説明

移動体、倒立型移動体、及びその制御方法

【課題】高速移動中においても旋回性能を確保し、障害物回避性能を向上すること。
【解決手段】本発明に係る移動体1は、車両の目標並進速度及び目標旋回角速度を生成する。そして、生成した目標並進速度及び目標旋回角速度から左右の駆動輪の目標回転角速度を算出すると共に、当該算出した各駆動輪の目標回転角速度に制限をかける。速度制限は、算出した各駆動輪の目標回転角速度のうちいずれか一つが所定の制限値を超える場合に、算出した各駆動輪の目標回転角速度を、所定の制限値以下であって、かつ、各駆動輪の目標回転角速度間の相対的な回転角速度差を維持するように制限する。そして、算出した各駆動輪の目標回転角速度に基づいて、各駆動輪の駆動制御量を算出し、算出した駆動制御量に応じて各駆動輪を独立に回転駆動する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は移動体、倒立型移動体、及びその制御方法に関し、特に高速移動時においても旋回性能を確保して移動可能な技術に関する。
【背景技術】
【0002】
移動体本体の移動方向に対して両側に駆動輪を設け、それら駆動輪を各々独立して回転制御可能な移動体では、左右の駆動輪に対してそれぞれ異なる回転数を指令することにより、旋回走行を行う。このような移動体に目標とする進行方向の速度(目標並進速度)と旋回方向の速度(目標旋回角速度)とを指令した場合には、通常、指令したこれらの目標速度が移動体の性能を考慮した実現可能な範囲内に収まるように、これら目標速度に対して何らかの速度制限を掛ける必要がある。
【0003】
例えば、特許文献1〜特許文献3には、倒立状態で移動する倒立車輪式移動体において、限界横方向加速度に着目して、直進速度と旋回角速度の少なくとも一つを制限することで、旋回目標にできるだけ近い状態で旋回可能とする技術が開示されている。
【特許文献1】特開2008−56064号公報
【特許文献2】特開2008−56065号公報
【特許文献3】特開2008−56067号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかしながら、従来技術において、指令した目標速度に旋回成分が含まれるときに、左右の駆動輪を回転駆動する各モータに対してそれぞれ速度制限処理を実施した場合には、各駆動輪の回転成分に対しても制限がかかることになる。結果として、両駆動輪の回転成分は旋回を行うために互いに異なる成分としたにもかかわらず、両駆動輪間の回転成分の差が減少してしまい、旋回性能が犠牲となる。このため、とっさの回避運動が行いにくくなる場合がある。特に、高速移動中においては旋回がしにくい状態となり、障害物を回避できないといった問題が生じる。
【0005】
また、特許文献1などに記載の手法では、制限を行うための処理が複雑なものである。さらに、特許文献1などに記載の手法では、実際の路面摩擦係数が未知であるなどの課題が残されている。
【0006】
従って、本発明は、高速移動中においても旋回性能を確保し、障害物回避性能を向上することができる移動体、倒立型移動体、及びその制御方法を提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明に係る移動体は、車両の目標並進速度及び目標旋回角速度を生成する目標速度生成手段と、前記生成した目標並進速度及び目標旋回角速度から左右の駆動輪の目標回転角速度を算出すると共に、当該算出した各駆動輪の目標回転角速度に制限をかける速度制限手段と、前記算出した各駆動輪の目標回転角速度に基づいて、前記各駆動輪の駆動制御量を算出する駆動制御量算出手段と、前記算出した駆動制御量に応じて前記各駆動輪を独立に回転駆動する駆動手段と、を備える移動体であって、前記速度制限手段は、前記算出した各駆動輪の目標回転角速度のうちいずれか一つが所定の制限値を超える場合に、前記算出した各駆動輪の目標回転角速度を、所定の制限値以下であって、かつ、前記各駆動輪の目標回転角速度間の相対的な回転角速度差を維持するように制限するものである。
【0008】
これにより、両駆動輪間の回転成分の差を維持することができ、高速移動中においても旋回性能を確保し、障害物回避性能を向上することができる。
【0009】
また、前記速度制限手段は、前記目標速度生成手段で生成した目標旋回角速度を増加させる場合には、前記各駆動輪の目標回転角速度間の相対的な回転角速度差を更に拡大するように制限するようにしてもよい。
【0010】
さらにまた、前記速度制限手段は、前記算出した各駆動輪の目標回転角速度のうち前記所定の制限値を超える駆動輪の目標回転角速度を所定の制限値以下に制限すると共に、当該制限した駆動輪の目標回転角速度と他の駆動輪の目標回転角速度との相対的な回転角速度差を維持するように前記他の駆動輪の目標回転角速度を減少させると好適である。さらに、前記速度制限手段は、前記制限した駆動輪の目標回転角速度と他の駆動輪の目標回転角速度との相対的な回転角速度差を更に拡大するように前記他の駆動輪の目標回転角速度を減少させるようにしてもよい。
【0011】
また、前記速度制限手段は、前記所定の制限値を超えた駆動輪の目標回転角速度が前記所定の制限値を超過した超過成分を算出し、前記所定の制限値を超えた駆動輪の目標回転角速度から当該算出した超過成分を減算すると共に、他の駆動輪の目標回転角速度から前記超過成分に係数を乗じた値を減算すると好適である。さらに、前記速度制限手段は、前記移動体の移動方向に存在する障害物との距離に応じて、前記係数の値を変更するようにしてもよい。
【0012】
さらにまた、前記移動体が追従する目標経路を設定する目標経路設定手段を更に備え、前記目標速度生成手段は、前記設定した目標経路に追従するように前記並進速度及び前記旋回角速度を生成するようにしてもよい。
【0013】
また、前記移動体の移動を操作する操作手段を更に備え、前記目標速度生成手段は、前記操作手段の操作量に応じて前記並進速度及び前記旋回角速度を生成するようにしてもよい。
【0014】
