説明

被検面測定装置

【課題】回転対称な線織面または互いに離間した複数の平面からなる被検面の傾斜角度、形状および径の大きさ等を短時間で測定可能な被検面測定装置を得る。
【解決手段】円錐レンズ31と回折光学素子32とからなる光偏向素子30を配置し、測定光を照射する。光偏向素子30に入射した測定光の一部は、参照基準面31bにおいて参照光として反射され、その余は光偏向素子30により放射状に偏向されて被検面71の各部に垂直に照射される。被検面71の各部から再帰反射された測定光の一部は、光偏向素子30を経由し被検光として参照基準面31bに戻る。この被検光と参照光の光路長差が低干渉光源11からの出力光の可干渉距離以下となるように迂回路部13における迂回距離の調整がなされ、撮像カメラ23により撮像された干渉縞画像に基づき、被検面71の各部の傾斜角度、形状および径の大きさが測定解析される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、円筒面や円錐面等の回転対称な線織面または互いに離間した複数の平面からなる被検面を測定する被検面測定装置に関し、特に、被検面の傾斜角度や形状の他、被検面の径の大きさや被検面の各部の離間距離を測定するのに好適な被検面測定装置に関する。
【背景技術】
【0002】
従来、鏡筒内において、複数のレンズを偏芯させることなく光軸方向に並設させる技術として、隣接する複数のレンズに円錐状の嵌合面をそれぞれ形成し、各々の嵌合面を互いに嵌合させることによってレンズ間の位置合せを可能としたレンズの設置方法が知られている。
【0003】
このような嵌合面を有するレンズでは、嵌合面の形成精度が良くないと、各レンズを正しい位置に設置できなくなり、所期の光学性能を得ることが困難となる。そこで、嵌合面の形成誤差(傾斜角度や面形状、径の大きさの誤差)を測定し、求められた形成誤差を製造工程にフィードバックして、形成精度を向上させたいという要望がある。
【0004】
従来、このような嵌合面の測定には、光触針による3次元形状測定装置が用いられているが、測定に多大な時間を要するという問題がある。
【0005】
一方、下記特許文献1には、干渉計を用いて円錐面状の被検面の形状を短時間で測定する技術が提案されており、この技術を、上述の嵌合面の測定に適用することも考えられる。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開平7−318307号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、上記特許文献1に記載の測定装置は、嵌合面の傾斜角度や形状の誤差については短時間で測定することが可能なものの、嵌合面の径の大きさについては測定することができない。このため、嵌合面の径の大きさについても短時間で測定し得るような測定装置が要望されている。
【0008】
また、上記特許文献1に記載の測定装置は、測定対象となる被検面が円錐面状であることを前提としているが、他の形態の被検面も測定対象とすることができれば便利である。例えば、被検面が円筒面状の場合や、被検面が互いに離間した位置に配置された複数の平面からなるような場合(例えば、シリンドリカルレンズに上述の嵌合面を設ける場合、該嵌合面は複数の平面から構成されることがある)でも、被検面の傾斜角度や形状の他、被検面の径の大きさや被検面の各部の離間距離を短時間で測定できるようにすれば、極めて有用となる。
【0009】
本発明は、このような事情に鑑みなされたものであり、回転対称な線織面または互いに離間した複数の平面からなる被検面について、該被検面の傾斜角度や形状のみならず、被検面の径の大きさや被検面の各部の離間距離についても短時間で測定可能な被検面測定装置を提供することを目的とする。
【課題を解決するための手段】
【0010】
上記目的を達成するため本発明に係る被検面測定装置は、以下の特徴を備えている。
【0011】
すなわち、本発明に係る被検面測定装置は、回転対称な線織面または互いに離間した複数の平面からなる被検面を測定する被検面測定装置であって、
光源からの出力光を参照基準面において測定光と参照光とに分岐し、該測定光を測定光軸に沿って出射する干渉計と、
前記干渉計と前記被検面との間の前記測定光の光路上に配置され、該干渉計から出射された該測定光を偏向して該被検面の各部に垂直に入射させるとともに、該被検面の各部から再帰反射された被検光を偏向して該干渉計に向けて出射する光偏向素子と、
前記光偏向素子からの前記被検光と前記参照光との光干渉により形成される干渉縞画像を撮像する撮像手段と、
前記参照基準面から前記被検面までの前記測定光の光路上における光学距離を測定する光学距離測定手段と、
前記撮像手段により撮像された前記干渉縞画像を解析する解析手段と、を備えてなることを特徴とする。
【0012】
本発明において、前記光源が複数の波長成分を含む低可干渉光を出力する低可干渉光源であり、
