説明

感光性ソルダーレジスト組成物及び感光性ソルダーレジストフィルム、並びに、永久パターン及びその形成方法

【課題】 耐熱性、耐湿熱性、密着性、機械特性、電気特性に優れた高性能な硬化膜を得ることができ、プリント配線板、高密度多層板及び半導体パッケージ等の製造に好適に用いられる感光性ソルダーレジスト組成物を提供することを目的とする。本発明はまた、この感光性ソルダーレジスト組成物の層を支持体に積層してなる優れた耐熱性、耐湿熱性、密着性、機械特性、電気絶縁性を有する硬化膜が得られる感光性ソルダーレジストフィルムの提供と、青紫色レーザーダイレクト露光方式に最適な感光性ソルダーレジストフィルムの提供。
【解決手段】 アルカリ可溶性光架橋性樹脂と、アルカリ可溶性エラストマーと、重合性化合物と、光重合開始剤と、熱架橋剤と、無機充填剤と、着色剤と、熱硬化促進剤とを含有することを特徴とする感光性ソルダーレジスト組成物。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、感光性ソルダーレジスト組成物及びこれを用いた感光性ソルダーレジストフィルム、並びに、高精細な永久パターン(保護膜、層間絶縁膜、ソルダーレジストなど)に関し、特に、配線基板や電子部品モジュールに用いられ、実装時の熱履歴や温度サイクル試験(TCT)に対する耐熱疲労性に優れ、耐湿性、保存安定性、耐薬品性、表面硬度、絶縁性などに優れた永久パターン及びその効率的な形成方法に関する。
【背景技術】
【0002】
近年、電子機器は、移動体通信機器に代表されるように小型、薄型、軽量と共に、高性能、高機能、高品質、高信頼性が要求されるようになってきており、このような電子機器に搭載される電子部品モジュールも小型、高密度化が要求されるようになってきている。このような要求に対して、近年、酸化アルミニウム質焼結体等のセラミックスを素材とするセラミック配線基板から、より軽量化、高密度化が可能なガラス繊維とエポキシ樹脂とから成る絶縁基板の表面に低抵抗金属である銅や金等を用いて薄膜形成法により配線導体層を形成した、いわゆるプリント基板が電子部品モジュールに用いられるようになってきている。また、このプリント基板も、より高密度配線化が可能なビルドアップ配線基板へ変わりつつある。
このようなビルドアップ配線基板は、例えば、ガラス繊維とエポキシ樹脂とから成る絶縁基板上に、熱硬化性樹脂から成るフィルムをラミネートし熱硬化して絶縁層を形成した後にこれに炭酸ガスレーザーで開口を穿設し、しかる後、絶縁層表面を化学粗化して無電解銅めっき法及び電解銅めっき法を用いて銅膜を被着形成することにより、開口内に導体層を形成するとともに絶縁層表面に配線導体層を形成し、更に、このような絶縁層と配線導体層の形成を繰返すことにより製作される。
また、配線基板の表面には、配線導体層の酸化や腐蝕の防止及び配線基板に電子部品を実装する際の熱から絶縁層を保護するために厚みが20〜50μmのソルダーレジスト層が被着形成されている。このソルダーレジスト層は、一般に配線導体層及び絶縁層との密着性が良好なアルカリ可溶性光架橋性樹脂と、可撓性を有する樹脂とから成り、熱膨張係数を絶縁層や配線導体層の熱膨張係数と整合させるために無機充填剤を5〜75質量%含有している。
更に、この配線基板は、配線導体層上のソルダーレジスト層に露光・現像により開口を形成し、開口内の配線導体層に半田等から成る導体バンプを介して電子部品を電気的に接続することにより半導体装置等の電子部品モジュールとなる。
一般に、このような電子部品モジュールに用いられるソルダーレジスト層は、乾燥状態での絶縁抵抗が1011〜1013Ωである。しかしながら、このソルダーレジスト層は、一般に、含有するアルカリ可溶性光架橋性樹脂がソルダーレジスト層に露光・現像により開口を形成する際の現像性を発現させるために水酸基やカルボキシル基を含有することから、吸水率が高く空気中の水分を徐々に吸収して、この水分がソルダーレジスト層の絶縁抵抗を10Ω以下にまで低下させてしまい配線導体層間を短絡させたり、更には、この水分が配線導体層を腐食させてしまい、その結果、配線基板の電気信頼性を劣化させてしまうという問題点を有していた。また、BGA(ボールグリッドアレイ)、CSP(チップサイズパッケージ)等の半導体パッケージ基板において、予めクリームはんだを必要部分に印刷し、全体を赤外線で加熱し、はんだをリフローして固定するので、パッケージ内外部の到達温度は220〜240℃と著しく高くなり、熱衝撃により塗膜にクラックが発生したり、基板や射止材から剥離してしまうという、いわゆる耐リフロー性低下の問題がありこの改良が求められていた。
このような問題の解決のため、ソルダーレジスト中にエラストマーを添加することが提案されている(特許文献1参照)。このエラストマーには、水酸基を有するポリエステル系エラストマーが例として使用されて、それ以外にも広範なエラストマーが例示されている。この前記エラストマーの添加によれば必要なエラストマーの含有量は、酸性ビニル基含有エポキシ樹脂の100質量部に対し2〜30質量部含む必要があるとされている。
しかしながら、これらのエラストマーが耐クラック性を改善することは確かであるが、一方でソルダーレジストの未露光部の現像性は十分ではない。
また、基板への密着性改良のため、アルカリ可溶性ブタジエン共重合体をバインダーとして使用することはよく知られている。例えば、スチレン/ブタジエン/マレイン酸アミド共重合体、ブタジエン/メタクリル酸/ジビニルベンゼン/メチルメタクリレート共重合体などであり、ソルダーレジストなどへの応用が提案されている(特許文献2、3参照)。
また、感光性ソルダーレジストのプリント配線基板への密着性の改良を目的とした、アルカリ現像性と硬度の良好なエポキシアクリレートと多塩基酸無水物との反応物を他の樹脂と組み合わせる混合バインダーとしての使用技術も公知である。例えば、エポキシアクリレートと多塩基酸無水物の反応物と組み合わせる架橋性バインダーとして、カルボン酸付加アクリロニトリルブタジエンゴムとエポキシ樹脂の反応生成物が提案されている(特許文献4参照)。しかしながら。この組成物をソルダーレジストとして適用しても、基板への密着性は十分であるが、アルカリ現像性や耐熱性の点で不十分であった。
また、基板密着性、信頼性を向上ししかもアルカリ現像性も改善するとして、カルボン酸基含有架橋エラストマー微粒子が提案されている(特許文献5参照)。しかし、信頼性や現像性は向上するが、カルボン酸基含有架橋エラストマー微粒子の分散安定性に難があるため、組成物中の含有率を必要な範囲にまで高めると、ソルダーレジスト層の塗布性に問題が生じる可能性がある。
また、ポリウレタン樹脂として、高分子ジオールを構成要素とするアルカリ可溶性ポリウレタン樹脂が提案されている(特許文献6参照)。しかし、これを添加した場合、感光性ソルダーレジストの現像性の確保には十分であるが、エラストマーとしての性能である硬化膜の高温での弾性率を実用レベルまで低下できず、加速テストでのクラック防止には十分とはいえなかった。
【0003】
【特許文献1】特開平11−240930号公報
【特許文献2】特開平2−97502号公報
【特許文献3】特開平7−159998号公報
【特許文献4】特開平8−41167号公報
【特許文献5】特開2001−13679号公報
【特許文献6】特開平1−134354号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、耐熱性、耐湿熱性、密着性、機械特性、電気特性に優れた高性能な硬化膜を得ることができ、プリント配線板、高密度多層板及び半導体パッケージ等の製造に好適に用いられる感光性ソルダーレジスト組成物を提供することを目的とする。本発明はまた、この感光性ソルダーレジスト組成物の層を支持体に積層してなる優れた耐熱性、耐湿熱性、密着性、機械特性、電気絶縁性を有する硬化膜が得られる感光性ソルダーレジストフィルムを提供することを目的とする。本発明のさらなる目的は、青紫色レーザーダイレクト露光方式に最適な感光性ソルダーレジストフィルムを提供することにある。
【課題を解決するための手段】
【0005】
前記課題を解決するための手段としては、以下の通りである。即ち、
<1> アルカリ可溶性光架橋性樹脂と、アルカリ可溶性エラストマーと、重合性化合物と、光重合開始剤と、熱架橋剤と、着色剤と、熱硬化促進剤とを含有することを特徴とする感光性ソルダーレジスト組成物である。
該<1>の感光性ソルダーレジスト組成物においては、前記アルカリ可溶性ウレタンエラストマーが含まれており、該アルカリ可溶性ウレタンエラストマーは、ハードセグメント成分とソフトセグメント成分から成り立っているため、前者により耐熱性、強度が向上し、後者により柔軟性、強靱性が向上する作用がある。そのため、前記感光性ソルダーレジスト組成物に、エラストマーを含有することにより、配線基板に電子部品を実装する際や温度サイクル試験(TCT)を行った際の熱応力が、該エラストマーにより良好に吸収され、光及び熱硬化後の永久パターン(ソルダーレジスト)に対しクラックの発生が抑制され、その結果、配線導体層が断線することのない電気的な接続信頼性の高い永久パターンが得られる。
<2> アルカリ可溶性エラストマーが、一般式(I)で示されるジイソシアネートと、一般式(II−1)〜(II−3)で示されるカルボン酸基含有ジオールから選ばれた少なくとも1種と、一般式(III−1)〜(III−5)で示される高分子量ジオールから選ばれた、質量平均分子量が800〜3,000の範囲にある少なくとも1種の化合物との反応物であって、一般式(II−1)〜(II−3)の合計モル量と(III−1)〜(III−5)の合計モル量の比が、0.5:1〜2.8:1となるように反応して得られ、酸価が20〜130mgKOH/gである前記<1>に記載の感光性ソルダーレジスト組成物である。
【化1】

【化2】


【化3】

【化4】

【化5】

【化6】

【化7】

【化8】

【化9】

ただし、一般式(I)、(II−1)〜(II−3)、(III−1)〜(III−5)中、R、R〜R10及びR11は二価の脂肪族又は芳香族炭化水素を表す。Rは水素原子、炭素数1〜3個のアルキル基及び炭素数6〜15個のいずれかからなるアリール基を表す。R12は水素原子、炭素数1〜6個のアルキル基及び炭素数6〜10個のいずれかからなるアリール基を表す。R13はアリール基及びシアノ基のいずれかを表す。mは2〜4の整数を表す。n〜nはそれぞれ2以上の整数を表す。
<3> アルカリ可溶性エラストマーが、一般式(III−1)〜(III−5)で示される質量平均分子量が500以下のカルボン酸基非含有の低分子量ジオールを、低分子量ジオール合計モル量と高分子量ジオール合計モル量の比が0.5:1〜2.8:1となるように共重合させたポリウレタン樹脂を用いる前記<1>から<2>のいずれかに記載の感光性ソルダーレジスト組成物である。
<4> 熱架橋剤が、エポキシ樹脂及び多官能オキセタン化合物のいずれか1種である前記<1>から<3>のいずれかに記載の感光性ソルダーレジスト組成物である。
<5> 無機充填剤を含む前記<1>から<4>のいずれかに記載の感光性ソルダーレジスト組成物である。
<6> アルカリ可溶性光架橋性樹脂15〜70質量%と、重合性化合物5〜75質量%、光重合開始剤0.5〜20質量%、熱架橋剤2〜50質量%、アルカリ可溶性エラストマー2〜30質量%、無機充填剤5〜75質量%、着色剤0.1〜10質量%、熱硬化促進剤0.01〜20質量%及び溶剤を含む前記<1>から<5>のいずれかに記載の感光性ソルダーレジスト組成物である。
<7> 重合性化合物が、(メタ)アクリル基を有するモノマーから選択される少なくとも1種を含む前記<1>から<6>のいずれかに記載の感光性ソルダーレジスト組成物である。
<8> 光重合開始剤が、ハロゲン化炭化水素誘導体、ホスフィンオキサイド、ヘキサアリールビイミダゾール、オキシム誘導体、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩及びケトオキシムエーテルから選択される少なくとも1種を含む前記<1>から<7>のいずれかに記載の感光性ソルダーレジスト組成物である。
【0006】
<9> 支持体と、該支持体上に、前記<1>から<8>のいずれかに記載の感光性ソルダーレジスト組成物が積層されてなる感光性ソルダーレジスト層と、を有することを特徴とする感光性ソルダーレジストフィルムである。
<10> 感光性ソルダーレジスト層上に保護フィルムを有してなる前記<9>に記載の感光性ソルダーレジストフィルムである。
<11> 感光性ソルダーレジスト層の厚みが、3〜100μmである前記<9>から<10>のいずれかに記載の感光性ソルダーレジストフィルムである。
<12> 支持体が、合成樹脂を含み、かつ透明である前記<9>から<11>のいずれかに記載の感光性ソルダーレジストフィルムである。
<13> 支持体が、長尺状である前記<9>から<12>のいずれかに記載の感光性ソルダーレジストフィルムである。
【0007】
<14> 基体と、該基体上に、前記<1>から<8>のいずれかに記載の感光性ソルダーレジスト組成物が、塗布により積層されてなる感光性ソルダーレジスト層と、を有することを特徴とする感光性ソルダーレジスト組成物積層体である。
【0008】
<15> 前記<9>から<13>のいずれかに記載の感光性ソルダーレジストフィルムにおける感光性ソルダーレジスト層及び前記<14>に記載の感光性ソルダーレジスト組成物積層体における感光性ソルダーレジスト層のいずれかを、基材の表面に積層した後、前記感光性ソルダーレジスト層に対し露光し、現像することを特徴とする永久パターン形成方法である。
該<15>に記載の永久パターン形成方法においては、前記<8>から<12>のいずれかに記載の感光性ソルダーレジストフィルムが、加熱及び加圧の少なくともいずれかの下において基材の表面に転写され感光性ソルダーレジスト層が積層され、又は前記<13>に記載の感光性ソルダーレジスト組成物が前記基材の表面に塗布され、乾燥されて前記感光性ソルダーレジスト層が積層される。該いずれかの感光性ソルダーレジスト層が露光され、該露光された感光性ソルダーレジスト層が現像される。その結果、表面硬度が高く、保護膜あるいは絶縁膜に最適な永久パターンが形成される。
<16> 基材が、配線形成済みのプリント配線基板である前記<15>に記載の永久パターン形成方法である。
該<16>に記載の永久パターン形成方法においては、前記基材が配線形成済みのプリント配線基板であるので、該永久パターン形成方法を利用することにより、半導体や部品の多層配線基板やビルドアップ配線基板などへの高密度実装が可能である。
<17> 露光が、形成するパターン情報に基づいて像様に行われる前記<15>から<16>のいずれかに記載の永久パターン形成方法である。
<18> 露光が、形成するパターン情報に基づいて制御信号を生成し、該制御信号に応じて変調させた光を用いて行われる前記<15>から<17>のいずれかに記載の永久パターン形成方法である。
<19> 露光が、光を照射する光照射手段と、形成するパターン情報に基づいて前記光照射手段から照射される光を変調させる光変調手段とを用いて行われる前記<15>から<18>のいずれかに記載の永久パターン形成方法である。
<20> 光変調手段が、形成するパターン情報に基づいて制御信号を生成するパターン信号生成手段を更に有してなり、前記光照射手段から照射される光を該パターン信号生成手段が生成した制御信号に応じて変調させる前記<19>に記載の永久パターン形成方法である。
<21> 光変調手段が、n個の描素部を有してなり、該n個の描素部の中から連続的に配置された任意のn個未満の前記描素部を、形成するパターン情報に応じて制御可能である前記<15>から<20>のいずれかに記載の永久パターン形成方法である。
該<21>に記載の永久パターン形成方法においては、前記光変調手段におけるn個の描素部の中から連続的に配置された任意のn個未満の描素部をパターン情報に応じて制御することにより、前記光照射手段からの光が高速で変調される。
<22> 光変調手段が、空間光変調素子である前記<15>から<21>のいずれかに記載の永久パターン形成方法である。
<23> 空間光変調素子が、デジタル・マイクロミラー・デバイス(DMD)である前記<22>に記載の永久パターン形成方法である。
<24> 描素部が、マイクロミラーである前記<21>から<23>のいずれかに記載の永久パターン形成方法である。
<25> 露光が、光変調手段により光を変調させた後、前記光変調手段における描素部の出射面の歪みによる収差を補正可能な非球面を有するマイクロレンズを配列したマイクロレンズアレイを通して行われる前記<21>から<24>のいずれかに記載の永久パターン形成方法である。
<26> 非球面が、トーリック面である前記<25>に記載の永久パターン形成方法である。
該<26>に記載の永久パターン形成方法においては、前記非球面がトーリック面であることにより、前記描素部における放射面の歪みによる収差が効率よく補正され、前記感光性ソルダーレジスト層上に結像させる像の歪みが効率よく抑制される。その結果、前記感光性ソルダーレジスト層への露光が高精細に行われる。その後、前記感光性ソルダーレジスト層を現像することにより、高精細な永久パターンが形成される。
<27> 露光が、アパーチャアレイを通して行われる前記<15>から<26>のいずれかに記載の永久パターン形成方法である。
該<27>に記載の永久パターン形成方法においては、露光が前記アパーチャアレイを通して行われることにより、消光比が向上する。その結果、露光が極めて高精細に行われる。その後、前記感光性ソルダーレジスト層を現像することにより、極めて高精細な永久パターンが形成される。
<28> 露光が、露光光と感光性ソルダーレジスト層とを相対的に移動させながら行われる前記<15>から<27>のいずれかに記載の永久パターン形成方法である。
該<27>に記載の永久パターン形成方法においては、前記変調させた光と前記感光性ソルダーレジスト層とを相対的に移動させながら露光することにより、露光が高速に行われる。
<29> 露光が、感光性ソルダーレジスト層の一部の領域に対して行われる前記<15>から<28>のいずれかに記載の永久パターン形成方法である。
<30> 光照射手段が、2以上の光を合成して照射可能である前記<15>から<29>のいずれかに記載の永久パターン形成方法である。
該<30>に記載の永久パターン形成方法においては、前記光照射手段が2以上の光を合成して照射可能であることにより、露光が焦点深度の深い露光光で行われる。その結果、前記感光性ソルダーレジスト層への露光が極めて高精細に行われる。その後、前記感光性ソルダーレジスト層を現像することにより、極めて高精細な永久パターンが形成される。
<31> 光照射手段が、複数のレーザと、マルチモード光ファイバーと、該複数のレーザからそれぞれ照射されたレーザ光を集光して前記マルチモード光ファイバーに結合させる集合光学系とを有する前記<15>から<30>のいずれかに記載の永久パターン形成方法である。
該<31>に記載の永久パターン形成方法においては、前記光照射手段により、前記複数のレーザからそれぞれ照射されたレーザ光が前記集合光学系により集光され、前記マルチモード光ファーバーに結合可能とすることにより、露光が焦点深度の深い露光光で行われる。その結果、前記感光性ソルダーレジスト層への露光が極めて高精細に行われる。その後、前記感光性ソルダーレジスト層を現像することにより、極めて高精細な永久パターンが形成される。
<32> 露光が、395〜415nmの波長のレーザ光を用いて行われる前記<15>から<31>のいずれかに記載の永久パターン形成方法である。
<33> 現像が行われた後、感光性ソルダーレジスト層に対して硬化処理を行う前記<15>から<32>のいずれかに記載の永久パターン形成方法である。
該<33>に記載の永久パターン形成方法においては、現像が行われた後、前記感光性ソルダーレジスト層に対して前記硬化処理が行われる。その結果、前記感光性ソルダーレジスト層の硬化領域の膜強度が高められる。
<34> 硬化処理が、全面露光処理及び120〜200℃で行われる全面加熱処理の少なくともいずれかである前記<33>に記載の永久パターン形成方法である。
該<34>に記載の永久パターン形成方法では、前記全面露光処理において、前記感光性ソルダーレジスト組成物中の樹脂の硬化が促進される。また、前記温度条件で行われる全面加熱処理において、硬化膜の膜強度が高められる。
<35> 保護膜、層間絶縁膜及びソルダーレジストパターンの少なくともいずれかを形成する前記<15>から<34>のいずれかに記載の永久パターン形成方法である。
該<35>に記載の永久パターン形成方法では、保護膜、層間絶縁膜及びソルダーレジストパターンの少なくともいずれかが形成されるので、該膜の有する絶縁性、耐熱性などにより、配線が外部からの衝撃や曲げなどから保護される。
【0009】
<36> 前記<15>から<35>のいずれかに記載の永久パターン形成方法により形成されることを特徴とする永久パターンである。
該<36>に記載の永久パターンは、前記永久パターン形成方法により形成されるので、優れた耐薬品性、表面硬度、耐熱性などを有し、かつ高精細であり、半導体や部品の多層配線基板やビルドアップ配線基板などへの高密度実装に有用である。
<37> 保護膜、層間絶縁膜及びソルダーレジストパターンの少なくともいずれかである前記<36>に記載の永久パターンである。
該<37>に記載の永久パターンは、保護膜、層間絶縁膜及びソルダーレジストパターンの少なくともいずれかであるので、該膜の有する絶縁性、耐熱性などにより、配線が外部からの衝撃や曲げなどから保護される。
【発明の効果】
【0010】
本発明によれば、耐熱性、耐湿熱性、密着性、機械特性、電気特性に優れた高性能な硬化膜を得ることができ、プリント配線板、高密度多層板及び半導体パッケージ等の製造に好適に用いられる感光性ソルダーレジスト組成物を提供することを目的とする。本発明はまた、この感光性ソルダーレジスト組成物の層を支持体に積層してなる優れた耐熱性、耐湿熱性、密着性、機械特性、電気絶縁性を有する硬化膜が得られる感光性ソルダーレジストフィルムを提供するこができる。また、青紫色レーザーダイレクト露光方式に最適な感光性ソルダーレジストフィルムを提供することができる。
【発明を実施するための最良の形態】
【0011】
(感光性ソルダーレジスト組成物)
本発明の感光性ソルダーレジスト組成物は、アルカリ可溶性光架橋性樹脂と、アルカリ可溶性エラストマーと、重合性化合物と、光重合開始剤と、熱架橋剤と、無機充填剤と、着色剤と、熱硬化促進剤と、必要に応じて適宜選択したその他の成分を含有する感光性ソルダーレジスト組成物である。
【0012】
<アルカリ可溶性光架橋性樹脂>
前記アルカリ可溶性光架橋性樹脂は、バインダーとしての機能があり、前記第1の感光性ソルダーレジスト層の硬度を高め、弾性体としての性質を付加する機能がある。
前記アルカリ可溶性とは、それを含む感光性ソルダーレジスト組成物がアルカリ性現像液によって溶解する性質をいい、具体的には、目的とする現像処理が遂行される程度に溶解性を有していればよい。アルカリ性現像液としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物や、ヒドロキシエチルアミン、トリエチルアミンのようなアミン類、テトラメチルアンモニウムヒドロキシドのような4級アンモニウムヒドロキシド類の水溶液やそれらと混和性の有機溶剤との混合物が用いられる。pHは、8〜14であり、これらアルカリ剤の0.01〜10質量%水溶液が好ましい。これらのアルカリ性現像液のうち、プリント配線板業界では、一般的に、0.2〜2質量%の炭酸ナトリウム水溶液が用いられ、1質量%炭酸ナトリウム水溶液が最も一般的である。
現像方法の一例を示すと、表面を整面し、乾燥した銅張積層板の表面に、感光性ソルダーレジストフィルムの保護フィルムを剥がしながら、感光性ソルダーレジスト層を、ラミネーターを用いて圧着して、銅張り積層板、感光性ソルダーレジスト層、そして支持体フィルムからなる積層体を作製する。圧着条件は、積層板温度70℃、圧着ロール温度105℃、圧着ロール圧力3kg/cmそして圧着速度1.2m/分とする。
積層体から支持体フィルムを剥がし取り、銅張り積層板上の感光性ソルダーレジスト層の全面に30℃の1質量%炭酸ナトリウム水溶液を0.1MPaの圧力にてスプレーする。少なくとも60秒間のスプレーの後で銅張り積層板上の感光性ソルダーレジスト層が除去された場合、現像されことになる。
このようなアルカリ可溶性を示す樹脂としては、例えば、30℃の1質量%炭酸ナトリウム水溶液中に1質量%以上の溶解度を示すものから、好適に選ぶことができる。
前記光架橋性とは、光化学反応により、線状のポリマー分子を網状の三次元構造となる分子に変わる性質をいい、具体的には、光重合開始剤の光分解により、発生する遊離ラジカルの作用により、重合反応をして網状化しうるポリマーをいう。
【0013】
前記アルカリ可溶性光架橋性樹脂は、分子中にアルカリ可溶基と光重合に関与する架橋性基を含有する1%炭酸ソーダ水溶液(pH=10)に可溶性の樹脂である。
前記アルカリ可溶性光架橋性樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ビニルポリマー型光架橋性樹脂、エポキシ樹脂エステル型光架橋性樹脂などが挙げられる。
【0014】
−ビニルポリマー型光架橋性樹脂−
前記ビニルポリマー型光架橋性樹脂としては、下記タイプ(A−1)、(A−2)及び(A−3)に分類され、少なくともいずれかのタイプから選ばれる。
タイプ(A−1):(a)カルボキシル基含有共重合樹脂と、(b)エポキシ基含有不飽和化合物との反応により製造される。
タイプ(A−2):(c)エポキシ基含有共重合樹脂と、(d)カルボキシル基含有不飽和化合物を付加反応し更に得られる生成物のヒドロキシル基への(e)多塩基酸無水物の付加反応により製造される。
タイプ(A−3):(f)酸無水物基含有共重合樹脂と、(g)分子中に1個のヒドロキシル基及び少なくとも1個の(メタ)アクリロイル基を有する化合物の付加反応により製造される。
なお、本明細書中において、(メタ)アクリレートとは、アクリレート、メタアクリレート及びそれらの混合物を総称する用語であり、他の類似の表現についても同様である。
【0015】
−タイプ(A−1)−
前記タイプ(A−1)のビニルポリマー型光架橋性樹脂の製造に用いられる、(a)カルボキシル基含有共重合樹脂は、1分子中に1個の不飽和基と少なくとも1個のカルボキシル基又は酸無水物基を有する化合物と、(メタ)アクリル酸エステル及びスチレン類の少なくともいずれかとを共重合させて得られる。
【0016】
前記(a)カルボキシル基含有共重合樹脂を構成単位とする1分子中に1個の不飽和基と少なくとも1個のカルボキシル基又は酸無水物基を有する化合物とは、(メタ)アクリル酸、更にはマレイン酸、イタコン酸等のカルボキシル基を分子中に2個以上含むものが挙げられる。また、マレイン酸、イタコン酸のモノエステル、又はモノアミドも含まれる。また、ヒドロキシル基含有(メタ)アクリレートと飽和あるいは不飽和二塩基酸無水物との反応生成物である半エステル化合物が挙げられる。これら半エステル化合物は、ヒドロキシル基含有(メタ)アクリレートと飽和あるいは不飽和二塩基酸無水物とを等モル比で反応させることで得られる。
【0017】
前記半エステル化合物の合成に用いられるヒドロキシル基含有アクリレートとしては、例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンダエリスルトールトリ(メタ)アクリレート、ジベンタエリスリトールペンタ(メタ)アクリレート等が挙げられる。
【0018】
前記半エステル化合物の合成に用いられる飽和あるいは不飽和二塩基酸無水物としては、例えば、無水コハク酸、無水マレイン酸、テトラヒドロ無水フタル酸、無水フタル酸、メチルナドラヒドロ無水フタル酸、エチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、エチルヘキサヒドロ無水フタル酸、無水イタコン酸等が挙げられる。これらの中で、(メタ)アクリル酸が好ましい。
これら1分子中に1個の不飽和基と少なくとも1個のカルボキシル基又は酸無水物基を有する化合物は、1種単独で使用してもよく、2種以上を併用してもよい。
【0019】
前記(a)カルボキシル基含有共重合樹脂の構成単位となる(メタ)アクリル酸エステルとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、n−ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、t−ブチルシクロヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、t−オクチル(メタ)アクリレート、ドデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、アセトキシエチル(メタ)アクリレート、フェニル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−メトキシエチル(メタ)アクリレート、2−エトキシエチル(メタ)アクリレート、2−(2−メトキシエトキシ)エチル(メタ)アクリレート、3−フェノキシ−2−ヒドロキシプロピル(メタ)アクリレート、ベンジル(メタ)アクリレート、ジエチレングリコールモノメチルエーテル(メタ)アクリレート、ジエチレングリコールモノエチルエーテル(メタ)アクリレート、ジエチレングリコールモノフェニルエーテル(メタ)アクリレート、トリエチレングリコールモノメチルエーテル(メタ)アクリレート、トリエチレングリコールモノエチルエーテル(メタ)アクリレート、ポリエチレングリコールモノメチルエーテル(メタ)アクリレート、ポリエチレングリコールモノエチルエーテル(メタ)アクリレート、β−フェノキシエトキシエチルアクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、トリフロロエチル(メタ)アクリレート、オクタフロロペンチル(メタ)アクリレート、パーフロロオクチルエチル(メタ)アクリレート、トリブロモフェニル(メタ)アクリレート、トリブロモフェニルオキシエチル(メタ)アクリレートなどが挙げられる。
【0020】
また、前記(a)カルボキシル基含有共重合樹脂の構成単位となるスチレン類としては、例えば、スチレン、メチルスチレン、ジメチルスチレン、トリメチルスチレン、エチルスチレン、イソプロピルスチレン、ブチルスチレン、ヒドロキシスチレン、メトキシスチレン、ブトキシスチレン、アセトキシスチレン、クロロスチレン、ジクロロスチレン、ブロモスチレン、クロロメチルスチレン、酸性物質により脱保護可能な基(例えば、t−Boc等)で保護されたヒドロキシスチレン、ビニル安息香酸メチル、α−メチルスチレンなどが挙げられる。
前記(a)カルボキシル基含有共重合樹脂は、これら1分子中に1個の不飽和基と少なくとも1個のカルボキシル基、又は、酸無水物基を有する化合物と(メタ)アクリル酸エステルモノマーとスチレン類の少なくともいずれかとの通常の共重合法、例えば、溶液重合法により共重合して得られる。
また、前記(a)カルボキシル基含有共重合樹脂に包含される、マレイン酸モノエステル/スチレン類共重合体、マレイン酸モノアミド/スチレン類共重合体、イタコン酸モノエステル/スチレン類共重合体やイタコン酸モノアミド/スチレン類共重合体の場合は、それぞれ無水マレイン酸/スチレン類共重合体や無水イタコン酸/スチレン類共重合体のアルコール類又は一級又は二級アミン類との高分子反応により得ることができる。
【0021】
前記マレイン酸無水物との高分子反応に使用する前記アルコール類としては、例えば、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、sec−ブタノール、t−ブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、メトキシエタノール、エトキシエタノール、メトキシプロパノール、エトキシプロパノールなどを好適に挙げることができる。
また、前記一級アミン類としては、例えば、ベンジルアミン、フェネチルアミン、3−フェニル−1−プロピルアミン、4−フェニル−1−ブチルアミン、5−フェニル−1−ペンチルアミン、6−フェニル−1−ヘキシルアミン、α−メチルベンジルアミン、2−メチルベンジルアミン、3−メチルベンジルアミン、4−メチルベンジルアミン、2−(p−トリル)エチルアミン、β―メチルフェネチルアミン、1−メチル−3−フェニルプロピルアミン、2−クロロベンジルアミン、3−クロロベンジルアミン、4−クロロベンジルアミン、2−フロロベンジルアミン、3−フロロベンジルアミン、4−フロロベンジルアミン、4−ブロモフェネチルアミン、2−(2−クロロフェニル)エチルアミン、2−(3−クロロフェニル)エチルアミン、2−(4−クロロフェニル)エチルアミン、2−(2−フロロフェニル)エチルアミン、2−(3−フロロフェニル)エチルアミン、2−(4−フロロフェニル)エチルアミン、4−フロロ−α,α−ジメチルフェネチルアミン、2−メトキシベンジルアミン、3−メトキシベンジルアミン、4−メトキシベンジルアミン、2−エトキシベンジルアミン、2−メトキシフェネチルアミン、3−メトキシフェネチルアミン、4−メトキシフェネチルアミン、メチルアミン、エチルアミン、イソプロピルアミン、n−プロピルアミン、n−ブチルアミン、t−ブチルアミン、sec−ブチルアミン、ペンチルアミン、ヘキシルアミン、シクロヘキシルアミン、ヘプチルアミン、オクチルアミン、ラウリルアミン、フェニルアミン、1−ナフチルアミン、メトキシメチルアミン、2−メトキシエチルアミン、2−エトキシエチルアミン、3−メトキシプロピルアミン、2−ブトキシエチルアミン、2−シクロへキシルオキシエチルアミン、3−エトキシプロピルアミン、3−プロポキシプロピルアミン、3−イソプロポキシプロピルアミンなどが好適に挙げられる。
更に、前記二級アミン類としては、例えば、ジメチルアミン、ジエチルアミン、メチルエチルアミン、メチルプロピルアミン、ジエチルアミン、エチルプロピルアミン、ジプロピルアミン、ジブチルアミン、N,N−メチルベンジルアミンなどを好適に挙げることができる。
【0022】
−(b)エポキシ基含有不飽和化合物−
前記タイプ(A−1)のビニルポリマー型光架橋性樹脂の製造に用いられる(b)エポキシ基含有不飽和化合物としては、1分子中に1個のラジカル重合性の不飽和基とエポキシ基とを有する化合物であればよく、例えば、下記一般式(IV−1)〜(IV−14)で示される化合物などが挙げられる。
【0023】
【化10】

