説明

車載エンジン制御装置

【課題】触媒の上流・下流位置に設けられた一対の排気ガスセンサを早期活性化するためのヒータを順次起動して、空燃比制御が過剰な燃料リッチになるのを防止した車載エンジン制御装置を得る。
【解決手段】上流排気ガスセンサ105fのヒータ53fにまず給電され、ヒータ電流が所定値以下に減衰したら上流排気ガスセンサ105fの活性化を待たないで下流排気ガスセンサ105rのヒータ53rの給電を開始する。上流排気ガスセンサ105fが不活性状態であるときは、燃料噴射制御手段706に入力される上流空燃比制御手段705aの出力信号は所定の燃料リッチ指令に規制され、下流排気ガスセンサ105rが不活性状態であるときは、上流空燃比制御手段705aに入力される下流空燃比制御手段703aの出力信号は所定の燃料リッチ指令に規制される。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、車載エンジン制御装置に関し、特に、車載エンジンの空燃比制御に使用される排気ガスセンサを早期に活性化するためのヒータの制御技術の改善に関するものである。
【背景技術】
【0002】
一般に、車載エンジン制御装置は、エアフローセンサによって検出された吸気量に比例して、インジェクタによる給燃量(燃料噴射量)を制御することにより、目標空燃比が得られるように燃料噴射量を制御する燃料噴射制御手段を備えている。また、内燃機関の排気流路に設けられて排気ガス中の有害物質を除去する触媒の上流および下流位置に設けられた一対の排気ガスセンサを用いて、燃料噴射制御手段における空燃比の制御特性を補正するように構成されており、一対の排気ガスセンサを早期活性化するためのヒータの制御方法に関しては様々な工夫が施されている(たとえば、特許文献1、特許文献2、特許文献3参照)。
【0003】
特許文献1に記載の空燃比センサのヒータ制御装置によれば、上流(フロント)ヒータおよび下流(リア)ヒータの消費電力を低減するためのヒータ駆動要件として、たとえば内燃機関の回転速度が500rpm以下であるか、または冷却水温が15℃以下であれば、ヒータによる加熱は時期尚早であると判定して、上流・下流ヒータはいずれも給電されないようになっている。
【0004】
また、内燃機関の冷却水温が30℃以上であって、かつ回転速度が2500rpm以上であるか、または、冷却水温が15〜30℃(30℃以下)あっても回転速度が4500rpm以上であれば、最早ヒータによる加熱は不要であると判定して、上流・下流ヒータはいずれも給電されないようになっている。
【0005】
しかし、内燃機関の回転速度と環境温度とが所定範囲にある場合、たとえば内燃機関の冷却水温が30℃以上であって、かつ回転速度が2000rpm以下であるか、または、内燃機関の冷却水温が15〜30℃であって、かつ回転速度が4500rpm以下であれば、上流・下流ヒータは両方とも給電されるようになっている。
【0006】
また、排気温度が低下している下流ヒータに着目して、内燃機関の冷却水温が30℃以上であって、かつ回転速度が2000〜2500rpmであれば、上流ヒータへの給電は停止されるが、下流ヒータには給電が行われるようになっている。
【0007】
一方、特許文献2に記載の内燃機関の制御装置によれば、下流ヒータに対しては上流ヒータよりも遅れて給電することにより、水分が付着しやすい下流ヒータの素子割れを防止するとともに、同時給電によるバッテリあがりを防止するようになっている。
【0008】
さらに、特許文献3に記載の内燃機関の空燃比制御装置によれば、上流側酸素濃度センサに応動する第1の空燃比制御手段と、下流側酸素濃度センサに応動する第2の空燃比制御手段とを従属配置して、インジェクタ駆動手段により空燃比を制御する構成が開示されている。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開平6−26384号公報、図9、[0030]〜[0034]
【特許文献2】特開平8−232746号公報、図1、要約
【特許文献3】特開2006−9652号公報、図1、要約
【発明の概要】
【発明が解決しようとする課題】
【0010】
従来の車載エンジン制御装置は、特許文献1によるヒータ制御装置の場合には、排気ガスセンサに付設されたヒータに対する給電要件として、内燃機関の回転速度と環境温度に関する最適範囲を提示しているものの、通常の給電要件において上流・下流ヒータに同時給電しており、冷時に同時給電を行うとヒータに対する突入電流によってバッテリ電圧が低下し、特にバッテリが過放電状態にあるときには、異常電圧低下によってヒータ性能が悪化するという課題があった。
また、たとえばヒータ駆動用開閉素子を回路基板上で隣接配置した場合には、開閉素子が異常過熱する可能性があるという課題があった。
【0011】
一方、特許文献2による内燃機関の制御装置の場合には、下流ヒータの破損を防止するために、下流ヒータを上流ヒータよりも遅れて給電することを提示しており、同時給電による突入電流の重畳問題は回避されているものの、遅延給電開始の判別パラメータは、排気温度、触媒温度、冷却水温度、潤滑オイル温度などの温度情報、または燃料噴射量の積算量、吸入空気量の積算量などであることから、遅延給電時期が不確定であり、遅延給電開始時期が大幅に変動するという課題があった。
また、特許文献3による空燃比制御装置の場合は、空燃比制御手段の多段階構成を提示しているものの、排気ガスセンサを早期活性化するためのヒータの制御には論及されていないので、排気ガスセンサを早期活性化を十分に実現することができないという課題があった。
【0012】
さらに、特許文献1〜3のいずれにも、一対の排気ガスセンサの両方が未活性状態の時点から一方の排気ガスセンサが活性化され、やがて両方の排気ガスセンサが活性化されるまでの段階を追って、どのようにして適切な空燃比制御を実現するかについての技術が開示されていないので、内燃機関の始動過程における過度な燃料リッチ運転を確実に回避することができないという課題があった。
【0013】
この発明の第1の目的は、車載バッテリの過放電および異常電圧低下を防止するとともに、開閉素子の異常過熱を防止しつつ、可能な限り早い時点で上流・下流の両排気ガスセンサの両方を活性化することのできる車載エンジン制御装置を提供することにある。
【0014】
この発明の第2の目的は、両方の排気ガスセンサが未活性状態の時点から、一方の排気ガスセンサが活性化され、やがて両方の排気ガスセンサが活性化されるまでの段階を追った移行制御を行うことにより、可能な限り早い時点で正常な空燃比制御を実現することのできる車載エンジン制御装置を提供することにある。
【課題を解決するための手段】
【0015】
この発明による車載エンジン制御装置は、
内燃機関の回転速度に応じたパルス信号を生成する回転センサと、
内燃機関の吸気流路に設けられたエアフローセンサまたは負圧センサと、
内燃機関の排気流路に設けられた触媒の上流および下流位置に設けられ、空燃比に対応した非線形または線形の検出信号電圧を生成する上流・下流排気ガスセンサと、
上流・下流排気ガスセンサを早期に活性化するために、所定要件が成立しているときに給電される上流・下流ヒータと
が接続された車載エンジン制御装置であって、
プログラムメモリと協働して、燃料噴射制御手段と上流・下流空燃比制御手段とを実行するマイクロプロセッサを備えるとともに、
マイクロプロセッサから駆動制御されて上流・下流ヒータに給電するための上流・下流開閉素子と、マイクロプロセッサに対してヒータ電流検出信号を供給するための電流検出抵抗とを含むヒータ制御回路を備えている。
【0016】
燃料噴射制御手段は、エアフローセンサにより検出されるか、または内燃機関の回転速度と負圧センサの検出値とから演算算出される吸気量に比例して、燃料噴射用電磁弁の駆動用電磁コイルであるインジェクタの開弁時間を調整して燃料噴射量を制御し、所定の自主目標空燃比が得られるように給燃量を制御する。
【0017】
上流空燃比制御手段は、上流排気ガスセンサから得られる検出信号電圧に対応した上流位置の空燃比が、上流位置の目標空燃比である第1の目標電圧と一致するように、燃料噴射制御手段に対して給燃量の増減補正指令を発生し、
下流空燃比制御手段は、下流排気ガスセンサから得られる検出信号電圧に対応した下流位置の空燃比が、下流位置の目標空燃比である第2の目標電圧と一致するように第1の目標電圧を補正する。
【0018】
下流ヒータは、最初に給電された上流ヒータの温度上昇にともない上流ヒータへの給電電流が所定値以下に減衰した時点で、上流排気ガスセンサがまだ未活性状態であっても給電開始され、
燃料噴射制御手段の自主目標空燃比の値は、上流排気ガスセンサの内部抵抗の抵抗値が減少して、上流側の検出信号電圧が生成されるまでは、燃料リッチとなる第1の初期値に設定され、
上流空燃比制御手段に対する第1の目標電圧は、下流排気ガスセンサの内部抵抗の抵抗値が減少して、下流側の検出信号電圧が生成されるまでは、燃料リッチとなる第2の初期値に設定されている。
【発明の効果】
【0019】
この発明による車載エンジン制御装置によれば、検出吸気量に比例してインジェクタによる給燃量を制御して目標空燃比が得られるように燃料噴射量を制御する燃料噴射制御手段に対し、排気ガスを浄化する触媒の上流・下流位置に設けられた一対の排気ガスセンサから得られる空燃比情報に基づいて目標空燃比を補正する。また、排気ガスセンサを早期活性化するための下流ヒータは、上流ヒータへの給電電流が所定値以下に減衰した時点で給電開始される。また、排気ガスセンサが活性化されるまでは燃料リッチとなる、所定の初期値に基づく空燃比となるように燃料噴射制御が行われる。
これにより、車載バッテリの電圧が異常低下した寒冷始動時において、まずは上流排気ガスセンサの活性化を優先するとともに、上流排気ガスセンサがまだ未活性状態であっても、下流排気ガスセンサのヒータに対する給電も開始するので、全体として速やかに正常運転を開始することができる。
【0020】
また、車載バッテリが過放電状態ではないときであっても、上流・下流ヒータを同時給電して過大な突入電流が流れ、バッテリ電圧の低下によるヒータ加熱能力の低下や、上流・下流開閉素子の異常過熱を防止することができる。
さらに、排気ガスセンサが活性化するまでは燃料リッチとなる運転が行われているので、検出信号電圧の変化を検出することにより確実に活性化の判定を行うことができる。
【図面の簡単な説明】
【0021】
【図1】この発明の実施の形態1に係る車載エンジン制御装置の全体構成を示す回路ブロック図である。
【図2】この発明で使用される非線形型の排気ガスセンサの特性曲線を示す説明図である。
【図3】この発明で使用される排気ガスセンサを加熱するためのヒータの特性曲線を示す説明図である。
【図4】この発明の実施の形態1に係る車載エンジン制御装置の要部をエンジン構成とともに示す機能ブロック図である。
【図5】この発明の実施の形態1によるヒータ制御の前半動作を説明するためのフローチャートである。
【図6】この発明の実施の形態1によるヒータ制御の後半動作を説明するためのフローチャートである。
【図7】この発明の実施の形態1による空燃比制御動作を説明するためのフローチャートである。
【図8】この発明の実施の形態2に係る車載エンジン制御装置の全体構成を示す回路ブロック図である。
【図9】この発明の実施の形態2に係る車載エンジン制御装置の要部をエンジン構成とともに示す機能ブロック図である。
【図10】この発明の実施の形態2で使用される線形型の排気ガスセンサの特性曲線を示す説明図である。
【図11】この発明の実施の形態2によるヒータ制御動作を示すタイミングチャートである。
【図12】この発明の実施の形態2による空燃比制御動作を説明するためのフローチャートである。
【発明を実施するための形態】
【0022】
実施の形態1.
