説明

流体圧ポンプの流量制御弁

【課題】流体圧ポンプが吐出する作動流体が高圧であってもエロージョンが発生することを防止し、耐久性の高い流量制御弁を提供すること。
【解決手段】
流体圧ポンプとしてのベーンポンプ101から吐出された作動油を油圧機器10に導く供給通路12に介装され、油圧機器10に供給される作動油の流量を制御する流量制御弁100であって、ベーンポンプ101から吐出された作動油の圧力に応じて移動するスプール30を有し、ベーンポンプ101から吐出された作動油の一部を、ベーンポンプ101の吸込側に連通する戻り通路33へと還流するスプール弁21を備え、ベーンポンプ101から吐出され戻り通路33へ環流する作動油が衝突するスプール30の壁面に、作動油が含有する気体を気泡として溜めることが可能な環状溝51を設けることによって作動油が衝突する衝撃を和らげる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、流体圧ポンプから流体圧機器に供給される作動流体の流量を制御する流量制御弁に関する。
【背景技術】
【0002】
従来より、自動車等の車両には流体圧を利用して駆動する流体圧機器が利用されている。流体圧ポンプはエンジンの回転によって作動流体を吐出するため、作動流体の流量はエンジン回転数に比例して増加する。そこで、流体圧ポンプが吐出した圧油の流量が過剰なときに流体圧機器に供給される作動流体の流量の最適化を図るために、流体圧機器への作動流体の供給量を調整する流量制御弁を設けている。
【0003】
流量制御弁は、その上流と下流との圧力差によって開閉するスプール弁を備える。スプール弁が開状態になると、流体圧ポンプが吐出した作動流体の一部をオイルタンクへ還流して流量を減らす。これにより、流体圧ポンプが吐出した流量よりも流体圧機器に送られる流量を少なくすることが可能である。
【0004】
特許文献1には、流量制御弁を用いて油圧制御を行うパワーステアリング装置が開示されている。
【特許文献1】特開2005−112280号公報
【発明の開示】
【発明が解決しようとする課題】
【0005】
しかしながら、流体圧ポンプが吐出する作動流体は高圧であるため、過剰な作動流体を低圧側であるオイルタンクに還流させるときの作動流体の流れは高速である。このため、オイルタンクへと作動流体を還流させる際に、流量制御弁の内部には作動流体が衝突することによる大きな衝撃力がかかり、一部にエロージョン(erosion:浸食)を生じるおそれがある。近年の流体圧ポンプは、高圧高容量化が進んでおり、作動流体の圧力が高く、エロージョンを発生すると流量制御弁の内部が破損して流量制御弁の機能に影響をきたすおそれがあった。
【0006】
上記の問題に鑑みて、本発明では流体圧ポンプの吐出する作動流体が高圧であっても内部にエロージョンが発生することを防止し、耐久性の高い流量制御弁を提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明は、流体圧ポンプから吐出された作動流体を流体圧機器に導く供給通路に介装され、流体圧機器に供給される作動流体の流量を制御する流量制御弁であって、前記流体圧ポンプから吐出された作動流体の圧力に応じて移動するスプールを有し、前記流体圧ポンプから吐出された作動流体の一部を、前記流体圧ポンプの吸込側に連通する戻り通路へと還流するスプール弁を備え、前記流体圧ポンプから吐出され前記戻り通路へ還流する作動流体が衝突する前記スプールの壁面に、作動流体が含有する気体を気泡として溜めることが可能な凹溝を設けることを特徴とする。
【発明の効果】
【0008】
本発明によれば、作動流体が含有する気体が気泡となって凹溝に溜まり、スプール弁の壁面に作動流体が衝突するときに緩衝材の役割をする。よって、作動流体は気泡を介して衝突するため、作動流体が流量制御弁の内部の壁面に直接衝突するときと比して、作動流体が衝突することによる衝撃を和らげることができる。
【0009】
したがって、流体圧ポンプの吐出する作動流体が高圧であっても、内部にエロージョンが発生することを防止でき、耐久性の高い流量制御弁を得ることができる。