【0024】
【化11】

【0025】
【化12】

【0026】
【化13】



【0027】
【化14】

【0028】
【化15】

【0029】
【化16】

【0030】
【化17】

【0031】
【化18】

【0032】
【化19】

【0033】
【化20】

【0034】
【化21】

【0035】
【化22】

【0036】
【化23】


ただし、一般式(IV−1)〜(IV−14)において、R14は水素原子又はメチル基、R15は炭素数1〜10のアルキレン基、R16は炭素数1〜10の炭化水素基、pは0又は1〜10の整数を表す。
これら(b)エポキシ基含有不飽和化合物は、単独で用いても2種以上を混合して用いてもよい。これらの中でも、グリシジル(メタ)アクリレートや3,4−エポキシシクロヘキシルメチル(メタ)アクリレートが好ましい。
【0037】
−タイプ(A−2)−
前記タイプ(A−2)のビニルポリマー型光架橋性樹脂の製造に用いられるエポキシ基含有共重合樹脂(c)は、エポキシ基含有モノマーとそれ以外のエポキシ基と非反応性の(メタ)アクリルエステル及び/又はスチレン類との共重合により得られる。
エポキシ基含有モノマーとしては、前記タイプ(A−1)のビニルポリマー型光架橋性樹脂の説明において既述の化合物が好適に用いられる。
エポキシ基と非反応性の(メタ)アクリル酸エステル及びスチレン類の少なくともいずれかは、前記タイプ(A−1)の光架橋性樹脂において既述のもののうち、カルボキシル基、アルコール性ヒドロキシル基、フェノール性ヒドロキシル基、アミノ基などを含まないものが好適に用いられる。
製造法としては、エポキシ基含有モノマーとそれ以外のエポキシ基と非反応性の(メタ)アクリル酸エステル、スチレン類を常法、例えば溶液重合法等により共重合して得られる。
ここでエポキシ基含有モノマーとそれ以外のエポキシ基と非反応性の(メタ)アクリルエステル及びはスチレン類の少なくともいずれかとのモル比は60:40〜20:80が好適である。なお、エポキシ基含有モノマーの配合量が少な過ぎてこのモル比が20:80より大きいと、次の不飽和カルボン酸、更に多塩基酸無水物の前記共重合体への付加量が少なくなる結果、紫外線硬化性及び希アルカリ水溶液による現像性が悪くなり、また逆にエポキシ基含有モノマーの配合量が多過ぎて前記モル比が60:40より小さいと、軟化点が低くなり過ぎる傾向がある。
また、カルボキシル基含有不飽和化合物(d)は、タイプ(A−1)のビニルポリマー型光架橋性樹脂の説明中で1分子中に1個の不飽和基と少なくとも1個のカルボキシル基又は酸無水物基を有する化合物として既述の各化合物が好適に使用できる。
また、多塩基酸無水物(e)としては、マレイン酸無水物、コハク酸無水物、ヘキサヒドロフタル酸無水物、3−メチルヘキサヒドロフタル酸無水物、4−メチルヘキサヒドロフタル酸無水物、3−エチルヘキサヒドロフタル酸無水物、4−エチルヘキサヒドロフタル酸無水物、テトラヒドロフタル酸無水物、3−メチルテトラヒドロフタル酸無水物、4−メチルテトラヒドロフタル酸無水物、3−エチルテトラヒドロフタル酸無水物、4−エチルテトラヒドロフタル酸無水物、フタル酸無水物などの、分子中に1ヶの酸無水物基を有する飽和又は不飽和の脂肪族、脂環族又は芳香族化合物が好ましい。これらの中でも、テトラヒドロフタル酸無水物が特に好ましい。
前記エポキシ基含有共重合体とカルボキシル基含有不飽和化合物と引き続く多塩基酸無水物との反応は次のように実施するのが好ましい。前記エポキシ基含有モノマーの共重合体に対し、この共重合体の1エポキシ基当量当り0.8〜1.2モルの不飽和カルボン酸を付加反応した後、更に得られる生成物のヒドロキシル基に多塩基酸無水物を付加反応する。
【0038】
−タイプ(A−3)−
前記タイプ(A−3)のビニルポリマー型光架橋性樹脂の製造に用いられる酸無水物基含有樹脂(f)は、マレイン酸無水物とスチレン類の共重合又はイタコン酸無水物とスチレン類の共重合により得られる。
共重合成分であるスチレン類は、前記タイプ(A−1)の光架橋性樹脂の説明中で既述のものが好適に用いられる。マレイン酸無水物又はイタコン酸無水物とスチレン類の共重合組成比は90:10〜10:90が好ましく、80:20〜20:80が更に好ましく、70:30〜30:70が特に好ましい。90:10以上では硬化部の耐現像性が劣り、10:90以下では現像性が劣る。
前記無水マレイン酸1モルに対してスチレンを1モルから3モルの割合で共重合させて得られる質量平均分子量が、1,000から5,000程度の共重合体が好ましく、例えば、ARCO Chemical社製SMAレンジ1000、2000、3000などが挙げられる。
【0039】
分子中に1個のヒドロキシル基及び少なくとも1個の(メタ)アクリロイル基を有する化合物(g)としては、例えば2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、ポリカプロラクトンモノ(メタ)アクリレート、ペンダエリスリトールトリ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ネオペンチルグリコールモノ(メタ)アクリレート、1,6−ヘキサンジオールモノ(メタ)アクリレート、モノ(2−(メタ)アクリロイロキシエチル)アシッドホスフェート、ジ(2−(メタ)アクリロイロキシエチル)アシッドホスフェート、グリセロールジ(メタ)アクリレートが挙げられる。
【0040】
前記酸無水物共重合体と、分子中に1個のヒドロキシル基及び少なくとも1個の(メタ)アクリロイル基を有するモノマーの開環付加反応は、活性水素を含まない有機溶剤中で行うという公知の方法で製造できる。溶剤として好ましいものは、酢酸エチル、メトキシプロピルアセテート、メチルエチルケトン等が好ましい。その際の前記モノマー中ヒドロキシル基/前記共重合体中酸無水物基のモル比は0.8〜1.2が好ましい
上記開環付加反応は通常50℃から200℃で行なうがジエステルの生成及びゲル化を防止するために80℃から150℃程度が好ましい。なお、反応促進剤としてトリエチルアミン、トリエタノールアミン、モリホリン、ペンダメチルジエチレントリアミンなどの第三級アミン類又は第四級アンモニウム塩などを使用することができる。一方反応中に重合物が生成するのを防止するためにヒドロキノン、ヒドロキノンモノメチルエーテル、t−ブチルヒドロキノン、t−ブチルカテコール、ベンゾキノン、フェノチアジンなどの公知の重合禁止剤を添加使用することもできる。
【0041】
以上のように、得られた前記タイプ(A−1)、(A−2)及び(A−3)の少なくともいずれかからなるビニルポリマー型光架橋性樹脂は、その酸価が、50〜250mgKOH/gの範囲にあることが必要である。
前記酸価は、70〜200mgKOH/gがより好ましく、90〜180mgKOH/gが特に好ましい。前記酸価が、50mgKOH/g未満であると、弱アルカリ水溶液である現像液での未露光部の除去が難しく、一方、250mgKOH/gを超えると、硬化被膜の耐水性、電気特性が劣るなどの弊害がある。また、ビニルポリマー型光架橋性ポリマー(A)は、質量平均分子量が5,000〜200,000の範囲にあるものが好ましい。また、質量平均分子量は10,000〜100,000がより好ましく、30,000〜80,000が特に好ましい。質量平均分子量が5,000未満であると、指触乾燥性が著しく劣り、支持体との剥離性が劣る。一方、質量平均分子量が200,000を超えると、アルカリ現像液による未露光部の除去性、貯蔵安定性が著しく悪くなる等の問題を生じるので好ましくない。
感光性ソルダーレジスト層の全固形分中のアルカリ可溶性光架橋性樹脂の固形分含有量は15〜70質量%が好ましい。15質量%未満であると、硬化膜の強靱性が劣り、70質量%を越えると信頼性の低下など、性能バランスが劣化する。
特に前記タイプ(A−1)〜(A−3)からの1種と後述のエポキシ樹脂エステル型光架橋性オリゴマーからの1種の混合物はバランスのとれた性能を付与することができるので好ましい。その場合の混合比は質量で10/90〜90/10である。20/80〜80/20がより好ましく、30/70〜70/30が殊に好ましい。
【0042】
−エポキシ樹脂エステル型光架橋性樹脂−
前記エポキシ樹脂エステル型光架橋性樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、(h)エポキシ樹脂と(i)1分子中に1個の不飽和基と少なくとも1個のカルボキシル基又は酸無水物基を有する化合物とのエステル化反応生成物に、更に(j)多塩基酸無水物を反応することにより生成する。
前記エポキシ樹脂(h)としては、東都化成(株)製YDCN−701,YDCN−704;大日本インキ化学工業(株)製N−665,N−680,N−695;日本化薬(株)製EOCN−102,EOCN−104;旭化成工業(株)製ECN−265,ECN−293,ECN−285,ECN−299などのクレゾールノボラック型エポキシ樹脂や、東都化成(株)製YDPN−638,YDPN−602;ダウ・ケミカル日本(株)製 DEN−431,DEN−438,DEN−439;チバ・スペシャルティ・ケミカルズ(株)製 EPN−1138,EPN−1235,EPN−1299;大日本インキ化学工業(株)製 N−730,N−770などのフェノールノボラック型エポキシ樹脂が挙げられる。また、ノボラック型エポキシ樹脂の一部を、例えばビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビキシレノール型エポキシ樹脂、トリスヒドロキシフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、脂環式エポキシ樹脂、サリチルアルデヒド型エポキシ樹脂等のエポキシ樹脂も有利に使用できる。
【0043】
次に、1分子中に1個の不飽和基と少なくとも1個のカルボキシル基又は酸無水物基を有する化合物(i)は、前記タイプ(A−1)のビニルポリマー型光架橋性樹脂の説明中で既述の各化合物が好適に使用できる。
また、前記多塩基酸無水物(j)は同様にタイプ前記(A−2)のビニルポリマー型光架橋性樹脂の説明中で成分(e)として既述の化合物を使用することができる。
【0044】
−−エポキシ樹脂エステル型光架橋性樹脂の製造方法−−
前記エポキシ樹脂エステル型光架橋性樹脂の製造方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、製造の際のエポキシ樹脂(h)と1分子中に1個の不飽和基と少なくとも1個のカルボキシル基又は酸無水物基を有する化合物(i)との反応において、エポキシ樹脂(h)のエポキシ基1当量に対して、1分子中に1個の不飽和基と少なくとも1個のカルボキシル基又は酸無水物基を有する化合物(i)が0.8〜1.05当量となる比率で反応させることが好ましく、0.9〜1.0当量がより好ましい。
前記エポキシ樹脂(h)と1分子中に1個の不飽和基と少なくとも1個のカルボキシル基又は酸無水物基を有する化合物(i)は有機溶剤に溶かして反応させられ、有機溶剤としては、例えば、エチルメチルケトン、シクロヘキサノン等のケトン類、トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類、メチルセロソルブ、ブチルセロソルブ、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジエチルエーテル、トリエチレングリコールモノエチルエーテル等のグリコールエーテル類、酢酸エチル、酢酸ブチル、ブチルセロソルブアセテート、カルビトールアセテート等のエステル類、オクタン、デカンなどの脂肪族炭化水素類、石油エーテル、石油ナフサ、水添石油ナフサ、ソルベントナフサ等の石油系溶剤などが挙げられる。
【0045】
更に、反応を促進させるために触媒を用いるのが好ましい。用いられる触媒としては、例えば、トリエチルアミン、ベンジルメチルアミン、メチルトリエチルアンモニウムクロライト、ベンジルトリメチルアンモニウムクロライト、ベンジルトリメチルアンモニウムブロマイド、ベンジルトリメチルメチルアンモニウムアイオタイド、トリフェニルホスフィンなどが挙げられる。触媒の使用量は、エポキシ樹脂とビニル基含有モノカルボン酸(b)の合計100質量部に対して、0.1〜10質量部が好ましい。
また、反応中の重合を防止する日的で、重合防止剤を使用するのが好ましい。重合禁止剤としては、例えば、ハイドロキノン、メチルハイドロキノン、ハイドロキノンモノメチルエーテル、カテコール、ピロガロール等が挙げられ、その使用量は、エポキシ樹脂(a)とビニル基含有モノカルボン酸(b)の合計100質量部に対して、0.01〜1質量部が好ましい。反応温度は、60〜150℃が好ましく、80〜120℃がより好ましい。
【0046】
前記のエポキシ樹脂エステル型光架橋性樹脂は、こうして得られた反応生成物に多塩基酸無水物(j)を反応させて得られる。前記反応生成物と多塩基酸無水物(c)との反応温度は、60〜120℃が好ましい。
【0047】
前記反応生成物中のヒドロキシル基1当量に対して、多塩基酸無水物(j)を0.1〜1.0当量反応させることで、前記エポキシ樹脂エステル型光架橋性樹脂の酸価を調整できる。前記エポキシ樹脂エステル型光架橋性樹脂の酸価は30〜150mgKOH/gであることが好ましく、50〜120mgKOH/gであることがより好ましい。酸価が30mgKOH/g未満であると、光硬化性樹脂組成物の希アルカリ溶液への溶解性が低下し、150mgKOH/gを超えると硬化膜の電気特性が低下する傾向がある。
前記エポキシ樹脂エステル型光架橋性樹脂の質量平均分子量は500〜5,000が好ましく、1,000〜4,000がより好ましく、1,500〜3,500が特に好ましい。500以下であると、粘着性が高すぎ保護フィルムの剥離が困難になり、5,000を越えると該樹脂の製造が困難になる。
【0048】
<アルカリ可溶性エラストマー>
本発明のアルカリ可溶性エラストマーは、酸価が20〜130mgKOH/gであり、感光性ソルダーレジスト組成物の硬化後の動的弾性率が200〜220℃において、1〜100MPaであれば使用可能であるが、特に、一般式(I)で示されるジイソシアネートと、一般式(II−1)〜(II−3)で示されるカルボン酸基含有ジオールから選ばれた少なくとも1種と、一般式(III−1)〜(III−5)で示される高分子量ジオールから選ばれた、質量平均分子量が800〜3,000の範囲にある少なくとも1種との反応物であって、一般式(II−1)〜(II−3)の合計モル量と一般式(III−1)〜(III−5)の合計モル量の比が、0.5:1〜2.8:1となるように反応して得られる、酸価が20〜130mgKOH/gであるアルカリ可溶性ポリウレタン樹脂が好適である。
【0049】
【化24】