前記光学距離測定手段は、前記低可干渉光源から出力された前記低可干渉光を2光束に分岐し、一方の光束を他方の光束に対して迂回させた後に1光束に再合波する迂回路部と、該迂回路部における該他方の光束に対する該一方の光束の迂回距離を調節して、前記被検光と前記参照光との光路長差を前記低可干渉光の可干渉距離以下に調整する光路長差調整部と、前記撮像手段により撮像された干渉縞画像と前記迂回距離の値とに基づき、前記光学距離を算出する光学距離算出部と、を有してなる、とすることができる。
【0013】
一方、前記光源が波長可変レーザ光源であり、
前記光学距離測定手段は、前記波長可変レーザ光源からの出力光の波長を走査する波長走査部と、該波長走査部により該出力光の波長を走査しながら前記撮像手段により順次撮像された干渉縞画像の所定の画素における干渉縞変化の回数に基づき、前記光学距離を算出する光学距離算出部とを有してなる、とすることもできる。
【0014】
また、前記被検面が回転対称な線織面からなるものである場合、
前記光偏向素子は、複数の輪帯状の回折格子が同心に形成されてなる回折光学素子を有してなるもの、円錐状の光透過面を備えた屈折素子を有してなるもの、円錐状の光反射面を備えた反射素子を有してなるもののいずれかまたはこれらを任意に組み合わせたものとすることができる。
【0015】
一方、前記被検面が互いに離間した複数の平面からなるものである場合、
前記光偏向素子は、互いに異なる向きに配置された複数の測定光偏向用反射平面を有する反射素子を有してなるものとすることができる。
【発明の効果】
【0016】
本発明に係る被検面測定装置は、上述の特徴を備えていることにより、以下のような作用効果を奏する。
【0017】
すなわち、本発明の被検面測定装置においては、干渉計と被検面との間の測定光の光路上に配置された光偏向素子により、測定光が偏向されて被検面の各部に垂直に入射するとともに、該被検面の各部から再帰反射され光偏向素子を経由して干渉計に戻る被検光と、参照光との光干渉により干渉縞画像が形成される。
【0018】
この干渉縞画像を解析する解析手段を備えていることにより、被検面の各部の傾斜角度や形状を測定解析することが可能であり、また、光偏向素子から被検面までの測定光の光路上における光学距離を測定する光学距離測定手段を備えていることにより、被検面が回転対称な被検面からなる場合には、被検面の径の大きさを測定することが可能であり、被検面が互いに離間した複数の平面からなるものである場合には、被検面の各部(複数の平面)の離間距離を測定することが可能である。
【図面の簡単な説明】
【0019】
【図1】第1実施形態に係る被検面測定装置の概略構成図である。
【図2】第1実施形態における解析制御装置の構成を示すブロック図である。
【図3】第1実施形態における光偏向素子の別態様を示す概略図である。
【図4】第2実施形態に係る被検面測定装置の概略構成図である。
【図5】第2実施形態における解析制御装置の構成を示すブロック図である。
【図6】第3実施形態に係る被検面測定装置の概略構成図である。
【図7】第3実施形態における光偏向素子の斜視図である。
【図8】光偏向素子および被検面の別態様を示す概略図である。
【図9】光偏向素子および被検面の他の態様を示す概略図である。
【図10】光偏向素子および被検面のその他の態様を示す概略図である。
【図11】第4実施形態に係る被検面測定装置の概略構成図である。
【図12】第4実施形態の解析制御装置の構成を示すブロック図である。
【図13】第1実施形態に係る被検面測定装置のアライメント調整方法を説明するための概略図である。
【発明を実施するための形態】
【0020】
以下、本発明の実施形態について、上述の図面を参照しながら詳細に説明する。なお、実施形態の説明に使用する各図は概略的な説明図であり、詳細な形状や構造を示すものではなく、各部材の大きさや部材間の距離等については適宜変更して示してある。
【0021】
〈第1実施形態〉
第1実施形態に係る被検面測定装置は、図1に示すように、干渉計10、光偏向素子30および解析制御部40を備え、被検レンズ70が有する被検面71(光軸C70に対し回転対称な線織面である円錐面で構成されている)の各部の傾斜角度、形状および径の大きさを測定するように構成されている。なお、被検レンズ70は、他のレンズ(図示略)と組み合わされて使用される嵌合レンズであり、被検面71が他のレンズとの嵌合面として形成されたものである。
【0022】
上記干渉計10は、複数の波長成分を含む低可干渉光を出力する低可干渉光源11(例えば、SLDやLEDの他、白色光源とその出力光の波長帯域を制限する帯域フィルタとを組み合わせたものを用いることができる)と、コリメータレンズ12と、該コリメータレンズ12を介して上記低可干渉光源11から出力された低可干渉光を2光束に分岐し、一方の光束を他方の光束に対して迂回させた後に1光束に再合波する迂回路部13と、ビーム径変換用レンズ19と、該ビーム径変換用レンズ19を介して上記迂回路部13から出力された光束を、光束分岐面20aにおいて図中下方に向けて反射するビームスプリッタ20と、該ビームスプリッタ20からの光束を平行光からなる測定光に変換し、測定光軸C10に沿って出射するコリメータレンズ21とを備えている。また、結像レンズ22および撮像カメラ23(本実施形態における撮像手段を構成するものであり、CCDやCMOS等からなる撮像素子24を有する)を備えてなる。
