説明

インホイールモータ駆動装置および車両用モータ駆動装置

【課題】静不釣り合いを解消することができる他、動不釣り合いも解消することができるインホイールモータ駆動装置を提供する。
【解決手段】第1偏心部材251および第3偏心部材25nが同位相に偏心配置され、これら第1偏心部材251と第3偏心部材25nとの間に配置された第2偏心部材25mが、これらと180度異なる位相で偏心配置され、重量バランスが最適なものとなり、静不釣り合いを解消することができる他、動不釣り合いも解消することができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、サイクロイド減速機構を備えたインホイールモータ駆動装置および車両用モータ駆動装置に関し、特にサイクロイド減速機構の回転要素の配置に関する。
【背景技術】
【0002】
従来のインホイールモータ駆動装置は、例えば、特開2006−258289号公報(特許文献1)に記載されている。特許文献1のインホイールモータ駆動装置は、駆動モータと、この駆動モータから駆動力を入力されて回転数を減速して車輪側に出力する減速機と、減速機の出力軸と結合する車輪のハブ部材とが同軸かつ直列に配列されている。この減速機はサイクロイド減速機構であることから、従来の減速機として一般的な遊星歯車式減速機構と比較して高減速比が得られる。したがって、駆動モータの要求トルクを小さくすることができ、インホイールモータ駆動装置のサイズおよび重量を低減することができるという点で頗る有利である。
【0003】
また、このインホイールモータ駆動装置のサイクロイド減速機構は、回転軸線方向に離隔して配置された2枚の曲線板を有する。これら曲線板は公転部材に相当し、高回転数で公転しながら低回転数で自転することから、バランスを考慮して取り付けることが望ましい。そこで特許文献1に記載された2枚の曲線板は、回転軸線を中心として周方向に180度異なる偏心位置に取り付けられて、バランスが釣り合うよう配置される。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2006−258289号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
上記従来のサイクロイド減速機構にあっては、2枚の曲線板の位相が180度異なるよう配置されているため、半径方向の遠心力を釣り合わせることができる。この状態を静釣り合いという。しかし、上記従来のようなインホイールモータ駆動装置にあっては、更に改善すべき点があることを本発明者は見出した。つまり、静不釣り合いは解消されるものの、回転軸線と直交する軸線回りのモーメントが0にならないため動不釣り合いであった。この動不釣り合いはサイクロイド減速機構の振動を増大させ、モータ回転数が上昇するほど、この振動が顕著になる。
【0006】
本発明は、上述の実情に鑑み、静不釣り合いを解消することができる他、動不釣り合いも解消することができるインホイールモータ駆動装置および車両用モータ駆動装置を提供することを目的とする。
【課題を解決するための手段】
【0007】
この目的のため本発明によるインホイールモータ駆動装置は、モータ側回転部材を回転駆動するモータ部と、モータ側回転部材の回転を減速して車輪側回転部材に伝達する減速部と、車輪側回転部材に固定連結された車輪ハブとを備え、減速部は、モータ側回転部材の回転軸線から偏心してモータ側回転部材に結合した3個の円盤形状の偏心部材と、内周が3個の偏心部材の外周にそれぞれ相対回転自在に取り付けられてモータ側回転部材の回転に伴って回転軸線を中心とする公転運動を行う3個の公転部材と、公転部材の外周部に係合して公転部材の自転運動を生じさせる外周係合部材と、車輪側回転部材と結合して公転部材の自転運動を取り出す内側係合部材とを有することを前提とする。
【0008】
この前提のもと、3個の公転部材は、第1公転部材と、第1公転部材の軸線方向一方側に配置された第2公転部材と、第2公転部材のさらに軸線方向一方側に配置された第3公転部材とを含む。3個の偏心部材は、第1公転部材を相対回転自在に支持するとともに回転軸線から軸線直角方向に偏心して配置される第1偏心部材と、第2公転部材を相対回転自在に支持するとともに第1偏心部材の軸線方向一方側で第1偏心部材と180度異なる周方向位置に偏心して配置される第2偏心部材と、第3公転部材を相対回転自在に支持するとともに第2偏心部材のさらに軸線方向一方側で第2偏心部材と180度異なる周方向位置に偏心して配置される第3偏心部材とを含む。
【0009】
そして、第1公転部材および第1偏心部材の重量和をMSl、回転軸線から第1公転部材および第1偏心部材の重心までの偏心距離をESlとし、第2公転部材および第2偏心部材の重量和をMSm、回転軸線から第2公転部材および第2偏心部材の重心までの偏心距離をESmとし、第3公転部材および第3偏心部材の重量和をMSn、回転軸線から第3公転部材および第3偏心部材の重心までの偏心距離をESnとして、
SlSl+MSnSn=MSmSmを満足する。
【0010】
さらに、公転部材と偏心部材の重心が一致するように各々の公転部材と偏心部材を設置し、第1公転部材および第1偏心部材の重心と、第2公転部材および第2偏心部材の重心との軸線方向距離をLSlmとし、第2公転部材および第2偏心部材の重心と、第3公転部材および第3偏心部材の重心との軸線方向距離をLSmnとして、
SlSlSlm=MSnSnSmnを満足する。
【0011】
かかる本発明によれば、第1偏心部材および第3偏心部材が同位相に偏心配置され、これら第1偏心部材と第3偏心部材との間に配置された第2偏心部材が、これらと180度異なる位相で偏心配置され、重量バランスが最適なものとなる。したがって、静不釣り合いを解消することができる他、動不釣り合いも解消することができる。
【0012】
なお、ここでいう重量和とは、各公転部材と各偏心部材との間に転がり軸受が設けられる場合において、転がり軸受の構成部品、例えば内外輪、転動体、保持器、を含むと理解されたい。かかる転がり軸受も、各公転部材または各偏心部材の構成部品であるためである。
【0013】
ここで好ましくは、MSl=MSnおよび2MSl=MSmを満足する。かかる実施形態によれば、ESl+ESn=2ESmを実現するとともに、ESlSlm=ESnSmnを実現することが可能となり、同一の部品を、第1公転部材および第1偏心部材と、第3公転部材および第3偏心部材に使用することができる。したがって、製作コスト上有利なインホイールモータ駆動装置を提供することができる。
【0014】
より好ましくは、ESl=ESnを満足する。かかる実施形態によれば、公転部材および偏心部材の偏心距離を、ESl=ESm=ESnとすることが可能になり、減速部の軸線直角方向寸法を均一にすることができる。
【0015】
本発明は、各公転部材および各偏心部材の重量和が第1〜第3のそれぞれにおいて上述した式を満足するとともに、各公転部材および各偏心部材の重心が第1〜第3のそれぞれにおいて上述した式を満足することによって成立するものであり、第1〜第3偏心部材自身の重量と、偏心距離と、軸線方向距離については限定限定されない。