【0050】
【化25】

【0051】
【化26】

【0052】
【化27】

【0053】
【化28】

【0054】
【化29】

【0055】
【化30】

【0056】
【化31】

【0057】
【化32】

【0058】
ただし、一般式(I)、(II−1)〜(II−3)、(III−1)〜(III−5)中、Rは置換基(例えば、アルキル基、アラルキル基、アリール基、アルコキシ基、ハロゲノ基の各基が好ましい。)を有していてもよい二価の脂肪族又は芳香族炭化水素を表す。必要に応じ、R中はイソシアネート基と反応しない他の官能基例えばエステル基、ウレタン基、アミド基、ウレイド基を有していてもよい。Rは水素原子、置換基(例えば、シアノ、二トロ、ハロゲン原子(−F、−Cl、−Br、−I)、−CONH、−COOR、−OR、−NHCONHR、−NHCOOR、−NHCOR、−OCONHR、−CONHR(ここで、Rは炭素数1〜10のアルキル基、炭素数7〜15のアラルキル基を示す。)などの各基が含まれる。)を有していてもよいアルキル気、アラルキル基、アリール基、アルコキシ基、アリーロキシ基を表し、水素原子、炭素数1〜3個のアルキル、炭素数6〜15個のアリール基が好ましい。R、R、Rはそれぞれ同一でも相異していてもよく、単結合、置換基(例えば、アルキル基、アラルキル基、アリール基、アルコキシ基、ハロゲン基の各基が好ましい。)を有していてもよい二価の脂肪族又は芳香族炭化水素を表す。炭素数1〜20個のアルキレン基、炭素数6〜15個のアリーレン基が好ましく、炭素数1〜8個のアルキレン基がより好ましい。また、必要に応じ、R、R、R中にイソシアネート基と反応しない他の官能基、例えば、カルボニル基、エステル基、ウレタン基、アミド基、ウレイド基、エーテル基を有していてもよい。なお、R、R、R、Rのうちの2又は3個で環を形成してもよい。Arは置換基を有していてもよい三価の芳香族炭化水素を表し、炭素数6〜15個の芳香族基が好ましい。
、R、R、R10及びR11はそれぞれ同一でも相異していてもよく二価の脂肪族又は芳香族炭化水素を表す。R、R、R10及びR11はそれぞれ炭素数2〜20個のアルキレン基又は炭素数6〜15個のアリーレン基が好ましく、炭素数2〜10個のアルキレン基又は炭素数6〜10個のアリーレン基がより好ましい。Rは一炭素数1〜20個のアルキレン基又は炭素数6〜15個のアリーレン基が好ましく、炭素数1〜10個のアルキレン基又は炭素数6〜10個のアリーレン基がより好ましい。また、R、R、R、R10及びR11中にはイソシアネート基と反応しない他の官能基、例えば、エーテル基、カルボニル基、エステル基、シアノ基、オレフィン基、ウレタン基、アミド基、ウレイド基又はハロゲン原子などがあってもよい。R12は水素原子、アルキル基、アリール基、アラルキル基、シアノ基又はハロゲン原子を表し、水素原子、炭素数1〜10個のアルキル基、炭素数6〜15個のアリール基、炭素数7〜15個のアラルキル基、シアノ基又はハロゲン原子が好ましく、水素原子、炭素数1〜6個のアルキル基又は炭素数6〜10個のアリール基がより好ましい。また、R12中にはイソシアネート基と反応しない他の官能基、例えば、アルコキシ基、カルボニル基、オレフィン基、エステル基又はハロゲン原子等などあってもよい。
13はアリール基又はシアノ基を表し、炭素数6〜10個のアリール基又はシアノ基が好ましい。mは2〜4の整数を表す。n、n,n、n及びnはそれぞれ2以上の整数を表し、2〜100の整数が好ましい。nは0又は2以上の整数を表し、0又は2〜100の整数が好ましい。
【0059】
また、更に第4成分として、カルボン酸基非含有の低分子量ジオールを共重合させても良い、低分子量ジオールとしては一般式(III−1)〜(III−5)で表され、質量平均分子量が500以下のものである。カルボン酸基非含有低分子量ジオールはアルカリ溶解性が低下しない限りまた、硬化膜の弾性率が十分低く保つことができる範囲で添加することができる。
また、前記第4成分を含めた低分子量ジオールの合計と高分子量ジオールの合計モル量との比は0.5:1〜2.8:1が好ましく、この比が高分子量ジオールを1とした場合、低分子量ジオールが、0.5未満では現像性が劣り、2.8を超えると硬化後のソルダーレジスト層の動的弾性率が十分低くならない。
【0060】
前記アルカリ可溶性ポリウレタン樹脂は、カルボキシル基が酸価で20mgKOH/g以上含まれていることが適当であり、特に20〜130mgKOH/gの範囲で含まれていることが好ましい。酸価が20mgKOH/g未満では現像性が不十分で、130mgKOH/gを越えると現像速度が高すぎるため現像のコントロールが難しい。
前記アルカリ可溶性光架橋性樹脂の分子量は、質量平均分子量で3,000以上が好ましく、5,000〜20万がより好ましいる。質量平均分子量が3,000未満では、硬化膜の高温時の十分な低弾性率が得られず、20万を超えると現像性が悪化する。
これらの高分子化合物は単独で用いても混合して用いてもよい。感光性ソルダーレジスト組成物全固形分中に含まれる、これらの高分子化合物の含有量は2〜30質量%で、5〜25質量%が好ましい。2質量%未満では硬化膜の高温時の十分な低弾性率が得られず、30質量%を超えると現像性劣化や硬化膜の強靱性低下が起きるので好ましくない。
【0061】
−アルカリ可溶性ポリウレタン樹脂の合成法−
前記アルカリ可溶性光架橋性樹脂は、前記ジイソシアネート化合物及びジオール化合物を非プロトン性溶媒中、それぞれの反応性に応じた活性の公知な触媒を添加し、加熱することにより合成される。使用するジイソシアネート及びジオール化合物のモル比は、0.8:1〜1.2:1が好ましく、ポリマー末端にイソシアネート基が残存した場合、アルコール類又はアミン類等で処理することにより、最絡的にイソシアネート基が残存しない形で合成される。
【0062】
−ジイソシアネート−
一般式(I)で示されるジイソシアネート化合物として、具体的には以下に示すものが含まれる。即ち、2,4−トリレンジイソシアネート、2,4−トリレンジイソシアネートの二量体、2,6−トリレンジイソシアネート、p−キシリレンジイソシアネート、m−キシリレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、1,5−ナフチレンジイソシアネート、3,3’−ジメチルヒフェニル−4,4’−ジイソシアネート等の如き芳香族ジイソシアネート化合物:ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、ダイマー酸ジイソシアネート等の如き脂肪族ジイソシアネート化合物;イソホロンジイソシアネート、4,4’−メチレンビス(シクロヘキシルイソシアネート)、メチルシクロヘキサン−2,4−(又は2,6)ジイソシアネート、1,3−(イソシアネートメチル)シクロヘキサン等の如き脂環族ジイソシアネート化合物;1,3−ブチレングリコール1モルとトリレンジイソシアネート2モルとの付加体等の如きジオールとジイソシアネートとの反応物であるジイソシアネート化合物等が挙げられる。
【0063】
−高分子量ジオール−
一般式(III−1)〜(III−5)で示される高分子量ジオール化合物としては、具体的には以下の(No.1)〜(No.25)の化学式に示すものが含まれる。
【0064】
【化33】

【0065】
【化34】

【0066】
【化35】

【0067】
【化36】

【0068】
【化37】

【0069】
【化38】

【0070】
【化39】

【0071】
【化40】

【0072】
【化41】

【0073】
【化42】

【0074】
【化43】

【0075】
【化44】

【0076】
【化45】

【0077】
【化46】

【0078】
【化47】

【0079】
【化48】

【0080】
【化49】

【0081】
【化50】

【0082】
【化51】

【0083】
【化52】

【0084】
【化53】

【0085】
【化54】

【0086】
【化55】

【0087】
【化56】

【0088】
【化57】

前記上記の具体例中m,nはそれぞれ同じでも異なっても良く、2以上の整数を表す。
【0089】
−カルボン酸基含有ジオール−
また、一般式(II−1)〜(II−3)で示されるカルボキシル基を有するジオール化合物としては具体的には以下に示すものが含まれる。即ち、3,5−ジヒドロキシ安息香酸、2,2−ビス(ヒドロキシメチル)プロピオン酸、2,2−ビス(2−ヒドロキシエチル)プロピオン酸、2,2−ビス(3−ヒドロキシプロピル)プロピオン酸、ビス(ヒドロキシメチル)酢酸、ビス(4−ヒドロキジフェニル)酢酸、4,4−ビス(4−ヒドロキジフェニル)ペンタン酸、酒石酸、N,N−ジヒドロキシエチルグリシン、N,N−ビス(2−ヒドロキシエチル)−3−カルボキシ−プロピオンアミド等が挙げられる。
【0090】
−カルボン酸基非含有低分子量ジオール−
カルボン酸基非含有低分子量ジオールの代表例としては、エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,3−ブチレングリコール、2,3−ブチレングリコール、1,4−ブタンジオール、2,2’−ジメチル−1,3−プロパンジオール、ジエチレングリコール、トリエチレングリコール、1,5−ペンダメチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、1,6−ヘキサメチレングリコール、シクロヘキサン−1,4−ジオール、シクロヘキサン−1,4−ジオール、シクロヘキサン−1,4−ジメタノール、2−ブテン−1,4−ジオール、2,2,4−トリメチル−1,3−ペンタンジオール、キシリレングリコール、1,4−ビス−β−ヒドロキシエトキシシクロヘキサン、トリジクロデカンジメタノール、水添ビスフェノールA、水添ビスフェノールF、ビスフェノールA、ビスフェノールS、ヒドロキノンジヒドロキシエチルエーテル、p−キシリレングリコール、ジヒドロキシエチルスルホン、ビス(2−ヒドロキシエチル)−2,4−トリレンジカルバメート、2,4−トリレン−ビス(2−ヒドロキシエチルカルバミド)、ビス(2−ヒドロキシエチル)−m−キシリレンジカルバメート、ビス(2−ヒドロキシエチル)イソフタレート、1,4−ビス(β−ヒドロキシエトキシ)ベンゼン、ビス(β−ヒドロキシエチル)テレフタレートなどの単独あるいは混合物が挙げられる。特に1,4−ブタンジオールが好ましい。好ましいカルボン酸基非含有ジオールの共重合量は低分子量ジオール中の95モル%以下であり、80%以下が好ましく、50%以下が特に好ましい。95モル%を越えると現像性の良ウレタン樹脂が得られないことがある。
【0091】
前記アルカリ可溶性ポリウレタン樹脂の製造に当たって、生成するポリウレタン樹脂の分子量の調節を目的として、前記ジオールやジイソシアネートの他に少量の3官能及びそれ以上のポリオールやワポリイソシアネートを反応液中に添加することもできる。
そのようなポリオールの例としては、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、トリメチロールプロパンとエチレンオキシド付加反応生成物などが使用できる。
また、前記3官能以上のぽりイソシアネートとしては、1−メチルベンゼン−2,4.6−トリイソシアネート、ナフタレン−1,3,7−トリイソシアネート、ビフェニル−2,4,4’−トリイソシアネート、トリフェニルメタン−4,4’,4’’−トリイソシアネート、トリレンジイソシアネートの3量体、トリメチロールプロパンなどのポリオールにその活性水素の数に対応するモル数のジイソシアネートを反応して得られるウレタンポリイソシアネート化合物などが挙げられる。
【0092】
<重合性化合物>
前記重合性化合物としては、特に制限はなく、目的に応じて適宜選択することができ、分子中に少なくとも1個の付加重合可能な基を有し、沸点が常圧で100℃以上である化合物が好ましく、例えば、(メタ)アクリル基を有するモノマーから選択される少なくとも1種が好適に挙げられる。
【0093】
前記(メタ)アクリル基を有するモノマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、フェノキシエチル(メタ)アクリレートなどの単官能アクリレートや単官能メタクリレート;ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールエタントリアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパンジアクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリトリトールテトラ(メタ)アクリレート、ペンタエリトリトールトリ(メタ)アクリレート、ジペンタエリトリトールヘキサ(メタ)アクリレート、ジペンタエリトリトールペンタ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(アクリロイルオキシプロピル)エーテル、トリ(アクリロイルオキシエチル)イソシアヌレート、トリ(アクリロイルオキシエチル)シアヌレート、グリセリントリ(メタ)アクリレート、トリメチロールプロパンやグリセリン、ビスフェノールなどの多官能アルコールに、エチレンオキサイドやプロピレンオキサイドを付加反応した後で(メタ)アクリレート化したもの、特公昭48−41708号公報、特公昭50−6034号公報、特開昭51−37193号公報などの各公報に記載されているウレタンアクリレート類;特開昭48−64183号公報、特公昭49−43191号公報、特公昭52−30490号公報などの各公報に記載されているポリエステルアクリレート類;エポキシ樹脂と(メタ)アクリル酸の反応生成物であるエポキシアクリレート類などの多官能アクリレートやメタクリレートなどが挙げられる。これらの中でも、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリトリトールテトラ(メタ)アクリレート、ジペンタエリトリトールヘキサ(メタ)アクリレート、ジペンタエリトリトールペンタ(メタ)アクリレートが特に好ましい。
【0094】
前記重合性化合物の前記感光性ソルダーレジスト組成物固形分中の固形分含有量は、5〜75質量%が好ましく、10〜40質量%がより好ましい。該固形分含有量が5質量%未満であると、現像性の悪化、露光感度の低下などの問題を生ずることがあり、75質量%を超えると、感光性ソルダーレジスト層の粘着性が強くなりすぎることがあり、好ましくない。
【0095】
<光重合開始剤>
前記光重合開始剤としては、前記重合性化合物の重合を開始する能力を有する限り、特に制限はなく、公知の光重合開始剤の中から適宜選択することができ、例えば、紫外線領域から可視の光線に対して感光性を有するものが好ましく、光励起された増感剤と何らかの作用を生じ、活性ラジカルを生成する活性剤であってもよく、モノマーの種類に応じてカチオン重合を開始させるような開始剤であってもよい。
また、前記光重合開始剤は、約300〜800nm(330〜500nmがより好ましい。)の範囲内に少なくとも約50の分子吸光係数を有する成分を少なくとも1種含有していることが好ましい。
【0096】
前記光重合開始剤としては、例えば、ハロゲン化炭化水素誘導体(例えば、トリアジン骨格を有するもの、オキサジアゾール骨格を有するもの、オキサジアゾール骨格を有するものなど)、ホスフィンオキサイド、ヘキサアリールビイミダゾール、オキシム誘導体、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、ケトオキシムエーテルなどが挙げられる。
【0097】
前記トリアジン骨格を有するハロゲン化炭化水素化合物としては、例えば、若林ら著、Bull.Chem.Soc.Japan,42、2924(1969)記載の化合物、英国特許1388492号明細書記載の化合物、特開昭53−133428号公報記載の化合物、独国特許3337024号明細書記載の化合物、F.C.SchaeferなどによるJ.Org.Chem.;29、1527(1964)記載の化合物、特開昭62−58241号公報記載の化合物、特開平5−281728号公報記載の化合物、特開平5−34920号公報記載化合物、米国特許第4212976号明細書に記載されている化合物、などが挙げられる。
【0098】
前記若林ら著、Bull.Chem.Soc.Japan,42、2924(1969)記載の化合物としては、例えば、2−フェニル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−クロルフェニル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−トリル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メトキシフェニル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(2,4−ジクロルフェニル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2,4,6−トリス(トリクロルメチル)−1,3,5−トリアジン、2−メチル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−n−ノニル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、及び2−(α,α,β−トリクロルエチル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジンなどが挙げられる。
【0099】
前記英国特許1388492号明細書記載の化合物としては、例えば、2−スチリル−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メチルスチリル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メトキシスチリル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−メトキシスチリル)−4−アミノ−6−トリクロルメチル−1,3,5−トリアジンなどが挙げられる。
前記特開昭53−133428号公報記載の化合物としては、例えば、2−(4−メトキシ−ナフト−1−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4−エトキシ−ナフト−1−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−〔4−(2−エトキシエチル)−ナフト−1−イル〕−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、2−(4,7−ジメトキシ−ナフト−1−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジン、及び2−(アセナフト−5−イル)−4,6−ビス(トリクロルメチル)−1,3,5−トリアジンなどが挙げられる。
【0100】
前記独国特許3337024号明細書記載の化合物としては、例えば、2−(4−スチリルフェニル)−4、6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−メトキシスチリル)フェニル)−4、6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(1−ナフチルビニレンフェニル)−4、6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−クロロスチリルフェニル−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−チオフェン−2−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−チオフェン−3−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−フラン−2−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、及び2−(4−ベンゾフラン−2−ビニレンフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジンなどが挙げられる。
【0101】
前記F.C.SchaeferなどによるJ.Org.Chem.;29、1527(1964)記載の化合物としては、例えば、2−メチル−4,6−ビス(トリブロモメチル)−1,3,5−トリアジン、2,4,6−トリス(トリブロモメチル)−1,3,5−トリアジン、2,4,6−トリス(ジブロモメチル)−1,3,5−トリアジン、2−アミノ−4−メチル−6−トリ(ブロモメチル)−1,3,5−トリアジン、及び2−メトキシ−4−メチル−6−トリクロロメチル−1,3,5−トリアジンなどが挙げられる。
【0102】
前記特開昭62−58241号公報記載の化合物としては、例えば、2−(4−フェニルエチニルフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−ナフチル−1−エチニルフェニル−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−トリルエチニル)フェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−メトキシフェニル)エチニルフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−イソプロピルフェニルエチニル)フェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(4−(4−エチルフェニルエチニル)フェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジンなどが挙げられる。
【0103】
前記特開平5−281728号公報記載の化合物としては、例えば、2−(4−トリフルオロメチルフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(2,6−ジフルオロフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(2,6−ジクロロフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジン、2−(2,6−ジブロモフェニル)−4,6−ビス(トリクロロメチル)−1,3,5−トリアジンなどが挙げられる。
【0104】
前記特開平5−34920号公報記載化合物としては、例えば、2,4−ビス(トリクロロメチル)−6−[4−(N,N−ジエトキシカルボニルメチルアミノ)−3−ブロモフェニル]−1,3,5−トリアジン、米国特許第4239850号明細書に記載されているトリハロメチル−s−トリアジン化合物、更に2,4,6−トリス(トリクロロメチル)−s−トリアジン、2−(4−クロロフェニル)−4,6−ビス(トリブロモメチル)−s−トリアジンなどが挙げられる。
【0105】
前記米国特許第4212976号明細書に記載されている化合物としては、例えば、オキサジアゾール骨格を有する化合物(例えば、2−トリクロロメチル−5−フェニル−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−クロロフェニル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(1−ナフチル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(2−ナフチル)−1,3,4−オキサジアゾール、2−トリブロモメチル−5−フェニル−1,3,4−オキサジアゾール、2−トリブロモメチル−5−(2−ナフチル)−1,3,4−オキサジアゾール;2−トリクロロメチル−5−スチリル−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−クロルスチリル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−メトキシスチリル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(1−ナフチル)−1,3,4−オキサジアゾール、2−トリクロロメチル−5−(4−n−ブトキシスチリル)−1,3,4−オキサジアゾール、2−トリプロモメチル−5−スチリル−1,3,4−オキサジアゾールなど)などが挙げられる。
【0106】
本発明で好適に用いられるオキシム誘導体としては、例えば、3−ベンゾイロキシイミノブタン−2−オン、3−アセトキシイミノブタン−2−オン、3−プロピオニルオキシイミノブタン−2−オン、2−アセトキシイミノペンタン−3−オン、2−アセトキシイミノ−1−フェニルプロパン−1−オン、2−ベンゾイロキシイミノ−1−フェニルプロパン−1−オン、3−(4−トルエンスルホニルオキシ)イミノブタン−2−オン、及び2−エトキシカルボニルオキシイミノ−1−フェニルプロパン−1−オンなどが挙げられる。
【0107】