本は発明に係る倒立型移動体は、左右の駆動輪を独立に回転駆動する駆動手段と、前記駆動輪を支持する移動体本体と、移動体の目標並進速度及び目標旋回角速度を生成する目標速度生成手段と、前記生成した目標並進速度及び目標旋回角速度から左右の駆動輪の目標回転角速度を算出すると共に、当該算出した各駆動輪の目標回転角速度に制限をかける速度制限手段と、前記算出した各駆動輪の目標回転角速度に基づいて前記各駆動輪の駆動制御量を算出する駆動制御量算出手段と、を備え、前記算出した駆動制御量に応じて前記各駆動輪の回転駆動を制御することで前記移動体本体の倒立状態を維持して移動する倒立型移動体であって、前記速度制限手段は、前記算出した各駆動輪の目標回転角速度のうちいずれか一つが所定の制限値を超える場合に、前記算出した各駆動輪の目標回転角速度を、所定の制限値以下であって、かつ、前記各駆動輪の目標回転角速度間の相対的な回転角速度差を維持するように制限するものである。
【0015】
これにより、両駆動輪間の回転成分の差を維持することができ、高速移動中においても旋回性能を確保し、障害物回避性能を向上することができる。
【0016】
また、前記速度制限手段は、前記目標速度生成手段で生成した目標旋回角速度を増加させる場合には、前記各駆動輪の目標回転角速度間の相対的な回転角速度差を更に拡大するように制限するようにしてもよい。
【0017】
さらにまた、前記速度制限手段は、前記算出した各駆動輪の目標回転角速度のうち前記所定の制限値を超える駆動輪の目標回転角速度を所定の制限値以下に制限すると共に、当該制限した駆動輪の目標回転角速度と他の駆動輪の目標回転角速度との相対的な回転角速度差を維持するように前記他の駆動輪の目標回転角速度を減少させると好適である。さらに、前記速度制限手段は、前記制限した駆動輪の目標回転角速度と他の駆動輪の目標回転角速度との相対的な回転角速度差を更に拡大するように前記他の駆動輪の目標回転角速度を減少させるようにしてもよい。
【0018】
また、前記速度制限手段は、前記所定の制限値を超えた駆動輪の目標回転角速度が前記所定の制限値を超過した超過成分を算出し、前記所定の制限値を超えた駆動輪の目標回転角速度から当該算出した超過成分を減算すると共に、他の駆動輪の目標回転角速度から前記超過成分に係数を乗じた値を減算すると好適である。さらに、前記速度制限手段は、前記倒立型移動体の移動方向に存在する障害物との距離に応じて、前記係数の値を変更するようにしてもよい。
【0019】
さらにまた、前記移動体本体の姿勢角度及び姿勢角速度の少なくとも一つを含む姿勢情報を検出する姿勢検出手段を更に備え、前記速度制限手段は、前記姿勢検出手段で検出した姿勢情報に応じて、前記係数の値を変更するようにしてもよい。
【0020】
また、前記移動体本体の姿勢角度及び姿勢角速度の少なくとも一つを含む姿勢情報を検出する姿勢検出手段と、並進方向の移動に必要な前記各駆動輪の並進制御量を算出する並進制御手段と、旋回方向の移動に必要な前記各駆動輪の旋回制御量を算出する旋回制御手段と、を更に備え、前記速度制限手段は、前記制限した各駆動輪の目標回転角速度から、制限目標並進速度及び制限目標旋回角速度を算出し、前記並進速度制御手段は、前記姿勢検出手段で検出した姿勢情報に従って前記移動体を倒立状態に維持した上で、前記算出した制限目標並進速度に追従させるための並進制御量を算出し、前記旋回制御手段は、前記算出した制限目標旋回角速度に追従させるための旋回制御量を算出し、前記駆動制御量算出手段は、前記算出した並進制御量及び前記旋回制御量から前記各駆動輪の駆動制御量を算出するようにしてもよい。
【0021】
さらにまた、前記移動体が追従する目標経路を設定する目標経路設定手段を更に備え、前記目標速度生成手段は、前記設定した目標経路に追従するように前記並進速度及び前記旋回角速度を生成するようにしてもよい。
【0022】
また、前記移動体の移動を操作する操作手段を更に備え、前記目標速度生成手段は、前記操作手段の操作量に応じて前記並進速度及び前記旋回角速度を生成するようにしてもよい。
【0023】
本発明に係る移動体の制御方法は、車両の目標並進速度及び目標旋回角速度を生成し、前記生成した目標並進速度及び目標旋回角速度から左右の駆動輪の目標回転角速度を算出すると共に、前記算出した各駆動輪の目標回転角速度のうちいずれか一つが所定の制限値を超える場合に、前記算出した各駆動輪の目標回転角速度を、所定の制限値以下であって、かつ、前記各駆動輪の目標回転角速度間の相対的な回転角速度差を維持するように制限し、前記算出した各駆動輪の目標回転角速度に基づいて、前記各駆動輪の駆動制御量を算出し、前記算出した駆動制御量に応じて前記各駆動輪を独立に回転駆動するものである。
【0024】
これにより、両駆動輪間の回転成分の差を維持することができ、高速移動中においても旋回性能を確保し、障害物回避性能を向上することができる。
【0025】
本発明に係る倒立型移動体の制御方法は、左右の駆動輪を独立に回転駆動して移動する倒立型移動体の制御方法であって、前記倒立型移動体の目標並進速度及び目標旋回角速度を生成し、前記生成した目標並進速度及び目標旋回角速度から左右の駆動輪の目標回転角速度を算出すると共に、前記算出した各駆動輪の目標回転角速度のうちいずれか一つが所定の制限値を超える場合に、前記算出した各駆動輪の目標回転角速度を、所定の制限値以下であって、かつ、前記各駆動輪の目標回転角速度間の相対的な回転角速度差を維持するように制限し、前記倒立型移動体本体の姿勢角度及び姿勢角速度の少なくとも一つを含む姿勢情報を検出し、前記制限した各駆動輪の目標回転角速度から、制限目標並進速度及び制限目標旋回角速度を算出し、前記姿勢検出手段で検出した姿勢情報に従って前記移動体を倒立状態に維持した上で、前記算出した制限目標並進速度に追従させるための並進制御量を算出し、前記算出した制限目標旋回角速度に追従させるための旋回制御量を算出し、前記算出した並進制御量及び前記旋回制御量から前記各駆動輪の駆動制御量を算出し、前記算出した駆動制御量に応じて前記各駆動輪の回転駆動を制御するものである。
【0026】
これにより、両駆動輪間の回転成分の差を維持することができ、高速移動中においても旋回性能を確保し、障害物回避性能を向上することができる。
【発明の効果】
【0027】
本発明によれば、高速移動中においても旋回性能を確保し、障害物回避性能を向上することができる移動体、倒立型移動体、及びその制御方法を提供することができる。
【発明を実施するための最良の形態】
【0028】
発明の実施の形態1.