【0023】
上記迂回路部13は、上記コリメータレンズ12から入射した低可干渉光を、光束分岐面14aにおいて図中右方に向かう第1光束と図中上方に向かう第2光束とに分岐するビームスプリッタ14と、該ビームスプリッタ14からの第1光束の光路上に配された可動ミラー15と、該ビームスプリッタ14からの第2光束の光路上に配された固定ミラー16と、上記可動ミラー15を図中左右方向に移動せしめる可動ミラー位置調節部17(PZT素子18を有してなる)とを備え、第1光束を第2光束に対して所定距離(ビームスプリッタ14の光束分岐面14aから可動ミラー15および固定ミラー16までの各光学距離の差の2倍分)だけ迂回させた後に、ビームスプリッタ14の光束分岐面14aにおいて1光束に再合波して、ビーム径変換用レンズ19に向けて出力するように構成されている。
【0024】
上記光偏向素子30は、上記干渉計10から出射された測定光を偏向して、上記被検面71の各部に垂直に入射させるとともに、該被検面71の各部から再帰反射された被検光を偏向して、干渉計10に向けて出射するものであり、屈折素子としての円錐レンズ31および回折光学素子32からなる。円錐レンズ31は、その光軸C31に対し回転対称な円錐状の光透過面31aと、該光軸C31に対し垂直な参照基準面31bとを備え、上記干渉計10からの測定光を参照基準面31bにおいて2つに分岐し、一方を参照光として干渉計10に向けて反射するとともに、他方を屈折させて回折光学素子32に向けて出射するように構成されている。一方、回折光学素子32は、その光軸C32を中心として複数の輪帯状の回折格子が同心に形成された透過型のものであり、円錐レンズ31からの測定光を回折することにより偏向して、上記被検面71の各部に対して垂直に入射させるように構成されている。
【0025】
なお、被検面71の各部に対して垂直に入射する測定光としては、通常、回折光学素子32からの+1次回折光または−1次回折光(本明細書では、光軸C32に近づくように出射される回折光を正の回折光、光軸から遠ざかるように出射される回折光を負の回折光とする)が用いられるが、±2次回折光や±3次回折光などの高次の回折光を測定光とすることも可能である。
【0026】
上記解析制御部40は、図1に示すように、コンピュータ等からなる解析制御装置41と、干渉縞画像等を表示するモニタ装置42と、解析制御装置41に対する各種入力を行うための入力装置43とを備えており、この解析制御装置41は、図2に示すように、コンピュータ内に搭載されるCPUやハードディスク等の記憶部および該記憶部に格納されたプログラム等により構成される迂回距離調整制御部44、解析用画像生成部45、光学距離算出部46および画像解析部47を備えてなる。
【0027】
上記迂回距離調整制御部44は、上記可動ミラー位置調節部17(図1参照)の駆動を制御することにより、上述の第1光束の第2光束に対する迂回距離を調節して、被検光と参照光との光路長差を上記低可干渉光源11から出力された低可干渉光の可干渉距離以下とするように構成されている。
【0028】
上記解析用画像生成部45は、上記撮像カメラ23により撮像された干渉縞画像の画像信号に基づき、被検面71に関する種々の解析を行うための干渉縞画像(以下「解析用干渉縞画像」と称する)を生成するように構成されている。
【0029】
上記光学距離差算出部46は、上記解析用画像生成部45により生成された解析用干渉縞画像と上記迂回距離の値(上記迂回距離調整制御部44による調整後の値)とに基づき、参照基準面31bから被検面71までの測定光の光路上における光学距離を算出するように構成されている。
【0030】
上記画像解析部47は、本実施形態における解析手段を構成するものであり、生成された上記解析用干渉縞画像および算出された上記光学距離に基づき、被検面71の傾斜角度、形状および径の大きさを測定解析するように構成されている。
【0031】
なお、本実施形態では、上述の迂回距離調整制御部44および可動ミラー位置調整部17により光路長差調整部が構成されており、これら迂回距離調整制御部44および可動ミラー位置調整部17と、上述の迂回路部13および光学距離差算出部46とにより光学距離測定手段が構成されている。
【0032】
以下、第1実施形態に係る被検面測定装置の作用について説明する。なお、測定光の波長に対する円錐レンズ31の屈折率や屈折角、回折光学素子32の回折角などの光偏向素子30の光学特性は既知とする。
【0033】
測定に先立って、被検レンズ70のアライメント調整が行われる。このアライメント調整は、測定光軸C10に対する光偏向素子30(円錐レンズ31および回折光学素子32)のアライメント調整を行った後に(詳しくは後述する)、被検レンズ70を保持するアライメント機構(図示略)を用いて、被検レンズ70の光軸C70が測定光軸C10と一致し、かつ回折光学素子32から放射状に出射された測定光が被検面71に対し垂直に入射するように被検レンズ70の位置および姿勢を調整することにより行われる。
【0034】
被検レンズ70のアライメント調整後、被検面71の測定を行う。以下、その測定時における作用について説明する。
【0035】
