説明

半導体ウェハをクリーニングする方法

【課題】半導体ウェハの汚染物質をクリーニングする方法を提供する。
【解決手段】物質から汚染物質をクリーニングするために、酸クリーナー、続いて、アルカリクリーナーを用いて半導体ウェハをクリーニングする方法が提供される。酸クリーナーは実質的に全ての金属汚染物質を除去し、一方で、アルカリクリーナーは実質的に全ての非金属汚染物質、例えば、有機物質および粒子状物質を除去する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は半導体ウェハの汚染物質をクリーニングする方法に関する。より詳細には、本発明は酸クリーナー、続いてアルカリクリーナーを使用して半導体ウェハの汚染物質をクリーニングする方法に関する。
【背景技術】
【0002】
従来、半導体ウェハは次の工程で製造されうる:
(1)半導体インゴットが内周刃ソー(inner diameter saw)でスライスされてウェハを得る;
(2)そのウェハが水で洗浄され汚染物質を除去する;および
(3)次いで、そのウェハがクリーニングされ、重金属および粒子を含む不純物を除去し、次いで乾燥させられる。
【0003】
半導体ウェハが太陽電池の製造に使用される場合には、光の反射を低下させるために、ウェハの表面は粗化されまたはテクスチャー化される。太陽電池は、その表面に入射する太陽光のような光エネルギーを電気エネルギーに変換する装置である。エネルギーの吸収を増加させるために様々なアプローチが試みられてきた。このようなアプローチの1つは太陽電池の表面上に入射する光の反射を低減させることである。表面からの光の反射を低減させることは、電気エネルギーへの変換効率を向上させることを可能にする。典型的なテクスチャー化は、所定の条件で水酸化ナトリウムのようなアルカリ水溶液を用いて半導体ウェハの表面をエッチングすることによりなされる。
【0004】
テクスチャー化の前に半導体インゴットは、上述のように、内周刃ソーで所望のサイズおよび形状にスライスされる。切断プロセス中に、ソーからの金属、例えば、鉄、銅、鉛および亜鉛がスライスされた半導体の表面を汚染する。さらに、切断プロセス中にソーに適用されるスラリーも半導体を汚染する。自由研磨剤粒子、例えば、炭化ケイ素と、有機物質もしくはオイルベース、例えば、鉱物油との混合物、または自由研磨剤粒子と水性溶液ベース、例えば、ポリエチレングリコールとの混合物のいずれかであるスラリーを用いた切断によって、切断能の改良、残留する加工歪みの低減、加工応力の抑制および切断熱の抑制の効力が増強されうる。さらに、このようなスラリーへのアルカリ水酸化物の追加によって、切断により生じる加工応力(残留歪み)は除去され、よって低−歪みウェハを切り出す。このような方法は米国特許第6,568,384号に開示されている。このような研磨剤粒子および有機物質も半導体ウェハを汚染し、かつテクスチャー化プロセスを悪化させ、最終的な太陽電池物品の望まれる吸光を低減させる場合がある。
【0005】
テクスチャー化の前に、例えば、水およびアルカリクリーナーを用いて半導体ウェハをクリーニングする従来の方法は、半導体産業の多くの作業者にとって満足行くものであると認められていなかった。鉄および銅のような金属、特に鉄は除去するのが困難である。鉄がウェハから除去されなければ、黒色スポットで示されるような酸化鉄がウェハ上に形成し、ウェハの表面の最適な吸光を悪化させる。あるアルカリクリーナーは有機物質を充分に除去するが金属は除去しないことが見いだされていた。さらに、ウェハから有機物質をクリーニングすることに加えて、アルカリクリーナーはエッチング作用、すなわち、部分的テクスチャー化を有する。部分的テクスチャー化は、水酸化物がケイ素と反応して、水性溶液に溶解する可溶性シリケートを形成することにより起こる。シリコンの理想的なエッチングはクリーニング中に最小化される(エッチングがないのが望まれる)。この部分的テクスチャー化は白色スポットとして認められうる。これは特に、半導体が単結晶ウェハである場合に一般的である。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】米国特許第6,568,384号明細書