以下、図1〜図7を参照しながら、この発明の実施の形態1について説明する。
図1はこの発明の実施の形態1に係る車載エンジン制御装置100Aの全体構成を示す回路ブロック図である。また、図2はこの発明で使用される非線形型の排気ガスセンサの特性曲線を示す説明図であり、図3はこの発明で使用される排気ガスセンサを加熱するためのヒータの特性曲線を示す説明図である。
【0023】
図1において、車載エンジン制御装置100Aは、車載エンジン制御装置100Aの主要部を構成するマイクロプロセッサ(CPU)110と、マイクロプロセッサ110への給電を行う定電圧電源回路120と、定電圧電源回路120への入力電圧を監視するための分圧抵抗121、122と、出力インタフェース回路(OIF)124と、入力インタフェース回路(IIF)126と、上流・下流排気ガスセンサ105f、105rを制御するヒータ制御回路150と、上流・下流排気ガスセンサ105f、105rからの空燃比検出信号電圧(以下、単に「検出信号電圧」という)AF1、AF2をマイクロプロセッサ110に入力するための引下抵抗54f、54rおよび増幅器55f、55rと、を備えている。
【0024】
車載エンジン制御装置100Aは、外部電源(車載バッテリ)101から、キースイッチなどによる電源スイッチ(図示せず)に応動する電源開閉素子102を介して、給電されるようになっている。
【0025】
車載エンジン制御装置100Aには、警報表示器103と、少なくともインジェクタ(後述する燃料噴射用電磁弁の電磁コイル)を含む多数の電気負荷群104と、上流排気ガスセンサ105fに付属する上流ヒータ53fと、下流排気ガスセンサ105rに付属する下流ヒータ53rとが接続されており、これらは、車載エンジン制御装置100Aの制御下で駆動される。
【0026】
また、車載エンジン制御装置100Aには、等価電圧源51fおよび内部抵抗52fにより構成された上流排気ガスセンサ105fと、等価電圧源51rおよび内部抵抗52rにより構成された下流排気ガスセンサ105rと、少なくともエアフローセンサおよびクランク角センサ(後述する)を含む各種の入力センサ群106とが接続されており、車載エンジン制御装置100Aは、これらの入力センサの動作状態に応動して、電気負荷群104および上流・下流ヒータ53f、53rに対する給電または給電停止を行う。
【0027】
車載エンジン制御装置100Aの主要部を構成するマイクロプロセッサ110は、演算処理用のRAMメモリ(RMEM)111と、プログラムメモリ(PMEM:たとえば、不揮発フラッシュメモリ)112Aと、データメモリ(DMEM:たとえば、不揮発EEPROMメモリ)113と、多チャンネルAD変換器(ADC)114とを備えており、これらと協働して機能するようになっている。
入力センサ群106に含まれるアナログセンサの検出信号は、多チャンネルAD変換器114を介してマイクロプロセッサ110に入力される。
【0028】
プログラムメモリ112Aには、入力センサ群106および電気負荷群104に関する入出力制御プログラムに加えて、上流・下流排気ガスセンサ105f、105rと、上流・下流ヒータ53f、53rとに関する制御プログラムが格納されている。なお、各制御プログラムの詳細については、図5〜図7とともに後述する。
【0029】
不揮発性のデータメモリ113には、入力センサ群106および電気負荷群104に関する学習記憶情報や異常発生履歴情報に加えて、上流・下流排気ガスセンサ105f、105rと、上流・下流ヒータ53f、53rとに関する学習記憶情報や異常発生履歴情報が格納されるようになっている。
【0030】
定電圧電源回路120は、外部電源101から電源開閉素子102を介して印加される駆動電源電圧Vbから、安定化された制御電源電圧(たとえば、DC5[V])Vccを生成し、マイクロプロセッサ110に対する制御電源として供給する。
【0031】
互いに直列接続された分圧抵抗121、122は、駆動電源電圧Vbの分圧電圧を監視電源電圧Vbbとしてマイクロプロセッサ110に入力する。
電気負荷群104は、燃料噴射用電磁弁に加えて、たとえば、点火コイルまたは変速機の変速段選択用電磁弁のパワートランジスタを主体としており、出力インタフェース回路124を介して、マイクロプロセッサ110の出力ポートに接続されている。
【0032】
入力センサ群106は、エンジンのクランク角センサおよびエアフローセンサに加えて、上流・下流排気ガスセンサ105f、105r、アクセルポジションセンサ、スロットルポジションセンサなどのフィルタ回路を主体としており、入力インタフェース回路126を介して、マイクロプロセッサ110の入力ポートに接続されている。
【0033】
ヒータ制御回路150は、上流・下流開閉素子50f、50rを含むパワーモジュールとして構成されており、さらに、反転論理素子56f、56rと、電流検出抵抗57f、57rと、駆動抵抗58f、58rと、増幅器59f、59rとを備えている。
【0034】
ヒータ制御回路150内の上流・下流開閉素子50f、50rは、Nチャンネル型電界効果トランジスタにより構成されており、マイクロプロセッサ110の制御下で上流・下流排気ガスセンサ105f、105r内の上流・下流ヒータ53f、53rを駆動する。
具体的には、上流・下流開閉素子50f、50rは、マイクロプロセッサ110から生成されるヒータ駆動指令Df、Drの論理レベルが「H(ハイ)」であるときに、駆動抵抗58f、58rを介して導通駆動されるようになっている。
【0035】
上流・下流ヒータ53f、50rと上流・下流開閉素子50f、50rとの接続点の電位は、反転論理素子56f、56rを介して論理監視信号Tf、Trとなり、マイクロプロセッサ110に入力される。
【0036】
上流・下流開閉素子50f、50rの電流ミラー回路に設けられた電流検出抵抗57f、57rの両端電圧は、増幅器59f、59rを介してヒータ電流検出信号Cf、Crとなり、マイクロプロセッサ110に入力される。
なお、電流検出抵抗57f、57rには、上流・下流開閉素子50f、50rのドレーン端子からソース端子に流れる電流のたとえば1/100の電流が流れるようになっている。
【0037】
上流・下流排気ガスセンサ105f、105r内の等価電圧源51f、51rからの発生電圧Vsは、内部抵抗52f、52rを介して、車載エンジン制御装置100A内の引下抵抗54f、54rに供給される。
引下抵抗54f、54rの両端電圧は、増幅器55f、55rを介して検出信号電圧AF1、AF2となり、マイクロプロセッサ110に入力される。
【0038】
図2(上流・下流排気ガスセンサ105f、105rの特性)において、図2(A)は空燃比検出信号の特性を示しており、排気ガスの空燃比A/Fを横軸とし、上流・下流排気ガスセンサ105f、105r内の等価電圧源51f、51rの発生電圧Vsを縦軸としている。
【0039】
等価電圧源51f、51rの発生電圧Vsは、1[gr]のガソリンを完全燃焼するために必要な空気の量14.57[gr](理論空燃比A/F=14.57)を境にして、燃料リッチであれば約1[V]、燃料リーンであれば約0[V]の値に飽和するようになっている。
図2(A)のように非線形の出力特性を有する排気ガスセンサは、一般にラムダ形排気ガスセンサと呼称されている。
【0040】
図2(B)は内部抵抗52f、52rの温度特性を示しており、上流・下流排気ガスセンサ105f、105rの内部温度を横軸とし、内部抵抗52f、52rの抵抗値Rsを縦軸としている。
【0041】
内部抵抗52f、52rの抵抗値Rsは、寒冷時においては数MΩ以上となっているが、上流・下流排気ガスセンサ105f、105rの活性開始温度600℃においては、約220Ωまで減少し、さらに適正温度800℃においては、約75Ωの値まで減少する負の温度特性を有する。
【0042】
検出信号電圧AF1、AF2の電圧値Vafは、増幅器55f、55rの各増幅率Gを「1」とした場合、等価電圧源51f、51rの発生電圧Vsと、内部抵抗52f、52rの抵抗値Rsと、引下抵抗54f、54rの抵抗値Rdとを用いて、以下の式(1)のように表される。
【0043】
Vaf=Vs×Rd/(Rd+Rs) ・・・(1)
【0044】
式(1)において、寒冷時には、Rs>>Rdとなるので、そのままではVaf≒0となるが、排気熱と、上流・下流ヒータ53f、53rからの加熱とにより、上流・下流排気ガスセンサ105f、105rの内部温度が上昇して、内部抵抗値Rsが減少する。
その後、Rs<<Rdとなれば、Vaf≒Vsとなり、もし燃料リッチの状態であれば、検出信号電圧AF1、AF2の電圧値Vafは所定の閾値を超過するので、上流・下流排気ガスセンサ105f、105rの活性化が完了したと判定することができるようになっている。
【0045】
図3(上流・下流ヒータ53f、53rの特性)において、図3(A)は各ヒータ抵抗Rhの温度特性を示しており、上流・下流ヒータ53f、53r自体の温度を横軸とし、ヒータ抵抗Rhの値を縦軸としている。
図3(A)から明らかなように、ヒータ抵抗Rhは、温度上昇にともなって増加する正の温度係数を有する。
【0046】
図3(B)はヒータ電流Ihの給電電流特性を示しており、上流・下流ヒータ53f、53r自体の温度を横軸とし、ヒータ電流Ihの値を縦軸としている。
図3(B)から明らかなように、ヒータ電流Ihの給電電流特性は、駆動電源電圧Vbの値(10[V]、12[V]、14[V])によって変化する。
【0047】
また、図3(B)の給電電流特性においては、過電流異常検出手段505、605(図5、図6とともに後述する)における過電流検出用の過電流判定閾値Imaxと、劣化検出手段507、607(図5、図6とともに後述する)における劣化異常検出用の劣化判定閾値Iminとが示されている。
ただし、劣化判定閾値Iminの値は、駆動電源電圧Vbの値に比例して増大設定するようになっている。
【0048】
図4はこの発明の実施の形態1に係る車載エンジン制御装置100Aの要部をエンジン構成とともに示す機能ブロック図であり、図1内の車載エンジン制御装置100Aの主要機能を図7内の各処理手段と対応付けて簡略的に示している。
【0049】
図4において、車載エンジン制御装置100Aは、マイクロプロセッサ(CPU)110、プログラムメモリ(PMEM)112Aおよびヒータ制御回路150に加えて、目標空燃比設定手段702と、下流空燃比制御手段703aと、下流学習値を用いた不活性補正手段703cと、上流空燃比制御手段705aと、上流学習値を用いた不活性補正手段705cと、燃料噴射制御手段706と、学習記憶手段707とを備えている。
【0050】
さらに、車載エンジン制御装置100Aは、上流空燃比制御手段705aの入力情報に関連した不活性異常検出手段701bまたは制御異常検出手段703dと、燃料噴射制御手段706の入力情報に関連した不活性異常検出手段704bまたは制御異常検出手段705dと、を備えている。
【0051】
一方、内燃機関10には、吸気弁10aを介して吸気管11が連通されるとともに、排気弁10bを介して上流・下流排気管16f、16rが連通されている。
内燃機関10の吸気弁10aの直前または直後には、燃料噴射用のインジェクタ13が設けられるとともに、内燃機関10のクランクシャフト(図示せず)には、回動位置検出用のクランク角センサ14(回転センサ)が設けられている。
【0052】
内燃機関10の上流・下流排気管16f、16rの間の排気流路には、排気ガス中の有害物質を除去するための触媒15が設けられている。
また、上流・下流排気管16f、16rには、個別の上流・下流排気ガスセンサ105f、105rが設けられ、上流・下流排気ガスセンサ105f、105rの近傍には、個別の上流・下流ヒータ53f、53rが設置されている。
【0053】
つまり、触媒15の上流位置には、ヒータ53fを有する上流排気ガスセンサ105fが設けられ、触媒15の下流位置には、ヒータ53rを有する下流排気ガスセンサ105rが設けられている。
【0054】
吸気管11の先頭部にはエアフローセンサ12が設けられ、吸気管11の下流部には、スロットルバタフライ11aが設けられている。
内燃機関10に対する吸気量Qaは、アクセルペダル(図示せず)の踏込度合に応動するスロットルバタフライ11aの弁開度によって調整される。
【0055】
ここで、4気筒4サイクルの内燃機関10の1気筒当たりの1回の吸気量Qa[gr]は、クランク角センサ14からのパルス信号の発生間隔の逆数(または、発生頻度)により算出される内燃機関10の回転速度N[rps]と、エアフローセンサ12により検出される毎秒吸気量q[gr/sec]とを用いて、以下の式(2)のように表される。
【0056】
Qa=q/(2×N) ・・・(2)
【0057】
なお、毎秒吸気量q[gr/sec]は、エアフローセンサ12からの吸気量検出値から算出される。
具体的には、エアフローセンサ12で検出された気流速度[m/sec]に吸気管11の断面積を乗算して毎秒の吸気体積を算出し、さらに、空気の重さ1.3[gr/リットル]を乗算することにより、毎秒吸気量q[gr/sec]に換算することができる。
【0058】
また、インジェクタ13の1回の開弁動作による給燃量(燃料噴射量)Fは、燃料ポンプによる燃料圧とインジェクタ13の口径とから定まる毎秒燃料噴射量f[gr/sec]と、インジェクタ13の開弁時間ΔTとを用いて、以下の式(3)のように表される。
【0059】
F=f×ΔT ・・・(3)
【0060】
一方、自主目標空燃比をAF00=Qa/Fとすると、式(2)、式(3)から、以下の式(4)が得られる。
【0061】
ΔT=F/f
=Qa/(f×AF00)
=q/(2×f×N×AF00)
=K×q/N ・・・(4)
【0062】
ただし、式(4)において、制御定数Kは、以下の式(5)のように表される。
【0063】
K=0.5/(f×AF00) ・・・(5)
【0064】
式(4)から明らかなように、インジェクタ13の開弁時間ΔTは、エアフローセンサ12で検出された毎秒吸気量qに比例し、かつ内燃機関10の回転速度Nに反比例した値となる。
ただし、制御定数Kには、様々な変動要因が内在しているので、上流・下流排気ガスセンサ105f、105rを用いた負帰還制御が行われるようになっている。
【0065】
マイクロプロセッサ110およびプログラムメモリ112Aを備えた車載エンジン制御装置100Aは、前述のように、ヒータ制御回路150とプログラムメモリ112Aに格納された制御プログラムとにより、上流・下流ヒータ53f、53rへの給電制御を行うが、その詳細動作については、図5および図6とともに後述する。
車載エンジン制御装置100A内のプログラムメモリ112Aは、さらに空燃比制御プログラムを格納しており、空燃比の制御動作(図7とともに後述する)を行う。
【0066】
燃料噴射制御手段706は、式(4)のように、エアフローセンサ12で検出された毎秒吸気量qに比例し、かつ回転速度Nに反比例するように、インジェクタ13による給燃量(燃料噴射量)Fを制御し、1次的には自主目標空燃比AF00が得られるよう動作する。
【0067】
上流空燃比制御手段705aは、上流排気ガスセンサ105fの空燃比検出信号(検出信号電圧)AF1の平均値に対応した上流位置の空燃比が、上流位置の目標空燃比である第1の目標電圧AF01と一致するように、燃料噴射制御手段706の自主目標空燃比AF00を補正するための空燃比補正係数Kcを生成する。空燃比補正係数Kcの値は、給燃量Fの増減補正指令となる。
【0068】
下流空燃比制御手段703aは、下流排気ガスセンサ105rの検出信号電圧AF2の平均値に対応した下流位置の空燃比が、下流位置の目標空燃比である第2の目標電圧AF02と一致するように、第1の目標電圧AF01を補正する。
【0069】
なお、燃料噴射制御手段706に入力される空燃比補正係数Kcは、上流排気ガスセンサ105fの内部抵抗52fの抵抗値Rsが減少して、上流側の検出信号電圧AF1が生成されるまでは、燃料リッチとなる第1の初期値に設定される。