(測定時の作用)
〈1〉図1に示す低可干渉光源11から低可干渉光が出射される。この低可干渉光は、コリメータレンズ12により平行光に変換された後、迂回路部13に入射する。
【0036】
〈2〉迂回路部13に入射した低可干渉光は、ビームスプリッタ14の光束分岐面14aにおいて、可動ミラー15に向かう第1光束と固定ミラー16に向かう第2光束とに分岐された後、可動ミラー15および固定ミラー16によりそれぞれ再帰反射され、光束分岐面14aにおいて再合波される。本実施形態では、分岐されてから再合波されるまでの各々の光路長が、第1光束の方が第2光束よりも長くなるように設定されている。
【0037】
〈3〉再合波されてビームスプリッタ14から出射された光束は、ビーム径変換用レンズ19を介してビームスプリッタ20に入射し、光束分岐面20aにおいて反射されてコリメータレンズ20に入射する。コリメータレンズ21に入射した光束は、平行光に変換されて光偏向素子30に向けて出射される。
【0038】
〈4〉光偏向素子30に入射した光束は、円錐レンズ31の参照基準面31bにおいて、再帰反射される光束と透過する光束とに分岐される。本実施形態では、参照基準面31bで再帰反射される光束のうち、上記第1光束の経路を辿った光束成分(以下「第1光束成分」と称する)が参照光とされ、参照基準面31bを透過する光束が測定光とされる。
【0039】
〈5〉参照基準面31bを透過した測定光は、円錐レンズ31において屈折されて回折光学素子32に入射した後、回折光学素子32において回折される。本実施形態では、回折光学素子32において回折された測定光のうち、−1次回折光が被検面71の各部に垂直に入射する測定光として利用される。
【0040】
〈6〉被検面71の各部に垂直に入射した測定光は、該被検面71より再帰反射され、回折光学素子32を経由して円錐レンズ31に戻る。本実施形態では、円錐レンズ31に戻り参照基準面31bを再び透過する測定光のうち、上記第2光束の経路を辿った光束成分(以下「第2光束成分」と称する)が被検光とされる。
【0041】
〈7〉上記被検光は、参照基準面31bにおいて上記参照光と合波されて干渉光が得られる。この被検光は、コリメータレンズ21およびビームスプリッタ20を経由して結像レンズ22に入射し、該結像レンズ22により撮像カメラ23の撮像素子24上に結像される。このとき、上述の参照光と被検光との光路長差(図1に示す番号の順番で、11→12→14a→15→14a→19→20a→21→31bまでの光路長と、11→12→14a→16→14a→19→20a→21→31b→31a→32→71→32→31a→31bまでの光路長との差)が、上記低可干渉光の可干渉距離以下となっていない場合には、参照光と被検光とによる光干渉は起きず、干渉縞画像は形成されない。
【0042】
〈8〉上述の参照光と被検光との光路長差が低可干渉光の可干渉距離以下となるように、迂回路部13における上記第1光束の第2光束に対する迂回距離を調整する。この迂回距離の調整は、上記迂回距離調整制御部44が上記可動ミラー位置調節部17の駆動を制御して、可動ミラー15の位置を調節することにより行われる。
【0043】
〈9〉参照光と被検光との光路長差が低可干渉光の可干渉距離以下となるように調整されると、上記干渉光により撮像素子24上に干渉縞画像が形成される。より詳細には、該干渉縞画像の縞コントラスト(モジュレーションでも可)が最大となるように、迂回距離の微調整が行われる。この干渉縞画像が撮像カメラ23により撮像され、その画像信号が上記解析用画像生成部45に出力される。
【0044】
〈10〉解析用画像生成部45に入力された画像信号により、解析用画像生成部45において解析用干渉縞画像(リング状の画像となる)が生成され、その画像データ(解析用画像データ)が、上述の光学距離算出部46および画像解析部47にそれぞれ出力される。
【0045】
〈11〉光学距離算出部46において、上記解析用干渉縞画像と上記迂回距離の値(上記迂回距離調整制御部44による調整後の値)とに基づき、参照基準面31bから被検面71までの測定光の光路上における光学距離が算出される。具体的には、測定光の光路上における参照基準面31bから被検面71までの光学距離は、上記迂回路部13における第2光束に対する第1光束の迂回距離の値の2分の1に相当するので、この迂回距離の値のデータにより算出することができる。
【0046】
〈12〉上記画像解析部47において、解析用干渉縞画像が解析され、その解析結果に基づき被検面71の傾斜角度および形状が求められる。また、解析用干渉縞画像の解析結果と、光学距離算出部46において求められた、参照基準面31bと被検面71との間の光学距離とに基づき、被検面71の径(厳密には、被検面71上において解析用干渉縞画像に対応した領域の径)の大きさが求められる。なお、参照基準面31bから被検面71までの測定光の光路上にキャッツアイポイントを設定し、測定光の光路上おける参照基準面31bからキャッツアイポイントまでの光学距離と、参照基準面31bからキャッツアイポイントを経由して被検面71に至るまでの光学距離とを求め、これら2つの光学距離の差をとることにより、測定光の光路上におけるキャッツアイポイントから被検面71までの光学距離を算出し、その算出結果に基づき、被検面71の径の大きさを求めるようにしてもよい。