また、上記以外の光重合開始剤として、アクリジン誘導体(例えば、9−フェニルアクリジン、1,7−ビス(9、9’−アクリジニル)ヘプタンなど)、N−フェニルグリシンなど、ポリハロゲン化合物(例えば、四臭化炭素、フェニルトリブロモメチルスルホン、フェニルトリクロロメチルケトンなど)、クマリン類(例えば、3−(2−ベンゾフロイル)−7−ジエチルアミノクマリン、3−(2−ベンゾフロイル)−7−(1−ピロリジニル)クマリン、3−ベンゾイル−7−ジエチルアミノクマリン、3−(2−メトキシベンゾイル)−7−ジエチルアミノクマリン、3−(4−ジメチルアミノベンゾイル)−7−ジエチルアミノクマリン、3,3’−カルボニルビス(5,7−ジ−n−プロポキシクマリン)、3,3’−カルボニルビス(7−ジエチルアミノクマリン)、3−ベンゾイル−7−メトキシクマリン、3−(2−フロイル)−7−ジエチルアミノクマリン、3−(4−ジエチルアミノシンナモイル)−7−ジエチルアミノクマリン、7−メトキシ−3−(3−ピリジルカルボニル)クマリン、3−ベンゾイル−5,7−ジプロポキシクマリン、7−ベンゾトリアゾール−2−イルクマリン、また、特開平5−19475号公報、特開平7−271028号公報、特開2002−363206号公報、特開2002−363207号公報、特開2002−363208号公報、特開2002−363209号公報などに記載のクマリン化合物など)、アミン類(例えば、4−ジメチルアミノ安息香酸エチル、4−ジメチルアミノ安息香酸n−ブチル、4−ジメチルアミノ安息香酸フェネチル、4−ジメチルアミノ安息香酸2−フタルイミドエチル、4−ジメチルアミノ安息香酸2−メタクリロイルオキシエチル、ペンタメチレンビス(4−ジメチルアミノベンゾエート)、3−ジメチルアミノ安息香酸のフェネチル、ペンタメチレンエステル、4−ジメチルアミノベンズアルデヒド、2−クロル−4−ジメチルアミノベンズアルデヒド、4−ジメチルアミノベンジルアルコール、エチル(4−ジメチルアミノベンゾイル)アセテート、4−ピペリジノアセトフェノン、4−ジメチルアミノベンゾイン、N,N−ジメチル−4−トルイジン、N,N−ジエチル−3−フェネチジン、トリベンジルアミン、ジベンジルフェニルアミン、N−メチル−N−フェニルベンジルアミン、4−ブロム−N,N−ジメチルアニリン、トリドデシルアミン、アミノフルオラン類(ODB,ODBIIなど)、クリスタルバイオレットラクトン、ロイコクリスタルバイオレットなど)、アシルホスフィンオキサイド類(例えば、ビス(2,4,6−トリメチルベンゾイル)−フェニルホスフィンオキサイド、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチル−ペンチルフェニルホスフィンオキサイド、LucirinTPOなど)、メタロセン類(例えば、ビス(η5−2,4−シクロペンタジエン−1−イル)−ビス(2,6−ジフロロ−3−(1H−ピロール−1−イル)−フェニル)チタニウム、η5−シクロペンタジエニル−η6−クメニル−アイアン(1+)−ヘキサフロロホスフェート(1−)など)、特開昭53−133428号公報、特公昭57−1819号公報、同57−6096号公報、及び米国特許第3615455号明細書に記載された化合物などが挙げられる。
【0108】
前記ケトン化合物としては、例えば、ベンゾフェノン、2−メチルベンゾフェノン、3−メチルベンゾフェノン、4−メチルベンゾフェノン、4−メトキシベンゾフェノン、2−クロロベンゾフェノン、4−クロロベンゾフェノン、4−ブロモベンゾフェノン、2−カルボキシベンゾフェノン、2−エトキシカルボニルベンゾルフェノン、ベンゾフェノンテトラカルボン酸又はそのテトラメチルエステル、4,4’−ビス(ジアルキルアミノ)ベンゾフェノン類(例えば、4,4’−ビス(ジメチルアミノ)ベンゾフェノン、4,4’−ビスジシクロヘキシルアミノ)ベンゾフェノン、4,4’−ビス(ジエチルアミノ)ベンゾフェノン、4,4’−ビス(ジヒドロキシエチルアミノ)ベンゾフェノン、4−メトキシ−4’−ジメチルアミノベンゾフェノン、4,4’−ジメトキシベンゾフェノン、4−ジメチルアミノベンゾフェノン、4−ジメチルアミノアセトフェノン、ベンジル、アントラキノン、2−t−ブチルアントラキノン、2−メチルアントラキノン、フェナントラキノン、キサントン、チオキサントン、2−クロル−チオキサントン、2,4−ジエチルチオキサントン、フルオレノン、2−ベンジル−ジメチルアミノ−1−(4−モルホリノフェニル)−1−ブタノン、2−メチル−1−〔4−(メチルチオ)フェニル〕−2−モルホリノ−1−プロパノン、2−ヒドロキシー2−メチル−〔4−(1−メチルビニル)フェニル〕プロパノールオリゴマー、ベンゾイン、ベンゾインエーテル類(例えば、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾインフェニルエーテル、ベンジルジメチルケタール)、アクリドン、クロロアクリドン、N−メチルアクリドン、N−ブチルアクリドン、N−ブチル−クロロアクリドンなどが挙げられる。
【0109】
また、後述する感光性ソルダーレジスト層への露光における露光感度や感光波長を調整する目的で、前記光重合開始剤に加えて、増感剤を添加することが可能である。
前記増感剤は、後述する光照射手段としての可視光線や紫外光レーザ、可視光レーザなどにより適宜選択することができる。
前記増感剤は、活性エネルギー線により励起状態となり、他の物質(例えば、ラジカル発生剤、酸発生剤など)と相互作用(例えば、エネルギー移動、電子移動など)することにより、ラジカルや酸などの有用基を発生することが可能である。
【0110】
前記増感剤としては、特に制限はなく、公知の増感剤の中から適宜選択することができ、例えば、公知の多核芳香族類(例えば、ピレン、ペリレン、トリフェニレン)、キサンテン類(例えば、フルオレセイン、エオシン、エリスロシン、ローダミンB、ローズベンガル)、シアニン類(例えば、インドカルボシアニン、チアカルボシアニン、オキサカルボシアニン)、メロシアニン類(例えば、メロシアニン、カルボメロシアニン)、チアジン類(例えば、チオニン、メチレンブルー、トルイジンブルー)、アクリジン類(例えば、アクリジンオレンジ、クロロフラビン、アクリフラビン)、アントラキノン類(例えば、アントラキノン)、スクアリウム類(例えば、スクアリウム)、アクリドン類(例えば、アクリドン、クロロアクリドン、N−メチルアクリドン、N−ブチルアクリドン、N−ブチル−クロロアクリドンなど)、クマリン類(例えば、3−(2−ベンゾフロイル)−7−ジエチルアミノクマリン、3−(2−ベンゾフロイル)−7−(1−ピロリジニル)クマリン、3−ベンゾイル−7−ジエチルアミノクマリン、3−(2−メトキシベンゾイル)−7−ジエチルアミノクマリン、3−(4−ジメチルアミノベンゾイル)−7−ジエチルアミノクマリン、3,3’−カルボニルビス(5,7−ジ−n−プロポキシクマリン)、3,3’−カルボニルビス(7−ジエチルアミノクマリン)、3−ベンゾイル−7−メトキシクマリン、3−(2−フロイル)−7−ジエチルアミノクマリン、3−(4−ジエチルアミノシンナモイル)−7−ジエチルアミノクマリン、7−メトキシ−3−(3−ピリジルカルボニル)クマリン、3−ベンゾイル−5,7−ジプロポキシクマリンなどがあげられ、他に特開平5−19475号公報、特開平7−271028号公報、特開2002−363206号公報、特開2002−363207号公報、特開2002−363208号公報、特開2002−363209号公報などの各公報に記載のクマリン化合物など)が挙げられる。
【0111】
前記光重合開始剤と前記増感剤との組合せとしては、例えば、特開2001−305734号公報に記載の電子移動型開始系[(1)電子供与型開始剤及び増感色素、(2)電子受容型開始剤及び増感色素、(3)電子供与型開始剤、増感色素及び電子受容型開始剤(三元開始系)]などの組合せが挙げられる。
【0112】
前記増感剤の含有量としては、前記感光性ソルダーレジスト組成物中の全成分に対し、0.05〜30質量%が好ましく、0.1〜20質量%がより好ましく、0.2〜10質量%が特に好ましい。該含有量が、0.05質量%未満であると、活性エネルギー線への感度が低下し、露光プロセスに時間がかかり、生産性が低下することがあり、30質量%を超えると、保存時に前記感光性ソルダーレジスト層から前記増感剤が析出することがある。
【0113】
前記光重合開始剤は、1種単独で使用してもよく、2種以上を併用してもよい。
前記光重合開始剤の特に好ましい例としては、後述する露光において、波長が405nmのレーザ光に対応可能である、前記ホスフィンオキサイド類、前記α−アミノアルキルケトン類、前記トリアジン骨格を有するハロゲン化炭化水素化合物と後述する増感剤としてのアミン化合物とを組合せた複合光開始剤、ヘキサアリールビイミダゾール化合物、あるいは、チタノセンなどが挙げられる。
【0114】
前記光重合開始剤の前記感光性ソルダーレジスト組成物における含有量としては、0.5〜20質量%が好ましく、1〜15質量%がより好ましく、2〜10質量%が特に好ましい。
【0115】
<熱架橋剤>
前記熱架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、エポキシ樹脂及び多官能オキセタン化合物などが好適に挙げられる。
前記エポキシ樹脂及び多官能オキセタン化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記感光性ソルダーレジスト組成物を用いて形成される感光性ソルダーレジスト層の硬化後の膜強度を改良するために、現像性などなどに悪影響を与えない範囲で、1分子内に少なくとも2つのオキシラン基を有するエポキシ樹脂化合物、1分子内に少なくとも2つのオキセタニル基を有するオキセタン化合物などを用いることができる。
【0116】
前記エポキシ樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ビキシレノール型若しくはビフェノール型エポキシ樹脂(「YX4000;ジャパンエポキシレジン社製」など)又はこれらの混合物、イソシアヌレート骨格などを有する複素環式エポキシ樹脂(「TEPIC;日産化学工業社製」、「アラルダイトPT810;チバ・スペシャルティ・ケミカルズ社製」など)、ビスフェノールA型エポキシ樹脂、ノボラック型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、脂環式エポキシ樹脂、トリヒドロキシフェニルメタン型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂、グリシジルフタレート樹脂、テトラグリシジルキシレノイルエタン樹脂、ナフタレン基含有エポキシ樹脂(「ESN−190,ESN−360;新日鉄化学社製」、「HP−4032,EXA−4750,EXA−4700;大日本インキ化学工業社製」など)、ジシクロペンタジエン骨格を有するエポキシ樹脂(「HP−7200,HP−7200H;大日本インキ化学工業社製」など)、グリシジルメタアクリレート共重合系エポキシ樹脂(「CP−50S,CP−50M;日本油脂社製」など)、シクロヘキシルマレイミドとグリシジルメタアクリレートとの共重合エポキシ樹脂などが挙げられる。これらのエポキシ樹脂は、1種単独で使用してもよいし、2種以上を併用してもよい。
【0117】
前記多官能オキセタン化合物としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ビス[(3−メチル−3−オキセタニルメトキシ)メチル]エーテル、ビス[(3−エチル−3−オキセタニルメトキシ)メチル]エーテル、1,4−ビス[(3−メチル−3−オキセタニルメトキシ)メチル]ベンゼン、1,4−ビス[(3−エチル−3−オキセタニルメトキシ)メチル]ベンゼン、(3−メチル−3−オキセタニル)メチルアクリレート、(3−エチル−3−オキセタニル)メチルアクリレート、(3−メチル−3−オキセタニル)メチルメタクリレート、(3−エチル−3−オキセタニル)メチルメタクリレート又はこれらのオリゴマーあるいは共重合体などの多官能オキセタン類の他、オキセタン基と、ノボラック樹脂、ポリ(p−ヒドロキシスチレン)、カルド型ビスフェノール類、カリックスアレーン類、カリックスレゾルシンアレーン類、シルセスキオキサンなどの水酸基を有する樹脂など、とのエーテル化合物が挙げられ、この他、オキセタン環を有する不飽和モノマーとアルキル(メタ)アクリレートとの共重合体なども挙げられる。
【0118】
前記エポキシ樹脂又は多官能オキセタン化合物の前記感光性ソルダーレジスト組成物溶液の固形分中の固形分含有量としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、2〜50質量%が好ましく、3〜30質量%がより好ましい。該固形分含有量が2質量%未満であると、硬化膜の吸湿性が高くなり、絶縁性の劣化を生ずる、あるいは、半田耐熱性や耐無電解メッキ性などなどが低下することがあり、50質量%を超えると、現像性の悪化や露光感度の低下が生ずることがあり、好ましくない。
【0119】
−その他の熱架橋剤―
前記その他の熱架橋剤は、前記エポキシ樹脂や多官能オキセタン化合物とは別に添加することができる。前記熱架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、特開平5−9407号公報記載のポリイソシアネート化合物を用いることができ、該ポリイソシアネート化合物としては、少なくとも2つのイソシアネート基を含む脂肪族、環式脂肪族又は芳香族基置換脂肪族化合物から誘導されていてもよい。
具体的には、1,3−フェニレンジイソシアネートと1,4−フェニレンジイソシアネートとの混合物、2,4−及び2,6−トルエンジイソシアネート、1,3−及び1,4−キシリレンジイソシアネート、ビス(4−イソシアネート−フェニル)メタン、ビス(4−イソシアネートシクロヘキシル)メタン、イソホロンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネートなどの2官能イソシアネート;該2官能イソシアネートと、トリメチロールプロパン、ペンタリスルトール、グリセリンなどとの多官能アルコール;該多官能アルコールのアルキレンオキサイド付加体と、前記2官能イソシアネートとの付加体;ヘキサメチレンジイソシアネート、ヘキサメチレン−1,6−ジイソシアネート及びその誘導体などの環式三量体などが挙げられる。
【0120】
更に、前記感光性ソルダーレジスト組成物、あるいは、前記感光性ソルダーレジストフィルムの保存性を向上させることを目的として、前記ポリイソシアネート及びその誘導体のイソシアネート基にブロック剤を反応させて得られる化合物を用いてもよい。
前記イソシアネート基ブロック剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、イソプロパノール、tert.−ブタノールなどのアルコール類;ε−カプロラクタムなどのラクタム類;フェノール、クレゾール、p−tert.−ブチルフェノール、p−sec.−ブチルフェノール、p−sec.−アミルフェノール、p−オクチルフェノール、p−ノニルフェノールなどのフェノール類;3−ヒドロキシピリジン、8−ヒドロキシキノリンなどの複素環式ヒドロキシル化合物;ジアルキルマロネート、メチルエチルケトキシム、アセチルアセトン、アルキルアセトアセテートオキシム、アセトオキシム、シクロヘキサノンオキシムなどの活性メチレン化合物;などが挙げられる。これらの他に、特開平6−295060号公報記載の分子内に少なくとも1つの重合可能な二重結合及び少なくとも1つのブロックイソシアネート基のいずれかを有する化合物などを用いることができる。
【0121】
また、アルデヒド縮合生成物、樹脂前駆体などを用いることができる。具体的には、N,N’−ジメチロール尿素、N,N’−ジメチロールマロンアミド、N,N’−ジメチロールスクシンイミド、トリメチロールメラミン、テトラメチロールメラミン、ヘキサメチロールメラミン、1,3−N,N’−ジメチロールテレフタルアミド、2,4,6−トリメチロールフェノール、2,6−ジメチロール−4−メチロアニソール、1,3−ジメチロール−4,6−ジイソプロピルベンゼンなどが挙げられる。なお、これらのメチロール化合物の代わりに、対応するエチル若しくはブチルエーテル、又は酢酸あるいはプロピオン酸のエステルを使用してもよい。また、メラミンと尿素とのホルムアルデヒド縮合生成物とからなるヘキサメチル化メチロールメラミンや、メラミンとホルムアルデヒド縮合生成物のブチルエーテルなどを使用してもよい。
【0122】
<無機充填剤>
前記無機充填剤は、永久パターンの表面硬度を向上でき、線膨張係数を低く抑えることができ、硬化層自体の誘電率や誘電正接を低く抑えることができる機能がある。
前記無機充填剤としては、特に制限はなく、公知のものの中から適宜選択することができ、例えば、カオリン、硫酸バリウム、チタン酸バリウム、酸化ケイ素粉、微粉状酸化ケイ素、気相法シリカ、無定形シリカ、結晶性シリカ、溶融シリカ、球状シリカ、タルク、クレー、炭酸マグネシウム、炭酸カルシウム、酸化アルミニウム、水酸化アルミニウム、マイカなどが挙げられる。
【0123】
前記無機充填剤の平均粒径は、3μm未満が好ましく、0.1〜2μmがより好ましい。該平均粒径が3μm以上であると、光錯乱により解像度が劣化することがある。
前記無機充填剤の添加量は、5〜75質量%が好ましく、8〜70質量%がより好ましく、10〜65質量%が特に好ましい。該添加量が5質量%未満であると、十分に線膨張係数を低下させることができないことがあり、90質量%を超えると、感光性ソルダーレジスト層表面に硬化膜を形成した場合に、該硬化膜の膜質が脆くなり、永久パターンを用いて配線を形成する場合において、配線の保護膜としての機能が損なわれることがある。
【0124】
更に必要に応じて有機微粒子を添加することも可能である。好適な有機微粒子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メラミン樹脂、ベンゾグアナミン樹脂、架橋ポリスチレン樹脂などが挙げられる。また、平均粒径0.1〜2μm、吸油量100〜200m/g程度のシリカ、架橋樹脂からなる球状多孔質微粒子などを用いることができる。
【0125】
前記無機充填剤に、平均粒径が0.1〜2μmの粒子を含有していることから、永久パターンをプリント配線基板の薄型化にともなって、厚み5〜20μmに薄層化したとしても、無機充填剤粒子が永久パターンの表裏両面を架橋することはなく、その結果、高加速度試験(HAST)においてもイオンマイグレーションの発生がなく、耐熱性、耐湿性に優れた永久パターンとすることができる。
【0126】
<着色剤>
前記着色剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、公知の染料の中から、適宜選択した着色顔料などの染料を使用することができる。
【0127】
−着色顔料−
前記着色顔料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ビクトリア・ピュアーブルーBO(C.I.42595)、オーラミン(C.I.41000)、ファット・ブラックHB(C.I.26150)、モノライト・エローGT(C.I.ピグメント・エロー12)、パーマネント・エローGR(C.I.ピグメント・エロー17)、パーマネント・エローHR(C.I.ピグメント・エロー83)、パーマネント・カーミンFBB(C.I.ピグメント・レッド146)、ホスターバームレッドESB(C.I.ピグメント・バイオレット19)、パーマネント・ルビーFBH(C.I.ピグメント・レッド11)ファステル・ピンクBスプラ(C.I.ピグメント・レッド81)モナストラル・ファースト・ブルー(C.I.ピグメント・ブルー15)、モノライト・ファースト・ブラックB(C.I.ピグメント・ブラック1)、カーボン、C.I.ピグメント・レッド97、C.I.ピグメント・レッド122、C.I.ピグメント・レッド149、C.I.ピグメント・レッド168、C.I.ピグメント・レッド177、C.I.ピグメント・レッド180、C.I.ピグメント・レッド192、C.I.ピグメント・レッド215、C.I.ピグメント・グリーン7、C.I.ピグメント・グリーン36、C.I.ピグメント・ブルー15:1、C.I.ピグメント・ブルー15:4、C.I.ピグメント・ブルー15:6、C.I.ピグメント・ブルー22、C.I.ピグメント・ブルー60、C.I.ピグメント・ブルー64などが挙げられる。これらは1種単独で用いてもよいし、2種以上を併用してもよい。
【0128】
前記着色顔料の前記感光性ソルダーレジスト組成物溶液の固形分中の固形分含有量は、永久パターン形成の際の感光性ソルダーレジスト層の露光感度、解像性などを考慮して決めることができ、前記着色顔料の種類により異なるが、一般的には0.1〜10質量%が好ましく、0.5〜8質量%がより好ましい。
【0129】
<熱硬化促進剤>
前記熱硬化促進剤は、前記エポキシ樹脂化合物や前記多官能オキセタン化合物の熱硬化を促進する機能があり、前記感光性樹脂に好適に添加される。
前記熱硬化促進剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ジシアンジアミド、ベンジルジメチルアミン、4−(ジメチルアミノ)−N,N−ジメチルベンジルアミン、4−メトキシ−N,N−ジメチルベンジルアミン、4−メチル−N,N−ジメチルベンジルアミンなどのアミン化合物;トリエチルベンジルアンモニウムクロリドなどの4級アンモニウム塩化合物;ジメチルアミンなどのブロックイソシアネート化合物;イミダゾール、2−メチルイミダゾール、2−エチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、4−フェニルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−(2−シアノエチル)−2−エチル−4−メチルイミダゾールなどのイミダゾール誘導体二環式アミジン化合物及びその塩;トリフェニルホスフィンなどのリン化合物;メラミン、グアナミン、アセトグアナミン、ベンゾグアナミンなどのグアナミン化合物;2,4−ジアミノ−6−メタクリロイルオキシエチル−S−トリアジン、2−ビニル−2,4−ジアミノ−S−トリアジン、2−ビニル−4,6−ジアミノ−S−トリアジン・イソシアヌル酸付加物、2,4−ジアミノ−6−メタクリロイルオキシエチル−S−トリアジン・イソシアヌル酸付加物などのS−トリアジン誘導体、三フッ化ホウ素−アミンコンプレックス、有機ヒドラジド累、無水フタル酸、無水トリメリット酸、エチレングリコールビス(アンヒドロトリメリテート)、グリセロールトリス(アンヒドロトリメリテート)、ベンゾフェノンテトラカルボン酸無水物などの芳香族酸無水物、無水マレイン酸、テトラヒドロ無水フタル酸などの脂肪族酸無水物類、ポリビニルフェノール、ポリビニルフェノール臭素化物、フェノールノボラック、アルキルフェノールノボラックなどのポリフェノール類などなどを用いることができる。これらは1種単独で使用してもよく、2種以上を併用してもよい。なお、前記エポキシ樹脂化合物や前記多官能オキセタン化合物の硬化触媒、あるいは、これらとカルボキシル基の反応を促進することができるものであれば、特に制限はなく、上記以外の熱硬化を促進可能な化合物を用いてもよい。
前記エポキシ樹脂、前記多官能オキセタン化合物、及びこれらとカルボン酸との熱硬化を促進可能な化合物の前記感光性ソルダーレジスト組成物溶液の固形分中の固形分含有量は、通常0.01〜20質量%である。
【0130】
<その他の成分>
前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、溶剤、密着促進剤、熱重合禁止剤、可塑剤及びその他の添加剤などが挙げられ、更に基材表面への密着促進剤及びその他の助剤類(例えば、導電性粒子、充填剤、消泡剤、難燃剤、レベリング剤、剥離促進剤、酸化防止剤、香料、表面張力調整剤、連鎖移動剤など)を併用してもよい。これらの成分を適宜含有させることにより、目的とする感光性ソルダーレジスト組成物あるいは感光性ソルダーレジストフィルムの安定性、写真性、膜物性などの性質を調整することができる。
【0131】
−溶剤−
前記溶剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、sec−ブタノール、n−ヘキサノール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジイソブチルケトンなどのケトン類;酢酸エチル、酢酸ブチル、酢酸−n−アミル、硫酸メチル、プロピオン酸エチル、フタル酸ジメチル、安息香酸エチル、及びメトキシプロピルアセテートなどのエステル類;トルエン、キシレン、ベンゼン、エチルベンゼンなどの芳香族炭化水素類;四塩化炭素、トリクロロエチレン、クロロホルム、1,1,1−トリクロロエタン、塩化メチレン、モノクロロベンゼンなどのハロゲン化炭化水素類;テトラヒドロフラン、ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、1−メトキシ−2−プロパノールなどのエーテル類;ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホオキサイド、スルホランなどが挙げられる。これらは、1種単独で使用してもよく、2種以上を併用してもよい。また、公知の界面活性剤を添加してもよい。
【0132】
−密着促進剤−
前記密着促進剤は、各層間の密着性、又は感光性ソルダーレジスト層と基材との密着性、電食性を向上させる機能がある。
前記密着促進剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メラミン、アセトグアナミン、ベンゾグアテミン、メラミン−フェノールホルマリン樹脂、エチルジアミノ−S−トリアジン、2,4−ジアミノ−S−トリアジン、2,4−ジアミノ−6−キシリル−S−トリアジンなどのトリアジン化合物が挙げられる。市販されているトリアジン化合物としては、下記構造式(E)〜(G)に示す四国化成工業社製;2MZ−AZINE(構造式(E)),2E4MZ−AZINE(構造式(F)),CllZ−AZINE(構造式(G))などが挙げられる。
【0133】
【化58】

