】
また、普通紙では、図8に示すように、負荷抵抗値Riが小さい区間でも、高湿度時の最適出力電流値Ibの領域と低湿度時の最適出力電流値Ibの領域との乖離は小さい。従って、被記録媒体が普通紙の場合には、上記平坦区間及び減少区間だけ有し、増加区間を有しない単調線を、最適出力電流値Ibを導出するための特性線としている。
【0071】
本実施形態では、被記録媒体の各種類に応じた特性線に関する情報がメモリ100に格納されており、CPU61は現在印刷対象の被記録媒体の種類を認識し、この種類に応じた特性線を利用して最適出力電流値Ibを導出するようにしている。なお、CPU61は、例えば上記操作部95でユーザが設定した印刷条件等によって被記録媒体の種類を認識することができる。また、給紙トレイ6に収容される用紙3の種類を認識できるセンサを有する場合には、そのセンサの検出結果に基づき認識することもできる。
【0072】
(e)特性曲線の演算式について
本実施形態の上記各特性線を示す演算式(上記数式1,2)の係数A,B,C,F,Gのうち少なくとも1つは、用紙幅とそれに対応する係数との関係を示す関数として、メモリ100に格納されている。この関数は、用紙幅と、そのときの最適な係数とのプロットを近似して得ることができる。例えば係数Fについては、図6、図7に示すように、用紙幅との間に相関関係が見られる。従って、係数Fを、用紙幅の関数から導出することが可能となる。このような構成であれば、各用紙幅に対応する複数の係数Fをメモリ100に格納しておく必要がなく、パラメータ管理が容易になる。また、用紙幅の連続的な変化に詳細に対応した特性曲線を利用することができる。
【0073】
(2)制御内容
CPU61は、所定の制御タイミングで検出信号S2,S4を取り込んで現在の負荷抵抗値Riを算出し、この負荷抵抗値Riに対応する最適出力電流値Ibを、上記特性曲線Zを用いて導出し、この最適出力電流値Ibを制御目標値として決定する。このとき、CPU61は決定手段、認識手段として機能する。そして、この制御目標値としての最適出力電流値Ibと現在の出力電流値Iとの差分量に応じてデューティ比を増減させたPWM信号S1を、次の制御タイミングで出力する。
【0074】
具体的には、上記負荷抵抗値Riは、例えばCPU61により検出信号S2,S4に基づき算出される。つまり、CPU61は、検出信号S4から転写ローラ30等に流れる出力電流値Iを検出する。また、検出信号S2から補助巻線75cの間で発生する出力電圧Vbを検出する。そして、下記数式3に示すように、この出力電圧Vbに補助巻線75c及び2次側巻線75aの電圧比nを乗じた電圧Vcと、抵抗88,89に出力電流値Iを乗じた電圧Vdとの加算によって転写ローラ30への印加電圧値Viを求めることができる。そして、印加電圧値Viを出力電流値Iで除算した値が現環境下における負荷抵抗値Riとなる。
【0075】
(数式3)
負荷抵抗値Ri={n*Vb+(r1+r2)*Ii}/Ii
r1,r2:抵抗88,89の抵抗値
次に、CPU61は算出した現在の負荷抵抗値Riに対応する最適出力電流値Ibを、上記特性曲線Zによって導出する。なお、本実施形態では、この特性曲線Zの情報は、上記数式1の関数情報としてメモリ100に記憶され、CPU61がこのメモリ100から特性曲線Zの情報を読み出して最適出力電流値Ibを算出する構成になっている。
【0076】
図3、図9に示すように、用紙3が感光ドラム27と転写ローラ30とが対向する転写位置に入ってくる前の状態(図9参照)では、負荷抵抗値が「R1」であり、このときの出力電流値は「I1」であったとする。次の制御タイミングで用紙3の先端部3aが転写位置に入ってきたことで(図10)、転写ローラ30への現在の負荷抵抗値が「R2」に変動し、これに伴って現在の出力電流値が一時的に落ち込む。ここで、CPU61は、特性曲線Zに基づき、現在の負荷抵抗値「R2」に対応する最適出力電流値「I2」を算出するのである。
【0077】
そして、CPU61は、次の数式4によって次の制御タイミングで出力すべきPWM信号S1のデューティ比Dtを決定する。
(数式4)
次のデューティ比Dt=Di+(I2−I1')*K
Di:現在のデューティ比
I2−I1':最適出力電流値と現在の出力電流値との差分量
K:係数
これにより、用紙3の中央部3bが転写位置に位置する頃には、この用紙3の存在による変動後の負荷抵抗値「R2」に対応する最適出力電流値「I2」が転写ローラ30等に付与されることになる。従って、負荷抵抗値の変動による転写不良を回避できる。
【0078】
(3)制御タイミング