【0016】
このように、本発明は1実施例に限定されないが、第1〜第3公転部材自身も、上述した式と同様に構成されてもよい。すなわち、第1公転部材の重量をMAl、回転軸線から第1公転部材の重心までの偏心距離をEAlとし、第2公転部材の重量をMAm、回転軸線から第2公転部材の重心までの偏心距離をEAmとし、第3公転部材の重量をMAn、回転軸線から第3公転部材の重心までの偏心距離をEAnとして、
AlAl+MAnAn=MAmAmを満足する。
【0017】
さらに、第1公転部材の重心と第2公転部材の重心との軸線方向距離をLAlmとし、第2公転部材の重心と第3公転部材の重心との軸線方向距離をLAmnとして、
AlAlAlm=MAnAnAmnを満足する。
【0018】
かかる実施形態によれば、静釣り合いおよび動釣り合いを好適に実現することができる。
【0019】
ここで好ましくは、MAl=MAnおよび2MAl=MAmを満足する。かかる実施形態によれば、EAl+EAn=2EAmを実現するとともに、EAlAlm=EAnAmnを実現することが可能となり、同一の部品を、第1公転部材と、第3公転部材に使用することができる。したがって、製作コスト上有利なインホイールモータ駆動装置を提供することができる。
【0020】
より好ましくは、第2公転部材の軸線方向厚みは、第1公転部材の軸線方向厚みの2倍である。かかる実施形態によれば、外径および内径が等しい第1公転部材、第2公転部材、および第3公転部材を共通する材料で形成することが可能となり、製作工程上およびコスト上有利となる。
【0021】
好ましくは、EAl=EAnを満足する。かかる実施形態によれば、公転部材の偏心距離を、EAl=EAm=EAnとすることが可能になり、減速部の軸線直角方向寸法を均一にすることができる。
【0022】
本発明において、公転部材を回転自在に支持する偏心部材自身は特に限定されないが、第1〜第3偏心部材自身も上述した式と同様に構成されてもよい。すなわち、第1偏心部材の重量をMBl、回転軸線から第1偏心部材の重心までの偏心距離をEBlとし、第2偏心部材の重量をMBm、回転軸線から第2偏心部材の重心までの偏心距離をEBmとし、第3偏心部材の重量をMBn、回転軸線から第3偏心部材の重心までの偏心距離をEBnとして、
BlBl+MBnBn=MBmBmを満足する。
【0023】
さらに、第1偏心部材の重心と第2偏心部材の重心との軸線方向距離をLBlmとし、第2偏心部材の重心と第3偏心部材の重心との軸線方向距離をLBmnとして、
BlBlBlm=MBnBnBmnを満足する。
【0024】
かかる実施形態によれば、静釣り合いおよび動釣り合いを好適に実現することができる。
【0025】
ここで好ましくは、MBl=MBnおよび2MBl=MBmを満足する。かかる実施形態によれば、EBl+EBn=2EBmを実現するとともに、EBlBlm=EBnBmnを実現することが可能となり、同一の部品を、第1偏心部材と、第3偏心部材に使用することができる。したがって、製作コスト上有利なインホイールモータ駆動装置を提供することができる。
【0026】
より好ましくは、第2偏心部材の軸線方向厚みは、第1偏心部材の軸線方向厚みの2倍である。かかる実施形態によれば、外径および内径が等しい第1偏心部材、第2偏心部材、および第3偏心部材を共通する材料で形成することが可能となり、製作工程上およびコスト上有利となる。
【0027】
好ましくは、EBl=EBnを満足する。かかる実施形態によれば、偏心部材の偏心距離を、EBl=EBm=EBnとすることが可能になり、減速部の軸線直角方向寸法を均一にすることができる。
【0028】
好ましくは、第1偏心部材は第1公転部材を玉軸受で回転自在に支持し、第2偏心部材は第2公転部材をころ軸受で回転自在に支持し、第3偏心部材は第3公転部材を玉軸受で回転自在に支持する。かかる実施形態によれば、荷重容量が小さな玉軸受で第1公転部材および第3公転部材を回転自在に支持するとともに荷重容量が大きなころ軸受で第2公転部材を回転自在に支持することから、3個の公転部材のうち軸受荷重が最も大きな第2公転部材を好適に支持することが可能になり、減速部の耐久性が向上する。
【0029】
また本発明による車両用モータ駆動装置は、モータ側回転部材を回転駆動するモータ部と、モータ側回転部材の回転を減速して車輪側回転部材に伝達する減速部と、車輪側回転部材の回転を複数の車輪へ駆動伝達する差動装置とを備え、減速部は、モータ側回転部材の回転軸線から偏心してモータ側回転部材に結合した3個の円盤形状の偏心部材と、内周が3個の偏心部材の外周にそれぞれ相対回転自在に取り付けられてモータ側回転部材の回転に伴って回転軸線を中心とする公転運動を行う3個の公転部材と、公転部材の外周部に係合して公転部材の自転運動を生じさせる外周係合部材と、車輪側回転部材と結合して公転部材の自転運動を取り出す内側係合部材とを有することを前提とする。
【0030】
この前提のもと、3個の公転部材は、第1公転部材と、第1公転部材の軸線方向一方側に配置された第2公転部材と、第2公転部材のさらに軸線方向一方側に配置された第3公転部材とを含む。3個の偏心部材は、第1公転部材を相対回転自在に支持するとともに回転軸線から軸線直角方向に偏心して配置される第1偏心部材と、第2公転部材を相対回転自在に支持するとともに第1偏心部材の軸線方向一方側で第1偏心部材と180度異なる周方向位置に偏心して配置される第2偏心部材と、第3公転部材を相対回転自在に支持するとともに第2偏心部材のさらに軸線方向一方側で第2偏心部材と180度異なる周方向位置に偏心して配置される第3偏心部材とを含む。
【0031】
そして、第1公転部材および第1偏心部材の重量和をMSl、回転軸線から第1公転部材および第1偏心部材の重心までの偏心距離をESlとし、第2公転部材および第2偏心部材の重量和をMSm、回転軸線から第2公転部材および第2偏心部材の重心までの偏心距離をESmとし、第3公転部材および第3偏心部材の重量和をMSn、回転軸線から第3公転部材および第3偏心部材の重心までの偏心距離をESnとして、
SlSl+MSnSn=MSmSmを満足する。
【0032】
さらに、公転部材と偏心部材の重心が一致するように各々の公転部材と偏心部材を設置し、第1公転部材および第1偏心部材の重心と、第2公転部材および第2偏心部材の重心との軸線方向距離をLSlmとし、第2公転部材および第2偏心部材の重心と、第3公転部材および第3偏心部材の重心との軸線方向距離をLSmnとして、
SlSlSlm=MSnSnSmnを満足する。
【0033】
かかる本発明によれば、第1偏心部材および第3偏心部材が同位相に偏心配置され、これら第1偏心部材と第3偏心部材との間に配置された第2偏心部材が、これらと180度異なる位相で偏心配置され、重量バランスが最適なものとなる。したがって、静不釣り合いを解消することができる他、動不釣り合いも解消することができる。
【0034】
なお、ここでいう重量和とは、各公転部材と各偏心部材との間に転がり軸受が設けられる場合において、転がり軸受の構成部品、例えば内外輪、転動体、保持器、を含むと理解されたい。かかる転がり軸受も、各公転部材または各偏心部材の構成部品であるためである。
【発明の効果】