以下、図面を参照しながら本実施の形態1に係る移動体について説明する。図1(a)は、本実施の形態にかかる移動体の構成を模式的に示す上面図であり、図1(b)は本実施の形態にかかる移動体の構成を模式的に示す側面図である。本実施の形態では、移動体を、一対の駆動輪を移動体本体の移動方向に対向して設け、これら駆動輪をそれぞれ独立に駆動する独立2輪型の移動体として説明する。
【0029】
移動体1は、非ホロノミックな2輪型自律移動体である。車体2の側面下方には、右駆動輪3及び左駆動輪4が設けられている。右駆動輪3及び左駆動輪4は、車体2の対向する側面にそれぞれ設けられている。車体2の前方中央部には、キャスタ等の従動輪7が設けられている。2つの右駆動輪3及び左駆動輪4は、モータ等を有する右駆動機構5及び左駆動機構6によって、独立して回転する。即ち、右駆動機構5及び左駆動機構6が右駆動輪3及び左駆動輪4を回転させることによって、移動体1が移動する。2つの右駆動輪3及び左駆動輪4は、それぞれ異なる右駆動機構5及び左駆動機構6に接続されている。したがって、右駆動輪3及び左駆動輪4を異なる回転方向、回転速度で回転させることにより、移動体1の移動方向、移動速度を制御することができる。具体的には、右駆動輪3及び左駆動輪4を同じ方向、異なる速度で回転させることにより、移動体1の移動方向が変化しながら、移動する。即ち、2つの右駆動輪3及び左駆動輪4の距離、及び回転速度の差に応じて、移動体1が旋回しながら移動する。また、右駆動輪3及び左駆動輪4を反対方向に同じ速度で回転させることによって、移動体1がその場で旋回する。さらに、右駆動輪3及び左駆動輪4を同じ方向、同じ速度で回転させることにより、移動体1が直進移動する。
【0030】
制御部8は、所定のCPUやメモリなどの図示しない記憶領域を備える小型のコンピュータであり、この記憶領域には、入力される信号に基づいて右駆動輪3及び左駆動輪4を駆動する駆動制御量を決定するための所定のプログラムとともに、移動する移動領域に関するマップ情報などが記憶されている。
【0031】
制御部8は、記憶領域に記憶したマップ情報などに基づいて、その移動経路を自律的に作成する。このマップ情報は、移動する床面Pの全体形状に、略一定間隔に配置された格子点を結ぶグリッド線を仮想的に描写することで得られるグリッドマップから構成されており、このグリッド線で囲まれたグリッド単位を用いて、移動体1の自己位置に相当する場所や目標地点である移動終了点、及び移動終了点における移動体1の移動方向などが特定される。尚、グリッドマップにおける格子点の間隔は、移動体1の移動可能な曲率や絶対位置を認識する精度などの条件に応じて、適宜変更可能である。そして、制御部8は、このグリッドマップ上において特定された自己位置を移動始点とし、この移動始点から目的地である移動終点までの目標経路を設定するとともに、右駆動輪3及び左駆動輪4の回転数などから求めた移動速度や移動距離からリアルタイムに自己位置を算出し、設定された目標経路に沿って移動を行うように移動制御を行う。
【0032】
以下、図2〜図4を参照して、本実施の形態1に係る移動体の移動制御方法について詳細に説明する。図2は、図1に示した移動体1を示す概念的なモデル図である。図2において、Vlinは移動体1の進行方向の速度(並進速度)を示す。Vrotは移動体1の旋回方向の角速度(旋回角速度)を示す。vは左駆動輪(左タイヤ)の並進速度を示す。vは右駆動輪(右タイヤ)の並進速度を示す。ωは左駆動輪の回転角速度を示す。ωは右駆動輪の回転角速度を示す。rは両駆動輪の半径を示す。lは移動体1のトレッド距離(駆動輪間の距離)を示す。
【0033】
すると、移動体1の並進速度Vlin及び旋回角速度Vrotと、各駆動輪の回転角速度ω及びωとの関係を、以下の数1により表すことができる。
【数1】

【0034】
従って、数1より、各駆動輪の回転角速度ω及びωを、以下の数2により求めることができる。即ち、各駆動輪の回転角速度ω及びωは、「移動体1の並進速度成分±旋回角速度成分」により構成される。図3は、例えば移動体が並進しながら左側に旋回する場合において、算出した左右の駆動輪の目標回転角速度ω及びωの一例を示す図である。
【数2】

【0035】
本実施の形態1に係る移動体1の制御部8は、まず、設定された目標経路に追従するように移動体1の目標並進速度Vlin_orgと、目標旋回角速度Vrot_orgを生成する。次いで、制御部8は、生成した目標並進速度Vlin_org及び目標旋回角速度Vrot_orgから、数2を用いて、左右の駆動輪の目標回転角速度ω及びωを算出する。次いで、制御部8は、算出した各駆動輪の目標回転角速度ω及びωに基づいて、各駆動輪の駆動制御量(回転角度、回転角速度、トルク)を算出する。次いで、制御部8は、算出した駆動制御量に応じて各駆動輪を独立に回転駆動することで、移動体1の移動制御を行う。
【0036】
一般的に、独立2輪型の車輪移動ロボットに用いられるモータには、その回転角速度に関して速度制限のあるものが多い。このため、通常は、駆動輪の回転角速度を、その速度制限値ωlmt以下になるように速度制限が行われる。しかし、従来の制御方法では、このような速度制限処理の結果、その制限を超過した超過成分(以下、超過成分をΔωとして説明する。)が失われることになり、目標とした回転角速度を達成することができないという問題があった。
【0037】
図4は従来技術による速度制限処理の結果、旋回性能が低下する様子を説明するための図である。例えば、従来の制御方法では、数2を用いて、図4(a)に示す各駆動輪の目標回転角速度ω及びωを算出した場合に、算出した各目標回転角速度ω及びωのうちいずれか一つが速度制限値ωlmtを超えているか否かを判定する。そして、いずれか一つでも超えていた場合には、速度制限を超過した駆動輪に対して回転角速度の制限処理を行う。図4(a)に示す例では、右駆動輪の目標回転角速度ωが速度制限値ωlmtを超えているため、その超過成分Δωを右駆動輪の目標回転角速度ωから減算することにより、速度制限処理を行う。この結果、両駆動輪で異なる成分とした回転角速度に対して制限がかかることになり、左右の駆動輪の目標回転角速度間の相対的な回転角速度差が減少する。このため、高速移動時には旋回がしにくい状態に陥ってしまう。結果として、旋回性能の低下を招き、とっさの回避運動が行いにくくなるといった問題が生じてしまう。
【0038】
これに対して、本実施の形態1に係る移動体は、算出した各駆動輪の目標回転角速度のうちいずれか一つが所定の制限値を超える場合には、算出した各駆動輪の目標回転角速度を、所定の制限値以下となるように制限処理を行うと共に、さらに、各駆動輪の目標回転角速度間の相対的な回転角速度差を維持するように制限処理を行う。
【0039】