【発明の概要】
【発明が解決しようとする課題】
【0007】
よって、半導体産業において、テクスチャー化する前に半導体ウェハから汚染物質を除去し、太陽電池において使用される半導体ウェハの全体的な性能および外観を向上させ、太陽電池の効率を低減させうる導電性金属によるウェハの汚染を最小化する、改良された方法についての必要性が存在している。
【課題を解決するための手段】
【0008】
一態様においては、方法は次の工程を順に含む:
(a)ポリカルボン酸および無機酸から選択される1種以上の酸を含む第1の組成物を半導体ウェハに適用し;並びに
(b)1種以上のアルカリ化合物を含む第2の組成物を半導体ウェハに適用して金属、有機物質および研磨剤をウェハから除去する。
別の態様においては、方法は次の工程を順に含む:
(a)ポリカルボン酸および無機酸から選択される1種以上の酸を含む第1の組成物を半導体ウェハに適用し;
(b)1種以上のアルカリ化合物を含む第2の組成物を半導体ウェハに適用し;並びに
(c)ポリカルボン酸および無機酸から選択される1種以上の酸を含む第2の酸組成物を半導体ウェハに適用して金属、有機物質および研磨剤をウェハから除去する。
【発明の効果】
【0009】
本方法は、インゴットから切り出された後の半導体ウェハ上の汚染物質を除去するために使用される。切断プロセスにおいて使用されるソーは、鉄、銅、鉛および亜鉛などの金属によって半導体の表面を汚染する。切断プロセス中に使用されるスラリーは、半導体の表面を有機物質および研磨剤粒子で汚染する。このような汚染物質は、半導体の外観および効率を悪化させうるので望ましくない。半導体ウェハが太陽電池の製造に使用される場合には、金属汚染を最小化することが望まれる。このような汚染は、金属汚染物質がケイ素マトリックス中に組み込まれ、結果的に、劣った導電性、および太陽電池効率の全体的な低下をもたらしうる可能性を増大させる。金属、有機物質および研磨剤粒子を半導体ウェハからクリーニングすることに加えて、この方法は、超音波クリーニング方法と適合性であり、低発泡性であり、環境に優しく、半導体ウェハからすすぐのが容易で、かつ顧客のプロセスにカスタマイズするのに融通が利く。
【発明を実施するための形態】
【0010】
本明細書を通じて使用される場合、次の略語は文脈が他に示さない限りは次の意味を有する:℃=摂氏度;gm=グラム;L=リットル;mL=ミリリットル;cm=センチメートル;ppm=100万あたりの部;ppb=10億あたりの部;重量%=重量パーセント。全ての数値範囲は境界値を含み、かつこのような数値範囲が合計100%になると解釈されるのが論理的である場合を除いて任意の順に組み合わせ可能である。
【0011】
半導体ウェハは、当該技術分野で知られた従来の方法を用いてインゴットから切り出されうる。一般に、インゴットは従来のワイヤソー装置を用いて切断される。このようなワイヤソー装置の例は米国特許第6,568,384号に開示され、例示されている。ソーに使用されるワイヤは、カーボランダム、ダイヤモンド、炭化ケイ素または#100〜#6000のサイズを有する他の研磨剤粒子のような研磨剤粒子がワイヤに付いているものである。接着剤がワイヤに適用されて、研磨剤をワイヤに付けることができる。
【0012】
切断プロセスに使用されるスラリーは自由(free)研磨剤粒子とオイルベースまたは水性溶液ベースとの混合物である。使用されるオイルベースは、分散剤および増粘剤が混合された鉱物油使用される水性溶液ベースは、30%〜80%の水またはポリエチレングリコールに添加される様々な添加剤を含む。炭化ケイ素、グリーン炭化ケイ素または様々な金属および酸化物粒子が自由研磨剤粒子として使用されうる。典型的には、#600〜#1000の粒子サイズを有する炭化ケイ素が使用される。
【0013】
スラリー中の成分の具体的な配合および量は、作業者の好みによって決定されるように変化しうる。典型的には、スラリーは、炭化ケイ素が添加されるベースとしての鉱物油の溶液の混合物である。混合比はベース:炭化ケイ素=1:1〜1:1.3の範囲であることができる。水性ベーススラリーは、ベース:炭化ケイ素=0.8〜0.9:1の混合物で、30%〜80%の水またはポリエチレングリコールに添加される炭化ケイ素を含むことができる。