【0035】
このように本発明は、3個の偏心部材は、回転軸線から軸線直角方向に偏心して配置される第1偏心部材と、第1公転部材の軸線方向一方側で第1偏心部材と180度異なる周方向位置に偏心して配置される第2偏心部材と、第2偏心部材のさらに軸線方向一方側で第1公転部材と同じ周方向位置に偏心して配置される第3偏心部材とを含むことから、減速部の静釣り合いおよび動釣り合いを実現することができる。この結果、減速部の振動を防止することが可能になり、インホイールモータ駆動装置および車両用モータ駆動装置の長寿命化を図ることができる。
【図面の簡単な説明】
【0036】
【図1】本発明の一実施例になるインホイールモータ駆動装置を示す縦断面図である。
【図2】図1のII−IIにおける断面図である。
【図3】同実施例の偏心部材および曲線板の位置関係を拡大して示す縦断面図である。
【図4】同実施例の偏心部材を回転軸線方向からみた位置関係を模式的に示す説明図である。
【図5】同実施例のインホイールモータ駆動装置の配置レイアウトを示す平面図である。
【図6】本発明の他の実施例になる車両用モータ駆動装置を示す展開断面図である。
【図7】同実施例の車両用モータ駆動装置の配置レイアウトを示す平面図である。
【発明を実施するための形態】
【0037】
以下、本発明の実施の形態を、図面に示す実施例に基づき詳細に説明する。
【0038】
図1は、本発明の一実施例になるインホイールモータ駆動装置を示す縦断面図である。図2は、図1のII−IIにおける断面図である。図3は、同実施例の偏心部材および曲線板を取り出して示す縦断面図である。図4は、回転軸線方向からみた同実施例の偏心部材の位置関係を模式的に示す説明図である。図5は、同実施例のインホイールモータ駆動装置の配置レイアウトを示す平面図である。
【0039】
インホイールモータ駆動装置21は、駆動力を発生させるモータ駆動装置としてのモータ部Aと、モータ部Aの回転を減速して出力する減速部Bと、減速部Bからの出力を図示しない駆動輪に伝える車輪ハブ軸受部Cとを備える。モータ部Aはモータ部の外郭を形成するモータケーシング22a、ポンプケーシング22p、およびモータカバー22tに収納され、減速部Bは減速部の外郭を形成する減速部ケーシング22bに収納され、車輪ハブ軸受部Cは減速部ケーシング22bに固定された軸受部ケーシング22cに回転自在に支持されて、例えば電気自動車のホイールハウジング内に取り付けられる。あるいは鉄道車両の台車に取り付けられる。これらモータケーシング22a、ポンプケーシング22p、モータカバー22t、減速部ケーシング22b、および軸受部ケーシング22cは相互に結合して1個のケーシング22を構成する。
【0040】
モータ部Aは、円筒形状のモータケーシング22aの内周に固定されるステータ23と、ステータ23の内側に径方向に開いた隙間を介して対面する位置に配置されるロータ24と、ロータ24の内側に固定連結されてロータ24と一体回転する回転軸35とを備えるラジアルギャップモータである。
【0041】
回転軸35の端部は、転がり軸受63を介してモータカバー22tに回転自在に支持される。また回転軸35の反対側の端部は、転がり軸受62を介してポンプケーシング22pに回転自在に支持されて減速部入力軸25の一端と結合する。モータカバー22tはモータケーシング22aの一方端の開口を閉塞する円盤形状の部材であり、モータ部Aの端部であるとともに、インホイールモータ駆動装置21の端部でもある。ポンプケーシング22pはモータケーシング22aの他方端の開口を閉塞する円盤形状の部材であり、後述するオイルポンプ51を備える。
【0042】
減速部Bは、回転軸35と結合する減速部入力軸25と、減速部入力軸25に結合した第1偏心部材25l、第2偏心部材25m、および第3偏心部材25nと、これら第1偏心部材〜第3偏心部材25l〜25nにそれぞれ回転自在に保持される公転部材としての第1曲線板26l、第2曲線板26m、および第3曲線板26nと、これら曲線板26l,26m,26nの外周部に係合する外周係合部材としての複数の外ピン27と、外ピン27の両端を支持する減速部ケーシング22bと、曲線板26l,26m,26nの自転運動を取り出す内側係合部材としての内ピン31と、内ピン31と結合する車輪側回転部材28と、曲線板26l,26m同士の隙間に取り付けられてこれら曲線板26l,26mの端面に当接して曲線板の傾きを防止するセンターカラー29と、曲線板26m,26n同士の隙間に取り付けられてこれら曲線板26m,26nの端面に当接して曲線板の傾きを防止するセンターカラー30と、内ピン31の撓みを防止する補強部材61とを有する。
【0043】
減速部入力軸25は、外径寸法、すなわち太さが一定であり、偏心する部分を有しない。モータ部Aから遠い側にある減速部入力軸25の一端は、軸受64を介して、後述する車輪側回転部材28の端部に回転自在に支持される。またモータ部Aに近い側にある減速部入力軸25の他端は回転軸35の一端と結合する。これら両端間で、減速部入力軸25の外周には、回転軸線Oから直角方向に偏心して偏心部材25l,25m,25nが嵌合固定される。3個の円盤形状の偏心部材25l,25m,25nは、偏心運動による遠心力で発生する振動を互いに打ち消し合うために、回転軸線Oと中心として周方向180度位相を変えて設けられている。
【0044】
つまり、ロータ24に近い側に配置された第1偏心部材25lと、ロータ24から遠い側に配置された第3偏心部材25nは、同位相に設けられる。これに対し、第1偏心部材25lと第3偏心部材25nとの間に配置された第2偏心部材25mは、第1偏心部材25lおよび第3偏心部材25nに対し180度位相を変えて設けられている。回転軸35および減速部入力軸25は、モータ部Aの駆動力を減速部Bに伝達するモータ側回転部材を構成する。
【0045】
図2を参照して、第2偏心部材25mの外周には第2曲線板26mが同心円状に取り付けられている。第2曲線板26mは、外周部にエピトロコイド等のトロコイド系曲線で構成されて径方向に窪んだ複数の曲線凹部を有し、これら曲線凹部が後述する外ピン27と係合する。また第2曲線板26mは一方側端面から他方側端面に貫通する複数の貫通孔30a,30bを有する。
【0046】
円盤形状の第2偏心部材25mの中心Xmは、曲線板26mの自転軸心でもあり、軸線Oから偏心した位置に設けられている。なお図2中、後述する軸線油路57は回転軸線Oに沿って延びる。
【0047】
貫通孔30aは、第2曲線板26mの自転軸心Xmを中心とする円周上に等間隔に複数個設けられており、内ピン31をそれぞれ受入れる。内ピン31の外周には針状ころ軸受31aが設けられており、これにより内ピン31の外周が貫通孔30aの孔壁面と転がり接触する。また、貫通孔30bは、第2曲線板26mの中心Xmに設けられており、第2曲線板26mの内周になる。貫通孔30bの内周面と第2偏心部材25mの外周面との間には転がり軸受41を介在させる。第2曲線板26mは、転がり軸受41を介して、第2偏心部材25mの外周に相対回転可能に取り付けられる。
【0048】