また、レーザプリンタ1等の画像形成装置では、用紙3のうち4辺の端部を除く中央部が印刷可能領域(画像形成可能領域)と定められており、この印刷可能領域内に印刷を行うようになっている。図9〜図11では用紙3のうち上記端部3aが印刷不可領域であり、中央部3bが印刷可能領域である。そして、本実施形態では、上記CPU61による制御タイミングは、転写位置に対して用紙3の先端が到達してから当該用紙3の印刷可能領域が到達するまでの間の時間よりも短く設定されている。
【0079】
即ち、転写位置に用紙3の先端が介在し始めて負荷抵抗値Riが変動したときから、用紙3の印刷不可領域である端部3aが転写位置を通過中に、少なくとも1回上記制御を実行するのである。そして、変動後の負荷抵抗値Riに対応する最適出力電流値Ibで用紙3の印刷可能領域である中央部3bに対して転写が行えるようにしているである。なお、この制御タイミングは、用紙3の搬送速度と、印刷不可領域の搬送方向における長さとによって定まる。
【0080】
4.本実施形態の効果
(1)本発明の発明者は、前述したように、低湿度下では、負荷抵抗値Riの増加に伴って制御対象の最適値の絶対値が減少傾向にあるのに対し、高湿度では、検出値の増加に伴って最適出力電流値Ibの絶対値が増加傾向にあることを、実験によって見つけ出した。そこで、本実施形態では、負荷抵抗値Riの増加に伴って最適出力電流値Ibの絶対値変化が増加傾向から減少傾向に移行する関係を示す特性線Zを利用して、現環境下での最適出力電流値Ibを決定する構成とした。これにより、単純な増加傾向の特性線を利用する従来の画像形成装置に比べて、湿度変化による画質低下を抑制することが可能になる。
【0081】
(2)前述のように被記録媒体の種類(材質、厚み、サイズ等)によって、湿度変化によって最適出力電流値Ibが大きく異なるものとそれほど異ならないものがある。それほど異ならない領域が存在する場合、その領域については最適値をできるだけ所定範囲内に安定させて、電力供給制御を安定させるべきである。そこで、本実施形態では、被記録媒体の種類に応じて平坦区間の長さが異なる特性線を利用して最適値を決定する構成とした。更に、被記録媒体の種類によっては、増加区間線Z2及び減少区間線Z1の両方を有する特性曲線Zを利用せずに、増加区間線Z2を有しない単調線を利用して最適出力電流値Ibを決定するようにした。これにより、被記録媒体の種類によっては電力供給制御を単純化することができる。
【0082】
(3)また、1枚の用紙3における湿気状態にばらつきある場合、その用紙3の各部位によって負荷抵抗値Riが異なってくる。そこで、本実施形態では、1枚の用紙3全体に対する転写動作時間(具体的には、転写位置に対して用紙3の先端が到達してから、その用紙3の後部が通過するまでの時間)よりも短い時間間隔の制御タイミングで制御対象である出力電流値Iを制御し、各部位に対して最適な転写を行えるようにした。
【0083】
(4)更に、本実施形態では、上記CPU61による制御タイミングは、転写位置に対して用紙3の先端が到達してから当該用紙3の印刷可能領域が到達するまでの間の時間よりも短く設定されている。従って、用紙3の印刷可能領域に対して最適な最適出力電流値Ibでの転写動作を行うことができる。なお、この電力制御は、用紙3の先端部だけで行ってもよいし、用紙3の搬送方向における全長に亘って行う構成であってもよい。
【0084】
<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
(1)上記実施形態では、負荷抵抗値Riとそれに対応する最適出力電流値Ibとの相関関係を示す特性線Z等としたが、これ以外に、印加電圧値Vi(電圧検出手段の検出値の一例)とそれに対応する最適出力電流値Ibとの相関関係を示す特性曲線Z'を用いてもよい。図12には、被記録媒体が葉書である場合の特性曲線Z'が示されている。
【0085】
(2)上記実施形態では、増加区間線Z2は線形近似による直線関数としたが、これに限らず、累乗関数(y=AxB)近似(対数近似)や三角関数近似等を利用した曲線関数であっても勿論よい。また、減少区間線Z1は累乗関数(y=AxB)近似(対数近似)による二次関数で導出したが、これに限らず、線形近似や三角関数近似であってもよい。
【0086】
(3)「画像形成装置」にはプリンタ(レーザプリンタ)だけでなく、ファクシミリ装置や、プリンタ機能及びスキャナ機能等を備えた複合機も含まれる。また、「被記録媒体」には、用紙以外に、例えばOHPシートなどが含まれる。