また、上流空燃比制御手段705aに入力される第1の目標電圧AF01は、下流排気ガスセンサ105rの内部抵抗52rの抵抗値Rsが減少して、下流側の検出信号電圧AF2が生成されるまでは、燃料リッチとなる第2の初期値に設定される。
【0070】
上流空燃比制御手段705aは、第1の目標電圧AF01と検出信号電圧AF1との偏差電圧に対する第1のデジタルフィルタ回路および第1のPID調節回路により構成されている。
上流空燃比制御手段705aにおいて、第1のPID調節回路の出力電圧は、第1の上限制限値以上にリッチ指令出力とならないように上限が制限されており、第1の上限制限値は、上流排気ガスセンサ105fが未活性状態であるときの燃料噴射制御手段706に対する第1の初期値となっている。
【0071】
また、下流空燃比制御手段703aは、第2の目標電圧AF02と検出信号電圧AF2との偏差電圧に対する第2のデジタルフィルタ回路および第2のPID調節回路により構成されている。
下流空燃比制御手段703aにおいて、第2のPID調節回路の出力電圧は、第2の上限制限値以上にリッチ指令出力とならないように上限が制限されており、第2の上限制限値は、下流排気ガスセンサ105rが未活性状態であるときの上流空燃比制御手段705aに対する第2の初期値となっている。
【0072】
なお、第2の目標電圧AF02と検出信号電圧AF2との偏差電圧は、検出信号電圧AF2を第2のデジタルフィルタ回路によって平滑し、平均値を算出してから第2の目標電圧AF02を減算して求めてもよいが、あらかじめ第2の目標電圧AF02と検出信号電圧AF2との偏差電圧を求めておき、デジタル回路により平滑処理して平均値を求めることが望ましい。
【0073】
不活性異常検出手段701bは、下流ヒータ53rに給電されてから所定の判定時間を経過しても、下流排気ガスセンサ105rの検出信号電圧AF2がL(ロウ)レベルからH(ハイ)レベルに変化しないことを検出した場合に、不活性異常であると判定する。
不活性補正手段703cは、不活性異常検出手段701bが下流排気ガスセンサ105rの不活性異常状態を検出したことに応動して、下流空燃比制御手段703aが生成する第1の目標電圧AF01に代えて、所定の代替信号電圧を上流空燃比制御手段705aに入力する。
【0074】
不活性異常検出手段704bは、上流ヒータ53fに給電されてから所定の判定時間を経過しても、上流排気ガスセンサ105fの検出信号電圧AF1がLレベルからHレベルに変化しないことを検出して場合に、不活性異常であると判定する。
不活性補正手段705cは、不活性異常検出手段704bが上流排気ガスセンサ105fの不活性異常状態を検出したことに応動して、上流空燃比制御手段705aが生成する空燃比補正係数Kcに代えて、所定の代替信号電圧を燃料噴射制御手段706に入力する。
【0075】
制御異常検出手段703dは、下流空燃比制御手段703aの発生出力(第1の目標電圧AF01)が所定の上下限値の範囲外にある状態が、所定時間以上にわたって継続している場合に、下流空燃比制御手段703aの異常であると判定する。
不活性補正手段703cは、さらに、制御異常検出手段703dが下流空燃比制御手段703aの異常状態を検出したことに応動して、下流空燃比制御手段703aが生成する第1の目標電圧AF01に代えて、所定の代替信号電圧を上流空燃比制御手段705aに入力する。
【0076】
制御異常検出手段705dは、上流空燃比制御手段705aの発生出力(空燃比補正係数Kc)が所定の上下限値の範囲外にある状態が所定時間以上にわたって継続している場合に、上流空燃比制御手段705aの異常であると判定する。
不活性補正手段705cは、制御異常検出手段705dが上流空燃比制御手段705aの異常状態を検出したことに応動して、上流空燃比制御手段705aが生成する空燃比補正係数Kcに代えて、所定の代替信号電圧を燃料噴射制御手段706に入力する。
【0077】
なお、惰行運転または降坂運転において燃料カットが行われているときには、制御異常検出手段703d、705dに代えて、燃料カット検出手段(図示せず)が作動して、空燃比の制御動作が停止されるようになっている。
【0078】
プログラムメモリ112Aは、学習記憶手段707となる制御プログラムを備えており、学習記憶手段707は、内燃機関10の吸気量Qaまたは回転速度Nの少なくとも一方に対応して順次記憶された、最新複数回の下流空燃比制御手段703aまたは上流空燃比制御手段705aの出力値(第1の目標電圧AF01または空燃比補正係数Kc)の平均値を記憶する。
【0079】
不活性補正手段703c、705cから生成される代替信号電圧としては、下流・上流排気ガスセンサ105r、105fが正常動作していたときに学習記憶手段707により学習記憶された、実測データの平均値が適用される。
【0080】
次に、図1に示したこの発明の実施の形態1による動作について説明する。
図1において、まず、電源スイッチ(図示せず)を閉路すると、電源開閉素子102が閉路して、外部電源101からの駆動電源電圧Vbが車載エンジン制御装置100Aに印加され、定電圧電源回路120を介して安定化された制御電源電圧Vccがマイクロプロセッサ110に供給される。
【0081】
マイクロプロセッサ110は、入力センサ群106からの検出信号と、上流・下流排気ガスセンサ105f、105rの動作状態と、プログラムメモリ112Aに格納された入出力制御プログラムとに基づいて、電気負荷群104と、上流・下流ヒータ53f、53rとを制御する。
【0082】
また、マイクロプロセッサ110は、各種入力センサや出力負荷に関する異常判定を行い、異常発生時には警報表示器103を駆動して、車両の運転者に異常発生を通報するようになっている。
【0083】
以下、図5および図6のフローチャートを参照しながら、図1に示したこの発明の実施の形態1による上流・下流ヒータ53f、53rの制御動作について説明する。
図5は上流ヒータ53fの給電制御(前半動作)を示すフローチャートであり、図6は下流ヒータ制御53rの給電制御(後半動作)を示すフローチャートである。
【0084】
まず、図5において、工程500は、マイクロプロセッサ110によるヒータ制御の動作開始ステップであり、続く工程501は、上流ヒータ53fについて回転速度Nや機関温度に関連する駆動要件が成立しているか否かを監視するステップである。
【0085】
続く工程503は、工程501による監視結果として、上流ヒータ53fを駆動するか否かを判定するステップであり、上流ヒータ53fを給電駆動する場合には「YES」と判定して工程510aに移行し、給電駆動要件が成立していない場合には「NO」と判定して工程510bに移行するようになっている。
【0086】
工程510aにおいては、ヒータ駆動指令Dfの論理レベルを、一時的に「H」に設定して上流開閉素子50fを閉路駆動する。
続く工程510cは、閉路異常の有無を判定するステップであり、異常であれば「YES」と判定して工程506に移行し、異常でなければ「NO」と判定して工程504aに移行するようになっている。
【0087】
一方、工程503において「NO」と判定された場合に実行される工程510bは、開路異常の有無を判定するステップであり、異常であれば「YES」と判定して工程506に移行し、異常でなければ「NO」と判定して工程504bに移行するようになっている。
上記工程510a、510b、510cからなる工程ブロック510は、論理異常判定手段を構成している。
【0088】
図1内の上流ヒータ53fや上流開閉素子50fおよびその配線回路が正常であれば、ヒータ駆動指令Dfの論理レベルが「L(ロウ)」のときには、上流開閉素子50fは開路されて上流ヒータ53fに対する給電は行われず、反転論理素子56fの入力端電圧は、駆動電源電圧Vbと等しい高電圧レベル「H」なので、反転論理素子56fから出力される論理監視信号Tfの論理レベルは「L」となっている。
【0089】
同様に、上流ヒータ53fや上流開閉素子50fおよびその配線回路が正常であって、ヒータ駆動指令Dfの論理レベルが「H」になったときには、上流開閉素子50fは閉路されて上流ヒータ53fに対する給電が行われ、反転論理素子56fの入力端電圧は、上流開閉素子50fの閉路電圧に相当する低電圧レベル「L」になるので、反転論理素子56fから出力される論理監視信号Tfの論理レベルは「H」となる。
【0090】
一方、ヒータ駆動指令Dfの論理レベルが「L」であって、上流ヒータ53fに対する給電を停止している状態において、上流ヒータ53fまたはその配線が断線していたり、上流開閉素子50f自体が短絡異常であったり、上流ヒータ53fの負端子配線がグランド回路に混触する地絡状態にあれば、反転論理素子56fの入力電圧レベルは「L」となる。この場合、ヒータ駆動指令Dfの論理レベルが「L」であるにもかかわらず、論理監視信号Tfの論理レベルが「H」となるので、開路異常が検出される。
【0091】
また、ヒータ駆動指令Dfの論理レベルが「H」であって、上流ヒータ53fに給電されている状態において、上流ヒータ53fが内部短絡していたり、上流ヒータ53fの負端子配線が電源線に混触する天絡状態にあれば、電流検出抵抗57fに過大電流が流れるので、過電流異常検出手段(後述の工程505)が作用して、上流開閉素子50fは開路されるようになっている。
【0092】
さらに、ヒータ駆動指令Dfの論理レベルが「H」であって、上流ヒータ53fに対する給電指令が生成されているにもかかわらず、上流開閉素子50f自体が断線開路異常であるときには、反転論理素子56fの出力論理レベルが「L」となるので、閉路異常が検出される。
【0093】
図5に戻り、工程510cの「NO」判定に続く工程504aにおいては、工程510aによるヒータ駆動指令Dfを、論理レベル「H」(上流ヒータ53fの駆動セット)のままに持続して、工程505に移行する。
【0094】
一方、工程510bの「NO」判定に続く工程504bにおいては、工程504aによってセットされたヒータ駆動指令Dfをリセット(上流ヒータ53fの駆動をリセット)し、図6への中継端子Aを介して図6内の工程601に移行する。
【0095】
工程505においては、ヒータ電流検出信号Cfの値が、前述(図3(B))の過電流判定閾値Imaxを超過した(電流過大)か否かを判定し、超過していれば「YES」と判定して工程506に移行し、超過していなければ「NO」と判定して工程507に移行する。
【0096】
工程506においては、ヒータ駆動指令Dfの論理レベルを「L」に設定することにより、上流開閉素子50fを強制遮断(駆動停止)して工程508に移行する。
一方、工程507においては、ヒータ電流検出信号Cfの値が、前述(図3(B))の劣化判定閾値Iminよりも小さい(電流過小)か否かを判定し、劣化判定閾値Imin未満であれば「YES」と判定して工程508に移行し、劣化判定閾値Imin以上であれば「NO」と判定し、中継端子Aを介して図6内の工程601に移行する。
【0097】
工程508においては、異常報知指令を生成して警報表示器103を駆動(異常報知)するとともに、異常発生情報を、要因別にRAMメモリ111内の所定のアドレスに格納する。
続く工程509においては、不活性異常検出手段704b(図7とともに後述する)における不活性判定時間を延長してから、中継端子Aを介して図6内の工程601に移行する。
【0098】
次に、図6の下流ヒータ53rの制御(後半動作)について説明する。
図6(下流ヒータ制御)において、工程601、603〜610、610a〜610cは、図5(上流ヒータ制御)内の工程501、503〜510、510a〜510cと同様なので詳述を省略する。
ただし、図6においては、工程601に続く工程602と、工程607に続く工程611、612とが追加されているので、この相違点を中心にして説明する。
【0099】
まず、工程601により下流ヒータ53rの駆動要件を監視し、続く工程602においては、上流ヒータ53fの駆動電流が所定値以下に減衰したか否かを判定し、電流減少していれば「YES」と判定して工程603に移行し、電流減少していなければ「NO」と判定して工程610bに移行する。
【0100】
以下、前述と同様の工程603〜610cに進み、工程607の判定処理が行われる。
工程607の判定結果が「NO」(電流が上下限値の範囲内)であって、引続き下流ヒータ53rへの給電が継続する場合には、工程611の判定処理が行われる。
【0101】
工程611においては、ヒータ電流検出信号Cf、Crによって検出された上流・下流ヒータ53f、53rの合計電流が、合算所定値以上である(合計電流過大)か否かを判定し、合計電流が過大であれば「YES」と判定して工程612に移行し、合計電流が過大でなければ「NO」と判定して工程620(図5、図6のヒータ制御の動作終了処理)に移行する。
【0102】
工程612においては、上流・下流開閉素子50f、50rのオン時間/オン・オフ周期(上流・下流ヒータ53f、53rの駆動デューティ)を減少させて、減電圧給電を行うことにより、過電流を抑制制御するためのPWM制御モードに設定してから、動作終了工程620に移行する。
【0103】
工程611の「NO」判定に続き、または工程609、604bに続き実行される動作終了工程620において、マイクロプロセッサ110は、他の制御プログラムを実行し、所定時間内には再び図5内の工程500(動作開始処理)に移行する。
これにより、工程500から工程620までの間の制御フローが繰返し実行されるようになっている。
【0104】
以下、図5、図6で示された制御フローの全体について、総括的に説明する。
工程505、605に相当する過電流異常検出手段は、電流検出抵抗57f、57rによって検出された上流・下流ヒータ53f、53rへの給電電流が所定の上限値を超過したことに応動して異常検出信号を生成し、工程506、606において上流・下流開閉素子50f、50rを開路(ヒータ駆動停止)する。
【0105】
工程507、607に相当する劣化検出手段は、電流検出抵抗57f、57rによって検出された上流・下流ヒータ53f、53rへの給電電流が所定の下限値未満となったことに応動して異常検出信号を生成し、工程508、608において異常報知する。
なお、劣化検出手段507、607における判定下限電流は、上流・下流ヒータ53f、53rに対する駆動電源電圧Vb(給電電圧)に比例して大きな値となるように補正されている。
【0106】
工程ブロック510、610に相当する論理異常判定手段は、上流・下流開閉素子50f、50rに対するヒータ駆動指令Df、Drと、上流・下流開閉素子50f、50rの導通状態に応動する論理監視信号Tf、Trと、の論理の整合性を監視して、上流・下流ヒータ53f、53rの断線または短絡異常の有無、または、上流・下流開閉素子50f、50rの断線または短絡異常の有無を判定する。
【0107】
工程509、609に相当する不活性判定補正手段は、過電流異常検出手段505、606、または劣化検出手段507、607、または論理異常判定手段510、610が異常を検出したことに応動して、不活性異常検出手段704b、701b(図7とともに後述する)における不活性異常判定時間を延長させる。
【0108】
工程602に相当する遅延給電時期判定手段は、電流検出抵抗57fによって検出された上流ヒータ53fへの給電電流が所定の設定閾値以下となったことに応動して、下流ヒータ53rへの給電を開始する。
なお、遅延給電時期判定手段602における設定閾値は、上流ヒータ53fに対する駆動電源電圧Vb(給電電圧)に比例して大きな値となるように補正されている。
【0109】
工程612に相当するヒータ電圧制御手段612は、上流ヒータ53fの給電電流の減衰にともなって下流ヒータ53rに対する給電が開始された時点で、上流ヒータ53fと下流ヒータ53rとの合計電流が所定値を超過しないように、上流・下流開閉素子50f、50rの通電デューティを制御して、上流ヒータ53fおよび下流ヒータ53rに対する平均給電電圧を抑制する。
【0110】
以上の説明では、過電流異常検出手段505、605は、マイクロプロセッサ110による判定処理機能としているが、マイクロプロセッサ110の外部に比較判定回路および過電流異常発生記憶回路を設け、過電流発生時には、過電流異常発生記憶回路の出力によって上流・下流開閉素子50f、50rの駆動停止を行うようにしてもよい。