この転がり軸受41は、第2偏心部材25mの外周面に嵌合する内輪部材42と、複数のころ44と、周方向で隣り合うころ44の間隔を保持する保持器(図示省略)とを備え、貫通孔30bの孔壁面を外側軌道面とする円筒ころ軸受である。あるいは深溝玉軸受であってもよい。内輪部材42は、ころ44が転走する内輪部材42の内側軌道面42aを軸線O方向に挟んで向かい合う1対の鍔部をさらに有し、ころ44を1対の鍔部間に保持する。第1曲線板26lおよび第3曲線板26nも転がり軸受41でそれぞれ回転自在に支持され、具体的には深溝玉軸受で支持される。
【0049】
説明を図1に戻すと、複数の内ピン31は、軸線Oと平行に延び、モータ部Aから遠い側にある基端で車輪側回転部材28に共通に支持される。車輪側回転部材28は、軸線Oに沿って延びる軸部28bと、軸部28bの端部に形成されて内ピン31の基端と結合するフランジ部28aとを有する。フランジ部28aの端面には、車輪側回転部材28の回転軸線Oを中心とする円周上の等間隔に内ピン31を固定する穴が形成されている。軸部28bの外周面には、後述する車輪ハブ軸受部Cの車輪ハブ32が固定されている。
【0050】
フランジ部28aから離れた側にある内ピン31の先端には、補強部材61が設けられている。補強部材61は、複数の内ピン31先端と結合するフランジ形状の円環部61bと、円環部61bの内径部分から軸線O方向にモータ部Aへ延びる円筒部61cとを含む。3個の曲線板26l,26m,26nから一部の内ピン31に負荷される荷重は円環部61bを介して全ての内ピン31によって支持されるため、内ピン31に作用する応力を低減させ耐久性を向上させることができる。円筒部61cの先端は、オイルポンプ51と駆動結合する。
【0051】
曲線板26l,26m,26nの外周と係合する外ピン27は、減速部入力軸25の回転軸線Oを中心とする円周軌道上に等間隔に複数設けられる。そして、曲線板26l,26m,26nが偏心部材25l,25m,25nに連れ回されて公転運動すると、曲線板26l,26m,26n外周の曲線凹部と外ピン27とが係合して、曲線板26l,26m,26nに自転運動を生じさせる。
【0052】
なお、減速部ケーシング22b内部に配設された外ピン27は、減速部ケーシング22bに直接保持されていてもよいが、好ましくは減速部ケーシング22bの内壁に嵌合固定されている外ピン保持部45に保持されている。より具体的には、外ピン27の軸線方向両端部を外ピン保持部45に取り付けられた針状ころ軸受27aによって回転自在に支持されている。このように、外ピン27を外ピン保持部45に回転自在に取り付けることにより、曲線板26l,26m,26nとの係合による接触抵抗を低減することができる。
【0053】
インホイールモータ駆動装置21の軽量化の観点から、ケーシング22は、アルミ合金やマグネシウム合金等の軽金属で形成する。一方、高い強度が求められる外ピン保持部45は、炭素鋼で形成するのが望ましい。
【0054】
車輪ハブ軸受部Cは、車輪側回転部材28に固定連結された車輪ハブ32と、車輪ハブ32を回転自在に保持する車輪ハブ軸受33と、車輪ハブ軸受33を支持する軸受部ケーシング22cとを備える。車輪ハブ軸受33は複列アンギュラ玉軸受であって、その外輪が円筒形状の軸受部ケーシング22cの内周に嵌合固定され、その内輪が車輪ハブ32の外周面に嵌合固定される。車輪ハブ32は、車輪側回転部材28の軸部28bを受け入れる円筒形状の中空部32aと、中空部32aの減速部Bから遠い側の軸線O方向端に形成されたフランジ部32bとを有する。フランジ部32bにはボルト32cによって図示しない駆動輪のロードホイールが連結固定される。
【0055】
上記構成のインホイールモータ駆動装置21の作動原理を詳しく説明する。
【0056】
モータ部Aは、例えば、ステータ23に交流電流を供給することによって生じる電磁力を受けて、磁性体または永久磁石を含むロータ24が回転する。これにより、ロータ24に接続された回転軸35が回転すると、回転軸35とともに減速部入力軸25が回転し、減速部入力軸25と結合する偏心部材25l,25m,25nが軸線Oを中心として偏心運動する。
【0057】
そうすると曲線板26l,26m、26nはモータ側回転部材の回転軸線Oを中心として公転運動する。このとき、外ピン27が、曲線板26l,26m、26nの外周に形成された曲線凹部と転がり接触しつつ係合して、曲線板26l,26m、26nをモータ側回転部材の回転とは逆向きに自転運動させる。
【0058】
貫通孔30aに挿通される内ピン外輪31b外周は、貫通孔30aの内径よりも十分に細く、曲線板26l,26m、26nの自転運動に伴って貫通孔30aの孔壁面と当接する。これにより、曲線板26l,26m、26nの公転運動が内ピン31に伝わらず、曲線板26l,26m、26nの自転運動のみが車輪側回転部材28を介して車輪ハブ軸受部Cに伝達される。
【0059】
このとき、軸線Oと同軸に配置された車輪側回転部材28は、減速部Bの出力軸として曲線板26l,26m、26nの自転を取り出す。減速部Bの減速比は、外ピン27の数をZ、曲線板26l,26m、26nの波形の数をZとすると、(Z−Z)/Zで算出される。図2に示す実施形態では、Z=12、Z=11であるので、減速比は1/11と、非常に大きな減速比を得ることができる。これにより、減速部入力軸25の回転が減速部Bによって減速されて車輪側回転部材28に伝達されるので、低トルク、高回転型のモータ部Aを採用した場合でも、駆動輪に必要なトルクを伝達することが可能となる。
【0060】
このように、多段構成とすることなく大きな減速比を得ることができる減速部Bを採用することにより、コンパクトで高減速比のインホイールモータ駆動装置21を得ることができる。また、外ピン27を外ピン保持部45に対して回転自在とし、内ピン31の曲線板26l,26m、26nに当接する位置に針状ころ軸受31aを設けたことにより、摩擦抵抗が低減されるので、減速部Bの伝達効率が向上する。
【0061】
本実施例に係るインホイールモータ駆動装置21を電気自動車に採用することにより、ばね下重量を抑えることができる。その結果、走行安定性に優れた電気自動車を得ることができる。
【0062】
また、本実施例においては、車輪側回転部材28に固定された内ピン31と、曲線板26l,26m、26nに設けられた貫通孔30aとで構成される例を示したが、これに限ることなく、減速部Bの回転を車輪ハブ32に伝達可能な任意の構成とすることができる。例えば、曲線板に固定された内ピンと、車輪側回転部材に形成された穴とで構成される運動変換機構であってもよい。
【0063】
なお、本実施例における作動の説明は、各部材の回転に着目して行ったが、実際にはトルクを含む動力がモータ部Aから駆動輪に伝達される。したがって、上述のように減速された動力は高トルクに変換されたものとなっている。
【0064】
また、本実施例における作動の説明では、モータ部Aに電力を供給してモータ部Aを駆動させ、モータ部Aからの動力を駆動輪に伝達させたが、これとは逆に、車両が減速したり坂を下ったりするようなときは、駆動輪側からの動力を減速部Bで高回転低トルクの回転に変換してモータ部Aに伝達し、モータ部Aで発電しても良い。さらに、ここで発電した電力は、バッテリーに蓄電しておき、後でモータ部Aを駆動させてもよいし、車両に備えられた他の電動機器等の作動に用いてもよい。