【0047】
なお、低可干渉光を測定光としているため、上記解析用干渉縞画像は、被検面71上において測定光の各波長の光の位相が揃う位置を中心とした非常に幅の狭い領域に対応したものとなり、1回の測定では、被検面71の全域に関する情報を得ることができない場合がある。そこで、上記迂回路部13における第2光束に対する第1光束の迂回距離を微小距離ずつ変動させて、解析用干渉縞画像に対応した領域が被検面71の全域に亘って走査されるようにすれば、被検面71の全域に関する情報を得ることが可能となる。なお、被検面71の全域に対し一度に測定光を照射することができない場合には、被検レンズ70を測定光軸C10の方向に微小距離ずつ移動させ、その移動毎に、上述の手順を繰り返すようにすることにより、被検面71の全域に関する情報を得ることが可能となる。
【0048】
なお、上記円錐レンズ31は、その頂点がコリメータレンズ21の側を向くように設置しても同様に使用することが可能である。
【0049】
また、この第1実施形態では、円錐レンズ31と回折光学素子32とを組み合わせたものを光偏向素子30として用いているが、被検面71の傾斜角度によっては、円錐レンズ31または回折光学素子32を単独で、光偏向素子として用いることも可能である。回折光学素子32を単独で光偏向素子として用いる場合、測定光として高次の回折光を用いることにより、被検面71の傾斜角度が大きい場合でも対応することが可能となる。例えば、上記低可干渉光の中心波長λをλ=800nmに設定し、2次回折光を測定光として用いる場合、回折光学素子32における2次回折光の回折角度θを75度に設定すると、回折光学素子32の格子ピッチdは、2dsinθ=2λの関係より、d=828nmに設定すればよい。
【0050】
また、光偏向素子30に替えて、図3に示すような光偏向素子30Aを用いることもできる。この光偏向素子30Aは、円錐レンズ31に替えて回折格子付参照基準板33を用いたものである。回折格子付参照基準板33は、その光軸C33を中心として複数の輪帯状の透過型回折格子33aが参照基準面33b(図中下側の面)に形成されたものである。機能的には、上述の円錐レンズ31と同様に、入射された測定光の一部を参照基準面33bにおいて再帰反射して参照光となし、その他の測定光を透過型回折格子33aにおいて偏向して(例えば、+1次回折光が利用される)、回折光学素子32に向けて出射するように構成されている。
【0051】
〈第2実施形態〉
第2実施形態に係る被検面測定装置は、図4に示すように、干渉計10A、光偏向素子30Bおよび解析制御部40Aを備え、円筒体80の内周面(回転対称な線織面である円筒面状に形成されている)である被検面81の各部の傾斜角度、形状および径の大きさを測定するように構成されている。
【0052】
上記干渉計10Aは、出力光の波長を変更し得るように構成された波長可変レーザ光源11A、ビーム径変換用レンズ19A、ビームスプリッタ20A、コリメータレンズ21A、結像レンズ22Aおよび撮像カメラ23Aを備え、平行光からなる測定光を測定光軸C10Aに沿って光偏向素子30Aに向けて出射するように構成されている。また、被検面81側から光偏向素子30Aを介して入射された被検光を、参照光と合波して干渉光を形成し、該干渉光により形成される干渉縞画像を撮像カメラ23Aにより撮像するように構成されている。
【0053】
上記光偏向素子30Bは、透過型の参照基準板34と、反射素子としての円錐ミラー35とが一体に形成されてなる。参照基準板34は、光偏向素子30Bの光軸C30Bに対し垂直な参照基準面34aを有しており、上記干渉計10Aからの測定光の一部を該参照基準面34aにおいて参照光として再帰反射するとともに、その他の測定光を円錐ミラー35に向けて出射するように構成されている。一方、円錐ミラー35は、参照基準面34aに対し所定の角度(本実施形態では、内角45度(外角135度))で配置された、円錐面状の光反射面36を有しており、参照基準板34からの測定光を光軸C30Bに対し放射状に偏向して被検面81の各部に照射するように構成されている。また、被検面81の各部から再帰反射された被検光を光反射面36において偏向(直角に反射)し、参照基準板34に向けて出射するように構成されている。
【0054】
上記解析制御部40Aは、図4に示すように、コンピュータ等からなる解析制御装置41Aと、干渉縞画像等を表示するモニタ装置42Aと、解析制御装置41Aに対する各種入力を行うための入力装置43Aとを備えており、この解析制御装置41Aは、図5に示すように、コンピュータ内に搭載されるCPUやハードディスク等の記憶部および該記憶部に格納されたプログラム等により構成される波長走査部48、画像生成部49、光学距離算出部46Aおよび画像解析部47Aを備えてなる。
【0055】
上記波長走査部48は、上記波長可変レーザ光源11Aから出力されるレーザ光の波長を所定の範囲(例えば、±5nm程度)で走査するように構成されている。
【0056】