【発明を実施するための最良の形態】
【0010】
以下では、図1及び図2を参照しながら本発明の実施の形態に係る流量制御弁100について説明する。図1は、本発明の実施の形態に係る流量制御弁100の側面を断面で示した図であり、スプール弁21が閉状態の図であり、図2は、流量制御弁100の側面を断面で示した図であり、スプール弁21が開状態の図である。本実施の形態では、流体圧として油圧を使用する。
【0011】
流量制御弁100は、油圧供給源である流体圧ポンプから油圧機器10に供給される作動流体の流量が所定の特性となるように制御するものである。本実施の形態では、流体圧ポンプは車両のエンジンによって駆動されるベーンポンプ101である場合について説明する。また、油圧機器10は、例えば車両に搭載されるパワーステアリング装置や変速機等である。この油圧機器10が流体圧機器に該当する。
【0012】
ベーンポンプ101は、図示しないが、駆動軸の端部にエンジンの動力が伝達され、駆動軸に連結されたロータが回転するものである。ベーンポンプ101は、ロータに対して径方向に往復動可能に設けられる複数のベーンと、ロータを収容すると共にロータの回転に伴って内周のカム面にベーンの先端部が摺動するカムリングとを備える。カムリングは、内周のカム面が楕円形状をした環状の部材であり、カムリングの内部には、隣り合うベーンによって仕切られた複数のポンプ室が画成される。カムリングは、ポンプ室の容積を拡張する吸込領域と、ポンプ室の容積を収縮する吐出領域とを有する。
【0013】
ベーンポンプ101は、吸込領域では、油室の容積が徐々に拡張することで内部の圧力が下がることを利用して作動油を吸入する。また、吐出領域では、油室の容積が徐々に収縮することで内部の圧力が上がることを利用して作動油を吐出する。
【0014】
流量制御弁100は、ベーンポンプ101から吐出された作動油を油圧機器10に導く供給通路12に介装され作動油に抵抗を付与する可変絞り20と、可変絞り20の前後差圧に応じて供給通路12の作動油をポンプ吸込側に戻すスプール弁21と、可変絞り20より下流側に設けられたリリーフ弁22とを備える。
【0015】
可変絞り20、スプール弁21、及びリリーフ弁22は、バルブボディ27の内部に収装され、バルブボディ27の開口部にはキャップ28が螺着される。
【0016】
バルブボディ27に設けたスプール孔31には、スプール30が摺動自在に挿入される。スプール孔31には、ベーンポンプ101から吐出された作動油が流入するポンプポート32と、タンク34に作動油を排出する戻り通路35に連通してベーンポンプ101から流入した余剰な作動油をタンク34へ還流する戻りポート33とが、開口して形成される。
【0017】
キャップ28には、供給通路12の一部を構成する貫通孔37が形成される。貫通孔37の一端の開口部はポンプポート32に連通し、他端の開口部は、ポンプポート32から流入した作動油の全部または一部を油圧機器10に供給する供給ポート29を構成する。キャップ28の先端面38は、スプール30が当接するシート面として機能する。
【0018】
スプール30は、スプール孔31の軸方向に摺動自在に挿入される略円筒形の部材である。スプール30とスプール孔31とは、スプール弁21を構成する。スプール30は、摺動によってポンプポート32と戻りポート33との連通を遮断可能である。また、スプール30の移動によってポンプポート32から戻りポート33へと還流する作動流体の流量を調整可能である。つまり、スプール30は、ポンプポート32と戻りポート33との間の開口面積を調節可能である。
【0019】
スプール30の先端側には、ポンプポート32に連通し、ベーンポンプ101から吐出される作動油が導かれる上流側室42が画成される。また、スプール30の背面側にはスプリング室39が画成され、スプリング室39にはスプール30をキャップ28に向けて付勢するスプリング40が収装される。
【0020】