【0065】
次に減速部Bの潤滑構造につき、詳しく説明する。
【0066】
ポンプケーシング22pに設けられて上下方向に延びる吸入油路52は、オイルポンプ51の吸入口と減速部Bの下部に設けられたオイル溜まり53とを接続する。ポンプケーシング22pに設けられて上下方向に延びる吐出油路54は、下端でオイルポンプ51の吐出口と接続し、上端でモータケーシング22aに設けられた冷却油路55の一端と接続する。冷却油路55は、モータケーシング22aに設けられたウォータージャケット65と交差する。ウォータージャケット65は冷却水入口65iと、冷却水入出口65oと、モータ部Aを周回するよう配設された冷却水路65wを備える。ウォータージャケット65は軸線油路57と接続するオイルクーラとして機能し、冷却水入口65iから流入した冷却水は、冷却水路65wを流れる過程でモータ部Aおよび冷却油路55を流れる潤滑油を冷却し、冷却水入出口65oから流出する。
【0067】
冷却油路55の他端は、モータカバー22tに設けられた連絡油路56の一端と接続する。径方向に延びる連絡油路56の他端は、互いに結合する管状の回転軸35および管状の減速部入力軸25の内部に共通して設けられた軸線油路57と接続する。軸線油路57は、モータカバー22tに軸支される回転軸35の他端から、軸受64に軸支される減速部入力軸25の一端まで貫通するよう軸線Oに沿って延びる。また軸線油路57は、軸線Oから第2偏心部材25m内を径方向外側に向かって延びる潤滑油路58と接続する。潤滑油路58の径方向外側端は、転がり軸受41の内輪部材42を貫通するよう内側軌道面42aに設けられた孔43と接続する。
【0068】
ポンプケーシング22pの中央に取り付けられ、補強部材61の円筒部61cによって駆動されるオイルポンプ51は、例えばサイクロイドポンプで構成され、オイル溜まり53に貯留した潤滑油を吸入油路52下端から吸入し、吐出油路54に潤滑油を吐出する。
【0069】
次に潤滑油は、吐出油路54と冷却油路55とを順次通過し、冷却油路55で冷却される。次に潤滑油は、連絡油路56と、軸線油路57とを順次通過する。そして一部の潤滑油は減速部入力軸25の一端から流出し、軸受64および減速部Bの内部を潤滑する。また一部の潤滑油は軸線油路57から潤滑油路58に分岐して径方向外方へ流れ、第2偏心部材25mに設けられた転がり軸受41を潤滑する。また、潤滑油は遠心力の作用によって径方向外方へ流れるため、曲線板26l,26m、26nの表面と、内ピン外輪31bの外周面と、外ピン27の外周面とをそれぞれ潤滑する。その後、潤滑油は落下して、減速部Bの下部に設けられたオイル溜まり53に貯留する。潤滑油の循環経路は以上のように構成される。
【0070】
なお図示はしなかったが、前述した潤滑油路58を偏心部材25l,25m,25nにそれぞれ設けてもよい。
【0071】
図3は、偏心部材25l,25m,25nおよび曲線板26l,26m,26nの位置関係を拡大して示す縦断面図である。3個の偏心部材25l,25m,25nは、軸線O方向にモータ部Aから車輪ハブ軸受部Cへ向かって順次配設される。したがって、これら3個の偏心部材25l,25m,25nにそれぞれ回転自在に支持される3個の曲線板26l,26m,26nも、軸線O方向にモータ部Aから車輪ハブ軸受部Cへ向かって順次配設される。
【0072】
図4は、図3の軸線O方向IVからみた偏心部材25l,25m,25nの位置関係を模式的に示す説明図である。第1偏心部材25lの中心Xlは軸線直角方向一方側に配設され、第2偏心部材25mの中心Xmは軸線直角方向他方側に配設され、第3偏心部材25nの中心Xnは軸線直角方向一方側に配設される。すなわち、中心Xlと中心Xnとは同位相であり、中心Xlと中心Xmとは180度異なる位相となる。このように中心Xl(Xn)と中心Xmとは180度異なる位相で配設されることから、回転軸線Oは中心Xl(Xn)と中心Xmとを結ぶ仮想直線上に位置する。
【0073】
この結果、第1偏心部材25lと同心円状に配置される第1曲線板26lは、第3偏心部材25nと同心円状に配置される第3曲線板26nと同じ位相で配置される。また、第2偏心部材25mと同心円状に配置される第2曲線板26mは、第1偏心部材25lと同心円状に配置される第1曲線板26lと180度異なる位相で配置される。
【0074】
第1曲線板26lは回転軸線Oから軸線直角方向に偏心して配置される。第2曲線板26mは第1曲線板26lの軸線O方向一方側で第1曲線板26lと位相が180度異なる周方向位置に偏心して配置される。第3曲線板26nは第2曲線板26mのさらに軸線O方向一方側で第1曲線板26lと同じ位相となる周方向位置に偏心して配置される。
【0075】
本実施例では、第1曲線板26lおよび第1偏心部材25lの重量和をMSl、回転軸線Oから第1曲線板26lおよび第1偏心部材25lの重心までの偏心距離をESlとする。第2曲線板26mおよび第2偏心部材25mの重量和をMSm、回転軸線Oから第2曲線板26mおよび第2偏心部材25mの重心までの偏心距離をESmとする。第3曲線板26nおよび第3偏心部材25nの重量和をMSn、回転軸線Oから第3曲線板26nおよび第3偏心部材25nの重心までの偏心距離をESnとする。図4に示すElはESlと等しく、EmはESmと等しく、EnはESnと等しい。
【0076】
そして、上述した重量和および偏心距離は、以下の式(1)を満足する。
SlSl+MSnSn=MSmSm ・・・・・・(1)
本実施例では、曲線板と偏心部材の重心が一致するように各々の曲線板と偏心部材を設置し、第1曲線板26lおよび第1偏心部材25lの重心と、第2曲線板26mおよび第2偏心部材25mの重心との軸線方向距離をLSlmとする。第2曲線板26mおよび第2偏心部材25mの重心と、第3曲線板26nおよび第3偏心部材25nの重心との軸線方向距離をLSmnとする。図3に示すLmnはLSmnと等しく、LlmはLSlmと等しい。
【0077】
そして、上述した重量和、偏心距離、および軸線方向距離は、以下の式(2)を満足する。
SlSlSlm=MSnSnSmn ・・・・・・(2)
かかる本発明によれば、第1偏心部材25lおよび第3偏心部材25nが同位相に偏心配置され、これら第1偏心部材25lと第3偏心部材25nとの間に配置された第2偏心部材25mが、これらと180度異なる位相で偏心配置され、しかも上述の式(1)および式(2)により重量バランスが最適なものとなる。したがって、静不釣り合いを解消することができる他、動不釣り合いも解消することができる。
【0078】
なお、重量和MSlとは、第1曲線板26lの重量MAlおよび第1偏心部材25lの重量MBlのみではなく、これら第1曲線板26lおよび第1偏心部材25lに取り付けられた軸受41の重量を含むと理解されたい。同様に重量和MSmとは、第2曲線板26mの重量MAmおよび第2偏心部材25mの重量MBmのみではなく、これら第2曲線板26mおよび第2偏心部材25mに取り付けられた軸受41の重量を含むと理解されたい。同様に重量和MSnとは、第3曲線板26nの重量MAnおよび第3偏心部材25nの重量MBnのみではなく、これら第3曲線板26nおよび第3偏心部材25nに取り付けられた軸受41の重量を含むと理解されたい。