【0014】
インゴットを切断し、半導体ウェハを形成するプロセスは結果的に、多くの汚染物質をウェハの表面上にもたらす。ワイヤソーからの金属、例えば、鉄、銅、鉛および亜鉛、並びに有機物質、例えば、鉱物油およびポリエチレングリコール、および研磨剤粒子並びにスラリー中に従来含まれる他の添加剤が、ウェハの表面を覆う。何らかのさらなる処理工程の直前に、半導体ウェハは、ポリカルボン酸および無機酸から選択される1種以上の酸を含む水性組成物を用いてクリーニングされる。この水性酸組成物の適用の直後に、次いで、半導体ウェハは水性アルカリ溶液でクリーニングされる。ポリカルボン酸および無機酸から選択される1種以上の酸を含む水性組成物を用いて半導体ウェハをクリーニングする第1の工程においては、実質的に全ての金属汚染物質がウェハから除かれる。水性アルカリ溶液を用いて半導体ウェハをクリーニングする第2の工程においては、実質的に全ての有機物質および研磨剤がウェハから除去される。有機物質および研磨剤を除去することに加えて、水性アルカリ組成物は同時にウェハ表面をマイクロエッチングすることができる。場合によっては、アルカリクリーニング工程の直後に、第3のクリーニング工程または第2の水性酸組成物がウェハに適用されて、残留する汚染物質を除去することができる。
【0015】
クリーニング組成物は当該技術分野において知られた好適な方法によって半導体ウェハに適用されることができる。半導体ウェハは、クリーニング組成物に浸せきされることができ、クリーニング組成物は半導体ウェハに噴霧されることができ、またはクリーニング組成物は従来の超音波クリーニングプロセスで使用されうる。クリーニング組成物は、少なくとも室温以上、典型的には室温から100℃の温度範囲で適用されうる。場合によっては、半導体ウェハは脱イオン水ですすがれうる。半導体ウェハが汚染物質をクリーニングされた後、太陽電池の製造に使用するために従来の方法を用いて処理される。
【0016】
クリーニング方法は一般的な半導体ウェハおよび太陽電池の製造に使用されるウェハをクリーニングするのに好適である。半導体ウェハは結晶質または非晶質であり得る。結晶質タイプは単結晶性または多結晶性であり得る。太陽電池の製造においては、クリーニング方法は半導体の表面をテクスチャー化する前に使用される。テクスチャー化のための多くの方法および組成物が太陽電池産業において周知である。このようなテクスチャー化はウェハ表面への入射光の反射率を改良し、太陽電池の全体的な効率を改良する。太陽電池の最適な外観および効率を達成するのに清浄な表面は重要である。ウェハの表面上のあらゆる汚染物質は、最終的に、太陽電池の性能を悪化させうる。よって、酸クリーニング組成物およびアルカリクリーニング組成物の双方は、太陽電池におけるウェハの性能を妨げ、金属汚染のソースをもたらしうる成分を含まない。上述のように、この方法は実質的に全てのこれら金属をウェハ表面から除去する。鉄および銅は水を用いて除去するのが特に困難である。鉄には特に問題がある、なぜなら、鉄はウェハ表面上に酸化鉄を形成するからである。一旦、ウェハ表面上に酸化鉄が形成したら、除去するのが非常に困難であり、テクスチャープロセスおよびウェハの全入射光吸光を悪化させる。さらに、テクスチャー形成中に実質的な量の鉄がウェハ表面上に残っている場合には、酸化鉄形成の特徴である黒色スポットがより悪化する。ポリカルボン酸および無機酸から選択される1種以上の酸を含む水性酸組成物を使用する、クリーニング方法の第1工程は、鉄を含む金属汚染物質を実質的に全て除去し、よって、ウェハ上の酸化鉄形成を妨げまたは低減する。さらに、従来のアルカリプロセスの代わりに金属汚染物質を除去するための、水性酸組成物でのウェハ表面の最初のクリーニングは、ウェハの表面上の白色スポットで示されるような望まれない部分的テクスチャー化をなくする。水性酸クリーニング工程は、典型的には、全体の金属汚染をppb範囲の水準まで低減する。典型的には、水性酸クリーニング工程がなされた後は、金属汚染物質は0ppb〜10ppbの範囲であり得る。
【0017】