【0134】
【化59】

【0135】
【化60】

【0136】
これらの化合物は、銅回路との密着性を高め、耐PCT性を向上させ、電食性にも効果がある。これらは単独であるいは2種以上を組み合わせて用いることができる。密着促進剤の配合量は、感光性ソルダーレジスト組成物固形分に対して0.1〜40質量%が好ましく、0.1〜20質量%がより好ましい。
【0137】
−熱重合禁止剤−
前記熱重合禁止剤は、前記重合性化合物の熱的な重合又は経時的な重合を防止し、保存安定性を向上させるために添加することが好ましい。
前記熱重合禁止剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、4−メトキシフェノール、ハイドロキノン、ハイドロキノンモノメチルエーテル、アルキル又はアリール置換ハイドロキノン、t−ブチルカテコール、ピロガロール、2−ヒドロキシベンゾフェノン、4−メトキシ−2−ヒドロキシベンゾフェノン、塩化第一銅、フェノチアジン、クロラニル、ナフチルアミン、β−ナフトール、2,6−ジ−t−ブチル−4−クレゾール、2,2’−メチレンビス(4−メチル−6−t−ブチルフェノール)、ピリジン、ニトロベンゼン、ジニトロベンゼン、ピクリン酸、4−トルイジン、メチレンブルー、銅と有機キレート剤反応物、サリチル酸メチル、及びフェノチアジン、ニトロソ化合物、ニトロソ化合物とAlとのキレートなどが挙げられる。
【0138】
前記熱重合禁止剤の含有量としては、前記重合性化合物に対して0.001〜5質量%が好ましく、0.005〜2質量%がより好ましく、0.01〜1質量%が特に好ましい。該含有量が、0.001質量%未満であると、保存時の安定性が低下することがあり、5質量%を超えると、活性エネルギー線に対する感度が低下することがある。
【0139】
−その他の添加剤−
前記その他の添加剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ベントン、モンモリロナイト、エアロゾル、アミドワックスなどのチキソ性付与剤、シリコーン系、フッ素系、高分子系などの消泡剤、レベリング剤のような添加剤類を用いることができる。
【0140】
(感光性ソルダーレジストフィルム)
前記感光性ソルダーレジストフィルムは、図1に示すように、少なくとも支持体1と、感光性ソルダーレジスト層2とを有してなり、好ましくは保護フィルム3を有してなり、更に必要に応じて、クッション層、酸素遮断層(以下PC層と省略する。)などのその他の層を有してなる。
前記感光性トフィルムの形態としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記支持体上に、前記感光性ソルダーレジスト層、前記保護膜フィルムをこの順に有してなる形態、前記支持体上に、前記PC層、前記感光性ソルダーレジスト層、前記保護フィルムをこの順に有してなる形態、前記支持体上に、前記クッション層、前記PC層、前記感光性ソルダーレジスト層、前記保護フィルムをこの順に有してなる形態などが挙げられる。なお、前記感光性ソルダーレジスト層は、単層であってもよいし、複数層であってもよい。
【0141】
−支持体−
前記支持体としては、特に制限はなく、目的に応じて適宜選択することができ、前記感光性ソルダーレジスト層を剥離可能であり、かつ光の透過性が良好であるのが好ましく、更に表面の平滑性が良好であるのがより好ましい。
【0142】
前記支持体は、合成樹脂製で、かつ透明であるものが好ましく、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、ポリエチレン、三酢酸セルロース、二酢酸セルロース、ポリ(メタ)アクリル酸アルキルエステル、ポリ(メタ)アクリル酸エステル共重合体、ポリ塩化ビニル、ポリビニルアルコール、ポリカーボネート、ポリスチレン、セロファン、ポリ塩化ビニリデン共重合体、ポリアミド、ポリイミド、塩化ビニル・酢酸ビニル共重合体、ポリテトラフロロエチレン、ポリトリフロロエチレン、セルロース系フィルム、ナイロンフィルムなどの各種のプラスチックフィルムが挙げられ、これらの中でも、ポリエチレンテレフタレートが特に好ましい。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
なお、前記支持体としては、例えば、特開平4−208940号公報、特開平5−80503号公報、特開平5−173320号公報、特開平5−72724号公報などに記載の支持体を用いることもできる。
【0143】
前記支持体の厚みとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、4〜300μmが好ましく、5〜175μmがより好ましい。
前記支持体の形状としては、特に制限はなく、目的に応じて適宜選択することができ、長尺状が好ましい。前記長尺状の支持体の長さとしては、特に制限はなく、例えば、10m〜20000mの長さのものが挙げられる。
【0144】
(感光性ソルダーレジスト層)
前記感光性ソルダーレジスト層は、本発明の前記感光性ソルダーレジスト組成物により形成される。
前記感光性ソルダーレジスト層の前記感光性ソルダーレジストフィルムにおいて設けられる箇所としては、特に制限はなく、目的に応じて適宜選択することができるが、通常、前記支持体上に積層される。
前記感光性ソルダーレジスト層は、後述する露光工程において、光照射手段からの光を受光し出射する描素部をn個有する光変調手段により、前記光照射手段からの光を変調させた後、前記描素部における出射面の歪みによる収差を補正可能な非球面を有するマイクロレンズを配列したマイクロレンズアレイを通した光で、露光されるのが好ましい。
【0145】
前記感光性ソルダーレジスト層の厚みとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、3〜100μmが好ましく、5〜70μmがより好ましい。
【0146】
前記感光性ソルダーレジスト層の形成方法としては、前記支持体の上に、本発明の前記感光性ソルダーレジスト組成物を、水又は前記溶剤に溶解、乳化又は分散させて前記感光性ソルダーレジスト組成物溶液を調製し、該溶液を直接塗布し、乾燥させることにより積層する方法が挙げられる。
【0147】
前記塗布の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、スピンコーター、スリットスピンコーター、ロールコーター、ダイコーター、カーテンコーターなどを用いて、前記支持体に直接塗布する方法が挙げられる。
前記乾燥の条件としては、各成分、溶媒の種類、使用割合などによっても異なるが、通常60〜110℃の温度で30秒間〜15分間程度である。
【0148】
−保護フィルム−
前記保護フィルムは、前記感光性ソルダーレジスト層の汚れや損傷を防止し、保護する機能を有する。
前記保護フィルムの前記感光性ソルダーレジストフィルムにおいて設けられる箇所としては、特に制限はなく、目的に応じて適宜選択することができるが、通常、前記感光性ソルダーレジスト層上に設けられる。
前記保護フィルムとしては、例えば、前記支持体に使用されるもの、シリコーン紙、ポリエチレン、ポリプロピレンがラミネートされた紙、ポリオレフィン又はポリテトラフルオルエチレンシート、などが挙げられ、これらの中でも、ポリエチレンフィルム、ポリプロピレンフィルムが好ましい。
前記保護フィルムの厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、5〜100μmが好ましく、8〜30μmがより好ましい。
【0149】
前記保護フィルムを用いる場合、前記感光性ソルダーレジスト層及び前記支持体の接着力Aと、前記感光性ソルダーレジスト層及び保護フィルムの接着力Bとが、接着力A>接着力Bの関係であることが好ましい。
前記支持体と保護フィルムとの組合せ(支持体/保護フィルム)としては、例えば、ポリエチレンテレフタレート/ポリプロピレン、ポリエチレンテレフタレート/ポリエチレン、ポリ塩化ビニル/セロフアン、ポリイミド/ポリプロピレン、ポリエチレンテレフタレート/ポリエチレンテレフタレートなどが挙げられる。また、支持体及び保護フィルムの少なくともいずれかを表面処理することにより、上述のような接着力の関係を満たすことができる。前記支持体の表面処理は、前記感光性ソルダーレジスト層との接着力を高めるために施されてもよく、例えば、下塗層の塗設、コロナ放電処理、火炎処理、紫外線照射処理、高周波照射処理、グロー放電照射処理、活性プラズマ照射処理、レーザ光線照射処理などを挙げることができる。
【0150】
また、前記支持体と前記保護フィルムとの静摩擦係数としては、0.3〜1.4が好ましく、0.5〜1.2がより好ましい。
前記静摩擦係数が、0.3未満であると、滑り過ぎるため、ロール状にした場合に巻ズレが発生することがあり、1.4を超えると、良好なロール状に巻くことが困難となることがある。
【0151】
前記感光性ソルダーレジストフィルムは、例えば、円筒状の巻芯に巻き取って、長尺状でロール状に巻かれて保管されるのが好ましい。前記長尺状の感光性ソルダーレジストフィルムの長さとしては、特に制限はなく、例えば、10m〜20,000mの範囲から適宜選択することができる。また、ユーザーが使いやすいようにスリット加工し、100m〜1,000mの範囲の長尺体をロール状にしてもよい。なお、この場合には、前記支持体が一番外側になるように巻き取られるのが好ましい。また、前記ロール状の感光性ソルダーレジストフィルムをシート状にスリットしてもよい。保管の際、端面の保護、エッジフュージョンを防止する観点から、端面にはセパレーター(特に防湿性のもの、乾燥剤入りのもの)を設置するのが好ましく、また梱包も透湿性の低い素材を用いるのが好ましい。
【0152】
前記保護フィルムは、前記保護フィルムと前記感光性ソルダーレジスト層との接着性を調整するために表面処理してもよい。前記表面処理は、例えば、前記保護フィルムの表面に、ポリオルガノシロキサン、弗素化ポリオレフィン、ポリフルオロエチレン、ポリビニルアルコールなどのポリマーからなる下塗層を形成させる。該下塗層の形成は、前記ポリマーの塗布液を前記保護フィルムの表面に塗布した後、30〜150℃(特に50〜120℃)で1〜30分間乾燥させることにより形成させることができる。
また、前記感光性ソルダーレジスト層、前記支持体、前記保護フィルムの他に、クッション層、酸素遮断層(PC層)、剥離層、接着層、光吸収層、表面保護層などの層を有してもよい。
前記クッション層は、常温ではタック性が無く、真空及び加熱条件で積層した場合に溶融し、流動する層である。
前記PC層は、通常ポリビニルアルコールを主成分として形成された1.5μm程度の被膜である。
本発明の感光性ソルダーレジストフィルムは、保存安定性に優れ、現像後に優れた耐薬品性、表面硬度、耐熱性などを発揮する感光性ソルダーレジスト組成物が積層された感光性ソルダーレジスト層を有してなる。このため、プリント配線板、カラーフィルタや柱材、リブ材、スペーサー、隔壁などのディスプレイ用部材、ホログラム、マイクロマシン、プルーフなどの永久パターン形成用として広く用いることができ、本発明の永久パターン及びその形成方法に好適に用いることができる。
特に、本発明の感光性ソルダーレジストフィルムは、該フィルムの厚みが均一であるため、永久パターンの形成に際し、永久パターン(保護膜、層間絶縁膜、ソルダーレジストなど)を薄層化しても、高加速度試験(HAST)においてイオンマイグレーションの発生がなく、耐熱性、耐湿性に優れた高精細な永久パターンが得られるため、基材への積層がより精細に行われる。
【0153】
<永久パターン及び永久パターン形成方法>
本発明の永久パターンは、本発明の永久パターン形成方法により得られる。
本発明の永久パターン形成方法は、第1の態様として、本発明の感光性ソルダーレジスト組成物を、基材の表面に塗布し、乾燥して感光性ソルダーレジスト層を形成した後、露光し、現像する。
また、本発明の永久パターン形成方法は、第2の態様として、本発明の感光性ソルダーレジストフィルムを、加熱及び加圧の少なくともいずれかの下において基材の表面に積層した後、露光し、現像する。
以下、本発明の永久パターン形成方法の説明を通じて、本発明の永久パターンの詳細も明らかにする。
【0154】
−基材−
前記基材としては、特に制限はなく、公知の材料の中から表面平滑性の高いものから凸凹のある表面を有するものまで適宜選択することができ、板状の基材(基板)が好ましく、具体的には、公知のプリント配線板形成用基板(例えば、銅張積層板)、ガラス板(例えば、ソーダガラス板など)、合成樹脂性のフィルム、紙、金属板などが挙げられ、これらの中でも、プリント配線板形成用基板が好ましく、多層配線基板やビルドアップ配線基板などへの半導体などの高密度実装化が可能となる点で、該プリント配線板形成用基板が配線形成済みであるのが特に好ましい。
【0155】
前記基材は、前記第1の態様として、該基材上に前記感光性ソルダーレジスト組成物による感光性ソルダーレジスト層が形成されてなる積層体、又は前記第2の態様として、前記感光性ソルダーレジストフィルムにおける感光性ソルダーレジスト層が重なるようにして積層されてなる積層体を形成して用いることができる。即ち、前記積層体における前記感光性ソルダーレジスト層に対して後述する露光することにより、露光した領域を硬化させ、後述する現像により永久パターンを形成することができる。
【0156】
−積層体−
前記第1の態様の積層体の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、前記基材上に、前記感光性ソルダーレジスト組成物を塗布及び乾燥して形成した感光性ソルダーレジスト層を積層するのが好ましい。
前記塗布及び乾燥の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記感光性ソルダーレジストフィルムにおける感光性ソルダーレジスト層を形成する際に行われる、前記感光性ソルダーレジスト組成物溶液の塗布及び乾燥と同様な方法で行うことができ、例えば、該感光性ソルダーレジスト組成物溶液をスピンコーター、スリットスピンコーター、ロールコーター、ダイコーター、カーテンコーターなどを用いて塗布する方法が挙げられる。
【0157】
前記第2の態様の積層体の形成方法としては、特に制限はなく、目的に応じて適宜選択することができ、前記基材上に前記感光性ソルダーレジストフィルムを加熱及び加圧の少なくともいずれかを行いながら積層するのが好ましい。なお、前記感光性ソルダーレジストフィルムが前記保護フィルムを有する場合には、該保護フィルムを剥離し、前記基材に前記感光性ソルダーレジスト層が重なるようにして積層するのが好ましい。
前記加熱温度としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、70〜130℃が好ましく、80〜110℃がより好ましい。
前記加圧の圧力としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、0.01〜1.0MPaが好ましく、0.05〜1.0MPaがより好ましい。
【0158】
前記加熱及び加圧の少なくともいずれかを行う装置としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ヒートプレス、ヒートロールラミネーター(例えば、大成ラミネータ社製、VP−II)、真空ラミネーター(例えば、名機製作所製、MVLP500)などが好適に挙げられる。
【0159】
<露光工程>
前記露光工程は、前記感光性ソルダーレジスト層に対し、露光を行う工程である。
【0160】
前記露光の対象としては、感光性ソルダーレジスト層を有する材料である限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、基材上に前記感光性ソルダーレジスト組成物又は前記感光性ソルダーレジストフィルムが形成されてなる前記積層体に対して行われることが好ましい。
【0161】
前記積層体への露光としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記支持体、クッション層及びPC層を介して前記感光性ソルダーレジスト層を露光してもよく、前記支持体を剥離した後、前記クッション層及びPC層を介して前記感光性ソルダーレジスト層を露光してもよく、前記支持体及びクッション層を剥離した後、前記PC層を介して前記感光性ソルダーレジスト層を露光してもよく、前記支持体、クッション層及びPC層を剥離した後、前記感光性ソルダーレジスト層を露光してもよい。
【0162】
前記露光としては、特に制限はなく、目的に応じて適宜選択することができ、デジタル露光、アナログ露光などが挙げられ、これらの中でもデジタル露光が好ましい。
【0163】
前記デジタル露光としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、形成するパターン形成情報に基づいて制御信号を生成し、該制御信号に応じて変調させた光を用いて行うのが好ましい。
【0164】
前記デジタル露光の手段としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、光を照射する光照射手段、形成するパターン情報に基づいて該光照射手段から照射される光を変調させる光変調手段などが挙げられる。
【0165】
<光変調手段>
前記光変調手段としては、光を変調することができる限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、n個の描素部を有するのが好ましい。
前記n個の描素部を有する光変調手段としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、空間光変調素子が好ましい。
【0166】
前記空間光変調素子としては、例えば、デジタル・マイクロミラー・デバイス(DMD)、MEMS(Micro Electro Mechanical Systems)タイプの空間光変調素子(SLM;Special Light Modulator)、電気光学効果により透過光を変調する光学素子(PLZT素子)、液晶光シャッタ(FLC)などが挙げられ、これらの中でもDMDが好適に挙げられる。
【0167】
また、前記光変調手段は、形成するパターン情報に基づいて制御信号を生成するパターン信号生成手段を有するのが好ましい。この場合、前記光変調手段は、前記パターン信号生成手段が生成した制御信号に応じて光を変調させる。
前記制御信号としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、デジタル信号が好適に挙げられる。
【0168】
以下、前記光変調手段の一例について図面を参照しながら説明する。
DMD50は図2に示すように、SRAMセル(メモリセル)60上に、各々描素(ピクセル)を構成する多数(例えば、1024個×768個)の微小ミラー(マイクロミラー)62が格子状に配列されてなるミラーデバイスである。各ピクセルにおいて、最上部には支柱に支えられたマイクロミラー62が設けられており、マイクロミラー62の表面にはアルミニウムなどの反射率の高い材料が蒸着されている。なお、マイクロミラー62の反射率は90%以上であり、その配列ピッチは縦方向、横方向とも一例として13.7μmである。また、マイクロミラー62の直下には、ヒンジ及びヨークを含む支柱を介して通常の半導体メモリの製造ラインで製造されるシリコンゲートのCMOSのSRAMセル60が配置されており、全体はモノリシックに構成されている。
【0169】
DMD50のSRAMセル60にデジタル信号が書き込まれると、支柱に支えられたマイクロミラー62が、対角線を中心としてDMD50が配置された基板側に対して±α度(例えば±12度)の範囲で傾けられる。図3(A)は、マイクロミラー62がオン状態である+α度に傾いた状態を示し、図3(B)は、マイクロミラー62がオフ状態である−α度に傾いた状態を示す。したがって、パターン情報に応じて、DMD50の各ピクセルにおけるマイクロミラー62の傾きを、図2に示すように制御することによって、DMD50に入射したレーザ光Bはそれぞれのマイクロミラー62の傾き方向へ反射される。
【0170】
なお、図2には、DMD50の一部を拡大し、マイクロミラー62が+α度又は−α度に制御されている状態の一例を示す。それぞれのマイクロミラー62のオンオフ制御は、DMD50に接続されたコントローラ302(図13参照)によって行われる。また、オフ状態のマイクロミラー62で反射したレーザ光Bが進行する方向には、光吸収体(図示せず)が配置されている。
【0171】
また、DMD50は、その短辺が副走査方向と所定角度θ(例えば、0.1°〜5°)を成すように僅かに傾斜させて配置するのが好ましい。図4(A)はDMD50を傾斜させない場合の各マイクロミラーによる反射光像(露光ビーム)53の走査軌跡を示し、図4(B)はDMD50を傾斜させた場合の露光ビーム53の走査軌跡を示している。
【0172】
DMD50には、長手方向にマイクロミラーが多数個(例えば、1024個)配列されたマイクロミラー列が、短手方向に多数組(例えば、756組)配列されているが、図4(B)に示すように、DMD50を傾斜させることにより、各マイクロミラーによる露光ビーム53の走査軌跡(走査線)のピッチPが、DMD50を傾斜させない場合の走査線のピッチPより狭くなり、解像度を大幅に向上させることができる。一方、DMD50の傾斜角は微小であるので、DMD50を傾斜させた場合の走査幅Wと、DMD50を傾斜させない場合の走査幅Wとは略同一である。
【0173】
次に、前記光変調手段における変調速度を速くさせる方法(以下「高速変調」と称する)について説明する。
前記光変調手段は、前記n個の描素の中から連続的に配置された任意のn個未満の前記描素部をパターン情報に応じて制御可能であるのが好ましい。前記光変調手段のデータ処理速度には限界があり、使用する描素数に比例して1ライン当りの変調速度が決定されるので、連続的に配列された任意のn個未満の描素部だけを使用することで1ライン当りの変調速度が速くなる。
【0174】
以下、前記高速変調について図面を参照しながら更に説明する。
ファイバアレイ光源66からDMD50にレーザ光Bが照射されると、DMD50のマイクロミラーがオン状態のときに反射されたレーザ光は、レンズ系54、58により感光性ソルダーレジスト層150上に結像される。このようにして、ファイバアレイ光源66から出射されたレーザ光が描素毎にオンオフされて、感光性ソルダーレジスト層150がDMD50の使用描素数と略同数の描素単位(露光エリア168)で露光される。また、感光性ソルダーレジスト層150がステージ152と共に一定速度で移動されることにより、感光性ソルダーレジスト層150がスキャナ162によりステージ移動方向と反対の方向に副走査され、露光ヘッド166毎に帯状の露光済み領域170が形成される。
【0175】
なお本例では、図5(A)及び(B)に示すように、DMD50には、主走査方向にマイクロミラーが1024個配列されたマイクロミラー列が副走査方向に768組配列されているが、本例では、前記コントローラ302(図13参照)により一部のマイクロミラー列(例えば、1024個×256列)だけが駆動するように制御がなされる。
【0176】
この場合、図5(A)に示すようにDMD50の中央部に配置されたマイクロミラー列を使用してもよく、図5(B)に示すように、DMD50の端部に配置されたマイクロミラー列を使用してもよい。また、一部のマイクロミラーに欠陥が発生した場合は、欠陥が発生していないマイクロミラー列を使用するなど、状況に応じて使用するマイクロミラー列を適宜変更してもよい。
【0177】
DMD50のデータ処理速度には限界があり、使用する描素数に比例して1ライン当りの変調速度が決定されるので、一部のマイクロミラー列だけを使用することで1ライン当りの変調速度が速くなる。一方、連続的に露光ヘッドを露光面に対して相対移動させる露光方式の場合には、副走査方向の描素を全部使用する必要はない。
【0178】
スキャナ162による感光性ソルダーレジスト層150の副走査が終了し、センサ164で感光性ソルダーレジスト層150の後端が検出されると、ステージ152は、ステージ駆動装置304により、ガイド158に沿ってゲート160の最上流側にある原点に復帰し、再度、ガイド158に沿ってゲート160の上流側から下流側に一定速度で移動される。
【0179】
例えば、768組のマイクロミラー列の内、384組だけ使用する場合には、768組全部使用する場合と比較すると1ライン当り2倍速く変調することができる。また、768組のマイクロミラー列の内、256組だけ使用する場合には、768組全部使用する場合と比較すると1ライン当り3倍速く変調することができる。
【0180】
以上説明した通り、本発明のパターン形成方法によれば、主走査方向にマイクロミラーが1,024個配列されたマイクロミラー列が、副走査方向に768組配列されたDMDを備えているが、コントローラにより一部のマイクロミラー列だけが駆動されるように制御することにより、全部のマイクロミラー列を駆動する場合に比べて、1ライン当りの変調速度が速くなる。
【0181】
また、DMDのマイクロミラーを部分的に駆動する例について説明したが、所定方向に対応する方向の長さが前記所定方向と交差する方向の長さより長い基板上に、各々制御信号に応じて反射面の角度が変更可能な多数のマイクロミラーが2次元状に配列された細長いDMDを用いても、反射面の角度を制御するマイクロミラーの個数が少なくなるので、同様に変調速度を速くすることができる。
【0182】
また、前記露光の方法として、露光光と前記感光性ソルダーレジスト層とを相対的に移動しながら行うのが好ましく、この場合、前記高速変調と併用するのが好ましい。これにより、短時間で高速の露光を行うことができる。
【0183】
その他、図6に示すように、スキャナ162によるX方向への1回の走査で感光性ソルダーレジスト層150の全面を露光してもよく、図7(A)及び(B)に示すように、スキャナ162により感光性ソルダーレジスト層150をX方向へ走査した後、スキャナ162をY方向に1ステップ移動し、X方向へ走査を行うというように、走査と移動を繰り返して、複数回の走査で感光性ソルダーレジスト層150の全面を露光するようにしてもよい。なお、この例では、スキャナ162は18個の露光ヘッド166を備えている。なお、露光ヘッドは、前記光照射手段と前記光変調手段とを少なくとも有する。
【0184】
前記露光は、前記感光性ソルダーレジスト層の一部の領域に対してされることにより該一部の領域が硬化され、後述の現像工程において、前記硬化させた一部の領域以外の未硬化領域が除去され、永久パターンが形成される。
【0185】
次に、前記光変調手段を含むパターン形成装置の一例について図面を参照しながら説明する。
前記光変調手段を含むパターン形成装置は、図8に示すように、感光性ソルダーレジスト層150を有する前記積層体を表面に吸着して保持する平板状のステージ152を備えている。
4本の脚部154に支持された厚い板状の設置台156の上面には、ステージ移動方向
に沿って延びた2本のガイド158が設置されている。ステージ152は、その長手方向がステージ移動方向を向くように配置されると共に、ガイド158によって往復移動可能に支持されている。なお、前記パターン形成装置には、ステージ152をガイド158に沿って駆動するための図示しない駆動装置を有している。
【0186】
設置台156の中央部には、ステージ152の移動経路を跨ぐようにコ字状のゲート160が設けられている。コ字状のゲート160の端部の各々は、設置台156の両側面に固定されている。このゲート160を挟んで一方の側にはスキャナ162が設けられ、他方の側には感光性ソルダーレジスト層150の先端及び後端を検知する複数(例えば、2個)の検知センサ164が設けられている。スキャナ162及び検知センサ164は、ゲート160に各々取り付けられて、ステージ152の移動経路の上方に固定配置されている。なお、スキャナ162及び検知センサ164は、これらを制御する図示しないコントローラに接続されている。
【0187】
スキャナ162は、図9及び図10(B)に示すように、m行n列(例えば、3行5列)の略マトリックス状に配列された複数(例えば、14個)の露光ヘッド166を備えている。この例では、感光性ソルダーレジスト層150の幅との関係で、3行目には4個の露光ヘッド166を配置した。なお、m行目のn列目に配列された個々の露光ヘッドを示す場合は、露光ヘッド166mnと表記する。
【0188】
露光ヘッド166による露光エリア168は、副走査方向を短辺とする矩形状である。したがって、ステージ152の移動に伴い、感光性ソルダーレジスト層150には露光ヘッド166毎に帯状の露光済み領域170が形成される。なお、m行目のn列目に配列された個々の露光ヘッドによる露光エリアを示す場合は、露光エリア168mnと表記する。
【0189】
また、図10(A)及び(B)に示すように、帯状の露光済み領域170が副走査方向と直交する方向に隙間無く並ぶように、ライン状に配列された各行の露光ヘッドの各々は、配列方向に所定間隔(露光エリアの長辺の自然数倍、本例では2倍)ずらして配置されている。このため、1行目の露光エリア16811と露光エリア16812との間の露光できない部分は、2行目の露光エリア16821と3行目の露光エリア16831とにより露光することができる。
【0190】
露光ヘッド16611〜166mn各々は、図11及び図12に示すように、入射された光ビームをパターン情報に応じて前記光変調手段(各描素毎に変調する空間光変調素子)として、米国テキサス・インスツルメンツ社製のデジタル・マイクロミラー・デバイス(DMD)50を備えている。DMD50は、データ処理部とミラー駆動制御部とを備えた前記コントローラ302(図13参照)に接続されている。このコントローラ302のデータ処理部では、入力されたパターン情報に基づいて、露光ヘッド166毎にDMD50の制御すべき領域内の各マイクロミラーを駆動制御する制御信号を生成する。なお、制御すべき領域については後述する。また、ミラー駆動制御部では、パターン情報処理部で生成した制御信号に基づいて、露光ヘッド166毎にDMD50の各マイクロミラーの反射面の角度を制御する。なお、反射面の角度の制御に付いては後述する。
【0191】
DMD50の光入射側には、光ファイバの出射端部(発光点)が露光エリア168の長辺方向と対応する方向に沿って一列に配列されたレーザ出射部を備えたファイバアレイ光源66、ファイバアレイ光源66から出射されたレーザ光を補正してDMD上に集光させるレンズ系67、レンズ系67を透過したレーザ光をDMD50に向けて反射するミラー69がこの順に配置されている。なお、図11では、レンズ系67を概略的に示してある。
【0192】
レンズ系67は、図12に詳しく示すように、ファイバアレイ光源66から出射した照明光としてのレーザ光Bを集光する集光レンズ71、集光レンズ71を通過した光の光路に挿入されたロッド状オプティカルインテグレータ(以下、ロッドインテグレータという)72、及びロッドインテグレータ72の前方つまりミラー69側に配置された結像レンズ74から構成されている。集光レンズ71、ロッドインテグレータ72及び結像レンズ74は、ファイバアレイ光源66から出射したレーザ光を、平行光に近くかつビーム断面内強度が均一化された光束としてDMD50に入射させる。このロッドインテグレータ72の形状や作用については、後に詳しく説明する。
【0193】
レンズ系67から出射したレーザ光Bはミラー69で反射し、TIR(全反射)プリズム70を介してDMD50に照射される。なお、図11では、このTIRプリズム70は省略してある。
【0194】
また、DMD50の光反射側には、DMD50で反射されたレーザ光Bを、感光性ソルダーレジスト層150上に結像する結像光学系51が配置されている。この結像光学系51は、図11では概略的に示してあるが、図12に詳細を示すように、レンズ系52,54からなる第1結像光学系と、レンズ系57,58からなる第2結像光学系と、これらの結像光学系の間に挿入されたマイクロレンズアレイ55と、アパーチャアレイ59とから構成されている。
【0195】
マイクロレンズアレイ55は、DMD50の各描素に対応する多数のマイクロレンズ55aが2次元状に配列されてなるものである。本例では、後述するようにDMD50の1024個×768列のマイクロミラーのうち1024個×256列だけが駆動されるので、それに対応させてマイクロレンズ55aは1024個×256列配置されている。またマイクロレンズ55aの配置ピッチは縦方向、横方向とも41μmである。このマイクロレンズ55aは、一例として焦点距離が0.19mm、NA(開口数)が0.11で、光学ガラスBK7から形成されている。なおマイクロレンズ55aの形状については、後に詳しく説明する。