【0079】
さらに本実施例では、以下の式(3)、式(4)を満足する。
Sl=MSn ・・・・・・(3)
2MSl=MSm ・・・・・・(4)
式(1)および式(2)に、式(3)および式(4)を代入すると、以下の式(5)、式(6)が導き出される。
Sl+ESn=2ESm ・・・・・・(5)
SlSlm=ESnSmn ・・・・・・(6)
これにより、第1曲線板26lおよび第1偏心部材25lの組み合わせと、第3曲線板26nおよび第3偏心部材25nの組み合わせを、同一の部品にすることができる。したがって、製作コスト上有利なインホイールモータ駆動装置を提供することができる。
【0080】
さらに本実施例では、以下の式(7)を満足する。
Sl=ESn ・・・・・・(7)
式(5)に、式(7)を代入すると、以下の式(8)が導き出される。
Sl=ESm=ESn ・・・・・・(8)
式(6)に、式(7)を代入すると、以下の式(9)が導き出される。
Slm=LSmn ・・・・(9)
これにより、3個の公転部材および3個の偏心部材の偏心距離を、等しくすることが可能になり、減速部Bの軸線O直角方向寸法を均一にすることができる。
【0081】
本実施例では、各曲線板26l,26m,26nも、同様に配置される。すなわち、第1曲線板26lの重量をMAl、回転軸線Oから第1曲線板26lの重心までの偏心距離をEAlとし、第2曲線板26mの重量をMAm、回転軸線Oから第2曲線板26mの重心までの偏心距離をEAmとし、第3曲線板26nの重量をMAn、回転軸線Oから第3曲線板26nの重心までの偏心距離をEAnとする。図4に示すElはEAlと等しく、EmはEAmと等しく、EnはEAnと等しい。
【0082】
そして、以下の式(1´)を満足する。
AlAl+MAnAn=MAmAm ・・・・・・(1´)
さらに、第1曲線板26lの重心と第2曲線板26mの重心との軸線O方向距離をLAlmとし、第2曲線板26mの重心と第3曲線板26nの重心との軸線O方向距離をLAmnとする。図3に示すLmnはLAmnと等しく、LlmはLAlmと等しい。
そして、以下の式(2´)を満足する。
AlAlAlm=MAnAnAmn ・・・・・・(2´)
さらに本実施例では、以下の式(3´)、式(4´)を満足する。
Al=MAn ・・・・・・(3´)
2MAl=MAm ・・・・・・(4´)
式(1´)および式(2´)に、式(3´)および式(4´)を代入すると、以下の式(5´)、式(6´)が導き出される。
Al+EAn=2EAm ・・・・・・(5´)
AlAlm=EAnAmn ・・・・・・(6´)
これにより、第1曲線板26lと第3曲線板26nを同一の部品にすることができる。したがって、製作コスト上有利なインホイールモータ駆動装置を提供することができる。
【0083】
さらに本実施例では、以下の式(7´)を満足する。
Al=EAn ・・・・・・(7´)
式(5´)に、式(7´)を代入すると、以下の式(8´)が導き出される。
Al=EAm=EAn ・・・・・・(8´)
式(6´)に、式(7´)を代入すると、以下の式(9´)が導き出される。
Alm=LAmn ・・・・(9´)
これにより、3個の曲線板26l,26m,26nの偏心距離を、等しくすることが可能になり、減速部Bの軸線O直角方向寸法を均一にすることができる。
【0084】
本実施例では、各偏心部材25l,25m,25nも、同様に配置される。すなわち、第1偏心部材25lの重量をMBl、回転軸線Oから第1偏心部材25lの重心までの偏心距離をEBlとし、第2偏心部材25mの重量をMBm、回転軸線Oから第2偏心部材25mの重心までの偏心距離をEBmとし、第3偏心部材25nの重量をMBn、回転軸線Oから第3偏心部材25nの重心までの偏心距離をEBnとする。図4に示すElはEBlと等しく、EmはEBmと等しく、EnはEBnと等しい。
【0085】
そして、以下の式(1´´)を満足する。
BlBl+MBnBn=MBmBm ・・・・・・(1´´)
さらに、第1偏心部材25lの重心と第2偏心部材25mの重心との軸線O方向距離をLBlmとし、第2偏心部材25mの重心と第3偏心部材25nの重心との軸線O方向距離をLBmnとする。図3に示すLmnはLBmnと等しく、LlmはLBlmと等しい。
【0086】
そして、以下の式(2´´)を満足する。
BlBlBlm=MBnBnBmn ・・・・・・(2´´)
さらに本実施例では、以下の式(3´´)、式(4´´)を満足する。
Bl=MBn ・・・・・・(3´´)
2MBl=MBm ・・・・・・(4´´)
式(1´´)および式(2´´)に、式(3´´)および式(4´´)を代入すると、以下の式(5´´)、式(6´´)が導き出される。
Bl+EBn=2EBm ・・・・・・(5´´)
BlBlm=EBnBmn ・・・・・・(6´´)
これにより、第1偏心部材25lと第3偏心部材25nを同一の部品にすることができる。したがって、製作コスト上有利なインホイールモータ駆動装置を提供することができる。
【0087】
さらに本実施例では、以下の式(7´´)を満足する。
Bl=EBn ・・・・・・(7´´)
式(5´´)に、式(7´´)を代入すると、以下の式(8´´)が導き出される。
Bl=EBm=EBn ・・・・・・(8´´)
式(6´´)に、式(7´´)を代入すると、以下の式(9´´)が導き出される。
Blm=LBmn ・・・・(9´´)
これにより、3個の偏心部材25l,25m,25nの偏心距離を、等しくすることが可能になり、減速部Bの軸線O直角方向寸法を均一にすることができる。
【0088】
ここで付言すると、第1偏心部材25lと反対側の周方向位置に偏心して配置される第2偏心部材25mは、一例として第1偏心部材25lと170度異なる周方向位置であったり、他の例として第1偏心部材25lと190度異なる周方向位置であったりすれば、静不釣合いおよび動不釣合いを十分に解消することができない。このため本実施例では、軸線O方向中央部に位置する第2偏心部材25mを、軸線O方向両側に位置する第1および第3偏心部材25l,25nに対し180度位相が異なるよう配置するのである。
【0089】
図5はインホイールモータ駆動装置21の配置レイアウトを示す平面図である。車両の車体11は、前後左右に4個の車輪を具備する。このうち左輪12Lおよび右輪12Rは駆動輪である。左輪12Lは車両左側に配置されたインホイールモータ駆動装置21Lの車輪ハブ32と結合する。インホイールモータ駆動装置21Lは図示しないサスペンション装置で車体11の床下に懸架されている。同様に右輪12Rも車両右側に配置されたインホイールモータ駆動装置21Rの車輪ハブ32と結合する。インホイールモータ駆動装置21Rも図示しないサスペンション装置で車体11の床下に懸架されている。インホイールモータ駆動装置21L,21Rはいずれも上述したインホイールモータ駆動装置21であり、車両前後方向に延びる車体11の中心線に関して対称に配置される。
【0090】