【0111】
次に、図4の簡略制御ブロック図とともに図7のフローチャートを参照しながら、図1に示したこの発明の実施の形態1による空燃比制御動作について説明する。
図7において、工程700は、マイクロプロセッサ110が空燃比制御を開始する動作開始ステップである。
【0112】
続く工程701aは、下流排気ガスセンサ105rが活性状態にあるか否かを判定する活性化検出ステップであり、活性状態であれば「YES」と判定して工程702に移行し、未活性状態であれば「NO」と判定して工程701bに移行するようになっている。
【0113】
なお、活性化検出手段となる工程701aにおいては、下流排気ガスセンサ105rの検出信号電圧AF2が、たとえば0.25[V]以下のL(ロウ)レベルから0.75[V]以上のH(ハイ)レベルに変化したことを検出して、活性化したと判定する。
【0114】
不活性異常検出手段となる工程701bにおいては、計時タイマ(図示せず)が起動されて、計時タイマが所定時間を超過していれば「YES」と判定して工程701c(異常処理手段)に移行し、時間超過でなければ「NO」と判定して工程702に移行する。
【0115】
なお、工程701bによる「NO」判定は、下流排気ガスセンサ105rが活性化温度に達していない「未活性状態」であることを意味し、工程701bによる「YES」判定は、十分な加熱時間が経過してもなお下流排気ガスセンサ105rが活性化しない「不活性異常状態」であることを意味する。
【0116】
また、一旦、下流排気ガスセンサ105rの活性化が行われて正常運転が行われているときには、検出信号電圧AF2がLレベルからHレベルに変化しないとき、および、HレベルからLレベルに変化しないときにも、工程701bにより「不活性異常状態」として判定されるようになっている。
【0117】
異常処理手段を構成する工程701cにおいては、異常報知指令を生成して警報表示器103を駆動するとともに、異常発生情報を、要因別にRAMメモリ111内の所定のアドレスに格納する。
一方、目標空燃比設定手段となる工程702においては、第2の目標電圧AF02を設定し、続く工程703aにおいては、下流空燃比制御手段として第2のPID制御を開始する。
【0118】
ただし、工程703aにおいて、下流排気ガスセンサ105rが未活性状態の場合には、第2の目標電圧AF02に比べて検出信号電圧AF2の平均値が小さいので、偏差積分値の増大によってPID制御出力は増大するが、第2のPID制御出力が第2の上限制限値以上に上昇しないように制限されている。
【0119】
続く工程703dは、不活性補正手段となる工程703aの制御異常検出手段を構成しており、工程703aにおける制限時間が過大か否かを判定する。
すなわち、工程703dにおいては、第2のPID制御出力の制限状態が所定時間以上にわたって持続している場合には、「YES」と判定して前述の工程701cに移行し、所定時間内に正常なPID制御動作が開始して、出力制限状態から脱出すれば「NO」と判定して工程704aに移行する。
【0120】
工程701cに続く工程703cにおいては、工程703aによる第2のPID制御出力に代えて、代替設定値を適用して工程704aに移行する。
すなわち、図4のように、不活性異常検出手段701bまたは制御異常検出手段703dの判定結果に応じて、上流空燃比制御手段705aに対する第1の目標電圧AF01としては、下流空燃比制御手段703aによる第2のPID制御出力、または不活性補正手段703cによる代替設定値が適用される。
【0121】
なお、第1のPID制御出力に代わる代替設定値は、後述の工程707で記憶された学習記憶値に基づいて、現在の回転速度Nおよび吸気量Qaに対応した値から補間演算によって算出される。
【0122】
続く工程704a〜704c、705a、705c、705dは、上流空燃比制御に関するものであり、工程704a、704b、704cは、前半(下流空燃比制御)の工程701a、701b、701cに相当し、工程705a、705c、705dは、前述の工程703a、703c、703dに相当する。
【0123】
したがって、工程704aは活性化検出手段に相当し、工程704bは不活性異常検出手段に相当し、工程704cは異常処理手段に相当し、工程705aは空燃比制御手段に相当し、工程705cは不活性補正手段に相当し、工程705dは制御異常検出手段に相当しており、燃料噴射制御手段706に対する空燃比補正係数Kcとしては、上流空燃比制御手段705aによる第1のPID制御出力、または不活性補正手段705cによる代替設定値が適用される。
【0124】
続く工程706a〜706eからなる工程ブロック706(燃料噴射制御手段に相当)において、まず、工程706aにおいては、前述の式(4)内の自主目標空燃比AF00に代えて、空燃比補正係数Kcを乗算した補正値Kc×AF00を適用する。
【0125】
続く工程706bにおいては、吸気量Qaを算出し、続く工程706cにおいては、適正な給燃量Fを算出する。
続く工程706dにおいては、インジェクタ13の開弁時間ΔTを算出し、続く工程706eにおいては、クランク角センサ14に応動するタイミングで、インジェクタ13の燃料噴射用電磁弁を駆動するようになっている。
【0126】
続く工程707は、学習記憶手段を構成しており、上流・下流空燃比制御手段705a、703aによるPID制御出力である空燃比補正係数Kcと、第1の目標電圧AF01の値とをサンプリング読出して、内燃機関10の回転速度Nと、エアフローセンサ12による毎秒吸気量qの値に対応した空燃比補正係数Kcと、第1の目標電圧AF01の平均値と、をRAMメモリ111に格納するようになっている。
【0127】
続く工程708においては、電源スイッチ(図示せず)が閉路状態から開路状態に変化(ON→OFF)したか否かを判定し、閉路状態を維持していれば「NO」と判定して動作終了工程710に移行し、開路状態に変化したときには「YES」と判定して工程709に移行する。
【0128】
工程709においては、図5、図6内の工程508、工程608(異常発生記憶手段)による異常発生記憶情報と、図7内の工程701c、704c(異常処理手段)による異常発生記憶情報と、工程707による学習記憶情報と、を不揮発性のデータメモリ113に転送格納してから、動作終了工程710に移行する。
【0129】
なお、工程709(記憶情報保存手段)の実行過程において、電源スイッチは開路されているが、電源開閉素子102は依然として閉路しており、RAMメモリ111に記憶されているデータのうちで、保存を必要とするデータを不揮発性のデータメモリ113へ転送する退避処理が完了した後に、電源開閉素子102が開路されて、マイクロプロセッサ110が動作停止するようになっている。
【0130】
また、電源スイッチが閉路状態であれば、マイクロプロセッサ110は、動作終了工程710において、他の制御プログラムを実行し、所定時間内に再び動作開始工程700に復帰して、動作開始工程700と動作終了工程710との間の制御フローを繰返し実行するようになっている。
【0131】
以上の説明では、内燃機関10の吸気量Qaを測定するためにエアフローセンサ12を設けたが、エアフローセンサ12に代えて、回転速度Nとスロットルポジションセンサの検出信号とを用いて吸気量Qaを演算算出することも可能である。
【0132】
また、上流排気ガスセンサ105fとして非線形出力特性(図2(A))のセンサを用いたが、線形出力特性のセンサ(後述する)を使用することも可能である。
この場合、上流空燃比制御手段705aにおける第1のデジタルフィルタ回路に代えて、センサインタフェース回路(図示せず)を用いることにより、空燃比A/F(=吸気量Qaと給燃量Fとの比率Qa/F)に対応した線形検出値が得られる。
【0133】
なお、下流排気ガスセンサ105rにも、線形出力特性のセンサを用いてもよいが、一般的には、安価な非線形出力特性のセンサが使用される。
【0134】
また、上流空燃比制御手段705aにおいて空燃比補正係数Kcを生成したが、空燃比補正係数Kcに代えて、空燃比補正値ΔAF00を生成してもよい。
この場合、燃料噴射制御手段706において適用される自主目標空燃比AF00に対して、空燃比補正値ΔAF00を代数加算すればよい。
【0135】
以上のように、この発明の実施の形態1(図1〜図7)に係る車載エンジン制御装置100Aには、内燃機関10の回転速度Nに応じたパルス信号を生成するクランク角センサ14(回転センサ)と、内燃機関10の吸気流路に設けられたエアフローセンサ12または負圧センサと、内燃機関10の排気流路に設けられた触媒15の上流および下流位置に設けられ、吸気量Qaと給燃量Fとの比率(Qa/F)からなる空燃比A/Fに対応した非線形または線形の検出信号電圧AF1、AF2を生成する上流・下流排気ガスセンサ105f、105rと、上流・下流排気ガスセンサ105f、105rを早期に活性化するために、所定要件が成立しているときに給電される上流・下流ヒータ53f、53rと、が接続されている。
【0136】
車載エンジン制御装置100Aは、プログラムメモリ112Aと協働して、燃料噴射制御手段706と上流・下流空燃比制御手段705a、703aとを実行するマイクロプロセッサ110を備えるとともに、マイクロプロセッサ110から駆動制御されて上流・下流ヒータ53f、53rに給電するための上流・下流開閉素子50f、50rと、マイクロプロセッサ110に対してヒータ電流検出信号Cf、Crを供給するための電流検出抵抗57f、57rとを含むヒータ制御回路150を備えている。
【0137】
燃料噴射制御手段706は、エアフローセンサ12によって検出されるか、または内燃機関10の回転速度Nと吸気管11に設けられた負圧センサの検出値とから演算算出される吸気量Qaに比例して、燃料噴射用電磁弁の駆動用電磁コイルであるインジェクタ13の開弁時間ΔTを調整して燃料噴射量を制御し、所定の自主目標空燃比AF00が得られるように給燃量Fを制御する。
【0138】
上流空燃比制御手段705aは、上流排気ガスセンサ105fから得られる検出信号電圧AF1に対応した上流位置の空燃比が、上流位置の目標空燃比である第1の目標電圧AF01と一致するように、燃料噴射制御手段706に対して給燃量Fの増減補正指令を発生する。
下流空燃比制御手段703aは、下流排気ガスセンサ105rから得られる検出信号電圧AF2に対応した下流位置の空燃比が、下流位置の目標空燃比である第2の目標電圧AF02と一致するように第1の目標電圧AF01を補正する。
【0139】
下流ヒータ53rは、最初に給電された上流ヒータ53fの温度上昇にともない上流ヒータ53fへの給電電流が所定値以下に減衰した時点で、上流排気ガスセンサ105fがまだ未活性状態であっても給電開始される。
燃料噴射制御手段706の自主目標空燃比AF00の値は、上流排気ガスセンサ105fの内部抵抗52fの抵抗値Rsが減少して、上流側の検出信号電圧AF1が生成されるまでは、燃料リッチとなる第1の初期値に設定される。
上流空燃比制御手段705aに対する第1の目標電圧AF01は、下流排気ガスセンサ105rの内部抵抗52rの抵抗値Rsが減少して、下流側の検出信号電圧AF2が生成されるまでは、燃料リッチとなる第2の初期値に設定されている。
【0140】
上流空燃比制御手段705aは、第1の目標電圧AF01と非線形の検出信号電圧AF1との偏差電圧に関する第1のデジタルフィルタ回路と、負帰還制御を行う第1のPID調節回路とにより構成されるか、または、空燃比に比例した線形信号電圧を得るセンサインタフェース回路と、線形信号電圧と第1の目標電圧AF01との偏差電圧が入力される第3のPID調節回路とにより構成されている。
【0141】
第1または第3のPID調節回路の出力電圧は、第1の上限制限値以上にリッチ指令出力とならないように制限され、上流排気ガスセンサ105fが未活性状態であるときの燃料噴射制御手段706に対する第1の初期値は、第1の上限制限値により決定される。
下流空燃比制御手段703aは、第2の目標電圧AF02と非線形の検出信号電圧AF2との偏差電圧に関する第2のデジタルフィルタ回路と、第2のPID調節回路とにより構成され、第2のPID調節回路の出力電圧は、第2の上限制限値以上にリッチ指令出力とならないように制限されている。
第2の上限制限値は、下流排気ガスセンサ105rが未活性状態であるときの上流空燃比制御手段705aに対する第2の初期値となる。
【0142】
以上の通り、この発明の実施の形態1(請求項2)によれば、上流・下流排気ガスセンサ105f、105rが未活性状態であるときの上流・下流空燃比制御手段705a、703aからの制御指令は、第1、第2の上限制限値以上にリッチ指令を生成せず、第1、第2の上限制限値は、燃料噴射制御手段706または上流空燃比制御手段705aに対する第1、第2の初期値として使用されるので、上流・下流排気ガスセンサ105f、105rが未活性状態であるときに、過度な燃料リッチ運転状態となることを回避することができる。
また、PID調節回路の偏差積分信号電圧が制限されることになるので、上流・下流排気ガスセンサ105f、105rが活性化したときに、円滑に空燃比制御動作に移行することができる。
【0143】
また、この発明の実施の形態1に係る車載エンジン制御装置100A内のプログラムメモリ112Aは、下流・上流排気ガスセンサ105r、105fに関し、下流および上流の活性化検出手段701a、704aとなる制御プログラムと、下流および上流の不活性異常検出手段701b、704bとなる制御プログラムと、下流および上流の不活性補正手段703c、705cとなる制御プログラムとを備えている。
【0144】
下流の活性化検出手段701aは、下流排気ガスセンサ105rの検出信号電圧AF2が、リーンからリッチ、またはリッチからリーンレベルに変化したことを検出して活性化したと判定する。
【0145】
下流の不活性異常検出手段701bは、下流ヒータ53rに給電されてから所定の判定時間を経過しても、下流排気ガスセンサ105rの検出信号電圧AF2が、リーンからリッチ、またはリッチからリーンレベルに変化しないことを検出して不活性異常であると判定する。
下流の不活性補正手段703cは、不活性異常検出手段701bが下流排気ガスセンサ105rの不活性異常状態を検出したことに応動して、下流空燃比制御手段703aが生成する第1の目標電圧AF01に代えて、所定の代替信号電圧を上流空燃比制御手段705aに入力する。
【0146】
上流の活性化検出手段704aは、上流排気ガスセンサ105fの検出信号電圧AF1が、リーンからリッチ、またはリッチからリーンレベルに変化したことを検出して活性化したと判定する。
【0147】
上流の不活性異常検出手段704bは、上流ヒータ53fに給電されてから所定の判定時間を経過しても、上流排気ガスセンサ105fの検出信号電圧AF1が、リーンからリッチ、またはリッチからリーンレベルに変化しないことを検出して不活性異常であると判定する。
上流の不活性補正手段705cは、不活性異常検出手段704bが上流排気ガスセンサ105fの不活性異常状態を検出したことに応動して、上流空燃比制御手段705aが生成する給燃量Fの増減補正指令に代えて、所定の代替信号電圧を燃料噴射制御手段706に入力する。
【0148】
以上の通り、この発明の実施の形態1(請求項4)によれば、プログラムメモリ112Aは、下流・上流排気ガスセンサ105r、105fに対して、活性化検出手段701a、704a、不活性異常検出手段701b、704b、および、不活性補正手段703c、705cとなる制御プログラムを備えている。
【0149】
したがって、下流・上流排気ガスセンサ105r、105fが不活性状態である場合には、活性化検出手段701a、704aが下流・上流排気ガスセンサ105r、105fの未活性状態を検出しているときの初期設定値に代えて、初期設定値とは異なる代替設定値を使用して、燃料リッチ側に偏らない空燃比の制御を行うことができる。
【0150】