そして、各マイクロレンズ55aの位置におけるレーザ光Bのビーム径は、41μmである。
【0196】
また、アパーチャアレイ59は、マイクロレンズアレイ55の各マイクロレンズ55aに対応する多数のアパーチャ(開口)59aが形成されてなるものである。アパーチャ59aの径は、例えば、10μmである。
【0197】
前記第1結像光学系は、DMD50による像を3倍に拡大してマイクロレンズアレイ55上に結像する。そして、前記第2結像光学系は、マイクロレンズアレイ55を経た像を1.6倍に拡大して感光性ソルダーレジスト層150上に結像、投影する。したがって全体では、DMD50による像が4.8倍に拡大して感光性ソルダーレジスト層150上に結像、投影されることになる。
【0198】
なお、前記第2結像光学系と感光性ソルダーレジスト層150との間にプリズムペア73が配設され、このプリズムペア73を図12中で上下方向に移動させることにより、感光性ソルダーレジスト層150上における像のピントを調節可能となっている。なお同図中において、感光性ソルダーレジスト層150は矢印F方向に副走査送りされる。
【0199】
前記描素部としては、前記光照射手段からの光を受光し出射することができる限り、特に制限はなく、目的に応じて適宜選択することができ、例えば、本発明の永久パターン形成方法により形成される永久パターンが画像パターンである場合には、画素であり、前記光変調手段がDMDを含む場合にはマイクロミラーである。
前記光変調素子が有する描素部の数(前記n)としては、特に制限はなく、目的に応じて適宜選択することができる。
前記光変調素子における描素部の配列としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、2次元状に配列しているのが好ましく、格子状に配列しているのがより好ましい。
【0200】
<光照射手段>
前記光照射手段としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、(超)高圧水銀灯、キセノン灯、カーボンアーク灯、ハロゲンランプ、複写機用などの蛍光管、LED、半導体レーザなどの公知光源、又は2以上の光を合成して照射可能な手段が挙げられ、これらの中でも2以上の光を合成して照射可能な手段が好ましい。
前記光照射手段から照射される光としては、例えば、支持体を介して光照射を行う場合には、該支持体を透過し、かつ用いられる光重合開始剤や増感剤を活性化する電磁波、紫外から可視光線、電子線、X線、レーザ光などが挙げられ、これらの中でもレーザ光が好ましく、2以上の光を合成したレーザ光(以下、「合波レーザ光」と称することがある)がより好ましい。また支持体を剥離してから光照射を行う場合でも、同様の光を用いることができる。
【0201】
前記紫外から可視光線の波長としては、例えば、300〜1500nmが好ましく、320〜800nmがより好ましく、330nm〜650nmが特に好ましい。
前記レーザ光の波長としては、例えば、200〜1500nmが好ましく、300〜800nmがより好ましく、330nm〜500nmが更に好ましく、395nm〜415nmが特に好ましい。
【0202】
前記合波レーザ光を照射可能な手段としては、例えば、複数のレーザと、マルチモード光ファイバと、該複数のレーザからそれぞれ照射したレーザ光を集光して前記マルチモード光ファイバに結合させる集合光学系とを有する手段が好ましい。
【0203】
以下、前記合波レーザ光を照射可能な手段(ファイバアレイ光源)について図を参照しながら説明する。
【0204】
ファイバアレイ光源66は図28aに示すように、複数(例えば、14個)のレーザモジュール64を備えており、各レーザモジュール64には、マルチモード光ファイバ30の一端が結合されている。マルチモード光ファイバ30の他端には、コア径がマルチモード光ファイバ30と同一で且つクラッド径がマルチモード光ファイバ30より小さい光ファイバ31が結合されている。図28bに詳しく示すように、マルチモード光ファイバ31の光ファイバ30と反対側の端部は副走査方向と直交する主走査方向に沿って7個並べられ、それが2列に配列されてレーザ出射部68が構成されている。
【0205】
マルチモード光ファイバ31の端部で構成されるレーザ出射部68は、図28bに示すように、表面が平坦な2枚の支持板65に挟み込まれて固定されている。また、マルチモード光ファイバ31の光出射端面には、その保護のために、ガラスなどの透明な保護板が配置されるのが望ましい。マルチモード光ファイバ31の光出射端面は、光密度が高いため集塵し易く劣化し易いが、上述のような保護板を配置することにより、端面への塵埃の付着を防止し、また劣化を遅らせることができる。
【0206】
この例では、クラッド径が小さい光ファイバ31の出射端を隙間無く1列に配列するために、クラッド径が大きい部分で隣接する2本のマルチモード光ファイバ30の間にマルチモード光ファイバ30を積み重ね、積み重ねられたマルチモード光ファイバ30に結合された光ファイバ31の出射端が、クラッド径が大きい部分で隣接する2本のマルチモード光ファイバ30に結合された光ファイバ31の2つの出射端の間に挟まれるように配列されている。
【0207】
このような光ファイバは、例えば、図29に示すように、クラッド径が大きいマルチモード光ファイバ30のレーザ光出射側の先端部分に、長さ1〜30cmのクラッド径が小さい光ファイバ31を同軸的に結合することにより得ることができる。2本の光ファイバは、光ファイバ31の入射端面が、マルチモード光ファイバ30の出射端面に、両光ファイバの中心軸が一致するように融着されて結合されている。上述した通り、光ファイバ31のコア31aの径は、マルチモード光ファイバ30のコア30aの径と同じ大きさである。
【0208】
また、長さが短くクラッド径が大きい光ファイバにクラッド径が小さい光ファイバを融着させた短尺光ファイバを、フェルールや光コネクタなどを介してマルチモード光ファイバ30の出射端に結合してもよい。コネクタなどを用いて着脱可能に結合することで、クラッド径が小さい光ファイバが破損した場合などに先端部分の交換が容易になり、露光ヘッドのメンテナンスに要するコストを低減できる。なお、以下では、光ファイバ31を、マルチモード光ファイバ30の出射端部と称する場合がある。
【0209】
マルチモード光ファイバ30及び光ファイバ31としては、ステップインデックス型光ファイバ、グレーテッドインデックス型光ファイバ、及び複合型光ファイバの何れでもよい。例えば、三菱電線工業株式会社製のステップインデックス型光ファイバを用いることができる。本実施の形態では、マルチモード光ファイバ30及び光ファイバ31は、ステップインデックス型光ファイバであり、マルチモード光ファイバ30は、クラッド径=125μm、コア径=50μm、NA=0.2、入射端面コートの透過率=99.5%以上であり、光ファイバ31は、クラッド径=60μm、コア径=50μm、NA=0.2である。
【0210】
一般に、赤外領域のレーザ光では、光ファイバのクラッド径を小さくすると伝搬損失が増加する。このため、レーザ光の波長帯域に応じて好適なクラッド径が決定されている。しかしながら、波長が短いほど伝搬損失は少なくなり、GaN系半導体レーザから出射された波長405nmのレーザ光では、クラッドの厚み{(クラッド径−コア径)/2}を800nmの波長帯域の赤外光を伝搬させる場合の1/2程度、通信用の1.5μmの波長帯域の赤外光を伝搬させる場合の約1/4にしても、伝搬損失は殆ど増加しない。したがって、クラッド径を60μmと小さくすることができる。
【0211】
但し、光ファイバ31のクラッド径は60μmには限定されない。従来のファイバアレイ光源に使用されている光ファイバのクラッド径は125μmであるが、クラッド径が小さくなるほど焦点深度がより深くなるので、マルチモード光ファイバのクラッド径は80μm以下が好ましく、60μm以下がより好ましく、40μm以下が更に好ましい。一方、コア径は少なくとも3〜4μm必要であることから、光ファイバ31のクラッド径は10μm以上が好ましい。
【0212】
レーザモジュール64は、図30に示す合波レーザ光源(ファイバアレイ光源)によって構成されている。この合波レーザ光源は、ヒートブロック10上に配列固定された複数(例えば、7個)のチップ状の横マルチモード又はシングルモードのGaN系半導体レーザLD1,LD2,LD3,LD4,LD5,LD6,及びLD7と、GaN系半導体レーザLD1〜LD7の各々に対応して設けられたコリメータレンズ11,12,13,14,15,16,及び17と、1つの集光レンズ20と、1本のマルチモード光ファイバ30と、から構成されている。なお、半導体レーザの個数は7個には限定されない。例えば、クラッド径=60μm、コア径=50μm、NA=0.2のマルチモード光ファイバには、20個もの半導体レーザ光を入射することが可能であり、露光ヘッドの必要光量を実現して、且つ光ファイバ本数をより減らすことができる。
【0213】
GaN系半導体レーザLD1〜LD7は、発振波長が総て共通(例えば、405nm)であり、最大出力も総て共通(例えば、マルチモードレーザでは100mW、シングルモードレーザでは30mW)である。なお、GaN系半導体レーザLD1〜LD7としては、350nm〜450nmの波長範囲で、上記の405nm以外の発振波長を備えるレーザを用いてもよい。
【0214】
前記合波レーザ光源は、図31及び図32に示すように、他の光学要素と共に、上方が開口した箱状のパッケージ40内に収納されている。パッケージ40は、その開口を閉じるように作成されたパッケージ蓋41を備えており、脱気処理後に封止ガスを導入し、パッケージ40の開口をパッケージ蓋41で閉じることにより、パッケージ40とパッケージ蓋41とにより形成される閉空間(封止空間)内に上記合波レーザ光源が気密封止されている。
【0215】
パッケージ40の底面にはベース板42が固定されており、このベース板42の上面には、前記ヒートブロック10と、集光レンズ20を保持する集光レンズホルダー45と、マルチモード光ファイバ30の入射端部を保持するファイバホルダー46とが取り付けられている。マルチモード光ファイバ30の出射端部はパッケージ40の壁面に形成された開口からパッケージ外に引き出されている。
【0216】
また、ヒートブロック10の側面にはコリメータレンズホルダー44が取り付けられており、コリメータレンズ11〜17が保持されている。パッケージ40の横壁面には開口が形成され、この開口を通してGaN系半導体レーザLD1〜LD7に駆動電流を供給する配線47がパッケージ外に引き出されている。
【0217】
なお、図32においては、図の煩雑化を避けるために、複数のGaN系半導体レーザのうちGaN系半導体レーザLD7にのみ番号を付し、複数のコリメータレンズのうちコリメータレンズ17にのみ番号を付している。
【0218】
図33は、前記コリメータレンズ11〜17の取り付け部分の正面形状を示すものである。コリメータレンズ11〜17の各々は、非球面を備えた円形レンズの光軸を含む領域を平行な平面で細長く切り取った形状に形成されている。この細長形状のコリメータレンズは、例えば、樹脂又は光学ガラスをモールド成形することによって形成することができる。コリメータレンズ11〜17は、長さ方向がGaN系半導体レーザLD1〜LD7の発光点の配列方向(図33の左右方向)と直交するように、上記発光点の配列方向に密接配置されている。
【0219】
一方、GaN系半導体レーザLD1〜LD7としては、発光幅が2μmの活性層を備え、活性層と平行な方向、直角な方向の拡がり角が各々例えば10°、30°の状態で各々レーザ光B1〜B7を発するレーザが用いられている。これらGaN系半導体レーザLD1〜LD7は、活性層と平行な方向に発光点が1列に並ぶように配設されている。
【0220】
したがって、各発光点から発せられたレーザ光B1〜B7は、上述のように細長形状の各コリメータレンズ11〜17に対して、拡がり角度が大きい方向が長さ方向と一致し、拡がり角度が小さい方向が幅方向(長さ方向と直交する方向)と一致する状態で入射することになる。つまり、各コリメータレンズ11〜17の幅が1.1mm、長さが4.6mmであり、それらに入射するレーザ光B1〜B7の水平方向、垂直方向のビーム径は各々0.9mm、2.6mmである。また、コリメータレンズ11〜17の各々は、焦点距離f=3mm、NA=0.6、レンズ配置ピッチ=1.25mmである。
【0221】
集光レンズ20は、非球面を備えた円形レンズの光軸を含む領域を平行な平面で細長く切り取って、コリメータレンズ11〜17の配列方向、つまり水平方向に長く、それと直角な方向に短い形状に形成されている。この集光レンズ20は、焦点距離f=23mm、NA=0.2である。この集光レンズ20も、例えば、樹脂又は光学ガラスをモールド成形することにより形成される。
【0222】
また、DMDを照明する光照射手段に、合波レーザ光源の光ファイバの出射端部をアレイ状に配列した高輝度のファイバアレイ光源を用いているので、高出力で且つ深い焦点深度を備えたパターン形成装置を実現することができる。更に、各ファイバアレイ光源の出力が大きくなることで、所望の出力を得るために必要なファイバアレイ光源数が少なくなり、パターン形成装置の低コスト化が図られる。
【0223】
また、光ファイバの出射端のクラッド径を入射端のクラッド径よりも小さくしているので、発光部径がより小さくなり、ファイバアレイ光源の高輝度化が図られる。これにより、より深い焦点深度を備えたパターン形成装置を実現することができる。例えば、ビーム径1μm以下、解像度0.1μm以下の超高解像度露光の場合にも、深い焦点深度を得ることができ、高速且つ高精細な露光が可能となる。したがって、高解像度が必要とされる薄膜トランジスタ(TFT)の露光工程に好適である。
【0224】
また、前記光照射手段としては、前記合波レーザ光源を複数備えたファイバアレイ光源に限定されず、例えば、1個の発光点を有する単一の半導体レーザから入射されたレーザ光を出射する1本の光ファイバを備えたファイバ光源をアレイ化したファイバアレイ光源を用いることができる。
【0225】
また、複数の発光点を備えた光照射手段としては、例えば、図34に示すように、ヒートブロック100上に、複数(例えば、7個)のチップ状の半導体レーザLD1〜LD7を配列したレーザアレイを用いることができる。また、図35(A)に示す、複数(例えば、5個)の発光点110aが所定方向に配列されたチップ状のマルチキャビティレーザ110が知られている。マルチキャビティレーザ110は、チップ状の半導体レーザを配列する場合と比べ、発光点を位置精度良く配列できるので、各発光点から出射されるレーザ光を合波し易い。但し、発光点が多くなるとレーザ製造時にマルチキャビティレーザ110に撓みが発生し易くなるため、発光点110aの個数は5個以下とするのが好ましい。
【0226】
前記光照射手段としては、このマルチキャビティレーザ110や、図35(B)に示すように、ヒートブロック100上に、複数のマルチキヤビティレーザ110が各チップの発光点110aの配列方向と同じ方向に配列されたマルチキャビティレーザアレイを、レーザ光源として用いることができる。
【0227】
また、合波レーザ光源は、複数のチップ状の半導体レーザから出射されたレーザ光を合波するものには限定されない。例えば、図22に示すように、複数(例えば、3個)の発光点110aを有するチップ状のマルチキャビティレーザ110を備えた合波レーザ光源を用いることができる。この合波レーザ光源は、マルチキャビティレーザ110と、1本のマルチモード光ファイバ130と、集光レンズ120と、を備えて構成されている。マルチキャビティレーザ110は、例えば、発振波長が405nmのGaN系レーザダイオードで構成することができる。
【0228】
前記構成では、マルチキャビティレーザ110の複数の発光点110aの各々から出射したレーザ光Bの各々は、集光レンズ120によって集光され、マルチモード光ファイバ130のコア130aに入射する。コア130aに入射したレーザ光は、光ファイバ内を伝搬し、1本に合波されて出射する。
【0229】
マルチキャビティレーザ110の複数の発光点110aを、上記マルチモード光ファイバ130のコア径と略などしい幅内に並設すると共に、集光レンズ120として、マルチモード光ファイバ130のコア径と略などしい焦点距離の凸レンズや、マルチキャビティレーザ110からの出射ビームをその活性層に垂直な面内のみでコリメートするロッドレンズを用いることにより、レーザ光Bのマルチモード光ファイバ130への結合効率を上げることができる。
【0230】
また、図36に示すように、複数(例えば、3個)の発光点を備えたマルチキャビティレーザ110を用い、ヒートブロック111上に複数(例えば、9個)のマルチキャビティレーザ110が互いになど間隔で配列されたレーザアレイ140を備えた合波レーザ光源を用いることができる。複数のマルチキヤビティレーザ110は、各チップの発光点110aの配列方向と同じ方向に配列されて固定されている。
【0231】
この合波レーザ光源は、レーザアレイ140と、各マルチキヤピティレーザ110に対応させて配置した複数のレンズアレイ114と、レーザアレイ140と複数のレンズアレイ114との間に配置された1本のロッドレンズ113と、1本のマルチモード光ファイバ130と、集光レンズ120と、を備えて構成されている。レンズアレイ114は、マルチキヤピティレーザ110の発光点に対応した複数のマイクロレンズを備えている。
【0232】
上記の構成では、複数のマルチキヤビティレーザ110の複数の発光点110aの各々から出射したレーザ光Bの各々は、ロッドレンズ113により所定方向に集光された後、レンズアレイ114の各マイクロレンズにより平行光化される。平行光化されたレーザ光Lは、集光レンズ120によって集光され、マルチモード光フアイバ130のコア130aに入射する。コア130aに入射したレーザ光は、光フアイバ内を伝搬し、1本に合波されて出射する。
【0233】
更に他の合波レーザ光源の例を示す。この合波レーザ光源は、図37(A)及び(B)に示すように、略矩形状のヒートブロック180上に光軸方向の断面がL字状のヒートブロック182が搭載され、2つのヒートブロック間に収納空間が形成されている。L字状のヒートブロック182の上面には、複数の発光点(例えば、5個)がアレイ状に配列された複数(例えば、2個)のマルチキャビティレーザ110が、各チップの発光点110aの配列方向と同じ方向になど間隔で配列されて固定されている。
【0234】
略矩形状のヒートブロック180には凹部が形成されており、ヒートブロック180の空間側上面には、複数の発光点(例えば、5個)がアレイ状に配列された複数(例えば、2個)のマルチキャビティレーザ110が、その発光点がヒートブロック182の上面に配置されたレーザチップの発光点と同じ鉛直面上に位置するように配置されている。
【0235】
マルチキャビティレーザ110のレーザ光出射側には、各チップの発光点110aに対応してコリメートレンズが配列されたコリメートレンズアレイ184が配置されている。コリメートレンズアレイ184は、各コリメートレンズの長さ方向とレーザ光の拡がり角が大きい方向(速軸方向)とが一致し、各コリメートレンズの幅方向が拡がり角が小さい方向(遅軸方向)と一致するように配置されている。このように、コリメートレンズをアレイ化して一体化することで、レーザ光の空間利用効率が向上し合波レーザ光源の高出力化が図られると共に、部品点数が減少し低コスト化することができる。
【0236】
また、コリメートレンズアレイ184のレーザ光出射側には、1本のマルチモード光ファイバ130と、このマルチモード光ファイバ130の入射端にレーザ光を集光して結合する集光レンズ120と、が配置されている。
【0237】
前記構成では、レーザブロック180、182上に配置された複数のマルチキヤビティレーザ110の複数の発光点110aの各々から出射したレーザ光Bの各々は、コリメートレンズアレイ184により平行光化され、集光レンズ120によって集光されて、マルチモード光フアイバ130のコア130aに入射する。コア130aに入射したレーザ光は、光フアイバ内を伝搬し、1本に合波されて出射する。
【0238】
前記合波レーザ光源は、上記の通り、マルチキャビティレーザの多段配置とコリメートレンズのアレイ化とにより、特に高出力化を図ることができる。この合波レーザ光源を用いることにより、より高輝度なファイバアレイ光源やバンドルファイバ光源を構成することができるので、前記パターン形成装置のレーザ光源を構成するファイバ光源として特に好適である。
【0239】
なお、前記各合波レーザ光源をケーシング内に収納し、マルチモード光ファイバ130の出射端部をそのケーシングから引き出したレーザモジュールを構成することができる。
【0240】
また、合波レーザ光源のマルチモード光ファイバの出射端に、コア径がマルチモード光ファイバと同一で且つクラッド径がマルチモード光ファイバより小さい他の光ファイバを結合してファイバアレイ光源の高輝度化を図る例について説明したが、例えば、クラッド径が125μm、80μm、60μmなどのマルチモード光ファイバを、出射端に他の光ファイバを結合せずに使用してもよい。
【0241】
ここで、本発明の前記永久パターン形成方法について更に説明する。
スキャナ162の各露光ヘッド166において、ファイバアレイ光源66の合波レーザ光源を構成するGaN系半導体レーザLD1〜LD7の各々から発散光状態で出射したレーザ光B1,B2,B3,B4,B5,B6,及びB7の各々は、対応するコリメータレンズ11〜17によって平行光化される。平行光化されたレーザ光B1〜B7は、集光レンズ20によって集光され、マルチモード光ファイバ30のコア30aの入射端面に収束する。
【0242】
本例では、コリメータレンズ11〜17及び集光レンズ20によって集光光学系が構成され、その集光光学系とマルチモード光ファイバ30とによって合波光学系が構成されている。即ち、集光レンズ20によって上述のように集光されたレーザ光B1〜B7が、このマルチモード光ファイバ30のコア30aに入射して光ファイバ内を伝搬し、1本のレーザ光Bに合波されてマルチモード光ファイバ30の出射端部に結合された光ファイバ31から出射する。
【0243】
各レーザモジュールにおいて、レーザ光B1〜B7のマルチモード光ファイバ30への結合効率が0.85で、GaN系半導体レーザLD1〜LD7の各出力が30mWの場合には、アレイ状に配列された光ファイバ31の各々について、出力180mW(=30mW×0.85×7)の合波レーザ光Bを得ることができる。したがって、6本の光ファイバ31がアレイ状に配列されたレーザ出射部68での出力は約1W(=180mW×6)である。
【0244】
ファイバアレイ光源66のレーザ出射部68には、この通り高輝度の発光点が主走査方向に沿って一列に配列されている。単一の半導体レーザからのレーザ光を1本の光ファイバに結合させる従来のファイバ光源は低出力であるため、多数列配列しなければ所望の出力を得ることができなかったが、前記合波レーザ光源は高出力であるため、少数列、例えば1列でも所望の出力を得ることができる。
【0245】
例えば、半導体レーザと光ファイバを1対1で結合させた従来のファイバ光源では、通常、半導体レーザとしては出力30mW(ミリワット)程度のレーザが使用され、光ファイバとしてはコア径50μm、クラッド径125μm、NA(開口数)0.2のマルチモード光ファイバが使用されているので、約1W(ワット)の出力を得ようとすれば、マルチモード光ファイバを48本(8×6)束ねなければならず、発光領域の面積は0.62mm(0.675mm×0.925mm)であるから、レーザ出射部68での輝度は1.6×10(W/m)、光ファイバ1本当りの輝度は3.2×10(W/m)である。
【0246】
これに対し、前記光照射手段が合波レーザ光を照射可能な手段である場合には、マルチモード光ファイバ6本で約1Wの出力を得ることができ、レーザ出射部68での発光領域の面積は0.0081mm(0.325mm×0.025mm)であるから、レーザ出射部68での輝度は123×10(W/m)となり、従来に比べ約80倍の高輝度化を図ることができる。また、光ファイバ1本当りの輝度は90×10(W/m)であり、従来に比べ約28倍の高輝度化を図ることができる。
【0247】
ここで、図38(A)及び(B)を参照して、従来の露光ヘッドと本実施の形態の露光ヘッドとの焦点深度の違いについて説明する。従来の露光ヘッドのバンドル状ファイバ光源の発光領域の副走査方向の径は0.675mmであり、露光ヘッドのファイバアレイ光源の発光領域の副走査方向の径は0.025mmである。図37(A)に示すように、従来の露光ヘッドでは、光照射手段(バンドル状ファイバ光源)1の発光領域が大きいので、DMD3へ入射する光束の角度が大きくなり、結果として走査面5へ入射する光束の角度が大きくなる。このため、集光方向(ピント方向のずれ)に対してビーム径が太りやすい。
【0248】
一方、図37(B)に示すように、前記パターン形成装置における露光ヘッドでは、ファイバアレイ光源66の発光領域の副走査方向の径が小さいので、レンズ系67を通過してDMD50へ入射する光束の角度が小さくなり、結果として走査面56へ入射する光束の角度が小さくなる。即ち、焦点深度が深くなる。この例では、発光領域の副走査方向の径は従来の約30倍になっており、略回折限界に相当する焦点深度を得ることができる。したがって、微小スポットの露光に好適である。この焦点深度への効果は、露光ヘッドの必要光量が大きいほど顕著であり、有効である。この例では、露光面に投影された1描素サイズは10μm×10μmである。なお、DMDは反射型の空間光変調素子であるが、図38(A)及び(B)は、光学的な関係を説明するために展開図とした。
【0249】
露光パターンに応じたパターン情報が、DMD50に接続された図示しないコントローラに入力され、コントローラ内のフレームメモリに一旦記憶される。このパターン情報は、画像を構成する各描素の濃度を2値(ドットの記録の有無)で表したデータである。
【0250】
感光性ソルダーレジスト層150を有する感光性ソルダーレジストフィルムを表面に吸着したステージ152は、図示しない駆動装置により、ガイド158に沿ってゲート160の上流側から下流側に一定速度で移動される。ステージ152がゲート160下を通過する際に、ゲート160に取り付けられた検知センサ164により感光性ソルダーレジスト層150の先端が検出されると、フレームメモリに記憶されたパターン情報が複数ライン分ずつ順次読み出され、データ処理部で読み出されたパターン情報に基づいて各露光ヘッド166毎に制御信号が生成される。そして、ミラー駆動制御部により、生成された制御信号に基づいて露光ヘッド166毎にDMD50のマイクロミラーの各々がオンオフ制御される。
【0251】
ファイバアレイ光源66からDMD50にレーザ光が照射されると、DMD50のマイクロミラーがオン状態のときに反射されたレーザ光は、レンズ系54、58により感光性ソルダーレジスト層150の被露光面56上に結像される。このようにして、ファイバアレイ光源66から出射されたレーザ光が描素毎にオンオフされて、感光性ソルダーレジスト層150がDMD50の使用描素数と略同数の描素単位(露光エリア168)で露光される。また、感光性ソルダーレジスト層150がステージ152と共に一定速度で移動されることにより、感光性ソルダーレジスト層150がスキャナ162によりステージ移動方向と反対の方向に副走査され、露光ヘッド166毎に帯状の露光済み領域170が形成される。
【0252】
<マイクロレンズアレイ>
また、前記露光は、前記変調させた光を、マイクロレンズアレイを通して行うのが好ましく、更にアパーチャアレイ、結像光学系などなどを通して行ってもよい。
【0253】
前記マイクロレンズアレイとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記描素部における出射面の歪みによる収差を補正可能な非球面を有するマイクロレンズを配列したものが好適に挙げられる。
【0254】
前記非球面としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、トーリック面が好ましい。
【0255】
以下、前記マイクロレンズアレイ、前記アパーチャアレイ、及び前記結像光学系などについて図面を参照しながら説明する。
【0256】
図14(A)は、DMD50、DMD50にレーザ光を照射する光照射手段144、DMD50で反射されたレーザ光を拡大して結像するレンズ系(結像光学系)454、458、DMD50の各描素部に対応して多数のマイクロレンズ474が配置されたマイクロレンズアレイ472、マイクロレンズアレイ472の各マイクロレンズに対応して多数のアパーチャ478が設けられたアパーチャアレイ476、アパーチャを通過したレーザ光を被露光面56に結像するレンズ系(結像光学系)480、482で構成される露光ヘッドを表す。
ここで、図15に、DMD50を構成するマイクロミラー62の反射面の平面度を測定した結果を示す。同図においては、反射面の同じ高さ位置をなど高線で結んで示してあり、など高線のピッチは5nmである。なお同図に示すx方向及びy方向は、マイクロミラー62の2つ対角線方向であり、マイクロミラー62はy方向に延びる回転軸を中心として前述のように回転する。また、図16の(A)及び(B)にはそれぞれ、上記x方向、y方向に沿ったマイクロミラー62の反射面の高さ位置変位を示す。
【0257】
図15及び図16に示した通り、マイクロミラー62の反射面には歪みが存在し、そして特にミラー中央部に注目してみると、1つの対角線方向(y方向)の歪みが、別の対角線方向(x方向)の歪みよりも大きくなっている。このため、マイクロレンズアレイ55のマイクロレンズ55aで集光されたレーザ光Bの集光位置における形状が歪むという問題が発生し得る。
【0258】
本発明の永久パターン形成方法においては前記問題を防止するために、マイクロレンズアレイ55のマイクロレンズ55aが、従来とは異なる特殊な形状とされている。以下、その点について詳しく説明する。
【0259】
図17の(A)及び(B)はそれぞれ、マイクロレンズアレイ55全体の正面形状及び側面形状を詳しく示すものである。これらの図にはマイクロレンズアレイ55の各部の寸法も記入してあり、それらの単位はmmである。本発明の永久パターン形成方法では、先に図5を参照して説明したようにDMD50の1024個×256列のマイクロミラー62が駆動されるものであり、それに対応させてマイクロレンズアレイ55は、横方向に1024個並んだマイクロレンズ55aの列を縦方向に256列並設して構成されている。なお、同図(A)では、マイクロレンズアレイ55の並び順を横方向についてはjで、縦方向についてはkで示している。
【0260】
また、図18の(A)及び(B)はそれぞれ、マイクロレンズアレイ55における1つのマイクロレンズ55aの正面形状及び側面形状を示すものである。なお同図(A)には、マイクロレンズ55aのなど高線を併せて示してある。各マイクロレンズ55aの光出射側の端面は、マイクロミラー62の反射面の歪みによる収差を補正する非球面形状とされている。より具体的には、マイクロレンズ55aはトーリックレンズとされており、上記x方向に光学的に対応する方向の曲率半径Rx=−0.125mm、上記y方向に対応する方向の曲率半径Ry=−0.1mmである。
【0261】
したがって、上記x方向及びy方向に平行な断面内におけるレーザ光Bの集光状態は、概略、それぞれ図19の(A)及び(B)に示す通りとなる。つまり、x方向に平行な断面内とy方向に平行な断面内とを比較すると、後者の断面内の方がマイクロレンズ55aの曲率半径がより小であって、焦点距離がより短くなっている。
【0262】
マイクロレンズ55aを前記形状とした場合の、該マイクロレンズ55aの集光位置(焦点位置)近傍におけるビーム径を計算機によってシミュレーションした結果を図20a、b、c、及びdに示す。また比較のために、マイクロレンズ55aが曲率半径Rx=Ry=−0.1mmの球面形状である場合について、同様のシミュレーションを行った結果を図21a、b、c及びdに示す。なお、各図におけるzの値は、マイクロレンズ55aのピント方向の評価位置を、マイクロレンズ55aのビーム出射面からの距離で示している。
【0263】
また、前記シミュレーションに用いたマイクロレンズ55aの面形状は、下記計算式で計算される。
【数1】