本実施例では、3個の曲線板26l,26m,26nが内外径同一であり、第1曲線板26lの軸線O方向厚みが第3曲線板26nの軸線O方向厚みと等しい。これにより、外径および内径が等しい第1曲線板26l、第2曲線板26m、および第3曲線板26nを共通する金属材料で形成することが可能となり、製作工程およびコスト上有利となる。
【0091】
本実施例では、3個の偏心部材25l,25m,25nが内外径同一であり、第1偏心部材25lの軸線O方向厚みが第3偏心部材25nの軸線O方向厚みと等しい。これにより、外径および内径が等しい第1偏心部材25l、第2偏心部材25m、および第3偏心部材25nを共通する金属材料で形成することが可能となり、製作工程およびコスト上有利となる。
【0092】
また図1および図3に示すように、第1偏心部材25lは第1曲線板26lを玉軸受41で回転自在に支持し、第2偏心部材25mは第2曲線板26mをころ軸受41で回転自在に支持し、第3偏心部材25nは第3曲線板26nを玉軸受41で回転自在に支持する。これにより、3個の曲線板26l,26m,26nのうち軸受荷重が最も大きな第2曲線板26mを好適に支持することが可能になり、減速部の耐久性が向上する。
【0093】
次に本発明の他の実施例を説明する。図6は本発明の他の実施例になる車両用モータ駆動装置を示す展開断面図であり、図7は、同実施例の車両用モータ駆動装置の配置レイアウトを示す平面図である。かかる他の実施例につき、図1〜図5に示す実施例と共通する構成については同一の符号を付して説明を省略し、異なる構成について以下に説明する。
【0094】
他の実施例になる車両用モータ駆動装置71は、図6に示すように、モータ部Aとサイクロイド減速機になる減速部Bとをそれぞれ1個ずつ備え、減速部Bに隣接配置されたディファレンシャルギヤ装置72をさらに備える。
【0095】
ディファレンシャルギヤ装置72は、リングギヤ75と、ディファレンシャルギヤケース76と、ピニオンメートシャフト77と、1対のピニオンメートギヤ78,79と、2個のサイドギヤ82,83とを有し、車輪側回転部材28の回転を左右輪12L,12R(図7)へ駆動伝達する差動装置である。
【0096】
軸線Oに沿って延びる車輪側回転部材28の軸部28bは、フランジ部28a側を軸受34でケーシング22に回転自在に支持され、フランジ部28aから遠い先端側を軸受73でケーシング22に回転自在に支持される。これら軸受34および軸受73はいずれも転がり軸受である。軸部28bの外周は軸受34および軸受73間で歯車74の中心と結合し、歯車74は車輪側回転部材28と一体回転する。
【0097】
歯車74はディファレンシャルギヤ装置72のリングギヤ75と噛合する。リングギヤ75は、軸受80,81を介してケーシング22に回転自在に支持されたディファレンシャルギヤケース76の外側に固定されている。ディファレンシャルギヤケース76内には、その回転軸Pに対し直交するようピニオンメートシャフト77を貫通設置し、このシャフト77上に1対のピニオンメートギヤ78,79を回転自在に支持してディファレンシャルギヤケース76内に設ける。
【0098】
ディファレンシャルギヤケース76内には更に、ピニオンメートギヤ78,79間にあってこれらに噛合する1対のサイドギヤ82,83を回転自在に配置する。左側のサイドギヤ82は、左側ドライブシャフト13L(図7)と結合して一体回転する。また右側のサイドギヤ83は、右側ドライブシャフト13R(図7)と結合して一体回転する。
【0099】
なお、前述した潤滑油路58と同様に、偏心部材25l,25m,25nに潤滑油路58をそれぞれ設けてもよい。潤滑油路58から流出した潤滑油は、各軸受41と、曲線板26l,26m,26nの表面をそれぞれ潤滑する。
【0100】
図7に示すように、左輪12Lは図示しないサスペンション装置で車体11の床下にそれぞれ懸架されている。左輪12Lの車幅方向内側は、車幅方向に延びる左側ドライブシャフト13Lの車幅方向外側端と結合する。左側ドライブシャフト13Lの車幅方向内側端は車両用モータ駆動装置71と駆動結合する。右輪12Rも左輪12Lと同様であり、車両前後方向に延びる車体11の中心線に関して左右対称に配置される。
【0101】
この車両用モータ駆動装置71によれば、車両用モータ駆動装置71の減速部Bが、第1曲線板26lを回転自在に支持するとともに回転軸線Oから軸線O直角方向に偏心して配置される第1偏心部材25lと、第2曲線板26mを回転自在に支持するとともに第1偏心部材25lの軸線O方向一方側で第1偏心部材25lと180度異なる周方向位置に偏心して配置される第2偏心部材25mと、第3曲線板26nを回転自在に支持するとともに第2偏心部材25mのさらに軸線O方向一方側で第2偏心部材25mと180度異なる周方向位置に偏心して配置される第3偏心部材25nとを含み、上述した式(1)および式(2)を満足することから、車両用モータ駆動装置71の静不釣り合いを解消することができる他、動不釣り合いも解消することができる。なお左輪12Lおよび右輪12Rは、前輪または後輪のいずれであってもよい。
【0102】
以上、図面を参照してこの発明の実施の形態を説明したが、この発明は、図示した実施の形態のものに限定されない。図示した実施の形態に対して、この発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。
【産業上の利用可能性】
【0103】
この発明になるインホイールモータ駆動装置および車両用モータ駆動装置は、電気自動車およびハイブリッド車両において有利に利用される。
【符号の説明】
【0104】
11 車体、12L 左輪、12R 右輪、13L,13R ドライブシャフト、21,21L,21R インホイールモータ駆動装置、22 ケーシング、22a モータケーシング、22p ポンプケーシング、22t モータカバー、22b 減速部ケーシング、23 ステータ、24 ロータ、25 減速部入力軸、25l 第1偏心部材、25m 第2偏心部材、25n 第3偏心部材、26l 第1曲線板、26m 第2曲線板、26n 第3曲線板、27 外ピン、28 車輪側回転部材、31 内ピン、32 車輪ハブ、33 車輪ハブ軸受、35 回転軸、41 転がり軸受、51 オイルポンプ、53 オイル溜まり、55 冷却油路、57 軸線油路、58 潤滑油路、61 補強部材、71 車両用モータ駆動装置、72 ディファレンシャルギヤ装置。

【特許請求の範囲】
【請求項1】
モータ側回転部材を回転駆動するモータ部と、前記モータ側回転部材の回転を減速して車輪側回転部材に伝達する減速部と、前記車輪側回転部材に固定連結された車輪ハブとを備え、
前記減速部は、前記モータ側回転部材の回転軸線から偏心してモータ側回転部材に結合した3個の円盤形状の偏心部材と、内周が前記3個の偏心部材の外周にそれぞれ相対回転自在に取り付けられて前記モータ側回転部材の回転に伴って前記回転軸線を中心とする公転運動を行う3個の公転部材と、前記公転部材の外周部に係合して前記公転部材の自転運動を生じさせる外周係合部材と、前記車輪側回転部材と結合して前記公転部材の自転運動を取り出す内側係合部材とを有し、
前記3個の公転部材は、第1公転部材と、前記第1公転部材の軸線方向一方側に配置された第2公転部材と、前記第2公転部材のさらに軸線方向一方側に配置された第3公転部材とを含み、