図5は本実施の形態1に係る移動体による速度制限処理の様子を説明するための図である。本実施の形態1に係る移動体は、数2を用いて、図5(a)に示す各駆動輪の目標回転角速度ω及びωを算出した場合に、算出した各目標回転角速度ω及びωのうちいずれか一つが速度制限値ωlmtを超えているか否かを判定する。そして、いずれか一つでも超えていた場合には、速度制限を超過した駆動輪に対して回転角速度の制限処理を行うと共に、速度制限を超過していない駆動輪に対しても制限処理を行う。図5(a)に示す例では、右駆動輪の目標回転角速度ωが速度制限値ωlmtを超えているため、その超過成分Δωを右駆動輪の目標回転角速度ωからも減算することにより、速度制限処理を行う。さらに、本実施の形態1に係る移動体は、速度制限値ωlmtを超えていない左駆動輪の目標回転角速度ωに対しても、超過成分Δωに係数αを乗じた値であるα・Δω分の減算処理を行う。これにより、左右の駆動輪の目標回転角速度について十分な回転角速度差を確保することができる。結果として、高速移動中においても旋回性能を犠牲にすることがなく、旋回しやすくなる。従って、高速移動中においても旋回性能を確保し、障害物回避性能を向上することができる。
【0040】
尚、係数αは非負の値であり、αの値に応じて左右の駆動輪の目標回転角速度差を拡大又は縮小することができる。係数αの値は、予め定めた所定の値を設定するものとしてもよいし、ユーザからの入力や、移動体の周囲の状況のセンシング結果に応じて変更する構成としてもよい。例えば、係数αの値をα=1とした場合には、本実施の形態1に係る移動体は、左右の駆動輪の目標回転角速度差を維持するように速度制限を行う。このため、予め与えた目標旋回角速度はそのまま保持して、並進方向についてのみ速度を制限する。また、係数αの値をα>1の値とした場合には、本実施の形態1に係る移動体は、左右の駆動輪の目標回転角速度差を更に拡大するように速度制限を行う。このため、予め与えた目標旋回角速度以上の旋回をさせることが可能となる。従って、通常の移動時には係数αの値をα=1として移動制御を行い、移動体の並進方向に存在する障害物を緊急回避させる場合には、係数αの値をα>1の値へと切替えることで、予め与えた目標旋回角速度以上の旋回をさせ、障害物の回避性能をより向上させることができる。
【0041】
以下、移動体の移動方向に存在する障害物との距離に応じて、係数αの値を決定する方法について説明する。図6に示すように、移動体1の移動方向に障害物が存在するものとし、障害物との距離をL_obsとする。図7に示すように、横軸をL_obs、縦軸を係数αとしてマップに従って、係数αを決定することができる。
【0042】
ここで、障害物の距離L_obsは、移動体1の中央付近を基準として算出してもよいが、図8に示すように、移動体1の左右の端(車輪や車体)と障害物との距離を各々L_obs_left、L_obs_rightとして計測し、計測した値のいずれか小さいほうの値を距離L_obsとしてもよい。これにより、正確に障害物を回避できることが期待される。即ち、L_obs=min(L_obs_left,L_obs_right)により計算すると好適である。
【0043】
図7において、障害物の距離L_obsに関する閾値L_oと、係数αの最大値α_maxは、移動体1の運動性能や安全性を考慮して予め決定するパラメータである。例えば、閾値L_oの値を小さくした場合には、係数αによる旋回成分の補正は移動体1が障害物に十分近づくまでは有効とはならないが、閾値L_oの値を大きくした場合には、移動体1と障害物とが離れたところからでも係数αによる旋回成分の補正は有効となり、余裕を持って障害物との衝突を回避することができる。また、同一の閾値L_oを設定する場合であっても、α_maxの値を大きくすることで、与えられた指令旋回性能以上の旋回動作を行って、安全を確保することが可能となる。
【0044】
図9に示すように、移動体1が障害物に接近する状況を想定する。図9において、点A(L_obs>L_o)、点B(L_obs<L_o)、点C(L_obs>L_o)は、図7に示す各点A、B、Cに対応する点(移動体1の各地点での状態)を示す。点Aでは、移動体1は障害物から十分離れているものと判断し、移動体1は指令値(点線の軌道)に応じて走行を続ける。点Bでは、移動体1と障害物との距離が閾値L_oを下回ったために、移動体1は障害物に対して想定以上に接近しており、障害物と衝突の危険があるものと判断して、係数αによる旋回成分の補正を開始する。点Cでは、回避動作の結果、障害物との距離が離れたため、移動体1は指令値通りの速度で走行する。これら一連の動作では、係数αは連続的に変化するため、滑らかな回避動作を実現することができる。
【0045】
発明の実施の形態2.
続いて、本実施の形態2に係る倒立型移動体について説明する。本実施の形態では、左右の駆動輪をそれぞれ独立に駆動し、移動体本体の倒立状態を維持して移動する倒立型移動体について説明する。図10は、移動領域である床部上を、搭乗者を載置した状態で、該搭乗者の操作により移動制御可能な倒立型移動体100を概略的に示す概略図であり、図11は、図10に示す倒立型移動体100を側方から見た様子を概念的なモデルを用いて示す概念図である。以下、詳細に説明する。
【0046】
図10に示すように、倒立型移動体100は、搭乗者を載置する搭乗台11を備える移動体本体10と、1対の対向する右駆動輪31及び左駆動輪32と、移動体本体10に接続され、右駆動輪31及び左駆動輪32の回転駆動を制御する制御ボックス20と、を備えている。この制御ボックス20は、後述するようにこれらの駆動輪を車軸C1、C2を中心として回転駆動するための、駆動部としてのモータ21、22と、該モータに電力を供給するバッテリー25と、倒立型移動体100の移動をコントロールする制御部23をその内部に備えている。
【0047】
移動体本体10は、所定形状のフレームで構成された搭乗台11と、この搭乗台11を制御ボックス20とを接続する接続部材18とを備えている。この搭乗台11は、搭乗者が着座するための平面板状の座席12と、搭乗者の背面を支持するための背当て部13と、脚支持部14と、足載置部15とを備えている。
【0048】
背当て部13は座席12に対して上方に向けて略垂直方向に起立するように固定され、着座した搭乗者が後方に向かって重心をかけた際に背中全体と接触し、その体重を支持する。同様に、脚支持部14は、着座した搭乗者の脚部に接触し、その重量を部分的に支持するように、座席12に対して略鉛直下方に伸びるように一端が固定されており、その他端に足載置部15が固定されている。そして、足載置部15は、着座した搭乗者の脚部の膝部分が略垂直に曲がった状態で足平底面が面接触するように、所定の形状及び大きさに設計されている。
【0049】