また、この発明の実施の形態1に係る車載エンジン制御装置100A内のプログラムメモリ112Aは、燃料カット運転状態ではないときに作用する下流・上流空燃比制御手段703a、705aに対し、下流および上流の制御異常検出手段703d、705dとなる制御プログラムを備えている。
【0151】
下流の制御異常検出手段703dは、下流空燃比制御手段703aの発生出力が所定の上下限値の範囲外にある状態が所定時間以上にわたって継続していて、下流排気ガスセンサ105rの不活性異常検出手段701bが異常を検出していない場合に、下流空燃比制御手段703aの異常であると判定する。
上流の制御異常検出手段705dは、上流空燃比制御手段705aの発生出力が所定の上下限値の範囲外にある状態が所定時間以上にわたって継続していて、上流排気ガスセンサ105fの不活性異常検出手段704bが異常を検出していない場合に、上流空燃比制御手段705aの異常であると判定する。
【0152】
下流の不活性補正手段703cは、下流の制御異常検出手段703dが下流空燃比制御手段703aの異常状態を検出したことに応動して、下流空燃比制御手段703aが生成する第1の目標電圧AF01に代えて、所定の代替信号電圧を上流空燃比制御手段705aに入力する。
上流の不活性補正手段705cは、上流の制御異常検出手段705dが上流空燃比制御手段705aの異常状態を検出したことに応動して、上流空燃比制御手段705aが生成する給燃量Fの増減補正指令に代えて、所定の代替信号電圧を燃料噴射制御手段706に入力する。
【0153】
以上の通り、この発明の実施の形態1(請求項5)によれば、プログラムメモリ112Aは、下流・上流空燃比制御手段703a、705aに対する制御異常検出手段703d、705dとなる制御プログラムを備えている。
したがって、下流・上流空燃比制御手段703a、705aが異常状態である場合には、下流および上流の活性化検出手段701a、704aが下流・上流排気ガスセンサ105r、105fの未活性状態を検出しているときの初期設定値に代えて、初期設定値とは異なる代替設定値を使用して、燃料リッチ側に偏らない空燃比の制御を行うことができる。
【0154】
また、この発明の実施の形態1によるプログラムメモリ112Aは、学習記憶手段707となる制御プログラムを備えており、学習記憶手段707は、内燃機関10の吸気量Qaまたは回転速度Nの少なくとも一方に対応して順次記憶された、最新複数回の下流空燃比制御手段703aまたは上流空燃比制御手段705aの出力値の平均値を記憶する。
下流または上流の不活性補正手段703c、705cにおいて適用される代替信号電圧は、下流・上流排気ガスセンサ105r、105fと、下流・上流空燃比制御手段703a、705aと、が正常動作していたときに学習記憶手段707によって学習記憶された、実測データの平均値が適用される。
【0155】
以上の通り、この発明の実施の形態1(請求項6)によれば、下流・上流排気ガスセンサ105r、105fが不活性異常であるときには、下流・上流排気ガスセンサ105r、105fが正常であったときに記憶された学習記憶値、に基づく代替設定値を目標空燃比として使用するように構成されている。
【0156】
したがって、下流・上流排気ガスセンサ105r、105fが不活性状態である場合には、下流および上流の活性化検出手段701a、704aが下流・上流排気ガスセンサ105r、105fの未活性状態を検出しているときの初期設定値に代えて、学習記憶値に基づく代替設定値を使用して、適切な空燃比の制御を行うことができる。
【0157】
また、この発明の実施の形態1によるプログラムメモリ112Aは、上流・下流ヒータ53f、53rに対する過電流異常検出手段505、605または劣化検出手段507、607または論理異常判定手段510、610との少なくとも1つの手段、および不活性判定補正手段509、609となる制御プログラムを備えている。
【0158】
過電流異常検出手段505、605は、電流検出抵抗57f、57rによって検出された上流・下流ヒータ53f、53rへの給電電流が所定の上限値を超過したことに応動して、異常検出信号を生成して上流・下流開閉素子50f、50rを開路する。
劣化検出手段507、607は電流検出抵抗57f、57rによって検出された上流・下流ヒータ53f、53rへの給電電流が所定の下限値未満となったことに応動して異常検出信号を生成する。
【0159】
論理異常判定手段510、610は、上流・下流開閉素子50f、50rに対するヒータ駆動指令Df、Drと、上流・下流開閉素子50f、50rの導通状態に応動する論理監視信号Tf、Trとの論理の整合性を監視して、上流・下流ヒータ53f、53rの断線または短絡異常の有無、または、上流・下流開閉素子50f、50rの断線または短絡異常の有無を判定する。
不活性判定補正手段509、609は、過電流異常検出手段505、606または劣化検出手段507、607または論理異常判定手段510、610が異常を検出したことに応動して、不活性異常検出手段704b、701bおける不活性異常判定時間を延長させる。
【0160】
以上の通り、この発明の実施の形態1(請求項7)によれば、過電流異常検出手段505、606または劣化検出手段507、607または論理異常判定手段510、610によって、上流・下流ヒータ53f、53rまたは上流・下流開閉素子50f、50rの異常が検出されると、不活性判定補正手段509、609により、不活性異常検出手段704b、701bにおける不活性異常判定時間が延長されるので、異常発生によって上流・下流ヒータ53f、53rが停止しても、排気熱によって上流・下流排気ガスセンサ105f、105rが加熱活性化されているときには、正常な空燃比制御を行うことができる。
【0161】
また、この発明の実施の形態1(請求項8)によれば、劣化検出手段507、607における判定下限電流は、上流・下流ヒータ53f、53rに対する給電電圧(駆動電源電圧Vb)に比例して、大きな値となるように補正されているので、電源電圧の変動とは無関係に、高温状態におけるヒータ抵抗Rhが異常に増加しているか否かを正確に判定して、上流・下流ヒータ53f、53rの劣化状態を正確に検出することができる。
【0162】
また、この発明の実施の形態1によるプログラムメモリ112Aは、遅延給電時期判定手段602となる制御プログラムを備えており、遅延給電時期判定手段602は、電流検出抵抗57fにより検出された上流ヒータ53fへの給電電流が所定の設定閾値以下となったことに応動して、下流ヒータ53rへの給電を開始する。
遅延給電時期判定手段602における設定閾値は、上流ヒータ53fに対する給電電圧(駆動電源電圧Vb)に比例して、大きな値となるように補正されている。
【0163】
以上の通り、この発明の実施の形態1(請求項9)によれば、上流ヒータ53fよりも遅れて下流ヒータ53rに給電開始する遅延給電時期判定手段602の設定閾値を、上流ヒータ53fに対する給電電圧に比例して、大きな値となるように補正するので、電源電圧が大きいときに、下流ヒータ53rへの給電開始が遅くなり過ぎるのを防止することができる。
【0164】
さらに、この発明の実施の形態1によるプログラムメモリ112Aは、ヒータ電圧制御手段612となる制御プログラムを備えており、ヒータ制御回路150は、少なくとも上流・下流開閉素子50f、50rとを含むパワーモジュールとして構成されている。
ヒータ電圧制御手段612は、上流ヒータ53fの給電電流の減衰にともなって、下流ヒータ53rに対する給電が開始された時点で、上流・下流ヒータ53f、53rの合計電流が所定値を超過しないように、上流・下流開閉素子50f、50rの通電デューティを制御して、少なくとも下流ヒータ53rに対する平均給電電圧を抑制する。
【0165】
以上の通り、この発明の実施の形態1(請求項10)によれば、上流・下流ヒータ53f、53rの合計電流が所定値を超過しないように給電電圧を抑制するので、下流ヒータ53rに対する遅延給電開始時間を短縮して、下流排気ガスセンサ105rの活性化を早めるとともに、駆動電源電圧Vbが高い場合の上流・下流開閉素子50f、50rの異常過熱を防止することができる。
【0166】
実施の形態2.
なお、上記実施の形態1(図1)では、上流排気ガスセンサ105fとして、非線形出力特性(図2(A))を有する排気ガスセンサを用いたが、図8のように、上流排気ガスセンサ105fBとして、センサインタフェース回路115と協働する線形型の排気ガスセンサを用いてもよい。
【0167】
以下、図8および図9に示したこの発明の実施の形態2について、前述(図1、図4)との相違点を中心に説明する。
図8はこの発明の実施の形態2に係る車載エンジン制御装置100Bの全体構成を示す回路ブロック図であり、図9は図1内の要部をエンジン構成とともに示す機能ブロック図である。
【0168】
図8、図9において、前述(図1、図4参照)と同様のものには、前述と同一符号が付されており、前述と対応するものには、符号の後に「B」が付されている。
この場合も、上流・下流ヒータ53f、53rの特性図については、図3に示した通りである。
【0169】
図8において、外部電源101から電源開閉素子102を介して給電される車載エンジン制御装置100Bには、上流・下流排気ガスセンサ105fB、105rと、少なくとも吸気管内に設けられた負圧センサ17とクランク角センサ14とを含む各種の入力センサ群106が接続されている。
【0170】
車載エンジン制御装置100Bは、各種の入力センサ群106の動作状態に応動して、インジェクタ13を含む電気負荷群104および上流・下流ヒータ53f、53rに対する給電制御を行うとともに、異常発生時には警報表示器103を作動する。
【0171】
車載エンジン制御装置100Bの主要部を構成するマイクロプロセッサ110は、演算処理用のRAMメモリ111、プログラムメモリ112B(たとえば、不揮発フラッシュメモリ)、データメモリ113(たとえば、不揮発EEPROMメモリ)および多チャンネルAD変換器114と協働するようになっている。
入力センサ群106に含まれるアナログセンサからの検出信号は、多チャンネルAD変換器114を介して、マイクロプロセッサ110に入力される。
【0172】
プログラムメモリ112Bには、入力センサ群106および電気負荷群104に関する入出力制御プログラムに加えて、上流・下流排気ガスセンサ105fB、105rおよび上流・下流ヒータ53f、53rに関する制御プログラムが格納されている。
プログラムメモリ112B内の各種制御プログラムの詳細は、前述の図5、図6および図12(後述する)に示されている。
【0173】
不揮発性のデータメモリ113には、入力センサ群106および電気負荷群104に関する学習記憶情報や異常発生履歴情報に加えて、上流・下流排気ガスセンサ105fB、105rおよび上流・下流ヒータ53f、53rに関する学習記憶情報や異常発生履歴情報が格納されるようになっている。
【0174】
この場合、上流排気ガスセンサ105fBからの検出信号電圧BF1は、増幅器55fのみならず、センサインタフェース回路115を介して、マイクロプロセッサ110に入力されている。
【0175】
センサインタフェース回路115は、上流排気ガスセンサ105fB内の酸素ポンプ素子70fにポンプ電流Ipを供給するとともに、非線形の検出信号電圧VS1から空燃比に比例した線形の検出信号電圧BF1を生成してマイクロプロセッサ110に入力する。
【0176】
車載エンジン制御装置100B内の定電圧電源回路120、分圧抵抗121、122、出力インタフェース回路124、入力インタフェース回路126およびヒータ制御回路150は、前述(図1)と同様である。
【0177】
増幅器55f、55rの各入力端子側には、引上抵抗60f、60rが接続されており、増幅器55fの出力端子は、センサインタフェース回路115を介して、マイクロプロセッサ110に接続され、増幅器55rの出力端子はマイクロプロセッサ110に直接入力されている。
酸素ポンプ素子70fを含む上流排気ガスセンサ105fBは、センサインタフェース回路115を介して、マイクロプロセッサ110と接続されている。
【0178】
図9の機能ブロック図は、後述の図12内の各工程(処理機能)と対応付けて示している。
図9において、不活性異常検出手段901b、904b、目標空燃比設定手段902、上流・下流空燃比制御手段905a、903a、制御異常検出手段903d、905d、不活性補正手段905c、903c、燃料噴射制御手段906、学習記憶手段907は、それぞれ、前述(図4)と同様のものであり、各符号「70X」を「90X」に置き換えたのみである。
【0179】
また、図9内の検出信号電圧BF1、BF2、第1および第2の目標電圧BF01、BF02は、それぞれ、前述(図4)の検出信号電圧AF1、AF2、第1および第2の目標電圧AF01、AF02と同様のものである。
【0180】
車載エンジン制御装置100Bは、前述(図1)と同様の上記構成、マイクロプロセッサ110、PMEM112Bおよびヒータ制御回路150に加えて、センサインタフェース回路115と、活性化検出手段901a、904aと、未活性補正手段905b、903bとを備えている。
燃料噴射制御手段906には、吸気管11に設けられた負圧センサ17からの検出信号と、活性化検出手段904aを介した空燃比補正値ΔBF00とが入力される。
【0181】
図10は図8内の線形型の上流排気ガスセンサ105fBの特性曲線を示す説明図であり、図10(A)は等価電圧源51fの出力特性を示し、図10(B)は空燃比A/Fに対するポンプ電流Ipの特性を示し、図10(C)は内部抵抗52fの抵抗値Rsの温度特性を示している。
【0182】
図10(A)の空燃比検出信号出力特性は、上流排気ガスの空燃比A/Fを横軸とし、上流排気ガスセンサ105fB内の等価電圧源51fの発生電圧Vsを縦軸としており、前述(図1、図4)の上流・下流排気ガスセンサ105f、105rの場合(図2(A))と同様である。
【0183】
図10(A)において、等価電圧源51fの発生電圧Vsは、1[gr]のガソリンを完全燃焼するために必要な空気の量14.57[gr](理論空燃比A/F=14.57)を境にして、燃料リッチであれば約1.7[V]、燃料リーンであれば約0[V]の値に飽和し、理論空燃比においては基準電圧450[mV]となる。
【0184】
なお、図8、図9内の上流排気ガスセンサ105fBの等価電圧源51fは、サンプル抽出された上流排気ガスのガス検出室に設けられており、ガス検出室内の酸素濃度は、酸素ポンプ素子70fに給電されたポンプ電流Ipの大小・正負によって、増減するようになっている。
【0185】
空燃比A/Fとポンプ電流Ipとの関係は、図10(B)に示す通りである。
センサインタフェース回路115は、等価電圧源51fの発生電圧Vsが基準電圧450[mV]となるように、酸素ポンプ素子70fにポンプ電流Ipを供給する。
これにより、マイクロプロセッサ110には、ポンプ電流Ipのバイアス加算により、常に正の値となるように補正された検出信号電圧BF1が入力される。
【0186】
図10(C)に示す内部抵抗値Rsの温度特性においては、上流排気ガスセンサ105fBの内部温度を縦軸とし、内部抵抗52fの抵抗値Rsを横軸として示している。
図10(C)において、内部抵抗値Rsは、負の温度特性を有しており、寒冷時には数MΩ以上(図示せず)となっているが、温度上昇にともない、排気ガスセンサの活性開始温度600℃においては約220Ωまで減少し、適正温度800℃においては、約75Ω(目標抵抗値)まで減少する。
【0187】
等価電圧源51f、51rの発生電圧Vsは、内部抵抗52f、52rを介して引上抵抗60f、60rに印加される。
引上抵抗60f、60rの各一端には、制御電源電圧Vccが印加されている。
また、上流側の引上抵抗60fの他端は、増幅器55fおよびセンサインタフェース回路115を介してマイクロプロセッサ110に接続されている。
【0188】
上流側の引上抵抗60fの他端に接続された増幅器55fからは、検出信号電圧VS1が生成され、センサインタフェース回路115を介して、検出信号電圧BF1としてマイクロプロセッサ110に入力される。