前記3個の偏心部材は、前記第1公転部材を相対回転自在に支持するとともに前記回転軸線から軸線直角方向に偏心して配置される第1偏心部材と、前記第2公転部材を相対回転自在に支持するとともに前記第1偏心部材の軸線方向一方側で第1偏心部材と180度異なる周方向位置に偏心して配置される第2偏心部材と、前記公転部材に含まれる第3公転部材を相対回転自在に支持するとともに前記第2偏心部材のさらに軸線方向一方側で第2偏心部材と180度異なる周方向位置に偏心して配置される第3偏心部材とを含み、
前記第1公転部材および前記第1偏心部材の重量和をMSl、前記回転軸線から前記第1公転部材および前記第1偏心部材の重心までの偏心距離をESlとし、
前記第2公転部材および前記第2偏心部材の重量和をMSm、前記回転軸線から前記第2公転部材および前記第2偏心部材の重心までの偏心距離をESmとし、
前記第3公転部材および前記第3偏心部材の重量和をMSn、前記回転軸線から前記第3公転部材および前記第3偏心部材の重心までの偏心距離をESnとして、
SlSl+MSnSn=MSmSmを満足するとともに、
前記第1公転部材および前記第1偏心部材の重心と、前記第2公転部材および前記第2偏心部材の重心との軸線方向距離をLSlmとし、
前記第2公転部材および前記第2偏心部材の重心と、前記第3公転部材および前記第3偏心部材の重心との軸線方向距離をLSmnとして、
SlSlSlm=MSnSnSmnを満足する、インホイールモータ駆動装置。
【請求項2】
Sl=MSnおよび2MSl=MSmを満足する、請求項1に記載のインホイールモータ駆動装置。
【請求項3】
Sl=ESnを満足する、請求項2に記載のインホイールモータ駆動装置。
【請求項4】
前記第1公転部材の重量をMAl、前記回転軸線から前記第1公転部材の重心までの偏心距離をEAlとし、
前記第2公転部材の重量をMAm、前記回転軸線から前記第2公転部材の重心までの偏心距離をEAmとし、
前記第3公転部材の重量をMAn、前記回転軸線から前記第3公転部材の重心までの偏心距離をEAnとして、
AlAl+MAnAn=MAmAmを満足するとともに、
前記第1公転部材の重心と前記第2公転部材の重心との軸線方向距離をLAlmとし、
前記第2公転部材の重心と前記第3公転部材の重心との軸線方向距離をLAmnとして、
AlAlAlm=MAnAnAmnを満足する、請求項1〜3のいずれかに記載のインホイールモータ駆動装置。
【請求項5】
Al=MAnおよび2MAl=MAmを満足する、請求項4に記載のインホイールモータ駆動装置。
【請求項6】
前記第2公転部材の軸線方向厚みは、前記第1公転部材の軸線方向厚みの2倍である、請求項5に記載のインホイールモータ駆動装置。
【請求項7】
Al=EAnを満足する、請求項5または6に記載のインホイールモータ駆動装置。
【請求項8】
前記第1偏心部材の重量をMBl、前記回転軸線から前記第1偏心部材の重心までの偏心距離をEBlとし、
前記第2偏心部材の重量をMBm、前記回転軸線から前記第2偏心部材の重心までの偏心距離をEBmとし、
前記第3偏心部材の重量をMBn、前記回転軸線から前記第3偏心部材の重心までの偏心距離をEBnとして、
BlBl+MBnBn=MBmBmを満足するとともに、
前記第1偏心部材の重心と前記第2偏心部材の重心との軸線方向距離をLBlmとし、
前記第2偏心部材の重心と前記第3偏心部材の重心との軸線方向距離をLBmnとして、
BlBlBlm=MBnBnBmnを満足する、請求項1〜7のいずれかに記載のインホイールモータ駆動装置。
【請求項9】
Bl=MBnおよび2MBl=MBmを満足する、請求項8に記載のインホイールモータ駆動装置。
【請求項10】
前記第2偏心部材の軸線方向厚みは、前記第1偏心部材の軸線方向厚みの2倍である、請求項9に記載のインホイールモータ駆動装置。
【請求項11】
Bl=EBnを満足する、請求項9または10に記載のインホイールモータ駆動装置。
【請求項12】
前記第1偏心部材は前記第1公転部材を玉軸受で回転自在に支持し、前記第2偏心部材は前記第2公転部材をころ軸受で回転自在に支持し、前記第3偏心部材は前記第3公転部材を玉軸受で回転自在に支持する、請求項1〜11のいずれかに記載のインホイールモータ駆動装置。
【請求項13】
モータ側回転部材を回転駆動するモータ部と、前記モータ側回転部材の回転を減速して車輪側回転部材に伝達する減速部と、前記車輪側回転部材の回転を複数の車輪へ駆動伝達する差動装置とを備え、
前記減速部は、前記モータ側回転部材の回転軸線から偏心してモータ側回転部材に結合した3個の円盤形状の偏心部材と、内周が前記3個の偏心部材の外周にそれぞれ相対回転自在に取り付けられて前記モータ側回転部材の回転に伴って前記回転軸線を中心とする公転運動を行う3個の公転部材と、前記公転部材の外周部に係合して前記公転部材の自転運動を生じさせる外周係合部材と、前記車輪側回転部材と結合して前記公転部材の自転運動を取り出す内側係合部材とを有し、
前記3個の公転部材は、第1公転部材と、前記第1公転部材の軸線方向一方側に配置された第2公転部材と、前記第2公転部材のさらに軸線方向一方側に配置された第3公転部材とを含み、
前記3個の偏心部材は、前記第1公転部材を相対回転自在に支持するとともに前記回転軸線から軸線直角方向に偏心して配置される第1偏心部材と、前記第2公転部材を相対回転自在に支持するとともに前記第1偏心部材の軸線方向一方側で第1偏心部材と180度異なる周方向位置に偏心して配置される第2偏心部材と、前記第3公転部材を相対回転自在に支持するとともに前記第2偏心部材のさらに軸線方向一方側で第2偏心部材と180度異なる周方向位置に偏心して配置される第3偏心部材とを含み、
前記第1公転部材および前記第1偏心部材の重量和をMSl、前記回転軸線から前記第1公転部材および前記第1偏心部材の重心までの偏心距離をESlとし、
前記第2公転部材および前記第2偏心部材の重量和をMSm、前記回転軸線から前記第2公転部材および前記第2偏心部材の重心までの偏心距離をESmとし、
前記第3公転部材および前記第3偏心部材の重量和をMSn、前記回転軸線から前記第3公転部材および前記第3偏心部材の重心までの偏心距離をESnとして、
SlSl+MSnSn=MSmSmを満足するとともに、
前記第1公転部材および前記第1偏心部材の重心と、前記第2公転部材および前記第2偏心部材の重心との軸線方向距離をLSlmとし、
前記第2公転部材および前記第2偏心部材の重心と、前記第3公転部材および前記第3偏心部材の重心との軸線方向距離をLSmnとして、
SlSlSlm=MSnSnSmnを満足する、車両用モータ駆動装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2010−249208(P2010−249208A)
【公開日】平成22年11月4日(2010.11.4)
【国際特許分類】
【出願番号】特願2009−98343(P2009−98343)
【出願日】平成21年4月14日(2009.4.14)
【出願人】(000102692)NTN株式会社 (9,006)
【Fターム(参考)】