また、前記接続部材18は、制御ボックス20に対して一端が固定されるとともに、他端が搭乗台11を移動体の前後方向(移動体の進行方向)に対して回動自在となるように接続されている。そして、図示しないモータ等の駆動手段により、制御部23からの信号によって搭乗台11を回動するタイミングや回動量が制御されている。
【0050】
また、この接続部材18には、移動体本体の加速度を検出するための加速度センサ18aと、移動体本体10の鉛直方向(図11において示す線分Lの伸びる方向)に対する傾斜角度及び傾斜角速度を測定するためのジャイロ18bとが取り付けられている。加速度センサ18aは、移動体本体に作用する力により生じる進行方向についての加速度を検出し、検出した加速度に基づく信号(加速度信号)を制御部23に送信する。
【0051】
接続部材18に取り付けられたジャイロ18bは、自身の位置が鉛直方向から所定時間の間に傾斜する量、例えば傾斜角速度を検出し、検出した角速度を電気信号に変換して出力可能に構成されており、検出した傾斜角速度に基づいた傾斜角速度信号をフィルタ(図示せず)を介してノイズ等を除去した後に、制御部23に送信する。制御部23においては、倒立型移動体100の移動中に微小時間間隔で検出される、接続部材18(即ち、移動体本体10)の傾斜角速度を積分することで、移動体本体10の傾斜角度及び傾斜角速度を求めることができる。
【0052】
また、本実施の形態では移動体本体10の移動方向(前後方向)についての傾斜角のみを検出するものを用いているが、左右方向についての傾斜角を検出するセンサを用いることも可能である。
【0053】
さらに、移動体本体10の鉛直方向に対する傾斜角度及び傾斜角速度は、このようなジャイロを用いずに、前述の加速度センサ18aにより得られる加速度信号により測定することもできる。したがって、ジャイロを用いることなく、前述の加速度センサ18aのみを用いて、移動体本体の傾斜角度、傾斜角速度、移動体の速度を検出することもできる。
【0054】
搭乗台11においては制御部23に操作信号を送信するためのジョイスティック等の操作レバーを備える操作部が設けられており、搭乗台11に搭乗する搭乗者が該操作部を操作することで、倒立型移動体100の移動方向や移動速度が制御される。
【0055】
また、制御ボックス20は、図12に示すように、箱型形状をなすフレームの内部において右駆動輪31及び左駆動輪32を支持する支持軸C1,C2を備え、これらの支持軸を駆動する駆動部としてのモータ21,22と、これらのモータの回転駆動動作を制御するための制御部23と、駆動輪の回転角度及び回転角速度を検出するための回転角センサ24と、これらの構成要素に電力を供給するためのバッテリー25と、前方に配置され、移動する床面の形状等や障害物等を光学的に認識するための検出部26、26を備えている。
【0056】
モータ21、22は、前述の駆動輪を各々独立して駆動するものであり、これらの駆動輪に回転トルクを与えることで、駆動輪の回転数を制御部23からの制御信号により変化させ、倒立型移動体100の進行方向を変化させたり、旋回動作を行ったりすることを可能とする。尚、モータには、電力供給により過熱状態となることを検出するための図示しない温度センサが設けられ、この温度センサにより過熱状態を検出し、後述する制御部23に検出信号を出力することで、モータによる最大トルクの出力ができなくなるといった状態を回避することができる。
【0057】
制御部23は、所定のCPUやメモリなどの記憶領域23aを備える小型のコンピュータであり、この記憶領域23aには、入力される信号に基づいて駆動輪を駆動する駆動量を決定するための所定のプログラムとともに、移動する移動領域に関するマップ情報などが記憶されている。
【0058】
回転角センサ24は、駆動輪の回転角速度を検出し、検出した回転角速度に基づく電気信号(回転角速度信号)を前記制御部23に対して送信する。制御部23は、この回転角速度信号に基づいて、駆動輪の回転角度及び回転角速度を取得する。
【0059】
バッテリー25は、制御ボックス20の表面から突出して設けられた図示しない被充電用端子に対して電気的に導通しており、充電ステーションに設けられた充電用端子と、前述の被充電用端子とを接触させることで、電力を供給され、充電される。
【0060】
検出部26、26は、制御ボックス20の下方前面について左右対称に設置された、検出手段としてのセンサであり、各々のセンサに設けられた光源から赤外線レーザを照射するとともに、そのレーザの照射方向を水平方向及び鉛直方向について揺動するように変化させ、その反射光を受光することで、制御ボックス20の前面下方の床面形状を検出するものである。制御部23は、この検出部26により検出された床面形状に関する情報によって、床面上に存在する段差部や障害物等の存在を検知し、これらの障害物等を回避するための経路探索の作成等を行う。
【0061】
次に、制御部23による、移動体1の倒立状態を維持しつつ移動を行うための制御について、図13に示す制御部23の内部構成を示すブロック図を用いつつ説明する。上位コントローラ231は、制御部23に記憶されたマップ上において特定された自己位置を移動始点とし、この移動始点から目的地である移動終点までの目標経路を設定する機能を有する。目標速度生成部232は、設定された目標経路に追従するように倒立型移動体100の目標並進速度Vlin_orgと、目標旋回角速度Vrot_orgを生成する。
【0062】
速度制限部233は、生成した目標並進速度Vlin_org及び目標旋回角速度Vrot_orgから、上述した数2を用いて、左右の駆動輪の目標回転角速度ω及びωを算出する。速度制限部233は、算出した各目標回転角速度ω及びωのうちいずれか一つが速度制限値ωlmtを超えているか否かを判定する。そして、いずれか一つでも超えていた場合には、速度制限部233は、速度制限を超過した駆動輪に対して回転角速度の制限処理を行うと共に、速度制限を超過していない駆動輪に対しても制限処理を行う。
【0063】
次いで、速度制限部233は、制限処理を施した各駆動輪の目標回転角速度ω及びωから、上述した数1を用いて、制限目標並進速度Vlin_lmt及び制限目標旋回角速度Vrot_lmtを算出する。即ち、速度制限部233は、速度制限処理を施した後の制限目標並進速度Vlin_lmt及び制限目標旋回角速度Vrot_lmtを算出する。
【0064】
姿勢演算部235は、上述したジャイロ18bの出力に基づいて、移動体本体100の姿勢角度としての傾斜角度と、姿勢角速度としての傾斜角速度を算出する。並進速度制御部236は、算出した姿勢情報に従って倒立型移動体100を倒立状態に維持した上で、各駆動輪を算出した制限目標並進速度Vlin_lmtに追従させるための並進制御量(回転角度、回転角速度、トルク)を算出する。
【0065】