(4)「画像形成可能領域」とは、被記録媒体上において一定の画像形成品質が保証される領域であり、通常、被記録媒体の周端部を除く領域を意味する。
(5)上記実施形態では、印加電圧値Viを出力電流値Iで除算して得た負荷抵抗値Riを「電気特性値」としたが、負荷抵抗値Riを算出結果として得ることなく、印加電圧値Vi及び出力電流値Iを「電気特性値」とする構成であってもよい。
【図面の簡単な説明】
【0087】
【図1】本発明の一実施形態に係るレーザプリンタの内部構成を示す側断面図
【図2】バイアス印加回路の要部構成のブロック図
【図3】各実験結果(最適出力電流値の下限値)と特性曲線とを示すグラフ
【図4】各実験結果(最適出力電流値の上限値)と特性曲線とを示すグラフ
【図5】負荷抵抗値と最適出力電流値との相関関係を示す説明図
【図6】厚紙の幅と特性線との関係を示すグラフ
【図7】封筒の幅と特性線との関係を示すグラフ
【図8】普通紙の幅と特性線との関係を示すグラフ
【図9】転写位置に対する用紙の位置を説明するための模式図(その1)
【図10】転写位置に対する用紙の位置を説明するための模式図(その2)
【図11】転写位置に対する用紙の位置を説明するための模式図(その3)
【図12】変形例の各実験結果と特性曲線とを示すグラフ
【符号の説明】
【0088】
1…レーザプリンタ(画像形成装置)
27…感光ドラム(像担持体)
30…転写ローラ(転写手段)
61…CPU(決定手段、電圧検出手段、認識手段)
62…順転写バイアス印加回路(電力供給手段)
73…順転写出力電圧検出回路(電圧検出手段)
83…出力検出回路(電流検出手段)
Ii…出力電流値(転写手段に与えられる電流値)
It…最適出力電流値(制御対象の最適値)
P…プロット(実験結果値)
Ri…負荷抵抗値(電気特性値)
Vi…印加電圧値(電圧検出手段の検出値)
X…特性曲線(特性線)

【特許請求の範囲】
【請求項1】
像担持体に担持されたトナー像を被記録媒体に転写するための転写手段と、
前記転写手段に与える電流値を制御対象としてその制御対象値に応じた電力を前記転写手段に供給する電力供給手段と、
前記転写手段に対する電圧値を検出する電圧検出手段と、
前記転写手段に流れる電流値を検出する電流検出手段と、
前記電圧検出手段及び前記電流検出手段の両検出値を取得して、前記両検出値に基づく電気特性値或いは前記電圧検出手段の検出値と、前記制御対象の最適値との関係を示す特性線に基づき導き出した制御対象の最適値を、前記電力供給手段における制御対象値として決定する決定手段と、を備える画像形成装置であって、
前記特性線は、前記電気特性値又は前記電圧検出手段の検出値の絶対値の増加に伴って、前記制御対象の最適値の絶対値変化が増加傾向から減少傾向に移行する関係を示す線である画像形成装置。
【請求項2】
請求項1記載の画像形成装置であって、
前記被記録媒体の種類を認識する認識手段を備え、
前記特性線は、前記増加傾向の区間と前記減少傾向の区間との間に、前記最適値が所定範囲内である平坦区間を有し、
前記決定手段は、前記認識手段にて認識された前記被記録媒体の種類に応じて前記平坦区間の長さが異なる特性線を利用して前記最適値を決定する構成である。
【請求項3】
請求項1または請求項2記載の画像形成装置であって、
前記被記録媒体の種類を認識する認識手段を備え、
前記決定手段は、前記電気特性値又は前記電圧検出手段の検出値の絶対値の増加に伴って前記制御対象の最適値の絶対値変化が増減反転しない単調線と、前記特性線とを、前記認識手段にて認識された前記被記録媒体の種類に応じて選択して前記最適値を決定する。
【請求項4】
請求項1〜請求項3のいずれか一項に記載の画像形成装置であって、
前記決定手段による前記制御対象値の決定動作は、1枚の前記被記録媒体に対する転写動作時間よりも短い所定の時間間隔で実行される。
【請求項5】
請求項4に記載の画像形成装置であって、
前記所定の時間間隔は、前記転写手段及び前記像担持体の対向位置に対して前記被記録媒体の先端が到達してから当該被記録媒体の画像形成可能領域が到達するまでの時間よりも短い時間に設定されている。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2009−157231(P2009−157231A)
【公開日】平成21年7月16日(2009.7.16)
【国際特許分類】
【出願番号】特願2007−337376(P2007−337376)
【出願日】平成19年12月27日(2007.12.27)
【出願人】(000005267)ブラザー工業株式会社 (13,856)
【Fターム(参考)】