スプール30の先端には、キャップ28の貫通孔37に挿入され、先端に向かって拡径されたテーパロッド41が形成される。スプール30の移動に伴ってテーパロッド41が貫通孔37の先端開口部に対して相対移動し、貫通孔37の開口面積が変化する。テーパロッド41と、テーパロッド41の移動によって開口面積が変化する貫通孔37とで可変絞り20が構成される。
【0021】
可変絞り20は、上流側室42に臨んで設けられ、供給通路12を流れる作動油に抵抗を付与する。可変絞り20の下流側に画成された下流側室44は、通孔43を介してスプリング室39に連通している。このように、スプール30の一端には、可変絞り20の上流側の圧力が作用し、他端には、可変絞り20の下流側の圧力が作用する。したがって、スプール30は可変絞り20の前後差圧の変化に応じて移動し、可変絞り20の前後差圧に基づく荷重とスプリング40の付勢力とが釣り合った位置にてバランスする。
【0022】
ベーンポンプ101から吐出される作動油の流量が多く、可変絞り20の前後差圧が大きくなると、図2に示すようにスプール30はスプリング40を圧縮する方向へ移動し、スプール30のランド部30aが戻りポート33を開放する。図2に示した矢印は、スプール弁21が開状態のときの作動油の流れである。
【0023】
スプール30が移動してランド部30aが戻りポート33を開放すると、ポンプポート32が上流側室42を通じて戻りポート33と連通し、ベーンポンプ101から吐出される作動油の一部が戻り通路35へと還流する。上流側室42から戻り通路35へと作動油を直接還流する通路が、第1還流通路61である。戻り通路35へと還流する作動油の流量は、可変絞り20の前後差圧が大きい程、スプール30の移動量が大きくなり、戻りポート33の開口面積が大きくなるため多くなる。つまり、エンジン回転数が上昇して、ベーンポンプ101から吐出される作動油の流量が多くなる程多くなる。
【0024】
戻りポート33と対峙するスプール孔31の壁面には、スプール孔31の軸心と直交して円錐形状に切削された円錐溝36が形成される。この円錐溝36が連通溝に該当する。
【0025】
円錐溝36は、スプール30の軸心と直交する方向の圧力バランスをとるために、また作動油の流れる面積を拡大して流速を抑えるために設けられる。円錐溝36は、スプール30の摺動によってポンプポート32と連通可能である。円錐溝36は、戻りポート33側からドリルを挿入して形成されるため、頂点が120度の円錐形に形成されている。先端の形状は円錐形状である必要はなく、先端を平坦にした円柱形状に形成してもよい。
【0026】
スプール30のランド部30aの背面側には、略矩形の断面で環状に形成される環状凹部50が設けられ、環状凹部50とスプール孔31の内周によって環状油室55が画成される。
【0027】
環状油室55は、戻りポート33及び円錐溝36と連通している。環状油室55には、スプール弁21が開かれると上流側室42から円錐溝36を通じて作動油が流入する。環状油室55に流入した作動油は、環状油室55を伝って戻りポート33へと流出する。上流側室42から円錐溝36及び環状油室55を通じて戻り通路35へと作動油を還流する通路が、第2還流通路62である。この第2還流通路62が還流通路に該当する。
【0028】
以上のように、スプール弁21は、可変絞り20の前後差圧に応じてポンプポート32から流入した作動油の一部を戻りポート33へと還流する。戻りポート33及び円錐溝36は、共にスプール30の移動によって開口面積が変化する構成であるため、第1還流通路61及び第2還流通路62はスプール30の移動によって同期して開閉する。環状油室55の背面側、即ち円錐溝36からの作動油が衝突する側には、作動油が含有する空気を気泡として溜めるための環状溝51が形成される。
【0029】
環状溝51は、スプール30の背面側へ向けて環状油室55の内壁面に形成される環状の溝である。この環状溝51が凹溝に該当する。環状溝51は、スプール弁21が開状態になったときに、高圧側の円錐溝36から作動油が流入して衝突する低圧側の環状油室55の壁面に形成される。また、環状溝51は、環状油室55を挟んで円錐溝36と対峙するように形成される。このように形成することで、円錐溝36から環状油室55に流入する作動油が衝突したときの衝撃を和らげることができる。