より具体的には、並進速度制御部236は、目標となる状態量(移動体本体10の傾斜角/傾斜角速度、制限目標並進速度など)を取得したのち、これらの状態量に基づいて、倒立走行を行うように駆動輪の回転駆動を制御する倒立制御と、倒立型移動体100の並進方向の速度により駆動輪の回転駆動を制御する並進速度制御とを行っている。ここで、前記倒立制御は、移動体本体10の傾斜状態(移動体本体10の傾斜角度η)に基づいて得られる信号に、所定のゲインを乗じて得られる制御量を算出する制御理論により設計されている。一方、前記並進速度制御は、駆動輪の径とその回転速度とから取得した倒立型移動体100の実速度に基づいて得られる信号に、所定のゲインを乗じて得られる制御量を算出する。そして、算出された各々の制御量を合算することで得られた値を、床面に対して接地する駆動輪の並進制御量として出力し、前記駆動輪の回転駆動を制御する。尚、前記倒立制御は、既知のPID制御などの制御系に置き換えても構成することができる。
【0066】
旋回制御部237は、算出した制限目標旋回角速度Vrot_lmtに追従させるための旋回制御量(回転角度、回転角速度、トルク)を算出する。即ち、旋回制御部237は、倒立型移動体100の旋回方向の旋回角速度により駆動輪の回転駆動を制御する旋回制御を行っている。前記旋回角速度制御は、駆動輪の径とその回転速度とから取得した倒立型移動体100の実速度に基づいて得られる信号に、所定のゲインを乗じて得られる旋回制御量を算出する。
【0067】
駆動制御量算出手段としての制御量合成部238は、算出した並進制御量及び旋回制御量から各駆動輪の駆動制御量(回転角度、回転角速度、トルク)を算出する。即ち、並進制御量及び旋回制御量を合成し、合成した駆動制御量を各駆動輪に対して振り分ける。右車輪駆動部21及び左車輪駆動部22は、駆動制御量に応じて各駆動輪を独立に回転駆動することで、倒立型移動体100の移動制御を行う。
【0068】
このように構成された倒立型移動体100は、移動体本体10の傾斜している方向に対して、右駆動輪31、左動輪32を進め、倒立型移動体100の重心位置を駆動輪の車軸の鉛直上方に戻すように制御される。そして、床面に対して接地する一対の駆動輪に適切なトルクが付与されることで、移動体本体10が鉛直方向に対してなす傾斜角度がある一定の値を超えて増加しないように倒立状態が保たれ、かつ、その倒立状態を維持するように、前進、後退、停止、右折、左折、左旋回、右旋回等の移動動作を行うことができる。
【0069】
次に、制御部23による移動制御の詳細について、図14に示すフローチャートを用いて説明する。
【0070】
まず、制御部23は、倒立型移動体100に追従させる目標経路を決定する(S101)。次いで、制御部23は、決定した目標経路を安定して追従可能な倒立型移動体100の目標並進速度Vlin_orgと、目標旋回角速度Vrot_orgを算出する(S102)。
【0071】
次いで、制御部23は、算出した目標並進速度Vlin_org及び目標旋回角速度Vrot_orgから、数2を用いて、左右の駆動輪の目標回転角速度ω及びωを算出する(S103)。そして、制御部23は、算出した各目標回転角速度ω及びωのうちいずれか一つが速度制限値ωlmtを超えているか否かを判定する(S104)。
【0072】
S104における比較判定の結果、左右の駆動輪の目標回転角速度ω及びωのいずれか一つでも速度制限値ωlmtを超えていた場合には、制御部23は、速度制限を超過した駆動輪に対して回転角速度の制限処理を行う(S105)。例えば、右駆動輪の目標回転角速度ωのみが速度制限値ωlmtを超えていた場合には、速度制限部233は、その超過成分Δωを右駆動輪の目標回転角速度ωからも減算することにより、速度制限処理を行う。そして、制御部23は、速度制限を超過していない駆動輪に対しても回転角速度の制限処理を行う(S106)。例えば、制御部23は、右駆動輪の目標回転角速度ωが速度制限値ωlmtを超えていた場合には、速度制限値ωlmtを超えていない左駆動輪の目標回転角速度ωからも、超過成分Δωに係数αを乗じた成分α・Δωを減算する。さらに、制御部23は、S105及びS106において速度制限処理を施した各駆動輪の目標回転角速度ω及びωから、数1を用いて、制限目標並進速度Vlin_lmt及び制限目標旋回角速度Vrot_lmtを算出する(S107)。
【0073】
次いで、制御部23は、S104における比較判定の結果、左右の駆動輪に駆動輪に対して速度制限処理が実行された場合には、S107において算出した制限目標並進速度Vlin_lmt及び制限目標旋回角速度Vrot_lmtを目標並進速度及び目標旋回角速度として決定し、一方、S104における比較判定の結果、左右の駆動輪に駆動輪に対して速度制限処理が実行されなかった場合には、S102において算出した目標並進速度Vlin_org及び目標旋回角速度Vrot_orgを目標並進速度及び目標旋回角速度として決定する(S108)。
【0074】
次いで、制御部23は、S108において決定された目標並進速度及び目標旋回角速度や、ジャイロ18bの出力などから、各駆動輪を駆動するための駆動制御量を算出する(S109)。そして、制御部23から駆動制御信号を出力し、算出した駆動制御量に基づいて各駆動輪を回転駆動する(S110)。
【0075】
ここで、係数αの値は、予め定めた所定の値を設定するものとしてもよいし、ユーザからの入力や、移動体の姿勢情報に応じて変更する構成としてもよい。さらに、上述したように障害物との距離に応じて決定した係数αと、後述する姿勢情報に応じて決定した係数αとを乗算することにより、最終的な係数αを決定するようにしてもよい。
【0076】
以下、移動体の姿勢情報に応じて、係数αの値を決定する方法について説明する。ここでは、移動体の姿勢情報としての倒立傾斜角(η)に応じて、係数αを決定する。図15に示すように、倒立二輪型移動体の姿勢角(鉛直方向に対する重心位置の傾き)は、並進加速度ddXに略比例している。また、図16に示すように、重心位置が車軸上から前後オフセットした位置にある場合には旋回軸周りの慣性モーメント(イナーシャ)が増大し、旋回性能が低下しやすい。さらに、遠心力によって移動体の進行方向に加速することでも、旋回性能が低下しやすい。これらのことから、図17に示すように、走行中の姿勢角ηの値に応じて係数αを決定することで、障害物回避性能を向上させる手法が考えられる。例えば、姿勢角ηが十分小さい場合には(加減速が略ゼロの場合には)、旋回方向の慣性モーメントや、遠心力は十分小さいため、係数α=1として、指令値通りの走行を実施する。一方で、姿勢角ηが大きく閾値η_oを超過した場合には(加減速中の場合には)、姿勢角ηに応じて係数αによる旋回成分の補正を実施し、旋回方向の慣性モーメント増加や遠心力による旋回性能の低下を補うことができる。
【0077】
このように、本実施の形態に係る倒立型移動体は、目標経路に対して生成した「並進速度成分」及び「旋回角速度成分」のうち、旋回角速度成分を確保した上で、並進速度成分から優先的に速度制限処理を行う。従って、高速移動中においても旋回性能を確保することができるため、障害物回避性能を向上することができる。