酸は、水性酸クリーニング組成物中に、0.05重量%〜20重量%、または例えば、0.5重量%〜15重量%、または例えば、1重量%〜10重量%の量で含まれうる。ポリカルボン酸には、これらに限定されないが、脂肪族ポリカルボン酸、例えば、これらに限定されないが、ジカルボン酸、例えば、これらに限定されないが、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、マレイン酸、フマル酸およびフタル酸;トリカルボン酸、例えば、これらに限定されないが、トリメリット酸、トリカルバリル酸;オキシポリカルボン酸、例えば、これらに限定されないが、オキシジカルボン酸、例えば、これらに限定されないが、酒石酸、リンゴ酸;およびオキシトリカルボン酸、例えば、これらに限定されないが、クエン酸が挙げられる。典型的には、ジカルボン酸、オキシジカルボン酸およびオキシトリカルボン酸が、水性酸クリーニング組成物中に使用される。より典型的には、ジカルボン酸およびオキシトリカルボン酸が使用される。最も典型的には、シュウ酸およびクエン酸が使用される。
【0018】
無機酸には、これらに限定されないが、塩酸、硝酸および硫酸が挙げられる。クリーニング組成物中に無機酸が使用される場合には、典型的には、酸は塩酸である。
【0019】
水性酸組成物の適用直後の水性アルカリクリーニング組成物の適用は、有機物質、研磨剤およびスラリー中に使用される従来の添加剤の実質的に全てを除去する。このような汚染物質も、そのウェハが使用されるあらゆる太陽電池の外観および効率を悪化させる。アルカリ化合物は0.2重量%〜30重量%、または例えば、0.5重量%〜10重量%の量で水性アルカリ組成物中に含まれる。水性アルカリ組成物中に含まれるアルカリ化合物には、これらに限定されないが、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、水酸化ナトリウム、水酸化カリウム、メタケイ酸ナトリウム、トリエタノールアミン、テトラ−メチルアンモニウムヒドロキシド(TMAH)およびこれらの混合物が挙げられる。典型的には、使用されるアルカリ化合物は、炭酸ナトリウムもしくは水酸化ナトリウム、またはこれらの混合物である。水酸化ナトリウムが水性アルカリクリーナーに含まれる場合には、汚染物質を除去することに加えて、それはウェハ表面をマイクロエッチングもする。マイクロエッチングとは、半導体ウェハの表面荒さが1μm(ピークから谷までの高さ)を超えないことを意味する。
【0020】
水性酸組成物中の1種以上の酸、および水性塩基組成物中の1種以上のアルカリ化合物に加えて、1種以上の界面活性剤がクリーニング組成物に添加されうる。このような界面活性剤は非イオン性、アニオン性、カチオン性、両親媒性およびジェミニ(gemini)(ダイマー型)界面活性剤であり得る。典型的には、クリーニング組成物中で使用される界面活性剤は非イオン性である。界面活性剤は有機物質および研磨剤粒子、並びに水性酸クリーニング組成物によって除去し損ねた場合がある金属を除去するのを助ける。界面活性剤はクリーニング組成物中に、0.001重量%〜1重量%、または例えば、0.0025重量%〜0.5重量%の量で含まれる。
【0021】
使用されうるある種の界面活性剤には、これらに限定されないがポリオールが挙げられる。このようなポリオールには、これらに限定されないが、ジオール(例えば、エチレングリコール、プロピレングリコール、など)、トリオール(例えば、グリセロール、ブタントリオール、など)、テトラオール(例えば、エリスリトール、スレイトール、ペンタエリスリトール、など)、ペンタオール(例えば、キシリトール、アラビトール、リビトール、など)、ヘキサオール(例えば、ソルビトール、マンニトール、ガラクチトール、など)、アルド−もしくはケト−トリオース、−テトロース、−ペンタオース、−ヘキソース、−ヘプトースなど、(例えば、グリセルアルデヒド、エリスロース、スレオース、リボース、アラビノース、フルクトース、ソルボース、グルコース、ガラクトース、マンノース)、ジ−、トリ−、オリゴ−もしくはポリ−サッカライド、例えば、スクロース、セロビオース、イソマルトース、マルトース、マルトトリオース、デンプン、セルロース、ヘミセルロースなどが挙げられる。