【0030】
環状溝51は、本実施形態のように矩形の断面で環状に形成してもよいが、半円の断面で環状に形成したり、三角形の断面で環状に、即ちV字型の溝を形成したりしてもよい。
【0031】
ここで、環状溝51の代わりにスプール30の作動油が衝突する部分にのみ円弧状溝を形成してもよい。しかし、作動油の衝突による衝撃によって、スプール30が軸を中心として回転し作動油が衝突する位置と円弧状溝を設けた位置がずれることが考えられる。よって、スプール30の回転を抑制する措置が講じられていない場合には、環状溝51のように環状に設けることが望ましい。
【0032】
リリーフ弁22は、可変絞り20の下流側の圧力が所定値に達した場合に、スプール30内に収装されたスプリング45が圧縮されて開弁するものである。リリーフ弁22が開弁した場合には、可変絞り20の下流側の作動油は、下流側室44、通孔43、スプリング室39、リリーフ弁22、戻りポート33の順に流れ、戻り通路35へと逃がされる。
【0033】
以下では、可変絞り20及びスプール弁21の動作について説明する。
【0034】
ポンプ回転数の低速域では、可変絞り20の前後差圧が小さいため、スプール弁21は閉弁状態であり、ポンプ回転数に比例した作動油が油圧機器10へと供給される。
【0035】
ポンプ回転数が中速域に達すると、可変絞り20の前後差圧によってスプール弁21が開弁し、第1還流通路61及び第2還流通路62によってポンプポート32と戻りポート33とを連通し、上流側室42に流入する作動油の一部がポンプ回転数の増大に応じて戻り通路35へと還流する。このため、可変絞り20を通じて油圧機器10に供給される作動油の流量は略一定に保たれる。
【0036】
ここで、ベーンポンプ101が吐出する作動油は高圧であるため、低圧側へと開放されると作動油が衝突する壁面にエロージョンを発生するおそれがある。第1還流通路61から還流される、即ち上流側室42から環状油室55を通らず戻りポート33へと直接還流される作動油の衝突によって発生するエロージョンは、戻りポート33の内部に発生するため、流量制御弁100におけるスプール30の摺動動作には何ら影響を及ぼさない。しかし、第2還流通路62から還流される、即ち円錐溝36から環状油室55に流入する際に、円錐溝36から環状油室55を通って戻りポート33へと還流される作動油によってスプール孔31とスプール30との摺動面にエロージョンが発生すると、摺動面が浸食される。エロージョンが進行すると、スプール孔31に対するスプール30の摺動性が悪くなり、流量制御弁100の流量特性に影響を及ぼすおそれがある。
【0037】
ところで、高圧に圧縮される作動油には多くの空気等の気体が溶け込んでいる。作動油が上流側室42から円錐溝36を通じて環状油室55に流入するときには、作動油の圧力は高圧から一気に低圧になる。これは、戻りポート33は略大気圧であるタンク34に連通しているためである。
【0038】
円錐溝36から環状油室55へと流入する作動油が高圧から低圧になるときに、作動油に溶け込んでいた気体は圧力の低下に伴って体積を増して気泡となって現れる。この気泡が環状溝51に溜まることによって、作動油が衝突する際には緩衝材の役割をする。したがって、円錐溝36からの作動油が衝突する衝撃を和らげ、エロージョンを防止することができる。
【0039】
ポンプ回転数が高速域に達すると、可変絞り20の前後差圧が大きくなるため、スプール30はスプリング40を圧縮して移動する。これにより、貫通孔37の開口部の開口面積は、テーパロッド41の移動によって次第に減少し、油圧機器10に供給される作動油の流量は次第に減少する。
【0040】
また、ポンプ回転数がゼロとなるベーンポンプ101の停止時には、スプリング40の付勢力によってスプール30がキャップ28の先端面38に着座する。これにより、可変絞り20が全閉となると共に、スプール30のランド部30aによって戻りポート33が閉塞されスプール弁21も全閉となる。
【0041】