【0078】
また、移動中の状況に応じて旋回角速度成分を増加させることで、目標経路に基づいて指示した旋回角速度以上の旋回角速度で旋回することができる。一般的に、倒立型移動体は、慣性の影響によって並進方向の制御ゲインは低くなるのに対して、旋回方向の制御ゲインは高くなるという特徴を有している。即ち、障害物を回避する際に、旋回方向の指令に対する応答性が高いという特徴を利用することで、安全性向上が期待できる。さらに、障害物を回避する際には、車輪の横方向には移動できないという非ホロノミック拘束を利用することで、スキーやスケートのようにエッジを立てて急停止することも可能となるため、障害物回避性能が向上するという効果も奏する。
【0079】
尚、上述した実施の形態においては、設定した目標経路に追従するように目標並進速度及び目標旋回角速度を生成するものとして説明したが本発明はこれに限定されない。即ち、移動体及び倒立型移動体の移動体を操作する操作手段を更に備え、操作手段の操作量に応じて目標並進速度及び目標旋回角速度を生成するものとしてもよい。
【0080】
また、本発明は上述した実施の形態のみに限定されるものではなく、既に述べた本発明の要旨を逸脱しない範囲において種々の変更が可能であることは勿論である。
【図面の簡単な説明】
【0081】
【図1】本発明の実施の形態1に係る移動体の構成を示す上面図及び側面図である。
【図2】本発明の実施の形態1に係る移動体の概念的な構成を示すモデル図である。
【図3】本発明の実施の形態1に係る移動体の左右の駆動輪の目標回転角速度の一例を示す図である。
【図4】従来技術による速度制限処理の結果、旋回性能が低下する様子を説明するための図である。
【図5】本発明の実施の形態1に係る速度制限処理の様子を説明するための図である。
【図6】本発明の実施の形態1に係る係数の決定方法を説明するための図である。
【図7】本発明の実施の形態1に係る係数の決定方法を説明するための図である。
【図8】本発明の実施の形態1に係る係数の決定方法を説明するための図である。
【図9】本発明の実施の形態1に係る係数の決定方法を説明するための図である。
【図10】本発明の実施の形態2に係る倒立型移動体の構成を示す図である。
【図11】本発明の実施の形態2に係る倒立型移動体100を側方から見た様子を概念的なモデルを用いて示す概念図である。
【図12】本発明の実施の形態2に係る倒立型移動体の内部構成を概念的に示す図である。
【図13】本発明の実施の形態2に係る倒立型移動体の制御部の内部構成を示すブロック図である。
【図14】本発明の実施の形態2に係る倒立型移動体の制御部による移動制御を示すフローチャート図である。
【図15】本発明の実施の形態2に係る係数の決定方法を説明するための図である。
【図16】本発明の実施の形態2に係る係数の決定方法を説明するための図である。
【図17】本発明の実施の形態2に係る係数の決定方法を説明するための図である。
【符号の説明】
【0082】
1 移動体、 2 車体、 3 右駆動輪、 4 左駆動輪、
5 右駆動機構、 6 左駆動機構、 7 従動輪、

100 倒立型移動体、 10 移動体本体、 11 搭乗台、 12 座席、
13 背当て部、 14 脚支持部、 15 足載置部、 18 接続部材、
18a 加速度センサ、 18b ジャイロ、 20 制御ボックス、
21,22 モータ、 23 制御部、 23a 記憶領域、 24 回転角センサ、
25 バッテリー、 26 検出部、 31,32 駆動輪、 P 床面

231 上位コントローラ、 232 目標速度生成部、 233 速度制限部、
234 並進制御部、 235 姿勢演算部、 236 旋回制御部、
237 制御量合成部、

【特許請求の範囲】
【請求項1】
車両の目標並進速度及び目標旋回角速度を生成する目標速度生成手段と、
前記生成した目標並進速度及び目標旋回角速度から左右の駆動輪の目標回転角速度を算出すると共に、当該算出した各駆動輪の目標回転角速度に制限をかける速度制限手段と、
前記算出した各駆動輪の目標回転角速度に基づいて、前記各駆動輪の駆動制御量を算出する駆動制御量算出手段と、
前記算出した駆動制御量に応じて前記各駆動輪を独立に回転駆動する駆動手段と、を備える移動体であって、
前記速度制限手段は、
前記算出した各駆動輪の目標回転角速度のうちいずれか一つが所定の制限値を超える場合に、前記算出した各駆動輪の目標回転角速度を、所定の制限値以下であって、かつ、前記各駆動輪の目標回転角速度間の相対的な回転角速度差を維持するように制限する
ことを特徴とする移動体。
【請求項2】
前記速度制限手段は、
前記目標速度生成手段で生成した目標旋回角速度を増加させる場合には、
前記各駆動輪の目標回転角速度間の相対的な回転角速度差を更に拡大するように制限する
ことを特徴とする請求項1記載の移動体。
【請求項3】
前記速度制限手段は、
前記算出した各駆動輪の目標回転角速度のうち前記所定の制限値を超える駆動輪の目標回転角速度を所定の制限値以下に制限すると共に、当該制限した駆動輪の目標回転角速度と他の駆動輪の目標回転角速度との相対的な回転角速度差を維持するように前記他の駆動輪の目標回転角速度を減少させる
ことを特徴とする請求項1記載の移動体。
【請求項4】
前記速度制限手段は、
前記制限した駆動輪の目標回転角速度と他の駆動輪の目標回転角速度との相対的な回転角速度差を更に拡大するように前記他の駆動輪の目標回転角速度を減少させる
ことを特徴とする請求項3記載の移動体。
【請求項5】
前記速度制限手段は、
前記所定の制限値を超えた駆動輪の目標回転角速度が前記所定の制限値を超過した超過成分を算出し、前記所定の制限値を超えた駆動輪の目標回転角速度から当該算出した超過成分を減算すると共に、他の駆動輪の目標回転角速度から前記超過成分に係数を乗じた値を減算する
ことを特徴とする請求項1又は3記載の移動体。
【請求項6】
前記速度制限手段は、
前記移動体の移動方向に存在する障害物との距離に応じて、前記係数の値を変更する
ことを特徴とする請求項5記載の移動体。
【請求項7】
前記移動体が追従する目標経路を設定する目標経路設定手段を更に備え、
前記目標速度生成手段は、前記設定した目標経路に追従するように前記並進速度及び前記旋回角速度を生成する
ことを特徴とする請求項1乃至6いずれか1項記載の移動体。
【請求項8】
前記移動体の移動を操作する操作手段を更に備え、
前記目標速度生成手段は、前記操作手段の操作量に応じて前記並進速度及び前記旋回角速度を生成する
ことを特徴とする請求項1乃至7いずれか1項記載の移動体。
【請求項9】
左右の駆動輪を独立に回転駆動する駆動手段と、
前記駆動輪を支持する移動体本体と、