上記画像生成部49は、上記波長走査部48により上記波長可変レーザ光源11Aからのレーザ光の波長が走査されている期間において、上記撮像カメラ23Aにより順次得られた各画像信号に基づき、光偏向素子30Bから被検面81までの測定光の光路上における光学距離を算出するための干渉縞画像(以下「測距用干渉縞画像」と称する)を順次生成するとともに、被検面に関する種々の解析を行うための干渉縞画像(以下「解析用干渉縞画像」と称する)を生成するように構成されている。
【0057】
上記光学距離差算出部46Aは、上記画像生成部49により順次生成された測距用干渉縞画像の所定の画素における干渉縞変化の回数に基づき、光偏向素子30Bから被検面81までの測定光の光路上における光学距離を算出するように構成されている。
【0058】
上記画像解析部47Aは、本実施形態における解析手段を構成するものであり、生成された上記解析用干渉縞画像および算出された上記光学距離に基づき、被検面81の傾斜角度、形状および径の大きさを測定解析するように構成されている。
【0059】
なお、本実施形態では、上述の波長走査部48と光学距離差算出部46Aとにより光学距離測定手段が構成されている。
【0060】
以下、第2実施形態に係る被検面測定装置の作用について説明する。なお、予め、測定光軸C10Aに対する光偏向素子30Bのアライメント調整は完了しているものとする。また、参照基準板34の参照基準面34aと円錐ミラー35との相対位置および円錐ミラーの光反射面36の形状(大きさを含む)は既知とする。
【0061】
測定に先立って、円筒体80のアライメント調整が行われる。このアライメント調整は、円筒体80の光軸C80が測定光軸C10Aおよび光偏向素子30Bの光軸C30Bに一致するように、干渉計10Aおよび光偏向素子30Bと円筒体80との相対位置を調整することにより行われる。
【0062】
円筒体80のアライメント調整後、被検面81の測定を行う。以下、その測定時における作用について説明する。
【0063】
(測定時の作用)
〈1〉図4に示す波長可変レーザ光源11Aからレーザ光が出射される。このレーザ光は、ビーム径変換用レンズ19Aおよびビームスプリッタ20Aを介して(光束分岐面20Aaで図中下方に反射されて)コリメータレンズ21Aに入射し、該コリメータレンズ21Aにおいて平行光に変換され光偏向素子30Bに向けて出射される。
【0064】
〈2〉光偏向素子30Bに入射した平行光は、参照基準面板34の参照基準面34Aaにおいて2つに分岐され、一方は参照光としてコリメータレンズ21Aに向けて再帰反射され、他方は測定光軸C10Aに平行な測定光として円錐ミラー35の光反射面36に入射する。
【0065】
〈3〉円錐ミラー35の光反射面36に入射した測定光は、該光反射面36において放射状に偏向され、被検面81の各部に照射される。
【0066】
〈4〉被検面81の各部に照射された測定光は、該被検面81の各部より再帰反射され、円錐ミラー35の光反射面36を経由し被検光として参照基準面板34に入射する。
【0067】
〈5〉参照基準板34に入射した被検光は、参照基準面34Aaにおいて上記参照光と合波されて干渉光を形成し、コリメータレンズ21A、ビームスプリッタ20Aおよび結像レンズ22Aを介して撮像カメラ23A内に入射し、撮像素子24A上において干渉縞画像を形成する。形成された干渉縞画像は、撮像カメラ23Aにより撮像される。
【0068】
〈6〉撮像カメラ23Aにより撮像された干渉縞画像の画像データは、撮像カメラ23Aからビデオ信号として出力され、上記画像生成部49により解析用干渉縞画像が生成される。
【0069】
〈7〉生成された解析用干渉縞画像は、上記画像解析部47Aにおいて解析され、その解析結果に基づき被検面81の各部の傾斜角度および形状が求められる。
【0070】
〈8〉一方、光偏向素子30Bから被検面81までの光学距離を算出するために、上記波長走査部48により、上記波長可変レーザ光源11Aから出力されるレーザ光の波長が所定の範囲で走査される。
【0071】
〈9〉レーザ光の波長が走査される期間、所定のタイミングで上記撮像カメラ23Aにより干渉縞画像が順次撮像される。それらの各画像信号はビデオ信号として出力され、上記画像生成部49により各測距用干渉縞画像が生成される。
【0072】
〈10〉上記光学距離差算出部46Aにおいて、各測距用干渉縞画像の所定の画素における干渉縞変化の回数が求められ、この回数に基づき、光偏向素子30Bから被検面81までの測定光の光路上における光学距離が算出される。この光学距離の算出は、具体的には以下の手順で行われる。
【0073】
すなわち、波長可変レーザ11Aから出力されるレーザ光の波長走査により、波数をkからkに走査し、Δk毎に干渉縞画像を撮像した場合、干渉縞強度変化I(x、y、k)は、下式(1)で表される。
【0074】
【数1】

【0075】
ここで、L(x、y)は被検光と参照光との光路長差、I(x、y)は強度分布、γは干渉縞モジュレーションをそれぞれ示す。このときの所定の画素における干渉縞変化がn回であったとすると、下式(2)で表される。
【0076】
【数2】

【0077】
ここで、k=2π/λであるから、下式(3)が求められる。