さらに、モノ−、ジ−、トリ−、オリゴ−もしくはポリ−サッカライドに由来する非還元糖、例えば、メチル−グリコシドのようなアルキルグリコシド、他の糖、例えば、トレハロース、イソトレハロース、ラフィノース、スタキオースなども使用されうる。他のポリオールには、アルドン酸、アルドン酸塩(例えば、メチルグルコナート、ナトリウムグルコナート、など)、アルドンラクトン(例えば、グルコノラクトン、など)、アルダル酸エステルもしくは塩(例えば、ジメチルタルタラート、ジアンモニウムタルタラート、など)が挙げられる。有用なポリオールには、エチレンオキシドもしくは他のアルキレンオキシドと反応してアルコキシ化ポリオールとなったポリオールも挙げられる。ポリオールのエーテルおよびエステルも挙げられる。
【0022】
グリコシドおよびポリグリコシド化合物、例えば、アルコキシ化グリコシドのようなポリオールが使用されうる。有用なポリグリコシドは式:
【化1】

(式中、Zはグルコースに由来し、Rはアルキル基、アルキルフェニル基、ヒドロキシアルキルフェニル基、およびこれらの混合から選択される疎水性基であり、当該アルキル基は直鎖または分岐であることができ、8〜18の炭素原子を含み、pは2または3であり、rは0〜10の整数であり、xは1〜8の値である)に従うものである。
【0023】
さらなるアルキルグリコシドは以下の式:
【化2】

(式中、Rは、6〜30、好ましくは8〜18の炭素原子を含む1価の有機基であり;Rは、2〜4の炭素原子を含む2価の炭化水素基であり;Oは酸素原子であり;yは0〜1の整数であり;Gは5または6の炭素原子を含む還元糖に由来する部分であり;xは1〜5の整数であり;ZはO
【化3】

、O(CH)、CO、OSO、もしくはO(CH)SOであり;Rは(CH)COもしくはCH=CHCOであり;ただし、Zが第1級ヒドロキシル基の代わりにある場合に限って、ZはOであることができ、この場合、第1級ヒドロキシル含有炭素原子、−CHOH、は酸化されて、
【化4】

基を形成している;bは0〜3k+1の数、好ましくは、グリコサール基あたり平均0.5〜2であり;kは1〜10の整数であり;MはHまたは有機もしくは無機対イオン、特にカチオン、例えば、アルカリ金属カチオン、アンモニウムカチオン、モノエタノールアミンカチオンもしくはカルシウムカチオンなどである)で表される。
【0024】
上述のようなアルキルグリコシドの例には、APG商標325CSグリコシド(Glycoside)登録商標、これは50%C−C11アルキルポリグリコシド、また、一般にD−グルコピラノシドとも称される、であると説明されており(ヘンケルコーポレーション、アムブラー、ペンシルバニア州から商業的に入手可能)、およびグルコポン(Glucopon商標)625CS、これは50%C10−C16アルキルポリグリコシド、また、一般にD−グルコピラノシドとも称される、であると説明されている(ヘンケルコーポレーション、アムブラー、ペンシルバニア州から入手可能)が挙げられる。
【0025】
本発明の実施に使用するのに好適な典型的なアルキルグリコシドには、式:
【化5】

(式中、Rはアルキル基、好ましくは直鎖アルキル、例えば、C〜C16アルキル基であり;qは0〜3の整数値であり、境界値を含む)
で表されるものが挙げられる。
【0026】
構造Vに従うこのようなアルキルポリグリコシド化合物の例としては、RがC〜C10アルキル鎖であるもの(グルコポン(Glucopon登録商標)220UP、グルコポン登録商標225DK);RがC、C10、C12、C14およびC16アルキル鎖であるもの(グルコポン登録商標425);RがC12、C14およびC16アルキル鎖であるもの(グルコポン登録商標600UP、グルコポン登録商標625CSUP、およびグルコポン登録商標625FE、これらすべてはヘンケルコーポレーション、アムブラー、ペンシルバニア州から入手可能)が挙げられる。アルキルポリグリコシド化合物として、トライトン(Triton登録商標)CG−110(ユニオンカーバイドコーポレーション)も有用である。
【0027】