一方、下流側の引上抵抗60rの他端に接続された増幅器55rからは、検出信号電圧BF2がマイクロプロセッサ110に入力される。
【0189】
したがって、下流側の検出信号電圧BF2は、図2(A)で示した非線形出力信号となるのに対し、上流側の検出信号電圧BF1は、図10(B)で示したポンプ電流Ipがバイアス加算された線形出力信号となる。
これにより、上流空燃比制御手段905aにおいては、空燃比を判定するためのデジタルフィルタ回路が不要となっている。
【0190】
ここで、増幅器55f、55rの増幅率Gを「1」とした場合には、上流・下流空燃比の検出信号電圧VS1、BF2の電圧値Vbfは、等価電圧源51f、51rの発生電圧Vsと、内部抵抗52f、52rの抵抗値Rsと、引上抵抗60f、60rの抵抗値Ruとを用いて、以下の式(6)のように表される。
【0191】
Vbf=Vs+(Vcc−Vs)×Rs/(Rs+Ru)
=(Vs×Ru+Vcc×Rs)/(Rs+Ru)・・・(6)
【0192】
前述と同様に、寒冷時においては、Rs>>Ruとなるので、Vbf≒Vccとなるが、上流・下流排気ガスセンサ105fB、105rの内部温度は、排気熱および上流・下流ヒータ53f、53rの加熱作用によって上昇する。
したがって、内部抵抗の抵抗値Rsが減少して、Rs<<Ruになると、Vbf≒Vsとなり、燃料リッチの状態であれば、電圧値Vbfは0.5〜1.0[V]の範囲内となるので、上流・下流排気ガスセンサ105fB、105rの活性化が完了したと判定することができる。
【0193】
このように、上流・下流排気ガスセンサ105fB、105rの活性化の検出は、前述と同様に、上流・下流排気ガスセンサ105fB、105rの内部抵抗52f、52rの温度依存性に基づいて検出される。
一方、下流ヒータ53rは、上流ヒータ53fの給電電流が所定値以下に減衰した時点で給電開始され、遅延給電時間の判定は、ヒータ抵抗Rhの温度依存性により決定されるようになっている。
【0194】
ヒータ抵抗Rhの値(図3(A)参照)は、排気ガスによる排気熱と、上流・下流ヒータ53f、53rへの給電にともなう自己加熱によって漸増するので、結露した下流ヒータ53rの水分の蒸発を待ってから給電開始することが可能である。
また、上流側の活性化完了を待たないで、下流ヒータ53rへの給電を開始することにより、全体としての活性化時間の短縮を行うことができる。
【0195】
次に、図9に示した機能構成について、図4との相違点を中心にして説明する。
図9において、内燃機関10の周辺のインジェクタ13、クランク角センサ14、触媒15、上流・下流排気ガスセンサ105fB、105r、上流・下流ヒータ53f、53rは、前述(図4)と同様に配置されている。
【0196】
ただし、この場合、図4内のエアフローセンサ12に代えて、吸気管11内に配置された負圧センサ17が付加されており、回転速度Nと負圧センサ17の検出信号との関数として、毎秒吸気量qが演算算出されるようになっている。
【0197】
したがって、必要とされるインジェクタ13の開弁時間ΔTは、吸気量Qaと、毎秒燃料噴射量fと、燃料噴射制御手段906の自主目標空燃比BF00=Qa/Fと、毎秒吸気量qと、内燃機関10の回転速度Nと、制御定数Kとを用いて、以下の式(7)のように表される。
【0198】
ΔT=F/f
=Qa/(f×BF00)
=q/(2×f×N×BF00)
=K×q/N ・・・(7)
【0199】
ただし、式(7)において、制御定数Kは、以下の式(8)のように表される。
【0200】
K=0.5/(f×BF00)・・・(8)
【0201】
マイクロプロセッサ110およびプログラムメモリ112Bを備えた車載エンジン制御装置100Bは、ヒータ制御回路150およびプログラムメモリ112Bに格納された制御プログラムによって上流・下流ヒータ53f、53rの給電制御を行うが、その詳細については、前述(図5、図6)の通りである。
【0202】
また、プログラムメモリ112Bは、空燃比制御プログラムを備えており、空燃比制御動作(図11、図12とともに後述する)を行うが、図9の車載エンジン制御装置100B内に簡略制御ブロックが示されている。
【0203】
図9において、燃料噴射制御手段906は、回転速度Nと負圧センサ17の検出信号とから演算算出された毎秒吸気量qに比例し、かつ回転速度Nに反比例して、インジェクタ13による給燃量(燃料噴射量)Fを制御して、1次的には自主目標となる空燃比BF00が得られるよう動作する。
【0204】
上流空燃比制御手段905aは、上流排気ガスセンサ105fBの検出信号電圧BF1に対応した上流位置の空燃比が、第1の目標電圧BF01(上流位置の目標空燃比)と一致するように、燃料噴射制御手段906の自主目標空燃比BF00を補正するための空燃比補正値ΔBF00(給燃量Fの増減補正指令)を生成する。
【0205】
下流空燃比制御手段903aは、下流排気ガスセンサ105rの検出信号電圧BF2の平均値に対応した下流位置の空燃比が、第2の目標電圧BF02(下流位置の目標空燃比)と一致するように、第1の目標電圧BF01を補正する。
【0206】
燃料噴射制御手段906に供給される空燃比補正値ΔBF00は、上流排気ガスセンサ105fBの内部抵抗52fの抵抗値Rsが減少して、上流側の検出信号電圧BF1が生成されるまでは、燃料リッチとなる第1の初期値に設定される。
上流空燃比制御手段905aに対する第1の目標電圧BF01は、下流排気ガスセンサ105rの内部抵抗52rの抵抗値Rsが減少して、下流側の検出信号電圧BF2が生成されるまでは、燃料リッチとなる第2の初期値に設定されている。
【0207】
上流空燃比制御手段905aは、第1の目標電圧BF01と検出信号電圧BF1との偏差電圧に対する第3のPID調節回路により構成されている。
また、上流排気ガスセンサ105fBが未活性状態の場合には、上流空燃比制御手段905aに代えて、燃料噴射制御手段906に対して第1の初期値を供給する未活性補正手段905bが選択使用される。
【0208】
下流空燃比制御手段903aは、第2の目標電圧BF02と検出信号電圧BF2との偏差電圧に対する第2のデジタルフィルタ回路と、第2のPID調節回路とにより構成されている。
また、下流排気ガスセンサ105rが未活性状態であるときには、下流空燃比制御手段903aに代えて、上流空燃比制御手段905aに対して第2の初期値を供給する未活性補正手段903bが選択使用される。
【0209】
活性化検出手段901aは、下流排気ガスセンサ105rの検出信号電圧BF2がL(ロウ)レベルからH(ハイ)レベルに変化したことを検出して、活性化したと判定する。
不活性異常検出手段901bは、下流ヒータ53rに給電されてから所定の判定時間を経過しても、下流排気ガスセンサ105rの検出信号電圧BF2がLレベルからHレベルに変化しないことを検出して、不活性異常であると判定する。
【0210】
不活性補正手段903cは、不活性異常検出手段901bが下流排気ガスセンサ105rの不活性異常状態を検出したことに応動して、下流空燃比制御手段903aが生成する第1の目標電圧BF01に代えて、所定の代替信号電圧を上流空燃比制御手段905aに入力する。
【0211】
活性化検出手段904aは、上流排気ガスセンサ105fBの検出信号電圧BF1が、リーンからリッチレベルに変化したことを検出して、活性化したと判定する。
また、不活性異常検出手段904bは、上流ヒータ53fへの給電が行われてから所定の判定時間を経過しても、上流排気ガスセンサ105fBの検出信号電圧BF1がリーンからリッチレベルに変化しないことを検出して、不活性異常であると判定する。
【0212】
不活性補正手段905cは、不活性異常検出手段904bが上流排気ガスセンサ105fBの不活性異常状態を検出したことに応動して、上流空燃比制御手段905aが生成する空燃比補正値ΔBF00に代えて、所定の代替信号電圧を燃料噴射制御手段906に入力する。
【0213】
異常検出手段903dは、下流空燃比制御手段903aの発生出力が所定の上下限値の範囲外にある状態が、所定時間以上にわたって継続している場合に、下流空燃比制御手段903aの異常であると判定する。
異常検出手段905dは、上流空燃比制御手段905aの発生出力が所定の上下限値の範囲外にある状態が、所定時間以上にわたって継続している場合に、上流空燃比制御手段905aの異常であると判定する。
【0214】
また、不活性補正手段903cは、異常検出手段903dが下流空燃比制御手段903aの異常状態を検出したことに応動して、下流空燃比制御手段903aが生成する第1の目標電圧BF01に代えて、所定の代替信号電圧を上流空燃比制御手段905aに入力する。
【0215】
また、不活性補正手段905cは、異常検出手段905dが上流空燃比制御手段905aの異常状態を検出したことに応動して、上流空燃比制御手段905aが生成する空燃比補正値ΔBF00に代えて、所定の代替信号電圧を燃料噴射制御手段906に入力する。
【0216】
なお、惰行運転または降坂運転において燃料カットが行われているときには、異常検出手段903d、905dに代えて、燃料カット検出手段(図示せず)が作動して、空燃比の制御動作が停止されるようになっている。
【0217】
また、プログラムメモリ112Bは、学習記憶手段907となる制御プログラムを備えている。
学習記憶手段907は、内燃機関10の回転速度Nと負圧センサ17の検出信号とから演算算出される吸気量Qaと、クランク角センサ14のパルス間隔(または、パルス発生密度)によって検出される内燃機関10の回転速度Nと、に対応して順次記憶された最新複数回の下流空燃比制御手段903aまたは上流空燃比制御手段905aの出力値の平均値を記憶する。
【0218】
不活性補正手段903c、905cにおいて適用される代替信号電圧としては、下流・上流排気ガスセンサ105r、105fBが正常動作していたときに学習記憶手段907によって学習記憶された、実測データの平均値が適用される。
【0219】
学習記憶手段907は、内燃機関10の吸気量Qaまたは回転速度Nの少なくとも一方に対応して、順次記憶された最新複数回の下流空燃比制御手段903aまたは上流空燃比制御手段905aの出力値の平均値を記憶する。
【0220】
下流または上流の不活性補正手段903c、905cにおいて適用される代替信号電圧としては、下流・上流排気ガスセンサ105r、105fBと、下流・上流空燃比制御手段903a、905aと、が正常動作していたときに学習記憶手段907によって学習記憶された、実測データの平均値が適用される。
【0221】
次に、図8に示したこの発明の実施の形態2による動作について説明する。
図8において、電源スイッチ(図示せず)を閉路すると、電源開閉素子102が閉路して、外部電源101から駆動電源電圧Vbが車載エンジン制御装置100Bに印加され、定電圧電源回路120を介して安定化された制御電源電圧Vccがマイクロプロセッサ110に供給される。
【0222】
マイクロプロセッサ110は、入力センサ群106および上流・下流排気ガスセンサ105fB、105rの動作状態と、プログラムメモリ112Bに格納された入出力制御プログラムとに基づいて、電気負荷群104および上流・下流ヒータ53f、53rを制御する。
【0223】
また、マイクロプロセッサ110は、上流・下流排気ガスセンサ105fB、105rを含む各種の入力センサ群106や、上流・下流ヒータ53f、53rを含む各種の電気負荷群104に関する異常判定を行うことにより、異常発生時には、警報表示器103を駆動して、車両の運転者に通報するようになっている。
【0224】
なお、上流・下流ヒータ53f、53rの制御動作については、前述(図5、図6)のフローチャートに示した通りであるが、ここでは、図11のタイミングチャートを参照しながら、概略的な制御動作について説明する。
【0225】
図11において、図11(A)は電源開閉素子102の開閉動作、図11(B)は上流ヒータ53fの電流、図11(C)は下流ヒータ53rの電流、図11(D)は上流排気ガスセンサ105fの活性化状態、図11(E)は下流排気ガスセンサ105rの活性化状態、図11(F)は上流の空燃比補正値ΔBF00、図11(G)は第1(上流)の目標電圧BF01、図11(H)は不活性異常検出手段904b、異常検出手段905dによる上流異常発生状態、をそれぞれ示している。
【0226】
図11(A)は、図8内の電源開閉素子102が閉路され、時刻t1において、上流ヒータ53fの通電制御を開始する駆動要件(回転速度Nと機関温度とが、両方とも定められた適正な範囲内であって、不要な加熱制御を回避するための要件)の判定が完了したことを示している。
【0227】
図11(B)は、時刻t1において上流開閉素子50fが閉路され、上流ヒータ53fに給電されてから、上流ヒータ53fの温度上昇にともなってヒータ抵抗Rhが増大することにより、図3(B)の特性にしたがって減少する上流ヒータ53fの電流変化を示している。
【0228】
図11(C)は、時刻t2において下流開閉素子50rが閉路され、下流ヒータ53rに給電されてから、下流ヒータ53rの温度上昇にともなってヒータ抵抗Rhが増大することにより、図3(B)の特性にしたがって減少する下流ヒータ53rの電流変化を示している。なお、時刻t2は、図6内の工程602において、上流ヒータ53fの電流が所定値以下に減少したことによって決定される。
【0229】
図11(D)は、時刻t3において上流排気ガスセンサ105fBが活性化したことを示し、図11(E)は、時刻t4において下流排気ガスセンサ105rが活性化したことを示している。
【0230】
なお、エンジンが短時間だけ運転された後に再始動したような場合には、余熱の影響によって、上流排気ガスセンサ105fBの活性化タイミング(時刻t3)と、下流ヒータ53rの給電開始タイミング(時刻t2)とは、微妙に接近することもあり得る。
しかし、少なくとも下流ヒータ53rの給電開始の要件は、上流排気ガスセンサ105fBが活性化しているか否かとは無関係なので、単に、上流ヒータ53fの給電電流が所定の設定閾値以下に減少することに応じて、下流ヒータ53rへの給電が開始される。
【0231】
ただし、上流ヒータ53fの給電電流に対する比較基準となる設定閾値は、駆動電源電圧Vbに比例して、大きな値が適用されているので、たとえば上流ヒータ53fの温度が400℃まで上昇した時点で、下流ヒータ53rの給電を開始する(図3(B)参照)。
このように、下流ヒータ53rは、上流排気ガスセンサ105fBの活性化完了を待たずに通電開始されることにより、下流排気ガスセンサ105rの活性化も早期に行われるようになっている。
【0232】
図11(F)は、図9内の燃料噴射制御手段906に対する上流側の空燃比補正値ΔBF00の変遷を示している。
空燃比補正値ΔBF00としては、上流排気ガスセンサ105fBの活性化時刻t3までは、未活性補正手段905bによる第1の初期値が適用され、上流排気ガスセンサ105fBの活性化(時刻t3)後は、上流空燃比制御手段905aによる負帰還制御出力が適用され、異常発生(時刻t5)後は、不活性補正手段905cによる補正学習値が適用されるようになっている。
【0233】
図11(G)は、図9内の上流空燃比制御手段905aに対する第1の目標電圧BF01の変遷を示している。
第1の目標電圧BF01としては、下流排気ガスセンサ105rの活性化時刻t4までは、未活性補正手段903bによる第2の初期値が適用され、下流排気ガスセンサ105rの活性化(時刻t4)後は、下流空燃比制御手段903aによる負帰還制御出力が適用され、異常発生(時刻t5)後は制御停止されるようになっている。
【0234】
図11(H)は、時刻t5において、不活性異常検出手段904bが上流排気ガスセンサ105fBの異常を検出するか、または、制御異常検出手段905dが上流空燃比制御手段905aの異常を検出したこと(上流異常発生)を示している。
この上流異常発生にともなって、図11(F)における空燃比補正値ΔBF00としては、不活性補正手段905cによる補正学習値が適用され、図11(G)における負帰還制御は停止するようになっている。