【0078】
【数3】

【0079】
すなわち、波長を走査した際の周波数n(所定の画素における干渉縞変化の回数)を求めることにより、被検光と参照光との光路長差を算出することが可能となる。なお、このような手法の詳細は、特許第4100663号公報に記載されている。
【0080】
算出された被検光と参照光との光路長差は、本実施形態の場合、光偏向素子30Bの参照基準面34Aaから光反射面36を経由して被検面81に至るまでの測定光の光路上における光学距離の2倍に相当するので、参照基準面34Aaと被検面81との測定光の光路上における光学距離を算出することができる。
【0081】
〈11〉算出された上記光学距離と上記解析用干渉縞画像の解析結果に基づき、上記画像解析部47Aにおいて、被検面81の径の大きさが求められる。
【0082】
なお、被検面81の全域の測定を行う場合には、干渉計10Aおよび光偏向素子30Bに対する円筒体80の相対位置を、測定光軸C10の方向に順次移動させ、その移動毎に、上述の手順を繰り返すようにすれよい。
【0083】
〈第3実施形態〉
第3実施形態に係る被検面測定装置は、図6に示すように、干渉計10B(測定光軸C10B)、透過型の参照基準板50(光軸C50)および光偏向素子30C(光軸C30C)を備え、互いに離間して配置された2枚の板状被検体90A,90Bの各被検面91A,91B(互いに離間した複数の平面に相当する)の相対的な傾斜角度(平行度)、形状および離間距離を測定するように構成されている。
【0084】
上記干渉計10Bは、上述の第1実施形態の干渉計10や第2実施形態の干渉計10Aと同様の構成とすることができる。また、図示していないが、第1実施形態の解析制御部40または第2実施形態の解析制御部40Aと同様の解析制御部を備えている。
【0085】
上記参照基準板50は、光軸C50に対し垂直な参照基準面50aを有しており、上記干渉計10Bからの測定光の一部を該参照基準面50aにおいて参照光として再帰反射するとともに、その他の測定光を光偏向素子30Bに向けて出射するように構成されている。
【0086】
上記光偏向素子30Cは、図7に示すように、互いに垂直に配置された2枚の測定光偏向用反射平面37A,37Bを有する三角柱状の反射素子(反射ミラー)により構成されており、上記干渉計10Bからの測定光を測定光偏向用反射平面37A,37Bにおいて反射、偏向して被検面91A,91Bに照射するように構成されている。また、被検面91A,91Bから再帰反射された被検光を測定光偏向用反射平面37A,37Bにおいて反射、偏向し、干渉計10Bに向けて出射するように構成されている。なお、本実施形態の作用は、上述の第1実施形態や第2実施形態と同様であるので、説明は省略する。
【0087】
〈光偏向素子および被検面の変形態様〉
図6に示す被検面測定装置において、光偏向素子30Bに替えて、図8に示す光偏向素子30D(光軸C30D)を用いることにより、図示した筒状体100の内周面(回転対称な線織面である円錐面状に形成されている)である被検面101の傾斜角度、形状および径の大きさを測定することが可能となる。
【0088】
この光偏向素子30Dは、円錐面状の光反射面36Aを備えた反射素子であり、光反射面36Aに入射された測定光を偏向して、被検面101の各部に照射するように構成されている。また、被検面101の各部から再帰反射された被検光を光反射面36Aにおいて偏向し、図示せぬ干渉計に向けて出射するように構成されている。
【0089】
上記光偏向素子30Dは、図8に示した被検面101のような凹状面を測定するのに適しているが、これを図9に示す光偏向素子30E(光軸C30E)に替えることにより、図示した円錐台状被検体110の外周側面(回転対称な線織面である円錐面状に形成されている)である被検面111のような凸状面の各部の傾斜角度、形状および径の大きさを測定することが可能となる。
【0090】
この光偏向素子30Eは、上記光偏向素子30Dと同様に、円錐面状の光反射面36Bを備えた反射素子であり、光反射面36Bに入射された測定光を偏向して、被検面111の各部に照射するように構成されている。また、被検面111の各部から再帰反射された被検光を光反射面36Bにおいて偏向し、図示せぬ干渉計に向けて出射するように構成されている。
【0091】
また、図10に示す光偏向素子30F(光軸C30F)を用いることにより、図示した円錐体120の外周面(回転対称な線織面である円錐面状に形成されている)である被検面121の傾斜角度、形状および径の大きさを測定することが可能となる。
【0092】
この光偏向素子30Fは、その光軸C30Fを中心として複数の輪帯状の反射型回折格子38が同心に形成された反射型の回折光学素子からなり、入射した測定光を回折、偏向して、被検面121の各部に照射するように構成されている。また、被検面121の各部から再帰反射された被検光を回折、偏向し、図示せぬ干渉計に向けて出射するように構成されている。
【0093】
〈第4実施形態〉