別の有用なアルキルグリコシドはグルコポン325Nであり、これはC−C11アルキルポリグリコシド、一般にD−グルコピラノシドとも称される、であると説明されている(ヘンケルコーポレーション、アムブラー、ペンシルバニア州から)。
【0028】
市販されている他の好適なアルキルポリグリコシドには、これらに限定されないが、ヘンケルコーポレーション、アムブラー、ペンシルバニア州19002からのグルコポン登録商標またはプランタレン(PLANTAREN登録商標)界面活性剤が挙げられる。このような界面活性剤の例としては、次のものが挙げられるがこれらに限定されない:
1.グルコポン登録商標225界面活性剤:アルキル基が8〜10の炭素原子を含み、1.7の平均重合度を有するアルキルポリグリコシド。
2.グルコポン登録商標425界面活性剤:アルキル基が8〜16の炭素原子を含み、1.6の平均重合度を有するアルキルポリグリコシド。
3.グルコポン登録商標625界面活性剤:アルキル基が12〜16の炭素原子を含み、1.6の平均重合度を有するアルキルポリグリコシド。
4.APG登録商標325界面活性剤:アルキル基が9〜11の炭素原子を含み、1.6の平均重合度を有するアルキルポリグリコシド。
5.グルコポン登録商標600界面活性剤:アルキル基が12〜16の炭素原子を含み、1.4の平均重合度を有するアルキルポリグリコシド。
6.プランタレン登録商標2000界面活性剤:アルキル基が8〜16の炭素原子を含み、1.4の平均重合度を有するC8−16アルキルポリグリコシド。
7.プランタレン登録商標1300界面活性剤:アルキル基が12〜16の炭素原子を含み、1.6の平均重合度を有するC12−16アルキルポリグリコシド。
【0029】
他の好適なポリオールには、これらに限定されないが、アルコールエトキシラート、脂肪アルコールエトキシラート、脂肪ソルビタンエステルおよびこれらのアルコキシラートなどが挙げられる。2種の商業的に入手可能な界面活性剤の例は、エチレンオキシドおよびプロピレンオキシド界面活性剤プルロニック(Pluronic登録商標)およびテトロニック(Tetronic登録商標)(BASFから入手可能)である。
【0030】
さらなる界面活性剤には、これらに限定されないが、下記一般式:
【化6】

(式中、Rは(C〜C)アルキルもしくは(C〜C14)アリール基であり、Gはカルボキシル、スルホニルもしくはホスホニルであり、Mはナトリウム、カリウムもしくはアンモニウムのような電荷均衡用カチオンであり、uは1〜200の整数、好ましくは2〜200の整数である)を有する界面活性剤が挙げられる。uが2以上の整数である場合には、Gは同じかまたは異なっている。このような界面活性剤の例は、ニューカルゲン(Newkalgen登録商標)TX−C(竹本油脂株式会社から入手可能)であり、これはフェノール系スルホニル塩である。
【0031】
クリーニング組成物に含まれうる界面活性剤の別の種類はジェミニ界面活性剤である。ジェミニ界面活性剤(GS)は、スベーサーによって、化学的に一緒に結合された2つの従来の界面活性剤分子を含む。2つの末端炭化水素尾部は短くてもよいし、長くてもよく;2つの極性頭部基はカチオン性、アニオン性または非イオン性であることができる。スペーサーは短くても、長くてもよく、柔軟でも、剛性でもよい。GSはスペーサーの中心に対して対称に配置される必要はない。それぞれの界面活性剤部分の親水性基および疎水性基は、1つの親水性基および1つの疎水性基を有する従来の界面活性剤に使用されていることが知られている任意のものであり得る。例えば、典型的な非イオン性ジェミニ界面活性剤、例えば、ビス−ポリオキシエチレンアルキルエーテルは、2種のポリオキシエチレンアルキルエーテル部分を含むことができる。クリーニング組成物に含まれうるある種のジェミニ界面活性剤は米国特許第5,945,393号に開示される非イオン性ジェミニ界面活性剤である。
【0032】
任意の消泡剤もクリーニング組成物中に使用されうる。このような消泡剤には、これらに限定されないが、ケイ素化合物、例えば、グリコールを有するシロキサン、アセチレン系物質、およびブロックアルコキシコポリマーが挙げられる。クリーニング組成物中の界面活性剤または界面活性剤の組み合わせの具体的な種類に応じて、他の従来の消泡剤が使用されうる。具体的な界面活性剤または界面活性剤の組み合わせにどの消泡剤が適するかを決定するために、作業者はルーチン的な実験を使用することができる。