【0235】
なお、下流排気ガスセンサ105rの異常、または下流空燃比制御手段903aの異常(下流異常)が発生した場合には、上流空燃比制御手段905aに対して、不活性補正手段903cによる補正学習値を、第1の目標電圧BF01として供給するようになっている。
【0236】
次に、図9の機能ブロック図とともに、図12のフローチャートを参照しながら、図8に示したこの発明の実施の形態2による空燃比制御動作について説明する。
図12において、各工程900、901a〜901c、902、903a、903c、904a〜904c、905c、906、906a〜906e、907〜910は、前述(図7)の各工程700、701a〜701c、702、703a、703c、704a〜704c、705c、706、706a〜706e、707〜710と同様の処理機能であり、各符号「70X」を「90X」に置き換えたのみである。
【0237】
まず、工程900は、マイクロプロセッサ110が空燃比制御を開始する動作開始ステップであり、続く工程901a(活性化検出手段)は、下流排気ガスセンサ105rが活性状態にあるか否かを判定するステップである。
工程901aにおいて、活性状態であれば「YES」と判定して工程902に移行し、未活性状態であれば「NO」と判定して工程901bに移行する。
【0238】
なお、工程901aにおいては、下流排気ガスセンサ105rの検出信号電圧BF2が、たとえば4.5[V]以上のH(ハイ)レベルから、0.5〜1.0[V]のL(ロウ)レベルに変化したことを検出して、下流排気ガスセンサ105rが活性化したと判定する。
【0239】
工程901b(不活性異常検出手段)においては、計時タイマ(図示せず)が起動され、計時タイマが所定時間を超過していれば「YES」と判定して工程901cに移行し、時間超過でなければ「NO」と判定して工程903bに移行する。
【0240】
なお、工程901bが「NO」の判定を行うのは、下流排気ガスセンサ105rが活性化温度に達していない(未活性状態である)ことを意味し、工程901bが「YES」の判定を行うのは、十分な加熱時間が経過してもなお下流排気ガスセンサ105rが活性化しない(異常状態である)ことを意味している。
【0241】
また、一旦、活性化が行われて正常運転が行われているときには、検出信号電圧BF2がLレベルからHレベルに変化しない場合、および、HレベルからLレベルに変化しない場合にも、不活性異常として判定されるようになっている。
【0242】
工程901cにおいては、異常報知指令を生成して警報表示器103を駆動するとともに、異常発生情報を、要因別にRAMメモリ111の所定のアドレスに格納する。
工程902(目標空燃比設定手段)においては、第2の目標電圧BF02を設定し、続く工程903a(下流空燃比制御手段)においては、第2のPID制御を開始する。
【0243】
続く工程903d(制御異常検出手段)においては、増減周期が過大に継続しているか否かを判定する。
具体的には、工程903aにおける第2のPID制御入力(検出信号電圧BF2)の論理レベルが、所定時間以上にわたってLレベルまたはHレベルの一方のレベルを持続している場合(過大継続発生時)には、「YES」と判定して工程901cに移行し、所定時間内に正常なPID制御動作が開始すれば、「NO」と判定して工程904aに移行する。
【0244】
工程901cに続く工程903cにおいては、工程903aによる第2のPID制御出力に代えて、代替設定値を適用して工程904aに移行する。
この代替設定値は、後述の工程907で記憶された学習記憶値に基づいて算出される。すなわち、現在の回転速度Nおよび吸気量Qaに対応した代替設定値が補間演算によって算出される。
【0245】
工程901bで「NO」(下流排気ガスセンサ105rが未活性状態)と判定され場合に実行される工程903b(未活性補正手段)においては、工程903aによる第2のPID制御出力に代えて、第2の初期値を適用して工程904aに移行する。
このとき、工程905a(上流空燃比制御手段)に対する第1の目標電圧BF01としては、工程903a(下流空燃比制御手段)による第2のPID制御出力に代えて、未活性補正手段903bによる第2の初期値が適用される。
【0246】
工程904a〜905dは、上流空燃比制御に関するものであり、これらのうち、工程904a、904b、904cは、下流空燃比制御の工程901a、901b、901cに相当し、工程905a、905b、905c、905dは、下流空燃比制御の工程903a、903b、903c、903dに相当している。
【0247】
ただし、下流空燃比制御の工程903aにおいては、非線形の検出信号電圧BF2と第2の目標電圧BF02との偏差電圧に対する第2のデジタルフィルタ回路の出力によって第2のPID制御が行われるのに対し、上流空燃比制御の工程905aにおいては、センサインタフェース回路115から出力される線形の検出信号電圧BF1と、第1の目標電圧BF01との偏差電圧に基づいて第3のPID制御が行われる。
【0248】
したがって、工程904aは活性化検出手段に相当し、工程904bは不活性異常検出手段に相当し、工程905aは空燃比制御手段に相当し、工程905bは未活性補正手段に相当し、工程905cは不活性補正手段に相当し、工程905dは制御異常検出手段に相当する。
燃料噴射制御手段906に対する空燃比補正値ΔBF00としては、上流空燃比制御手段905aによる第3のPID制御出力、または未活性補正手段905bによる第1の初期値、または不活性補正手段905cによる代替設定値が適用される。
【0249】
続く工程ブロック906(燃料噴射制御手段)において、まず、工程906aでは、前述の式(7)で示された自主目標空燃比BF00に代えて、空燃比補正値ΔBF00を加算した値「BF00+ΔBF00」を適用する。
続く工程906bでは吸気量Qaを算出し、続く工程906cでは適正な給燃量Fを算出し、続く工程906dではインジェクタ13の開弁時間ΔTを算出し、続く工程906eではクランク角センサ14に応動するタイミングで燃料噴射用電磁弁を駆動する。
【0250】
続く工程907(学習記憶手段)においては、上流・下流空燃比制御手段905a、903aによるPID制御出力である空燃比補正値ΔBF00と第1の目標電圧BF01との値をサンプリング読出して、内燃機関10の回転速度Nおよび毎秒吸気量qの値に対応した空燃比補正値ΔBF00と第1の目標電圧BF01との平均値を、RAMメモリ111に格納する。
【0251】
続く工程908は、電源スイッチ(図示せず)が閉路状態から開路状態に変化したか否かを判定するステップであり、閉路状態を維持していれば「NO」と判定して動作終了工程910に移行し、開路状態に変化したときには「YES」と判定して工程909に移行するようになっている。
【0252】
工程909においては、前述(図5、図6)の工程508、608による異常発生記憶情報と、図12内の工程901c、904cによる異常発生記憶情報と、工程907による学習記憶情報とを、不揮発性のデータメモリ113に転送格納してから、動作終了工程910に移行する。
【0253】
なお、工程909の実行過程においては、電源スイッチは開路されているが、電源開閉素子102は依然として閉路している。
したがって、マイクロプロセッサ110は、データメモリ113への保存データの転送退避処理が終わってから、電源開閉素子102が開路して動作停止する。
【0254】
また、電源スイッチが閉路状態であれば、マイクロプロセッサ110は、動作終了工程910において他の制御プログラムを実行し、所定時間内には再び動作開始工程900に復帰して、動作開始工程900と動作終了工程910との間の制御フローを繰返し実行するようになっている。
【0255】
なお、図1、図8においては、上流・下流排気ガスセンサ105fB、105rの負線を、外部電源101(車載バッテリ)の負端子が接続された車体グランドGNDに接続したが、車体グランドGNDに代えて、車載エンジン制御装置100A、100Bに接続して、車載エンジン制御装置100A、100Bの内部で、たとえば0.5[V]程度のバイアス電圧を付与しておくことも可能である。この場合、活性化判定の電圧レベルは、バイアス加算分だけ大きな値にする必要がある。
【0256】
また、図8内の上流・下流排気ガスセンサ105fB、105rの正端子を、引上抵抗60f、60rに接続したが、引上抵抗60f、60rに代えて、図1と同様の引下抵抗54f、54rに接続してもよい。いずれの場合も、信号線の一端を解放端とすることによるノイズの混入を防止するための回路構成となっている。
【0257】
一方、図9内の燃料噴射制御手段906に対する空燃比補正値ΔBF00に代えて、図4と同様に、空燃比補正係数Kcを用いることも可能である。
この場合、以下の式(9)が成り立つ。
【0258】
BF00+ΔBF00=BF00(1+ΔBF00/BF00) ・・・(9)
【0259】
よって、空燃比補正係数Kcは、以下に式(10)に相当する。
【0260】
Kc=1+ΔBF00/BF00 ・・・・(10)
【0261】
また、吸気量Qa、給燃量F、自主目標空燃比BF00=Qa/F、空燃比補正係数Kcを用いれば、補正後の給燃量Fxは、以下の式(11)のように表される。
【0262】
Fx=Qa/(Kc×BF00)
=F/Kc ・・・(11)
【0263】
式(11)から、給燃量Fに対する補正係数1/Kcは、空燃比に対する空燃比補正係数Kcの逆数となっている。
以上の相互関係から、空燃比補正係数Kcまたは空燃比補正値ΔBF00の値に関する指令は、給燃量Fの増減補正指令として総称される。
【0264】
以上のように、この発明の実施の形態2(図8〜図12)に係る車載エンジン制御装置100Bには、内燃機関10の排気流路に設けられた触媒15の上流および下流位置に設けられ、吸気量Qaと給燃量Fとの比率(Qa/F)からなる空燃比A/Fに対応して、非線形または線形の検出信号電圧BF1、BF2を生成する上流・下流排気ガスセンサ105fB、105rと、上流・下流排気ガスセンサ105fB、105rを早期に活性化するために、所定の要件が成立しているときに給電される上流・下流ヒータ53f、53rと、が接続されている。
【0265】
車載エンジン制御装置100Bは、プログラムメモリ112Bと協働して燃料噴射制御手段906、上流空燃比制御手段905aおよび下流空燃比制御手段903aを実行するマイクロプロセッサ110と、ヒータ制御回路150と、を備えている。
ヒータ制御回路150は、マイクロプロセッサ110から駆動制御されて上流・下流ヒータ53f、53rに給電するための上流・下流開閉素子50f、50rと、マイクロプロセッサ110に対してヒータ電流検出信号Cf、Crを供給するための電流検出抵抗57f、57rと、を備えている。
【0266】
燃料噴射制御手段906は、内燃機関10の回転速度Nと、吸気管11に設けられた負圧センサ17の検出値と、から演算算出される吸気量Qaに比例して、燃料噴射用電磁弁の駆動用電磁コイルであるインジェクタ13の開弁時間ΔTを調整して燃料噴射量を制御し、所定の自主目標空燃比BF00が得られるように給燃量Fを制御する。
【0267】
上流空燃比制御手段905aは、上流排気ガスセンサ105fBから得られる検出信号電圧BF1に対応した上流位置の空燃比が、第1の目標電圧BF01(上流位置の目標空燃比)と一致するように、燃料噴射制御手段906に対して給燃量Fの増減補正指令を発生する。
【0268】
下流空燃比制御手段903aは、下流排気ガスセンサ105rから得られる検出信号電圧BF2に対応した下流位置の空燃比が、第2の目標電圧BF02(下流位置の目標空燃比)と一致するように、第1の目標電圧BF01を補正する。
【0269】
下流ヒータ53rは、まず上流ヒータ53fに給電されて、上流ヒータ53fの温度上昇にともなって、上流ヒータ53fに対する給電電流が所定値以下に減衰した時点で、上流排気ガスセンサ105fBがまだ未活性状態であっても、給電開始される。
【0270】
燃料噴射制御手段906の自主目標空燃比の値は、上流排気ガスセンサ105fBの内部抵抗52fの抵抗値Rsが減少して、上流側の検出信号電圧BF1が生成されるまでは、燃料リッチとなる第1の初期値に設定される。
上流空燃比制御手段905aに対する第1の目標電圧BF01は、下流排気ガスセンサ105rの内部抵抗52rの抵抗値Rsが減少して、下流側の検出信号電圧BF2が生成されるまでは、燃料リッチとなる第2の初期値に設定されている。
【0271】
また、この発明の実施の形態2に係る車載エンジン制御装置100Bは、プログラムメモリ112Bとして燃料噴射制御手段906に対して第1の初期値を供給する未活性補正手段905b(第1の未活性補正手段)となる制御プログラムと、上流空燃比制御手段905aに対して第2の初期値を供給する未活性補正手段903b(第2の未活性補正手段)となる制御プログラムとを備えている。
【0272】
上流空燃比制御手段905aは、上流排気ガスセンサ105fBによる非線形の検出信号電圧VS1から、空燃比に比例した線形の検出信号電圧BF1を生成するセンサインタフェース回路115を備えている。
また、上流空燃比制御手段905aは、センサインタフェース回路からの線形の検出信号電圧BF1と第1の目標電圧BF01との偏差電圧を入力として負帰還制御を行う第3のPID調節回路、または、第1の目標電圧BF01と非線形の検出信号電圧VS1との偏差電圧に関する第1のデジタルフィルタ回路と第1のPID調節回路を備えている。
【0273】
上流排気ガスセンサ105fBが未活性状態であるときには、上流空燃比制御手段905aに代えて、燃料噴射制御手段906に対して第1の初期値を供給する未活性補正手段905bが選択使用される。
下流空燃比制御手段903aは、第2の目標電圧BF02と非線形の検出信号電圧BF2との偏差電圧に関する第2のデジタルフィルタ回路と、第2のPID調節回路とにより構成されている。
下流排気ガスセンサ105rが未活性状態であるときには、下流空燃比制御手段903aに代えて、上流空燃比制御手段905aに対して第2の初期値を供給する未活性補正手段903bが選択使用される。
【0274】
以上の通り、この発明の実施の形態2(請求項3)によれば、上流・下流排気ガスセンサ105fB、105rが未活性状態であるときの上流・下流空燃比制御手段905a、903aに代えて、第1・第2の初期値を生成する未活性補正手段905b、903bが使用されるので、上流・下流排気ガスセンサ105fB、105rが未活性状態であるときに過度な燃料リッチ運転が行われないようにすることができる。
また、PID調節回路の積分信号電圧の応答遅れの影響を受けることがなく、速やかに初期値を設定することができる。
【0275】
また、この発明の実施の形態2(請求項4)によるプログラムメモリ112Bは、下流・上流排気ガスセンサ105r、105fBに関する活性化検出手段901a、904aとなる制御プログラムと、不活性異常検出手段901b、904bとなる制御プログラムと、不活性補正手段903c、905cとなる制御プログラムとを備えている。
【0276】
下流の活性化検出手段901aは、下流排気ガスセンサ105rの検出信号電圧BF2が、リーンからリッチレベル、またはリッチからリーンレベル、に変化したことを検出して活性化したと判定する。
下流の不活性異常検出手段901bは、下流ヒータ53rに給電されてから所定の判定時間を経過しても、下流排気ガスセンサ105rの検出信号電圧BF2が、リーンからリッチレベル、またはリッチからリーンレベル、に変化しないことを検出して不活性異常であると判定する。
下流の不活性補正手段903cは、不活性異常検出手段901bが下流排気ガスセンサ105rの不活性異常状態を検出したことに応動して、下流空燃比制御手段903aが生成する第1の目標電圧BF01に代えて、所定の代替信号電圧を上流空燃比制御手段905aに入力する。
【0277】