【0264】
但し、前記計算式において、Cxは、x方向の曲率(=1/Rx)を意味し、Cyは、y方向の曲率(=1/Ry)を意味し、Xは、x方向に関するレンズ光軸Oからの距離を意味し、Yは、y方向に関するレンズ光軸Oからの距離を意味する。
【0265】
図20a〜dと図21a〜dとを比較すると明らかなように、本発明の永久パターン形成方法ではマイクロレンズ55aを、y方向に平行な断面内の焦点距離がx方向に平行な断面内の焦点距離よりも小さいトーリックレンズとしたことにより、その集光位置近傍におけるビーム形状の歪みが抑制される。そうであれば、歪みの無い、より高精細な画像を感光性ソルダーレジスト層150に露光可能となる。また、図20a〜dに示す本実施形態の方が、ビーム径の小さい領域がより広い、すなわち焦点深度がより大であることが分かる。
【0266】
なお、マイクロミラー62のx方向及びy方向に関する中央部の歪の大小関係が、上記と逆になっている場合は、x方向に平行な断面内の焦点距離がy方向に平行な断面内の焦点距離よりも小さいトーリックレンズからマイクロレンズを構成すれば、同様に、歪みの無い、より高精細な画像を感光性ソルダーレジスト層150に露光可能となる。
【0267】
また、マイクロレンズアレイ55の集光位置近傍に配置されたアパーチャアレイ59は、その各アパーチャ59aに、それと対応するマイクロレンズ55aを経た光のみが入射するように配置されたものである。すなわち、このアパーチャアレイ59が設けられていることにより、各アパーチャ59aに、それと対応しない隣接のマイクロレンズ55aからの光が入射することが防止され、消光比が高められる。
【0268】
本来、上記目的で設置されるアパーチャアレイ59のアパーチャ59aの径をある程度小さくすれば、マイクロレンズ55aの集光位置におけるビーム形状の歪みを抑制する効果も得られる。しかしそのようにした場合は、アパーチャアレイ59で遮断される光量がより多くなり、光利用効率が低下することになる。それに対してマイクロレンズ55aを非球面形状とする場合は、光を遮断することがないので、光利用効率も高く保たれる。
【0269】
また、本発明の永久パターン形成方法において、マイクロレンズ55aは、2次の非球面形状であってもよく、より高次(4次、6次・・・・)の非球面形状であってもよい。前記高次の非球面形状を採用することにより、ビーム形状を更に高精細にすることができる。
【0270】
また、以上説明した実施形態では、マイクロレンズ55aの光出射側の端面が非球面(トーリック面)とされているが、2つの光通過端面の一方を球面とし、他方をシリンドリカル面としたマイクロレンズからマイクロレンズアレイを構成して、上記実施形態と同様の効果を得ることもできる。
【0271】
更に、以上説明した実施形態においては、マイクロレンズアレイ55のマイクロレンズ55aが、マイクロミラー62の反射面の歪みによる収差を補正する非球面形状とされているが、このような非球面形状を採用する代わりに、マイクロレンズアレイを構成する各マイクロレンズに、マイクロミラー62の反射面の歪みによる収差を補正する屈折率分布を持たせても、同様の効果を得ることができる。
【0272】
そのようなマイクロレンズ155aの一例を図23に示す。同図の(A)及び(B)はそれぞれ、このマイクロレンズ155aの正面形状及び側面形状を示すものであり、図示の通りこのマイクロレンズ155aの外形形状は平行平板状である。なお、同図におけるx、y方向は、既述した通りである。
【0273】
また、図24の(A)及び(B)は、このマイクロレンズ155aによる上記x方向及びy方向に平行な断面内におけるレーザ光Bの集光状態を概略的に示している。このマイクロレンズ155aは、光軸Oから外方に向かって次第に増大する屈折率分布を有するものであり、同図においてマイクロレンズ155a内に示す破線は、その屈折率が光軸Oから所定のなどピッチで変化した位置を示している。図示の通り、x方向に平行な断面内とy方向に平行な断面内とを比較すると、後者の断面内の方がマイクロレンズ155aの屈折率変化の割合がより大であって、焦点距離がより短くなっている。このような屈折率分布型レンズから構成されるマイクロレンズアレイを用いても、前記マイクロレンズアレイ55を用いる場合と同様の効果を得ることが可能である。
【0274】
なお、先に図18及び図19に示したマイクロレンズ55aのように面形状を非球面としたマイクロレンズにおいて、併せて上述のような屈折率分布を与え、面形状と屈折率分布の双方によって、マイクロミラー62の反射面の歪みによる収差を補正するようにしてもよい。
【0275】
また、上記の実施形態では、DMD50を構成するマイクロミラー62の反射面の歪みによる収差を補正しているが、DMD以外の空間光変調素子を用いる本発明の永久パターン形成方法においても、その空間光変調素子の描素部の面に歪みが存在する場合は、本発明を適用してその歪みによる収差を補正し、ビーム形状に歪みが生じることを防止可能である。
【0276】
次に、前記結像光学系について更に説明する。
前記露光ヘッドでは、光照射手段144からレーザ光が照射されると、DMD50によりオン方向に反射される光束線の断面積が、レンズ系454、458により数倍(例えば、2倍)に拡大される。拡大されたレーザ光は、マイクロレンズアレイ472の各マイクロレンズによりDMD50の各描素部に対応して集光され、アパーチャアレイ476の対応するアパーチャを通過する。アパーチャを通過したレーザ光は、レンズ系480、482により被露光面56上に結像される。
【0277】
この結像光学系では、DMD50により反射されたレーザ光は、拡大レンズ454、458により数倍に拡大されて被露光面56に投影されるので、全体の画像領域が広くなる。このとき、マイクロレンズアレイ472及びアパーチャアレイ476が配置されていなければ、図14(B)に示すように、被露光面56に投影される各ビームスポットBSの1描素サイズ(スポットサイズ)が露光エリア468のサイズに応じて大きなものとなり、露光エリア468の鮮鋭度を表すMTF(Modulation Transfer Function)特性が低下する。
【0278】
一方、マイクロレンズアレイ472及びアパーチャアレイ476を配置した場合には、DMD50により反射されたレーザ光は、マイクロレンズアレイ472の各マイクロレンズによりDMD50の各描素部に対応して集光される。これにより、図14(C)に示すように、露光エリアが拡大された場合でも、各ビームスポットBSのスポットサイズを所望の大きさ(例えば、10μm×10μm)に縮小することができ、MTF特性の低下を防止して高精細な露光を行うことができる。なお、露光エリア468が傾いているのは、描素間の隙間を無くす為にDMD50を傾けて配置しているからである。
【0279】
また、マイクロレンズの収差によるビームの太りがあっても、アパーチャアレイによって被露光面56上でのスポットサイズが一定の大きさになるようにビームを整形することができると共に、各描素に対応して設けられたアパーチャアレイを通過させることにより、隣接する描素間でのクロストークを防止することができる。
【0280】
更に、光照射手段144に後述する高輝度光源を使用することにより、レンズ458からマイクロレンズアレイ472の各マイクロレンズに入射する光束の角度が小さくなるので、隣接する描素の光束の一部が入射するのを防止することができる。即ち、高消光比を実現することができる。
【0281】
<その他の光学系>
本発明の永久パターン形成方法では、公知の光学系の中から適宜選択したその他の光学系と併用してもよく、例えば、1対の組合せレンズからなる光量分布補正光学系などが挙げられる。
前記光量分布補正光学系は、光軸に近い中心部の光束幅に対する周辺部の光束幅の比が入射側に比べて出射側の方が小さくなるように各出射位置における光束幅を変化させて、光照射手段からの平行光束をDMDに照射するときに、被照射面での光量分布が略均一になるように補正する。以下、前記光量分布補正光学系について図面を参照しながら説明する。
【0282】
まず、図25(A)に示したように、入射光束と出射光束とで、その全体の光束幅(全光束幅)H0、H1が同じである場合について説明する。なお、図25(A)において、符号51、52で示した部分は、前記光量分布補正光学系における入射面及び出射面を仮想的に示したものである。
【0283】
前記光量分布補正光学系において、光軸Z1に近い中心部に入射した光束と、周辺部に入射した光束とのそれぞれの光束幅h0、h1が、同一であるものとする(h0=hl)。前記光量分布補正光学系は、入射側において同一の光束幅h0,h1であった光に対し、中心部の入射光束については、その光束幅h0を拡大し、逆に、周辺部の入射光束に対してはその光束幅h1を縮小するような作用を施す。すなわち、中心部の出射光束の幅h10と、周辺部の出射光束の幅h11とについて、h11<h10となるようにする。光束幅の比率で表すと、出射側における中心部の光束幅に対する周辺部の光束幅の比「h11/h10」が、入射側における比(h1/h0=1)に比べて小さくなっている((h11/h10)<1)。
【0284】
このように光束幅を変化させることにより、通常では光量分布が大きくなっている中央部の光束を、光量の不足している周辺部へと生かすことができ、全体として光の利用効率を落とさずに、被照射面での光量分布が略均一化される。均一化の度合いは、例えば、有効領域内における光量ムラが30%以内となるようにし、20%以内となるようにすることがより好ましい。
【0285】
前記光量分布補正光学系による作用、効果は、入射側と出射側とで、全体の光束幅を変える場合(図25(B),(C))においても同様である。
【0286】
図25(B)は、入射側の全体の光束幅H0を、幅H2に“縮小”して出射する場合(H0>H2)を示している。このような場合においても、前記光量分布補正光学系は、入射側において同一の光束幅h0、h1であった光を、出射側において、中央部の光束幅h10が周辺部に比べて大きくなり、逆に、周辺部の光束幅h11が中心部に比べて小さくなるようにする。光束の縮小率で考えると、中心部の入射光束に対する縮小率を周辺部に比べて小さくし、周辺部の入射光束に対する縮小率を中心部に比べて大きくするような作用を施している。この場合にも、中心部の光束幅に対する周辺部の光束幅の比「H11/H10」が、入射側における比(h1/h0=1)に比べて小さくなる((h11/h10)<1)。
【0287】
図25(C)は、入射側の全体の光束幅H0を、幅Η3に“拡大”して出射する場合(H0<H3)を示している。このような場合においても、前記光量分布補正光学系は、入射側において同一の光束幅h0、h1であった光を、出射側において、中央部の光束幅h10が周辺部に比べて大きくなり、逆に、周辺部の光束幅h11が中心部に比べて小さくなるようにする。光束の拡大率で考えると、中心部の入射光束に対する拡大率を周辺部に比べて大きくし、周辺部の入射光束に対する拡大率を中心部に比べて小さくするような作用を施している。この場合にも、中心部の光束幅に対する周辺部の光束幅の比「h11/h10」が、入射側における比(h1/h0=1)に比べて小さくなる((h11/h10)<1)。
【0288】
このように、前記光量分布補正光学系は、各出射位置における光束幅を変化させ、光軸Z1に近い中心部の光束幅に対する周辺部の光束幅の比を入射側に比べて出射側の方が小さくなるようにしたので、入射側において同一の光束幅であった光が、出射側においては、中央部の光束幅が周辺部に比べて大きくなり、周辺部の光束幅は中心部に比べて小さくなる。これにより、中央部の光束を周辺部へと生かすことができ、光学系全体としての光の利用効率を落とさずに、光量分布の略均一化された光束断面を形成することができる。
【0289】
次に、前記光量分布補正光学系として使用する1対の組合せレンズの具体的なレンズデータの1例を示す。この例では、前記光照射手段がレーザアレイ光源である場合のように、出射光束の断面での光量分布がガウス分布である場合のレンズデータを示す。なお、シングルモード光ファイバの入射端に1個の半導体レーザを接続した場合には、光ファイバからの射出光束の光量分布がガウス分布になる。本発明の永久パターン形成方法では、このような場合の適用も可能である。また、マルチモード光ファイバのコア径を小さくしてシングルモード光ファイバの構成に近付けるなどにより光軸に近い中心部の光量が周辺部の光量よりも大きい場合にも適用可能である。
下記表1に基本レンズデータを示す。
【0290】
【表1】