【0033】
水性酸クリーニング組成物および水性アルカリクリーニング組成物の双方は1種以上の任意の消泡剤を含むことができるが、水性酸クリーニング組成物は1種以上のポリカルボン酸、1種以上の界面活性剤および水から本質的になり;水性アルカリクリーニング組成物は1種以上のアルカリ化合物、1種以上の界面活性剤および水から本質的になる。典型的には、界面活性剤は、ポリオール、例えば、アルキルポリグリコシドのような非イオン性界面活性剤、または非イオン性ジェミニ界面活性剤である。
【0034】
場合によって、水性アルカリクリーニング工程後に、ウェハは第2の酸クリーニング工程でクリーニングされうる。この任意的な酸クリーニング工程は第1の酸クリーニング工程の繰り返しである。この任意的な酸クリーニング工程は、第1の酸クリーニング工程およびアルカリクリーニング工程において除去されなかった残留している金属を除去する。
【0035】
次の実施例は本発明をさらに例示することを意図しており、本発明の範囲を限定することを意図しない。
【実施例】
【0036】
実施例1
単結晶シリコンインゴットが接触プレートおよび取り付けジグに固定された。これが従来のワイヤソー装置に取り付けられた。ワイヤソーは研磨剤炭化ケイ素粒子で覆われていた。切断中、ポリエチレングリコールおよび#600〜#1000サイズの炭化ケイ素粒子を重量比1:1で含むスラリーが装置のスラリーノズルからインゴット上に噴霧された。インゴットから切り出された単結晶シリコンウェハは、次いで、0.05重量%のグルコポン商標425N、6.25重量%の炭酸ナトリウム、17.5重量%の水酸化ナトリウム、および76.2重量%の水からなる濃縮物から製造された5重量%水性アルカリ組成物を用いて、室温で10分間クリーニングされた。クリーニングは、従来の噴霧装置を用いてウェハに水性アルカリ組成物を噴霧することにより行われた。
クリーニング後、シリコンウェハを、10%硝酸混合物で室温で2分間抽出し、次いで、Varian 炭素炉AA2807 Zeeman原子吸光光度計を用いて、従来の原子吸光分光法により切断プロセスからの金属汚染物質について分析した。測定された金属汚染物質は1.26ppbの銅、1.53ppbの鉄、0.32ppbの鉛および1.77ppbの亜鉛であった。
【0037】
実施例2
単結晶シリコンインゴットが接触プレートおよび取り付けジグに固定された。これが従来のワイヤソー装置に取り付けられた。ワイヤソーは研磨剤炭化ケイ素粒子で覆われていた。切断中、ポリエチレングリコールおよび#600〜#1000サイズの炭化ケイ素粒子を重量比1:1で含むスラリーが装置のスラリーノズルからインゴット上に噴霧された。インゴットから切り出された単結晶シリコンウェハは、次いで、0.025重量%のグルコポン商標425N、10重量%のシュウ酸、および残部の水からなる濃縮物から製造された5重量%水性酸組成物を用いて、室温で5分間クリーニングされた。水性酸組成物は従来の噴霧装置によってウェハに適用された。水性酸組成物でクリーニングした直後に、ウェハは実施例1で使用された水性アルカリ組成物で噴霧クリーニングされた。水性アルカリ組成物でのクリーニングは10分間なされた。
クリーニング後、シリコンウェハは、実施例1におけるのと同じ手順で金属汚染物質について分析された。測定された金属汚染物質は0.22ppbの銅、0.6ppbの鉄、0ppbの鉛および0.53ppbの亜鉛であった。水性酸組成物とそれに続く水性アルカリ組成物の適用は、実施例1における水性アルカリ組成物よりも、有意に多くの金属残留物を除いた。
【0038】
実施例3