上流の活性化検出手段904aは、上流排気ガスセンサ105fBの検出信号電圧BF1が、リーンからリッチレベル、またはリッチからリーンレベル、に変化したことを検出して活性化したと判定する。
上流の不活性異常検出手段904bは、上流ヒータ53fに給電されてから所定の判定時間を経過しても、上流排気ガスセンサ105fBの検出信号電圧BF1が、リーンからリッチレベル、またはリッチからリーンレベル、に変化しないことを検出して不活性異常であると判定する。
上流の不活性補正手段905cは、不活性異常検出手段904bが上流排気ガスセンサ105fBの不活性異常状態を検出したことに応動して、上流空燃比制御手段905aが生成する給燃量Fの増減補正指令に代えて、所定の代替信号電圧を燃料噴射制御手段906に入力する。
【0278】
また、この発明の実施の形態2(請求項5)によるプログラムメモリ112Bは、燃料カット運転状態ではないときに作用する下流・上流空燃比制御手段903a、905aに対する異常検出手段903d、905dとなる制御プログラムを備えている。
【0279】
下流の異常検出手段903dは、下流空燃比制御手段903aの発生出力が所定の上下限値の範囲外にある状態が所定時間以上にわたって継続していて、下流排気ガスセンサ105rの不活性異常検出手段901bが異常を検出していない場合に、下流空燃比制御手段903aの異常であると判定する。
上流の異常検出手段905dは、上流空燃比制御手段905aの発生出力が所定の上下限値の範囲外にある状態が所定時間以上にわたって継続していて、上流排気ガスセンサ105fBの不活性異常検出手段904bが異常を検出していない場合に、上流空燃比制御手段905aの異常であると判定する。
【0280】
下流の不活性補正手段903cは、下流の異常検出手段903dが下流空燃比制御手段903aの異常状態を検出したことに応動して、下流空燃比制御手段903aが生成する第1の目標電圧BF01に代えて、所定の代替信号電圧を上流空燃比制御手段905aに入力する。
上流の不活性補正手段905cは、上流の異常検出手段905dが上流空燃比制御手段905aの異常状態を検出したことに応動して、上流空燃比制御手段905aが生成する給燃量Fの増減補正指令に代えて、所定の代替信号電圧を燃料噴射制御手段906に入力する。
【0281】
さらに、この発明の実施の形態2(請求項6)によるプログラムメモリ112Bは、学習記憶手段907となる制御プログラムを備えている。
学習記憶手段907は、内燃機関10の吸気量Qaまたは回転速度Nの少なくとも一方に対応して順次記憶された、最新複数回の下流空燃比制御手段903aまたは上流空燃比制御手段905aの出力値の平均値を記憶する。
下流または上流の不活性補正手段903c、905cにおいて適用される代替信号電圧は、下流・上流排気ガスセンサ105r、105fBと、下流・上流空燃比制御手段903a、905aと、が正常動作していたときに学習記憶手段907によって学習記憶された、実測データの平均値が適用される。
【符号の説明】
【0282】
10 内燃機関、12 エアフローセンサ、13 インジェクタ、14 クランク角センサ、15 触媒、17 負圧センサ、50f 上流開閉素子、50r 下流開閉素子、53f 上流ヒータ、53r 下流ヒータ、57f 上流電流検出抵抗、57r 下流電流検出抵抗、100A、100B 車載エンジン制御装置、105f、105fB 上流排気ガスセンサ、105r 下流排気ガスセンサ、110 マイクロプロセッサ、112A、112B プログラムメモリ、150 ヒータ制御回路、505、605 過電流異常検出手段、507、607 劣化検出手段、509、609 不活性判定補正手段、510、610 論理異常判定手段、602 遅延給電時期判定手段、612 ヒータ電圧制御手段、701a、704a、901a、904a 活性化検出手段、701b、704b、901b、904b 不活性異常検出手段、703a、705a、903a、905a 空燃比制御手段、703c、705c、903c、905c 不活性補正手段、703d、705d、903d、905d 制御異常検出手段、706、906 燃料噴射制御手段、707、907 学習記憶手段、903b、905b 未活性補正手段、AF00、BF00 自主目標空燃比、AF01、BF01 第1の目標電圧、AF02、BF02 第2の目標電圧、AF1、AF2、BF1、BF2 検出信号電圧、Cf、Cr ヒータ電流検出信号、Df、Dr ヒータ駆動指令、Kc 空燃比補正係数、抵抗値、Tf、Tr 論理監視信号、Vb 駆動電源電圧、VS1 検出信号電圧。

【特許請求の範囲】
【請求項1】
内燃機関の排気流路に設けられた触媒の上流および下流位置に設けられ、空燃比に対応した非線形または線形の検出信号電圧を生成する上流・下流排気ガスセンサと、
前記上流・下流排気ガスセンサを早期に活性化するために、所定要件が成立しているときに給電される上流・下流ヒータとが接続された車載エンジン制御装置であって、
プログラムメモリと協働して、燃料噴射制御手段と上流・下流空燃比制御手段とを実行するマイクロプロセッサを備えるとともに、
前記マイクロプロセッサから駆動制御されて前記上流・下流ヒータに給電するための上流・下流開閉素子と、前記マイクロプロセッサに対してヒータ電流検出信号を供給するための電流検出抵抗とを含むヒータ制御回路を備え、
前記燃料噴射制御手段は、前記内燃機関の吸気流路に設けられたエアフローセンサにより検出されるか、または前記内燃機関の回転速度に応じたパルス信号を生成する回転センサと前記内燃機関の吸気管に設けられた負圧センサの検出値とから演算算出される吸気量に比例して、燃料噴射用電磁弁の駆動用電磁コイルであるインジェクタの開弁時間を調整して燃料噴射量を制御し、所定の自主目標空燃比が得られるように給燃量を制御し、
前記上流空燃比制御手段は、前記上流排気ガスセンサから得られる検出信号電圧に対応した上流位置の空燃比が、上流位置の目標空燃比である第1の目標電圧と一致するように、前記燃料噴射制御手段に対して給燃量の増減補正指令を発生し、
前記下流空燃比制御手段は、前記下流排気ガスセンサから得られる検出信号電圧に対応した下流位置の空燃比が、下流位置の目標空燃比である第2の目標電圧と一致するように前記第1の目標電圧を補正し、
前記下流ヒータは、最初に給電された前記上流ヒータの温度上昇にともない前記上流ヒータに対する給電電流が所定値以下に減衰した時点で、前記上流排気ガスセンサがまだ未活性状態であっても給電開始され、
前記燃料噴射制御手段の自主目標空燃比の値は、前記上流排気ガスセンサの内部抵抗の抵抗値が減少して、上流側の検出信号電圧が生成されるまでは、燃料リッチとなる第1の初期値に設定され、
前記上流空燃比制御手段に対する第1の目標電圧は、前記下流排気ガスセンサの内部抵抗の抵抗値が減少して、下流側の検出信号電圧が生成されるまでは、燃料リッチとなる第2の初期値に設定されている
ことを特徴とする車載エンジン制御装置。
【請求項2】
前記上流空燃比制御手段は、前記第1の目標電圧と前記非線形の検出信号電圧との偏差電圧に関する第1のデジタルフィルタ回路と、負帰還制御を行う第1のPID調節回路とにより構成されるか、または、空燃比に比例した線形信号電圧を得るセンサインタフェース回路と、前記線形信号電圧と前記第1の目標電圧との偏差電圧が入力される第3のPID調節回路とにより構成され、
前記第1または第3のPID調節回路の出力電圧は、第1の上限制限値以上にリッチ指令出力とならないように制限され、前記上流排気ガスセンサが未活性状態であるときの前記燃料噴射制御手段に対する前記第1の初期値は、前記第1の上限制限値により決定され、
前記下流空燃比制御手段は、前記第2の目標電圧と前記非線形の検出信号電圧との偏差電圧に関する第2のデジタルフィルタ回路と、第2のPID調節回路とにより構成され、
前記第2のPID調節回路の出力電圧は、第2の上限制限値以上にリッチ指令出力とならないように制限され、前記第2の上限制限値は、前記下流排気ガスセンサが未活性状態であるときの前記上流空燃比制御手段に対する前記第2の初期値となる
ことを特徴とする請求項1に記載の車載エンジン制御装置。
【請求項3】
前記プログラムメモリは前記燃料噴射制御手段に対して前記第1の初期値を供給する第1の未活性補正手段となる制御プログラムと、前記上流空燃比制御手段に対して前記第2の初期値を供給する第2の未活性補正手段となる制御プログラムとを備え、
前記上流空燃比制御手段は、前記上流排気ガスセンサによる空燃比の非線形の検出信号電圧から、空燃比に比例した線形の検出信号電圧を生成するセンサインタフェース回路
と、前記センサインタフェース回路からの前記線形の検出信号電圧と前記第1の目標電圧との偏差電圧を入力として負帰還制御を行う第3のPID調節回路により構成されるか、または、前記第1の目標電圧と前記非線形の検出信号電圧との偏差電圧に関する第1のデジタルフィルタ回路と、第1のPID調節回路と、により構成され、
前記上流排気ガスセンサが未活性状態であるときには、前記上流空燃比制御手段に代えて、前記第1の未活性補正手段が選択使用され、
前記下流空燃比制御手段は、前記第2の目標電圧と非線形の検出信号電圧との偏差電圧に関する第2のデジタルフィルタ回路と、第2のPID調節回路とにより構成され、
前記下流排気ガスセンサが未活性状態であるときには、前記下流空燃比制御手段に代えて、前記第2の未活性補正手段が選択使用される
ことを特徴とする請求項1に記載の車載エンジン制御装置。
【請求項4】
前記プログラムメモリは、前記下流・上流排気ガスセンサに関し、下流および上流の活性化検出手段となる制御プログラムと、下流および上流の不活性異常検出手段となる制御プログラムと、下流および上流の不活性補正手段となる制御プログラムと、を含み、
前記下流の活性化検出手段は、前記下流排気ガスセンサの検出信号電圧が、リーンからリッチ、またはリッチからリーンレベルに変化したことを検出して活性化したと判定し、
前記下流の不活性異常検出手段は、前記下流ヒータに給電されてから所定の判定時間を経過しても、前記下流排気ガスセンサの検出信号電圧が、リーンからリッチ、またはリッチからリーンレベルに変化しないことを検出して不活性異常であると判定し、
前記下流の不活性補正手段は、前記不活性異常検出手段が前記下流排気ガスセンサの不活性異常状態を検出したことに応動して、前記下流空燃比制御手段が生成する第1の目標電圧に代えて、所定の代替信号電圧を前記上流空燃比制御手段に入力し、
前記上流の活性化検出手段は、前記上流排気ガスセンサの検出信号電圧が、リーンからリッチ、またはリッチからリーンレベルに変化したことを検出して活性化したと判定し、
前記上流の不活性異常検出手段は、前記上流ヒータに給電されてから所定の判定時間を経過しても、前記上流排気ガスセンサの検出信号電圧が、リーンからリッチ、またはリッチからリーンレベルに変化しないことを検出して不活性異常であると判定し、
前記上流の不活性補正手段は、前記不活性異常検出手段が前記上流排気ガスセンサの不活性異常状態を検出したことに応動して、前記上流空燃比制御手段が生成する前記給燃量の増減補正指令に代えて、所定の代替信号電圧を前記燃料噴射制御手段に入力することを特徴とする請求項1に記載の車載エンジン制御装置。
【請求項5】
前記プログラムメモリは、燃料カット運転状態ではないときに作用する前記下流・上流空燃比制御手段に対し、下流および上流の異常検出手段となる制御プログラムを含み、
前記下流の異常検出手段は、前記下流空燃比制御手段の発生出力が所定の上下限値の範囲外にある状態が所定時間以上にわたって継続していて、前記下流排気ガスセンサの不活性異常検出手段が異常を検出していない場合に、前記下流空燃比制御手段の異常であると判定し、
前記上流の異常検出手段は、前記上流空燃比制御手段の発生出力が所定の上下限値の範囲外にある状態が所定時間以上にわたって継続していて、前記上流排気ガスセンサの不活性異常検出手段が異常を検出していない場合に、前記上流空燃比制御手段の異常であると判定し、
前記下流の不活性補正手段は、前記下流の異常検出手段が前記下流空燃比制御手段の異常状態を検出したことに応動して、前記下流空燃比制御手段が生成する第1の目標電圧に代えて、所定の代替信号電圧を前記上流空燃比制御手段に入力し、
前記上流の不活性補正手段は、前記上流の異常検出手段が前記上流空燃比制御手段の異常状態を検出したことに応動して、前記上流空燃比制御手段が生成する前記給燃量の増減補正指令に代えて、所定の代替信号電圧を前記燃料噴射制御手段に入力することを特徴とする請求項4に記載の車載エンジン制御装置。
【請求項6】
前記プログラムメモリは、学習記憶手段となる制御プログラムを含み、
前記学習記憶手段は、前記内燃機関の吸気量または回転速度の少なくとも一方に対応して順次記憶された、最新複数回の前記下流空燃比制御手段または上流空燃比制御手段の出力値の平均値を記憶し、
前記下流または上流の不活性補正手段において適用される代替信号電圧は、前記下流・上流排気ガスセンサおよび前記下流・上流空燃比制御手段が正常動作していたときに、学習記憶手段によって学習記憶された実測データの平均値が適用される
ことを特徴とする請求項4または請求項5に記載の車載エンジン制御装置。
【請求項7】
前記プログラムメモリは、前記上流・下流ヒータに対する過電流異常検出手段または劣化検出手段または論理異常判定手段の少なくとも1つの手段、および不活性判定補正手段となる制御プログラムを含み、
前記過電流異常検出手段は、前記電流検出抵抗によって検出された上流・下流ヒータへの給電電流が、所定の上限値を超過したことに応動して、異常検出信号を生成して前記上流・下流開閉素子を開路し、
前記劣化検出手段は、前記電流検出抵抗によって検出された上流・下流ヒータへの給電電流が、所定の下限値未満となったことに応動して異常検出信号を生成し、
前記論理異常判定手段は、前記上流・下流開閉素子に対する駆動指令と、前記上流・下流開閉素子の導通状態に応動する論理監視信号との論理の整合性を監視して、前記上流・下流ヒータの断線または短絡異常の有無、または、前記上流・下流開閉素子の断線または短絡異常の有無を判定し、
前記不活性判定補正手段は、前記過電流異常検出手段または前記劣化検出手段または前記論理異常判定手段が異常を検出したことに応動して、前記不活性異常検出手段おける不活性異常判定時間を延長させる
ことを特徴とする請求項4または請求項5に記載の車載エンジン制御装置。
【請求項8】
前記劣化検出手段における判定下限電流は、前記上流・下流ヒータに対する給電電圧となる駆動電源電圧に比例して、大きな値となるように補正されている
ことを特徴とする請求項7に記載の車載エンジン制御装置。
【請求項9】
前記プログラムメモリは、遅延給電時期判定手段となる制御プログラムを含み、
前記遅延給電時期判定手段は、前記電流検出抵抗により検出された上流ヒータへの給電電流が所定の設定閾値以下となったことに応動して、前記下流ヒータへの給電を開始し、
前記遅延給電時期判定手段における前記設定閾値は、前記上流ヒータに対する給電電圧となる駆動電源電圧に比例して、大きな値となるように補正されている
ことを特徴とする請求項1に記載の車載エンジン制御装置。
【請求項10】
前記プログラムメモリは、ヒータ電圧制御手段となる制御プログラムを含み、
前記ヒータ制御回路は、少なくとも前記上流・下流開閉素子を含むパワーモジュールとして構成されており、
前記ヒータ電圧制御手段は、前記上流ヒータの給電電流の減衰にともなって、前記下流ヒータに対する給電が開始された時点で、前記上流・下流ヒータの合計電流が所定値を超過しないように前記開閉素子の通電デューティを制御して、少なくとも前記下流ヒータに対する平均給電電圧を抑制する
ことを特徴とする請求項1または請求項9に記載の車載エンジン制御装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2011−252470(P2011−252470A)
【公開日】平成23年12月15日(2011.12.15)
【国際特許分類】
【出願番号】特願2010−128437(P2010−128437)
【出願日】平成22年6月4日(2010.6.4)
【出願人】(000006013)三菱電機株式会社 (33,312)
【Fターム(参考)】