【0291】
表1から分かるように、1対の組合せレンズは、回転対称の2つの非球面レンズから構成されている。光入射側に配置された第1のレンズの光入射側の面を第1面、光出射側の面を第2面とすると、第1面は非球面形状である。また、光出射側に配置された第2のレンズの光入射側の面を第3面、光出射側の面を第4面とすると、第4面が非球面形状である。
【0292】
表1において、面番号Siはi番目(i=1〜4)の面の番号を示し、曲率半径riはi番目の面の曲率半径を示し、面間隔diはi番目の面とi+1番目の面との光軸上の面間隔を示す。面間隔di値の単位はミリメートル(mm)である。屈折率Niはi番目の面を備えた光学要素の波長405nmに対する屈折率の値を示す。
下記表2に、第1面及び第4面の非球面データを示す。
【0293】
【表2】

【0294】
上記の非球面データは、非球面形状を表す下記数式(A)における係数で表される。
【0295】
【数2】

【0296】
上記数式(A)において各係数を以下の通り定義する。
Z:光軸から高さρの位置にある非球面上の点から、非球面の頂点の接平面(光軸に垂直な平面)に下ろした垂線の長さ(mm)
ρ:光軸からの距離(mm)
K:円錐係数
C:近軸曲率(1/r、r:近軸曲率半径)
ai:第i次(i=3〜10)の非球面係数
表2に示した数値において、記号“E”は、その次に続く数値が10を底とした“べき指数″であることを示し、その10を底とした指数関数で表される数値が“E”の前の数値に乗算されることを示す。例えば、「1.0E−02」であれば、「1.0×10−2」であることを示す。
【0297】
図27は、前記表1及び表2に示す1対の組合せレンズによって得られる照明光の光量分布を示している。横軸は光軸からの座標を示し、縦軸は光量比(%)を示す。なお、比較のために、図26に、補正を行わなかった場合の照明光の光量分布(ガウス分布)を示す。図26及び図27から分かるように、光量分布補正光学系で補正を行うことにより、補正を行わなかった場合と比べて、略均一化された光量分布が得られている。これにより、光の利用効率を落とさずに、均一なレーザ光でムラなく露光を行うことができる。
【0298】
−現像工程―
前記現像工程は、前記露光工程により前記感光性ソルダーレジスト層を露光し、該感光性ソルダーレジスト層の露光した領域を硬化させた後、未硬化領域を除去することにより現像し、永久パターンを形成する工程である。
【0299】
前記未硬化領域の除去方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、現像液を用いて除去する方法などが挙げられる。
【0300】
前記現像液としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、アルカリ金属又はアルカリ土類金属の水酸化物若しくは炭酸塩、炭酸水素塩、アンモニア水、4級アンモニウム塩の水溶液などが好適に挙げられる。これらの中でも、炭酸ナトリウム水溶液が特に好ましい。
【0301】
前記現像液は、界面活性剤、消泡剤、有機塩基(例えば、ベンジルアミン、エチレンジアミン、エタノールアミン、テトラメチルアンモニウムハイドロキサイド、ジエチレントリアミン、トリエチレンペンタミン、モルホリン、トリエタノールアミンなど)や、現像を促進させるため有機溶剤(例えば、アルコール類、ケトン類、エステル類、エーテル類、アミド類、ラクトン類など)などと併用してもよい。また、前記現像液は、水又はアルカリ水溶液と有機溶剤を混合した水系現像液であってもよく、有機溶剤単独であってもよい。
【0302】
−硬化処理工程―
本発明の永久パターン形成方法は、更に、硬化処理工程を含むことが好ましい。
前記硬化処理工程は、前記現像工程が行われた後、形成された永久パターンにおける感光性ソルダーレジスト層に対して硬化処理を行う工程である。
【0303】
前記硬化処理としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、全面露光処理、全面加熱処理などが好適に挙げられる。
【0304】
前記全面露光処理の方法としては、例えば、前記現像工程の後に、前記永久パターンが形成された前記積層体上の全面を露光する方法が挙げられる。該全面露光により、前記感光性ソルダーレジスト層を形成する感光性ソルダーレジスト組成物中の樹脂の硬化が促進され、前記永久パターンの表面が硬化される。
前記全面露光を行う装置としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、超高圧水銀灯などのUV露光機が好適に挙げられる。
【0305】
前記全面加熱処理の方法としては、前記現像工程の後に、前記永久パターンが形成された前記積層体上の全面を加熱する方法が挙げられる。該全面加熱により、前記永久パターンの表面の膜強度が高められる。
前記全面加熱における加熱温度としては、120〜250℃が好ましく、120〜200℃がより好ましい。該加熱温度が120℃未満であると、加熱処理による膜強度の向上が得られないことがあり、250℃を超えると、前記感光性ソルダーレジスト組成物中の樹脂の分解が生じ、膜質が弱く脆くなることがある。
前記全面加熱における加熱時間としては、10〜120分が好ましく、15〜60分がより好ましい。
前記全面加熱を行う装置としては、特に制限はなく、公知の装置の中から、目的に応じて適宜選択することができ、例えば、ドライオーブン、ホットプレート、IRヒーターなどが挙げられる。
【0306】
なお、前記基材が多層配線基板などのプリント配線板である場合には、該プリント配線板上に本発明の永久パターンを形成し、更に、以下のように半田付けを行うことができる。
即ち、前記現像工程により、前記永久パターンである硬化層が形成され、前記プリント配線板の表面に金属層が露出される。該プリント配線板の表面に露出した金属層の部位に対して金メッキを行った後、半田付けを行う。そして、半田付けを行った部位に、半導体や部品などを実装する。このとき、前記硬化層による永久パターンが、保護膜あるいは絶縁膜(層間絶縁膜)としての機能を発揮し、外部からの衝撃や隣同士の電極の導通が防止される。
【0307】
本発明の永久パターン形成方法においては、保護膜及び層間絶縁膜の少なくともいずれかを形成するのが好ましい。前記永久パターン形成方法により形成される永久パターンが、前記保護膜又は前記層間絶縁膜であると、配線を外部からの衝撃や曲げから保護することができ、特に、前記層間絶縁膜である場合には、例えば、多層配線基板やビルドアップ配線基板などへの半導体や部品の高密度実装に有用である。
【0308】
本発明の永久パターン形成方法は、高速でパターン形成が可能であるため、各種パターンの形成に広く用いることができ、特に配線パターンの形成に好適に使用することができる。
また、本発明の永久パターン形成方法により形成される永久パターンは、優れた表面硬度、絶縁性、耐熱性、耐湿性などを有し、保護膜、層間絶縁膜、ソルダーレジストパターン、として好適に使用することができる。
【実施例】
【0309】
以下、本発明の実施例について説明するが、本発明は下記実施例に何ら限定されるものではない。
【0310】
感光性ソルダーレジスト組成物に含まれるアルカリ可溶性光架橋性樹脂(P1)〜(P2)(合成例1〜2)、アルカリ可溶性ポリウレタン樹脂(a)(合成例3)、表1に記載の合成例4〜14、顔料と無機充填剤分散液の調製(合成例15)を以下のように合成した。
【0311】
(合成例1)アルカリ可溶性光架橋性樹脂P1の合成
YDCN704(東都化成(株)製、クレゾールノボラック型エポキシ樹脂(エポキシ当量=220)、220質量部、アクリル酸72質量部、ハイドロキノン1.0質量部、メトキシプロピルアセテート180質量部を仕込み、90℃に加熱、撹件して反応混合物を溶解した。次に、60℃に冷却し、塩化ベンジルトリメチルアンモニウム1質量部を仕込み、100℃に加熱して、固形分酸価が1mgKOH/gになるまで反応した。次にテトラヒドロフタル酸無水物152質量部とメトキシプロピルアセテート100質量部を仕込み、80℃に加熱し、約6時間反応し冷却し、固形分濃度が60質量%になるようにメトキシプロピルアセテートで希釈してアルカリ可溶性光架橋性樹脂(P1)を得た。P1の固形分酸価は138mgKOH/gで、質量平均分子量は4020であった。
【0312】
(合成例2)アルカリ可溶性光架橋性樹脂P2の合成
撹件装置、滴下ロート、コンデンサー、温度計、ガス導入管を備えたフラスコにメトキシプロピルアセテート145質量部を取り、窒素置換しながら撹件し、120℃に昇温した。次に、スチレン10.4質量部、グリシジルメタクリレート71質量部及びジシクロペンテニルアクリレート(日立化成(株)製FA−511A)82質量部からなるモノマー混合物にt−ブチルヒドロパーオキサイド(日本油脂(株)製パーブチルO)を7.6質量部添加した。この混合溶液を滴下ロートから2時間かけてフラスコ中に滴下し、更に120℃で2時間撹件し続けた。次に、フラスコ内を空気置換に替え、アクリル酸34.2質量部にトリスジメチルアミノメチルフェノール0.9質量部及びハイドロキノン0.145質量部を、上記フラスコ中に投入し、120℃で6時間反応を続け固形分酸価=0.8となったところで反応を終了し、更に引き続きテトラヒドロフタル酸無水物60.8質量部(生成した水酸基の84.2モル%)、トリエチルアミン0.8質量部を加え120℃で3.5時間反応させ、メトキシプロピルアセテートで固形分濃度が60質量%になるように希釈し、アルカリ可溶性光架橋性樹脂(P2)を得た。P2の固形分酸価=84で、質量平均分子量は12,000であった。
【0313】
(合成例3)アルカリ可溶性ポリウレタン樹脂(a)の合成
500mlの三つロフラスコに4,4’−ジフェニルメタンジイソシアネート41.07gとポリオキシテトラメチレングリコール(化合物例22、分子量=981)58.6gと2,2−ビス(ヒドロキシメチル)プロピオン酸18.8gをジオキサン90mlに溶解した。N,N−ジエチルアニリンを0.3g入れた後、ジオキサン還流下6時間撹拌した。反応後、水1.3l酢酸13mlの溶液に少しずつ加えポリマーを析出させた。この固体を真空乾燥させることにより127gのアルカリ可溶性ポリウレタン樹脂(a)を得た。酸価は62mgKOH/gであった。GPCにて分子量を測定したところ質量平均(ポリスチレン標準)で30,000であった。
【0314】
(合成例4〜14)アルカリ可溶性ポリウレタン樹脂(b)〜(k)の合成
表1に示すように合成例1と同様にして、アルカリ可溶性ポリウレタン樹脂(b)〜(k)を合成した。
【0315】
(合成例15)顔料と無機充填剤分散液の調製
ピグメントブルー15:3を0.80質量部と、ピグメントイエロー180を0.7質量部と、各アルカリ可溶性光架橋性樹脂の60質量%メトキシプロピルアセテート溶液15質量部を秤量し、ジルコニアビーズが充填されたミル型分散機を用いて分散し、緑色顔料分散液を得た。
引き続き、無機充填剤である硫酸バリウム18質量部を前記緑色顔料分散液中に混合撹拌し、緑色顔料との共分散液81.4質量部(固形分濃度35質量%)を得た。
【0316】
(実施例1)
<感光性ソルダーレジスト組成物塗布液の調製>
下記の各成分(表1参照)を混合し、感光性ソルダーレジスト組成物塗布液を調製した。
―――――――――――――――――――――――――――――――――――――――
アルカリ可溶性光架橋性樹脂(P1)溶液
(固形分濃度60質量%)・・・・・・・・・・・・・・・・・・・・40.3質量部
合成例3で合成したアルカリ可溶性ポリウレタン樹脂(a)・・・・・9.5質量部
ビスフェノールA型エポキシ樹脂
(ジャパンエポキシレジン(株)製エピコート1004)・・・・・・・・17質量部
ジペンタエリスリトールヘキサアクリレート
(日本化薬(株)製DPHA)・・・・・・・・・・・・・・・・・・・・11質量部
ビスアシルホスフィンオキシド
(チバスペシャルティケミカルス社製Irgacure819)・・・・・・7質量部
顔料分散液(合成例15)・・・・・・・・・・・・・・・・・・・81.4質量部
ジシアンジアミド・・・・・・・・・・・・・・・・・・・・・・・・2.8質量部
――――――――――――――――――――――――――――――――――――――――
【0317】
−感光性ソルダーレジストフィルムの作製−
図1に示すように、支持体1として、厚み25μmのポリエチレンテレフタレートフィム(PET)を用い、該支持体1上に前記感光性ソルダーレジスト組成物塗布液をバーコーターにより、乾燥後の感光性ソルダーレジスト層2の厚みが約30μmになるように塗布し、80℃、30分間熱風循環式乾燥機中で乾燥させ、次いで、該感光性ソルダーレジスト層の上に、前記保護フィルムとして厚み12μmのポリプロピレンフィルムをラミネートで積層し、感光性ソルダーレジストフィルムを作製した。
【0318】
<永久パターンの形成>
−積層体の調製−
次に、前記基材として、配線形成済みの銅張積層板(スルーホールなし、銅厚み12μmのプリント配線板)の表面に化学研磨処理を施して調製した。該銅張積層板上に、前記感光性ソルダーレジストフィルムの感光性ソルダーレジスト層が前記銅張積層板に接するようにして前記感光性ソルダーレジストフィルムにおける保護フィルムを剥がしながら、真空ラミネーター(名機製作所製、MVLP500)を用いて積層させ、前記銅張積層板と、前記感光性ソルダーレジスト層と、前記ポリエチレンテレフタレートフィルム(支持体)とがこの順に積層された積層体を調製した。
圧着条件は、圧着温度90℃、圧着圧力0.4MPa、ラミネート速度1m/分とした。
【0319】
−露光工程−
前記調製した積層体における感光性ソルダーレジスト層に対し、ポリエチレンテレフタレートフィルム(支持体)側から、所定のパターンを有する青紫色レーザー露光によるパターン形成装置を用いて、405nmのレーザ光を、所定のパターンが得られるようにエネルギー量40mJ/cmを照射し露光し、前記感光性ソルダーレジスト層の一部の領域を硬化させた。
【0320】
−現像工程−
室温にて10分間静置した後、前記積層体からポリエチレンテレフタレートフィルム(支持体)を剥がし取り、銅張積層板上の感光性ソルダーレジスト層の全面に、アルカリ現像液として、1質量%炭酸ナトリウム水溶液を用い、30℃にて60秒間、0.18MPa(1.8kgf/cm)の圧力でスプレー現像し、未露光の領域を溶解除去した。その後、水洗し、乾燥させ、永久パターンを形成した。
【0321】
−硬化処理工程−
前記永久パターンが形成された積層体の全面に対して、150℃で1時間、加熱処理を施し、永久パターンの表面を硬化し、膜強度を高めた。
このように得られた前記永久パターンーレジストによれば、上記組成で温度が85℃で相対湿度が85%の環境中に168時間放置後の絶縁抵抗を1010Ω以上になるように処理されていることから、高温及び高湿雰囲気で使用したとしても配線導体層間が短絡したり、配線導体層が腐蝕することがなく、耐湿性に優れる。更に、得られたプリント配線基板は、絶縁基板の表面に、配線導体層を被着形成するとともに、この絶縁基板の一部を覆って、前記永久パターンを被着形成したことから、該永久パターンがプリント配線基板に電子部品を実装する際の熱から絶縁層を保護するとともに、配線導体層を湿気による酸化や腐蝕から保護することができ、その結果、耐熱性、耐湿性に優れる。
【0322】
前記永久パターン(ソルダーレジスト)について、後述の絶縁抵抗(Ω)を測定した。また、プリント配線基板(銅張り積層板)から剥がした前記永久パターンについて、動的粘弾性測定試験により動的弾性率(貯蔵弾性率)(MPa)を測定した。測定結果を表5に示す。なお、信頼性試験による測定及び評価は以下のとおりである。
【0323】
<感光性ソルダーレジストフィルム及びソルダーレジストの作製>
これをバーコーターにより、乾燥後の厚みが約30μmになるように厚み25μmのPET支持体上に塗布し、80℃、30分間熱風循環式乾燥機中で乾燥させ、得られた感光性ソルダーレジストフィルムをラミネータで銅張り積層板に積層した。次に、所定のパターンを有する青紫色レーザー照射装置を用いて、40mJ/cm露光した。その後、30℃の1質量%の炭酸ナトリウム水溶液で60秒間、0.18MPa(1.8kgf/cm)の圧力でスプレー現像し、未露光部を溶解現像した。得られた画像を用いて現像性、光感度を評価し、次に150℃で1時間加熱し試験板を作製した。
試験板について、後述の絶縁抵抗試験を行った。また、基板(銅張り積層板)から剥がした塗膜について、動的粘弾性を測定した。表3に評価結果をまとめて示した。なお、試験方法及び評価方法は以下のとおりである。
【0324】
<評価方法>
−塗布面状−
塗布乾燥後の面状を、目視により観察し、表面の平滑性を検査した。
○:平滑である。
×:異物又はハジキあり。
【0325】
−感度−
基板上の厚み10μmの未露光の感光性ソルダーレジスト層に対し、ポリエチレンフタレートフィルム側から、所定のステップウェッジパターン(ΔlogE=0.15、15段)を有する青紫色レーザー露光によるパターン形成装置を用いて405nmのレーザー光を40mJ/cm照射し、1質量%炭酸ナトリウム水溶液を用いて、30℃で、60秒間スプレー現像し、得られるステップウェッジパターンの段数で評価した。
○:8段以上
△:5〜7段
×:4段以下
【0326】
−現像性−
基板上の厚み10μmの未露光の感光性ソルダーレジスト層を、1質量%炭酸ナトリウム水溶液を用いて、30℃で、スプレー現像し、10秒から60秒で除去できるか否かで評価した。
○:10秒〜60秒未満で除去され、現像残渣無し
×:10秒未満で除去される
××:60秒後でも現像残渣有り
【0327】
−密着性−
JISK5400に準じて、硬化後の試験片に1mm碁盤目を100個作製してセロハンテープにより剥離試験を行った。碁盤目の剥離状態を観察し、以下の基準で評価した。
○:90/100以上で剥離無し
△:50/100以上〜90/100未満で剥離無し
×:0/100〜50/100未満で剥離無し
【0328】
−耐溶剤性−
硬化後の試験片をイソプロピルアルコールに室温で30分間浸漬し、外観に異常がないかを確認後、セロハンテープにより剥離試験を行った。
○:塗膜外観に異常がなく、剥離のないもの
×:塗膜外観に異常があるか、あるいは剥離するもの
【0329】
−耐酸性−
硬化後試験片を10重量%塩酸水溶液に室温で30分間浸漬し、外観に異常がないかを確認後、セロハンテープにより剥離試験を行った。
○:塗膜外観に異常がなく、剥離のないもの
×:塗膜外観に異常があるか、あるいは剥離するもの
【0330】
−耐アルカリ性−
硬化後の試験片を5質量%水酸化ナトリウム水溶液に室温で30分間浸漬し、外観に異常がないかを確認後、セロハンテープにより剥離試験を行った。
○:塗膜外観に異常が無く、剥離の無いもの
×:塗膜外観に異常が有るか、あるいは剥離するもの
【0331】
−はんだ耐熱性−
試験片にロジン系フラックス又は水溶性フラックスを塗布し、260℃のはんだ槽に10秒間浸漬した。これを1サイクルとして、6サイクル繰り返した後、塗膜外観を目視観察した。
○:塗膜外観に異常(剥離、フクレ)が無く、はんだのもぐりの無いもの
×:塗膜外観に異常(剥離、フクレ)が有るか、又ははんだのもぐりの有るもの
【0332】
−耐熱衝撃性−
信頼性試験項目として、温度サイクル試験(TCT)によりクラックや剥れ等の外観と抵抗値変化率を評価した。TCTは気相冷熱試験機を用い、電子部品モジュールを温度が−55℃及び125℃の気相中に各30分間放置し、これを1サイクルとして1,000サイクルの条件で行った。
○:クラック発生無し
×:クラック発生有り
【0333】
−動的粘弾性−
ソリッドアナライザーRSAII(レオメトリックス社製)を用い、振動周波数1Hz(6.28rad/秒)で動的粘弾性を測定した。サンプルサイズを長さ22.5×幅3.0×厚み0.06mmとし、測定温度40〜250℃(昇温5℃/min)、引っ張り量0.15%、モードをスタティックフォーストラッキングダイナミックフォースとし、初期スタティックフォース15.0gとして行い、220℃における動的弾性率を調べた。
【0334】
(実施例2)〜(実施例11)
前記実施例1〜実施例11について、表1に示すように、(合成例3〜9、12、13)に示す(a)〜(g)、(j)、(k)のポリウレタン樹脂を用いた各処方の塗布液を、実施例1と同様に調製した塗布液を用い、実施例1と同様に感光性ソルダーレジストフィルムを作製し、引き続き、ソルダーレジスト層を形成して信頼性評価を行った。
【0335】
(比較例1)〜(比較例4)
前記比較例1〜比較例4については、表1に示すように、(合成例10、11)に示す(h)、(i)のポリウレタン樹脂、アルカリ不溶のエラストマーであるスチレン−エチレン−ブタジエン−スチレンブロックコポリマー(SEBS)及び、平均粒径0.07μmのカルボキシル基変性架橋アクリルゴム(日本合成ゴム(株)製DHS2)を添加した処方により得られた塗布液を用いて、実施例1と同様に感光性ソルダーレジストフィルムを作製し、引き続き、ソルダーレジスト層を形成して信頼性評価を行った。結果を表3に示す。
【0336】
【表3】

【0337】
【表4】

【0338】
【表5】

【0339】
表5に示す結果より、本発明のアルカリ可溶性エラストマーを感光性ソルダーレジスト組成物中に含有させることにより、基板への密着性が劣化せず、現像性が改善され、信頼性の高い感光性ソルダーレジストを形成することができる優れた感光性ソルダーレジスト組成物が得られた。
【産業上の利用可能性】
【0340】
本発明の感光性ソルダーレジスト組成物及び該感光性ソルダーレジスト組成物を用いた感光性ソルダーレジストフィルムは、保存安定性に優れ、現像後に優れた耐薬品性、表面硬度、耐熱性などを発現する。また、本発明の永久パターン(保護膜、層間絶縁膜、ソルダーレジストなど)を薄層化しても、表面硬度、絶縁性、耐熱性、耐湿性に優れた高精細な永久パターンが得られるため、保護膜、層間絶縁膜として好適に使用することができ、プリント配線板(多層配線基板、ビルドアップ配線基板など)、カラーフィルタや柱材、リブ材、スペーサー、隔壁などのディスプレイ用部材、ホログラム、マイクロマシン、プルーフなどの永久パターン形成用として広く用いることができる。
【図面の簡単な説明】
【0341】
【図1】図1は、感光性ソルダーレジストフィルムの層構成を示す説明図である。
【図2】図2は、デジタル・マイクロミラー・デバイス(DMD)の構成を示す部分拡大図の一例である。
【図3】図3(A)及び(B)は、DMDの動作を説明するための説明図の一例である。
【図4】図4(A)及び(B)は、DMDを傾斜配置しない場合と傾斜配置する場合とで、露光ビームの配置及び走査線を比較して示した平面図の一例である。
【図5】図5(A)及び(B)は、DMDの使用領域の例を示す図の一例である。
【図6】図6は、スキャナによる1回の走査で感光性ソルダーレジスト層を露光する露光方式を説明するための平面図の一例である。
【図7】図7(A)及び(B)は、スキャナによる複数回の走査で感光性ソルダーレジスト層を露光する露光方式を説明するための平面図の一例である。
【図8】図8は、パターン形成装置の一例の外観を示す概略斜視図の一例である。
【図9】図9は、パターン形成装置のスキャナの構成を示す概略斜視図の一例である。
【図10】図10(A)は、感光性ソルダーレジスト層に形成される露光済み領域を示す平面図の一例であり、図10(B)は、各露光ヘッドによる露光エリアの配列を示す図の一例である。
【図11】図11は、光変調手段を含む露光ヘッドの概略構成を示す斜視図の一例である。
【図12】図12は、図11に示す露光ヘッドの構成を示す光軸に沿った副走査方向の断面図の一例である。
【図13】図13は、パターン情報に基づいて、DMDの制御をするコントローラの一例である。
【図14】図14(A)は、結合光学系の異なる他の露光ヘッドの構成を示す光軸に沿った断面図の一例であり、図14(B)は、マイクロレンズアレイなどを使用しない場合に被露光面に投影される光像を示す平面図の一例であり、図14(C)は、マイクロレンズアレイなどを使用した場合に被露光面に投影される光像を示す平面図の一例である。
【図15】図15は、DMDを構成するマイクロミラーの反射面の歪みをなど高線で示す図の一例である。
【図16】図16(A)、(B)は、前記マイクロミラーの反射面の歪みを、該ミラーの2つの対角線方向について示すグラフの一例である。
【図17】図17は、パターン形成装置に用いられたマイクロレンズアレイの正面図(A)と側面図(B)の一例である。
【図18】図18は、マイクロレンズアレイを構成するマイクロレンズの正面図(A)と側面図(B)の一例である。
【図19】図19は、マイクロレンズによる集光状態を1つの断面内(A)と別の断面内(B)について示す概略図の一例である。
【図20a】図20aは、マイクロレンズの集光位置近傍におけるビーム径をシミュレーションした結果を示す図の一例である。
【図20b】図20bは、図20aと同様のシミュレーション結果を、別の位置について示す図の一例である。
【図20c】図20cは、図20aと同様のシミュレーション結果を、別の位置について示す図の一例である。
【図20d】図20dは、図20aと同様のシミュレーション結果を、別の位置について示す図の一例である。
【図21a】図21aは、従来のパターン形成方法において、マイクロレンズの集光位置近傍におけるビーム径をシミュレーションした結果を示す図の一例である。
【図21b】図21bは、図21aと同様のシミュレーション結果を、別の位置について示す図の一例である。
【図21c】図21cは、図21aと同様のシミュレーション結果を、別の位置について示す図の一例である。
【図21d】図21dは、図21aと同様のシミュレーション結果を、別の位置について示す図の一例である。
【図22】図22は、合波レーザ光源の他の構成を示す平面図の一例である。
【図23】図23は、マイクロレンズアレイを構成するマイクロレンズの正面図(A)の一例と側面図(B)の一例である。
【図24】図24は、図22のマイクロレンズによる集光状態を1つの断面内(A)の一例と別の断面内(B)について示す概略図の一例である。
【図25】図25(A)、(B)及び(C)は、光量分布補正光学系による補正の概念についての説明図の一例である。
【図26】図26は、光照射手段がガウス分布で且つ光量分布の補正を行わない場合の光量分布を示すグラフの一例である。
【図27】図27は、光量分布補正光学系による補正後の光量分布を示すグラフの一例である。
【図28a】図28a(A)は、ファイバアレイ光源の構成を示す斜視図であり、図28a(B)は、(A)の部分拡大図の一例であり、図28a(C)及び(D)は、レーザ出射部における発光点の配列を示す平面図の一例である。
【図28b】図28bは、ファイバアレイ光源のレーザ出射部における発光点の配列を示す正面図の一例である。
【図29】図29は、マルチモード光ファイバの構成を示す図の一例である。
【図30】図30は、合波レーザ光源の構成を示す平面図の一例である。
【図31】図31は、レーザモジュールの構成を示す平面図の一例である。
【図32】図32は、図31に示すレーザモジュールの構成を示す側面図の一例である。
【図33】図33は、図31に示すレーザモジュールの構成を示す部分側面図である。
【図34】図34は、レーザアレイの構成を示す斜視図の一例である。
【図35】図35(A)は、マルチキャビティレーザの構成を示す斜視図の一例であり、図35(B)は、(A)に示すマルチキャビティレーザをアレイ状に配列したマルチキャビティレーザアレイの斜視図の一例である。
【図36】図36は、合波レーザ光源の他の構成を示す平面図の一例である。
【図37】図37(A)は、合波レーザ光源の他の構成を示す平面図の一例であり、図37(B)は、(A)の光軸に沿った断面図の一例である。
【図38】図38(A)及び(B)は、従来の露光装置における焦点深度と本発明の永久パターン形成方法(パターン形成装置)による焦点深度との相違を示す光軸に沿った断面図の一例である。
【符号の説明】
【0342】
1 支持体
2 感光性ソルダーレジスト層
3 保護フィルム
LD1〜LD7 GaN系半導体レーザ
10 ヒートブロック
11〜17コリメータレンズ
20 集光レンズ
30〜31マルチモード光ファイバ
44 コリメータレンズホルダー
45 集光レンズホルダー
46 ファイバホルダー
50 デジタル・マイクロミラー・デバイス(DMD)
52 レンズ系
53 反射光像(露光ビーム)
54 第2結像光学系のレンズ
55 マイクロレンズアレイ
56 被露光面(走査面)
55a マイクロレンズ
57 第2結像光学系のレンズ
58 第2結像光学系のレンズ
59 アパーチャアレイ
64 レーザモジュール
66 ファイバアレイ光源
67 レンズ系
68 レーザ出射部
69 ミラー
70 プリズム
73 組合せレンズ
74 結像レンズ
100 ヒートブロック
110 マルチキャピティレーザ
111 ヒートブロック
113 ロッドレンズ
120 集光レンズ
130 マルチモード光ファイバ
130a コア
140 レーザアレイ
144 光照射手段
150 感光性ソルダーレジスト層
152 ステージ
155a マイクロレンズ
156 設置台
158 ガイド
160 ゲート
162 スキャナ
164 センサ
166 露光ヘッド
168 露光エリア
170 露光済み領域
180 ヒートブロック
184 コリメートレンズアレイ
302 コントローラ
304 ステージ駆動装置
454 レンズ系
468 露光エリア
472 マイクロレンズアレイ
476 アパーチャアレイ
478 アパーチャ
480 レンズ系

【特許請求の範囲】
【請求項1】
アルカリ可溶性光架橋性樹脂と、アルカリ可溶性エラストマーと、重合性化合物と、光重合開始剤と、熱架橋剤と、着色剤と、熱硬化促進剤とを含有することを特徴とする感光性ソルダーレジスト組成物。
【請求項2】
アルカリ可溶性エラストマーが、一般式(I)で示されるジイソシアネートと、一般式(II−1)〜(II−3)で示されるカルボン酸基含有ジオールから選ばれた少なくとも1種と、一般式(III−1)〜(III−5)で示される高分子量ジオールから選ばれた、質量平均分子量が800〜3,000の範囲にある少なくとも1種の化合物との反応物であって、一般式(II−1)〜(II−3)の合計モル量と(III−1)〜(III−5)の合計モル量の比が、0.5:1〜2.8:1となるように反応して得られ、酸価が20〜130mgKOH/gである請求項1に記載の感光性ソルダーレジスト組成物。
【化1】

【化2】

【化3】

【化4】

【化5】

【化6】

【化7】

【化8】

【化9】

ただし、一般式(I)、(II−1)〜(II−3)、(III−1)〜(III−5)中、R、R〜R10及びR11は二価の脂肪族又は芳香族炭化水素を表す。Rは水素原子、炭素数1〜3個のアルキル基及び炭素数6〜15個のいずれかからなるアリール基を表す。R12は水素原子、炭素数1〜6個のアルキル基及び炭素数6〜10個のいずれかからなるアリール基を表す。R13はアリール基及びシアノ基のいずれかを表す。mは2〜4の整数を表す。n〜nはそれぞれ2以上の整数を表す。
【請求項3】
アルカリ可溶性エラストマーが、一般式(III−1)〜(III−5)で示される質量平均分子量が500以下のカルボン酸基非含有の低分子量ジオールを、低分子量ジオール合計モル量と高分子量ジオール合計モル量との比が、0.5:1〜2.8:1となるように共重合させたポリウレタン樹脂を用いる請求項1から2のいずれかに記載の感光性ソルダーレジスト組成物。
【請求項4】
熱架橋剤が、エポキシ樹脂及び多官能オキセタン化合物のいずれか1種である請求項1から3のいずれかに記載の感光性ソルダーレジスト組成物。
【請求項5】
無機充填剤を含む請求項1から4のいずれかに記載の感光性ソルダーレジスト組成物。
【請求項6】
アルカリ可溶性光架橋性樹脂15〜70質量%と、重合性化合物5〜75質量%、光重合開始剤0.5〜20質量%、熱架橋剤2〜50質量%、アルカリ可溶性エラストマー2〜30質量%、無機充填剤5〜75質量%、着色剤0.1〜10質量%、熱硬化促進剤0.01〜20質量%及び溶剤を含む請求項1から5のいずれかに記載の感光性ソルダーレジスト組成物。
【請求項7】
支持体と、該支持体上に、請求項1から5のいずれかに記載の感光性ソルダーレジスト組成物が積層されてなる感光性ソルダーレジスト層と、を有することを特徴とする感光性ソルダーレジストフィルム。
【請求項8】
感光性ソルダーレジスト層上に保護フィルムを有してなる請求項7に記載の感光性ソルダーレジストフィルム。
【請求項9】
感光性ソルダーレジスト層の厚みが、3〜100μmである請求項7から8のいずれかに記載の感光性ソルダーレジストフィルム。
【請求項10】
請求項7から9のいずれかに記載の感光性ソルダーレジストフィルムにおける、感光性ソルダーレジスト層を、基体の表面に転写した後、露光し、現像することを特徴とする永久パターン形成方法。
【請求項11】
請求項1から6のいずれかに記載の感光性ソルダーレジスト組成物を、基体の表面に塗布し、乾燥して感光性ソルダーレジスト層積層体を形成した後、露光し、現像する請求項10に記載の永久パターン形成方法。
【請求項12】
基体が、配線形成済みのプリント配線基板である請求項10から11のいずれかに記載の永久パターン形成方法。
【請求項13】
露光が、光を照射する光照射手段と、形成するパターン情報に基づいて前記光照射手段から照射される光を変調させる光変調手段とを用いて行われる請求項10から12のいずれかに記載の永久パターン形成方法。
【請求項14】
光変調手段が、形成するパターン情報に基づいて制御信号を生成するパターン信号生成手段を更に有してなり、前記光照射手段から照射される光を該パターン信号生成手段が生成した制御信号に応じて変調させる請求項13に記載の永久パターン形成方法。
【請求項15】
光変調手段が、n個の描素部を有してなり、該n個の描素部の中から連続的に配置された任意のn個未満の前記描素部を、形成するパターン情報に応じて制御可能である請求項13から14のいずれかに記載の永久パターン形成方法。
【請求項16】
露光が、光変調手段により光を変調させた後、前記光変調手段における描素部の出射面の歪みによる収差を補正可能な非球面を有するマイクロレンズを配列したマイクロレンズアレイを通して行われる請求項13から15のいずれかに記載の永久パターン形成方法。
【請求項17】
非球面が、トーリック面である請求項16に記載の永久パターン形成方法。
【請求項18】
現像が行われた後、感光性ソルダーレジスト層に対して硬化処理を行う請求項10から17のいずれかに記載の永久パターン形成方法。
【請求項19】
硬化処理が、全面露光処理及び120〜200℃で行われる全面加熱処理の少なくともいずれかである請求項18に記載の永久パターン形成方法。
【請求項20】
請求項10から19のいずれかに記載の永久パターン形成方法により形成されることを特徴とする永久パターン。
【請求項21】
保護膜、層間絶縁膜及びソルダーレジストパターンの少なくともいずれかである請求項20に記載の永久パターン。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図14】
image rotate

【図22】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28a】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate

【図34】
image rotate

【図35】
image rotate

【図36】
image rotate

【図37】
image rotate

【図38】
image rotate

【図5】
image rotate

【図13】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20a】
image rotate

【図20b】
image rotate

【図20c】
image rotate

【図20d】
image rotate

【図21a】
image rotate

【図21b】
image rotate

【図21c】
image rotate

【図21d】
image rotate

【図23】
image rotate

【図24】
image rotate

【図28b】
image rotate

【図29】
image rotate


【公開番号】特開2006−243563(P2006−243563A)
【公開日】平成18年9月14日(2006.9.14)
【国際特許分類】
【出願番号】特願2005−61619(P2005−61619)
【出願日】平成17年3月4日(2005.3.4)
【出願人】(000005201)富士写真フイルム株式会社 (7,609)
【Fターム(参考)】