単結晶シリコンインゴットが接触プレートおよび取り付けジグに固定された。これが従来のワイヤソー装置に取り付けられた。ワイヤソーは研磨剤炭化ケイ素粒子で覆われていた。切断中、ポリエチレングリコールおよび#600〜#1000サイズの炭化ケイ素粒子を重量比1:1で含むスラリーが装置のスラリーノズルからインゴット上に噴霧された。インゴットから切り出された単結晶シリコンウェハは、次いで、0.025重量%のグルコポン商標425N、10重量%のシュウ酸、および残部の水からなる濃縮物から製造された5重量%水性酸組成物を用いて、室温で5分間クリーニングされた。水性酸組成物は従来の噴霧装置によってウェハに適用された。水性酸組成物でクリーニングした直後に、ウェハは実施例1で使用された水性アルカリ組成物で噴霧クリーニングされた。水性アルカリ組成物でのクリーニングは10分間なされた。水性アルカリ組成物でクリーニングした直後に、ウェハは水性酸組成物を用いて5分間再度クリーニングされた。
クリーニング後、シリコンウェハは、実施例1におけるように、切断プロセスからの金属汚染物質について分析された。測定された金属汚染物質は0.2ppbの銅、0.3ppbの鉄、0ppbの鉛および0.38ppbの亜鉛であった。水性酸組成物とそれに続く水性アルカリ組成物の適用、それに続く2度目の酸クリーナーでのクリーニングは、金属残留物をさらに低減させた。
【0039】
実施例4
単結晶シリコンインゴットが接触プレートおよび取り付けジグに固定される。これが従来のワイヤソー装置に取り付けられる。ワイヤソーはダイヤモンド研磨剤粒子で覆われている。切断中、鉱物油および#600〜#1000サイズの炭化ケイ素粒子を重量比1:1で含むスラリーが装置のスラリーノズルからインゴット上に噴霧される。インゴットから切り出される単結晶シリコンウェハは、次いで、0.025重量%のグルコポン商標625、10重量%のクエン酸、および残部の水からなる濃縮物から製造された5重量%水性酸組成物を用いて、室温で5分間クリーニングされる。水性酸組成物は従来の噴霧装置によって50℃でウェハに適用される。水性酸組成物でクリーニングした直後に、ウェハは0.05重量%のグルコポン商標625、6重量%の炭酸ナトリウムおよび残部の水を含む濃縮物から製造された5重量%水性アルカリで噴霧クリーニングされる。水性アルカリ組成物でのクリーニングは10分間なされる。
クリーニング後、シリコンウェハは、実施例1におけるように、切断プロセスからの金属汚染物質について分析される。銅、鉄、鉛および亜鉛のような金属汚染物質はそれぞれ1ppb未満の量であると予想される。

【特許請求の範囲】
【請求項1】
(a)ポリカルボン酸および無機酸から選択される1種以上の酸を含む水性酸組成物を半導体ウェハに適用し;並びに
(b)1種以上のアルカリ化合物を含む水性アルカリ組成物を半導体ウェハに適用して、金属および残留物を前記物質から除去する;
工程を順に含む方法。
【請求項2】
工程(b)の後に、ポリカルボン酸および無機酸から選択される1種以上の酸を含む第2の酸組成物を半導体ウェハに適用する工程をさらに含む、請求項1に記載の方法。
【請求項3】
水性酸組成物および水性アルカリ組成物が1種以上の界面活性剤をさらに含む、請求項1に記載の方法。
【請求項4】
1種以上の界面活性剤が非イオン性である、請求項3に記載の方法。
【請求項5】
非イオン性界面活性剤がポリオールおよびジェミニ界面活性剤から選択される、請求項4に記載の方法。
【請求項6】
ポリオールがグリコシドおよびポリグリコシドから選択される、請求項5に記載の組成物。
【請求項7】
ポリカルボン酸がジカルボン酸、トリカルボン酸およびオキシカルボン酸から選択される、請求項1に記載の組成物。
【請求項8】
アルカリ化合物が炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、水酸化ナトリウム、水酸化カリウムおよびテトラメチルアンモニウムヒドロキシドから選択される、請求項1に記載の組成物。

【公開番号】特開2010−226089(P2010−226089A)
【公開日】平成22年10月7日(2010.10.7)
【国際特許分類】
【外国語出願】
【出願番号】特願2010−4320(P2010−4320)
【出願日】平成22年1月12日(2010.1.12)
【出願人】(591016862)ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. (270)
【Fターム(参考)】