移動体の目標並進速度及び目標旋回角速度を生成する目標速度生成手段と、
前記生成した目標並進速度及び目標旋回角速度から左右の駆動輪の目標回転角速度を算出すると共に、当該算出した各駆動輪の目標回転角速度に制限をかける速度制限手段と、
前記算出した各駆動輪の目標回転角速度に基づいて前記各駆動輪の駆動制御量を算出する駆動制御量算出手段と、を備え、
前記算出した駆動制御量に応じて前記各駆動輪の回転駆動を制御することで前記移動体本体の倒立状態を維持して移動する倒立型移動体であって、
前記速度制限手段は、
前記算出した各駆動輪の目標回転角速度のうちいずれか一つが所定の制限値を超える場合に、前記算出した各駆動輪の目標回転角速度を、所定の制限値以下であって、かつ、前記各駆動輪の目標回転角速度間の相対的な回転角速度差を維持するように制限する
ことを特徴とする倒立型移動体。
【請求項10】
前記速度制限手段は、
前記目標速度生成手段で生成した目標旋回角速度を増加させる場合には、
前記各駆動輪の目標回転角速度間の相対的な回転角速度差を更に拡大するように制限する
ことを特徴とする請求項9記載の倒立型移動体。
【請求項11】
前記速度制限手段は、
前記算出した各駆動輪の目標回転角速度のうち前記所定の制限値を超える駆動輪の目標回転角速度を所定の制限値以下に制限すると共に、当該制限した駆動輪の目標回転角速度と他の駆動輪の目標回転角速度との相対的な回転角速度差を維持するように前記他の駆動輪の目標回転角速度を減少させる
ことを特徴とする請求項9記載の倒立型移動体。
【請求項12】
前記速度制限手段は、
前記制限した駆動輪の目標回転角速度と他の駆動輪の目標回転角速度との相対的な回転角速度差を更に拡大するように前記他の駆動輪の目標回転角速度を減少させる
ことを特徴とする請求項11記載の倒立型移動体。
【請求項13】
前記速度制限手段は、
前記所定の制限値を超えた駆動輪の目標回転角速度が前記所定の制限値を超過した超過成分を算出し、前記所定の制限値を超えた駆動輪の目標回転角速度から当該算出した超過成分を減算すると共に、他の駆動輪の目標回転角速度から前記超過成分に係数を乗じた値を減算する
ことを特徴とする請求項9又は11記載の倒立型移動体。
【請求項14】
前記速度制限手段は、
前記倒立型移動体の移動方向に存在する障害物との距離に応じて、前記係数の値を変更する
ことを特徴とする請求項13記載の倒立型移動体。
【請求項15】
前記移動体本体の姿勢角度及び姿勢角速度の少なくとも一つを含む姿勢情報を検出する姿勢検出手段を更に備え、
前記速度制限手段は、
前記姿勢検出手段で検出した姿勢情報に応じて、前記係数の値を変更する
ことを特徴とする請求項13または14記載の倒立型移動体。
【請求項16】
前記移動体本体の姿勢角度及び姿勢角速度の少なくとも一つを含む姿勢情報を検出する姿勢検出手段と、
並進方向の移動に必要な前記各駆動輪の並進制御量を算出する並進制御手段と、
旋回方向の移動に必要な前記各駆動輪の旋回制御量を算出する旋回制御手段と、を更に備え、
前記速度制限手段は、前記制限した各駆動輪の目標回転角速度から、制限目標並進速度及び制限目標旋回角速度を算出し、
前記並進速度制御手段は、前記姿勢検出手段で検出した姿勢情報に従って前記移動体を倒立状態に維持した上で、前記算出した制限目標並進速度に追従させるための並進制御量を算出し、
前記旋回制御手段は、前記算出した制限目標旋回角速度に追従させるための旋回制御量を算出し、
前記駆動制御量算出手段は、前記算出した並進制御量及び前記旋回制御量から前記各駆動輪の駆動制御量を算出する
ことを特徴とする請求項9、11、13いずれか1項記載の倒立型移動体。
【請求項17】
前記移動体が追従する目標経路を設定する目標経路設定手段を更に備え、
前記目標速度生成手段は、前記設定した目標経路に追従するように前記並進速度及び前記旋回角速度を生成する
ことを特徴とする請求項9乃至16いずれか1項記載の倒立型移動体。
【請求項18】
前記移動体の移動を操作する操作手段を更に備え、
前記目標速度生成手段は、前記操作手段の操作量に応じて前記並進速度及び前記旋回角速度を生成する
ことを特徴とする請求項9乃至17いずれか1項記載の倒立型移動体。
【請求項19】
車両の目標並進速度及び目標旋回角速度を生成し、
前記生成した目標並進速度及び目標旋回角速度から左右の駆動輪の目標回転角速度を算出すると共に、前記算出した各駆動輪の目標回転角速度のうちいずれか一つが所定の制限値を超える場合に、前記算出した各駆動輪の目標回転角速度を、所定の制限値以下であって、かつ、前記各駆動輪の目標回転角速度間の相対的な回転角速度差を維持するように制限し、
前記算出した各駆動輪の目標回転角速度に基づいて、前記各駆動輪の駆動制御量を算出し、
前記算出した駆動制御量に応じて前記各駆動輪を独立に回転駆動する移動体の制御方法。
【請求項20】
左右の駆動輪を独立に回転駆動して移動する倒立型移動体の制御方法であって、
前記倒立型移動体の目標並進速度及び目標旋回角速度を生成し、
前記生成した目標並進速度及び目標旋回角速度から左右の駆動輪の目標回転角速度を算出すると共に、前記算出した各駆動輪の目標回転角速度のうちいずれか一つが所定の制限値を超える場合に、前記算出した各駆動輪の目標回転角速度を、所定の制限値以下であって、かつ、前記各駆動輪の目標回転角速度間の相対的な回転角速度差を維持するように制限し、
前記倒立型移動体本体の姿勢角度及び姿勢角速度の少なくとも一つを含む姿勢情報を検出し、
前記制限した各駆動輪の目標回転角速度から、制限目標並進速度及び制限目標旋回角速度を算出し、
前記姿勢検出手段で検出した姿勢情報に従って前記移動体を倒立状態に維持した上で、前記算出した制限目標並進速度に追従させるための並進制御量を算出し、
前記算出した制限目標旋回角速度に追従させるための旋回制御量を算出し、
前記算出した並進制御量及び前記旋回制御量から前記各駆動輪の駆動制御量を算出し、
前記算出した駆動制御量に応じて前記各駆動輪の回転駆動を制御する
倒立型移動体の制御方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate


【公開番号】特開2010−58604(P2010−58604A)
【公開日】平成22年3月18日(2010.3.18)
【国際特許分類】
【出願番号】特願2008−225009(P2008−225009)
【出願日】平成20年9月2日(2008.9.2)
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成19年度、文部科学省、科学技術総合研究委託事業、産業技術力強化法第19条の適用を受ける特許出願
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【出願人】(504137912)国立大学法人 東京大学 (1,942)
【Fターム(参考)】