以上のように、本実施形態ではスプール30を可変絞り20の前後差圧に応じて移動させ、スプール弁21を開閉する。しかし、可変絞り20の前後差圧に応じてではなく、スプール30をポンプポート32から流入する作動流体の圧力とスプリング40の付勢力とのバランスによって移動させる態様でもよい。
【0042】
以上の実施の形態によれば、以下の効果を奏する。
【0043】
第2還流通路62において、円錐溝36から環状油室55に流入する作動油は、環状油室55の壁面に衝突する。このとき、高圧側の円錐溝36から低圧側の環状油室55に流出するときに、作動油が含有していた気体が気泡となって現れる。この気泡が環状油室55に凹設される環状溝51に溜まることで、作動油が環状油室55の壁面に衝突する際に緩衝材の役割をする。よって、作動油が流量制御弁100の内部に直接衝突するときと比して衝突時の作動油の衝撃が小さくなる。したがって、ベーンポンプ101の吐出する作動油が高圧であっても、内部にエロージョンが発生することを防止でき、流量制御弁100の耐久性を向上することができる。
【0044】
本発明は上記の実施の形態に限定されずに、その技術的な思想の範囲内において種々の変更がなしうることは明白である。
【産業上の利用可能性】
【0045】
本発明に係る流体圧ポンプの流量制御弁は、車両用のパワーステアリング装置や変速機等の油圧機器に用いることができる。
【図面の簡単な説明】
【0046】
【図1】本発明の実施の形態に係る流量制御弁の側面を断面で示した図であり、スプール弁が閉状態の図である。
【図2】流量制御弁の側面を断面で示した図であり、スプール弁が開状態の図である。
【符号の説明】
【0047】
100 流量制御弁
101 ベーンポンプ
10 油圧機器
12 供給通路
20 可変絞り
21 スプール弁
22 リリーフ弁
28 キャップ
30 スプール
30a ランド部
31 スプール孔
33 戻りポート
35 戻り通路
36 円錐溝
37 貫通孔
38 先端面
40 スプリング
41 テーパロッド
42 上流側室
44 下流側室
50 環状油室
51 環状溝

【特許請求の範囲】
【請求項1】
流体圧ポンプから吐出された作動流体を流体圧機器に導く供給通路に介装され、流体圧機器に供給される作動流体の流量を制御する流量制御弁であって、
前記流体圧ポンプから吐出された作動流体の圧力に応じて移動するスプールを有し、前記流体圧ポンプから吐出された作動流体の一部を、前記流体圧ポンプの吸込側に連通する戻り通路へと還流するスプール弁を備え、
前記流体圧ポンプから吐出され前記戻り通路へ還流する作動流体が衝突する前記スプールの壁面に、作動流体が含有する気体を気泡として溜めることが可能な凹溝を設けることを特徴とする流体圧ポンプの流量制御弁。
【請求項2】
前記スプール弁は、
バルブボディに形成され、前記スプールが摺動自在に挿入されるスプール孔と、
前記スプールの外周に環状に形成され、前記戻り通路と連通する環状油室と、
前記スプール孔の内壁面に形成され、前記スプールの移動によって前記流体圧ポンプの吐出側と前記環状油室とを連通可能な連通溝と、
前記吐出側から前記連通溝及び前記環状油室を通じて前記戻り通路へと作動流体を還流する還流通路と、を備え、
前記凹溝は、前記環状油室の内壁面に形成されることを特徴とする請求項1に記載の流体圧ポンプの流量制御弁。
【請求項3】
前記凹溝は、前記環状油室を挟んで前記連通溝と対峙するように形成されることを特徴とする請求項2に記載の流体圧ポンプの流量制御弁。
【請求項4】
前記供給通路に介装され、作動流体に抵抗を付与する可変絞りを更に備え、
前記スプールは、前記可変絞りの前後差圧に応じて移動することを特徴とする請求項1から3のいずれか一つに記載の流体圧ポンプの流量制御弁。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2010−144654(P2010−144654A)
【公開日】平成22年7月1日(2010.7.1)
【国際特許分類】
【出願番号】特願2008−324256(P2008−324256)
【出願日】平成20年12月19日(2008.12.19)
【出願人】(000000929)カヤバ工業株式会社 (2,151)
【Fターム(参考)】