図11に示す第4実施形態に係る被検面測定装置は、上述の第3実施形態と同じく、2枚の板状被検体(本実施形態ではモールド成形用の2つの金型290A,290Bとする)の各被検面291A,291Bの相対的な傾斜角度(平行度)、形状および離間距離を測定するように構成されたものであり、干渉計200、光偏向素子30Cおよび解析制御部240を備えている。また、光偏向素子30Cと2つの金型290A,290Bとの間の光路上に参照基準板221A,221Bが配置され、これらの参照基準板221A,221Bが、基準板傾き調整ステージ270A,270Bを介してリニアステージ280A,280Bにより保持されている。
【0094】
上記干渉計200は、複数の波長成分を含む低可干渉光を出力する低可干渉光源201(本実施形態ではSLDを用いる)と、該低可干渉光源201からの光束をコリメートするコリメータレンズ202と、該コリメータレンズ202からの平行光を2光束に分岐し、一方の光束を他方の光束に対して迂回させた後に1光束に再合波する迂回路部203と、該迂回路部203から出射された光束を集光する集光レンズ208と、該集光レンズ208により集光された光束を伝送する偏波面保存シングルモードファイバ209と、該偏波面保存シングルモードファイバ209から出射された光束を、光束分岐面210aにおいて図中左方に向けて反射するビームスプリッタ210と、該ビームスプリッタ210からの光束を平行光からなる測定光に変換し、測定光軸C200に沿って出射するコリメータレンズ211と、結像レンズ212および撮像カメラ213を備えている。
【0095】
なお、上記撮像カメラ213は、本実施形態における撮像手段を構成するものであり、結像レンズ212側から入射された干渉光を、光束分岐面214aにおいて2つに分岐するビームスプリッタ214と、該ビームスプリッタ214の各光出射端面側にそれぞれ配置された2個の撮像素子215A,215B(CCDやCMOS等からなる)を備えてなる。
【0096】
上記迂回路部203は、上記コリメータレンズ202から入射した平行光を、光束分岐面204aにおいて図中下方に向かう第1光束と図中左方に向かう第2光束とに分岐するビームスプリッタ204と、該ビームスプリッタ204からの第1光束の光路上に配された可動ミラー205と、該ビームスプリッタ204からの第2光束の光路上に配された固定ミラー206と、上記可動ミラー205を図中上下方向に移動せしめる可動ミラー位置調整部207とを備え、第1光束を第2光束に対して所定距離(ビームスプリッタ204の光束分岐面204aから可動ミラー205および固定ミラー206までの各光学距離の差の2倍分)だけ迂回させた後に、ビームスプリッタ204の光束分岐面204aにおいて1光束に再合波して、上記集光レンズ208に向けて出力するように構成されている。
【0097】
上記光偏向素子30Cは、上述の第3実施形態で説明したものと同じ構成のものであり、上記干渉計200からの測定光を測定光偏向用反射平面37A,37Bにおいて2つの方向に分岐、偏向し、一方を参照基準板221Aを介して金型290Aの被検面291Aに照射し、他方を参照基準板221Bを介して金型290Bの被検面291Bに照射するように構成されている。
【0098】
上記基準板傾き調整ステージ270Aは、参照基準板221Aの図中X軸回りおよびZ軸回りの傾きを調整するように構成されており、上記基準板傾き調整ステージ270Bは、参照基準板221Bの図中X軸回りおよびZ軸回りの傾きを調整するように構成されている。
【0099】
上記リニアステージ280Aは、上記基準板傾き調整ステージ270Aを介して参照基準板221Aを図中Y軸方向に移動させ、参照基準面221Aの図中Y軸方向の位置(以下「基準板位置A」と称する)を微調整するように構成されている。同様に、上記リニアステージ280Bは、上記基準板傾き調整ステージ270Bを介して参照基準板221Bを図中Y軸方向に移動させ、参照基準面221Bの図中Y軸方向の位置(以下「基準板位置B」と称する)を微調整するように構成されている。
【0100】
上記解析制御部240は、コンピュータ等からなる解析制御装置241と、干渉縞画像等を表示するモニタ装置242と、解析制御装置241に対する各種入力を行うための入力装置243とを備えており、この解析制御装置241は、図12に示すように、コンピュータ内に搭載されるCPUやハードディスク等の記憶部および該記憶部に格納されたプログラム等により構成される迂回距離調整制御部244、解析用画像生成部245、光学距離算出部246および画像解析部247を備えてなる。
【0101】
上記迂回距離調整制御部244は、上記可動ミラー位置調節部207(図11参照)の駆動を制御することにより、上述の第1光束の第2光束に対する迂回距離を調節して、被検光と参照光との光路長差を上記低可干渉光源201から出力された低可干渉光の可干渉距離以下とするように構成されている。
【0102】
上記解析用画像生成部245は、上記撮像カメラ213により撮像された干渉縞画像の画像信号に基づき、被検面291A,291Bに関する種々の解析を行うための解析用干渉縞画像を生成するように構成されている。
【0103】
上記光学距離差算出部246は、上記解析用画像生成部245により生成された解析用干渉縞画像と上記迂回距離の値(上記迂回距離調整制御部244による調整後の値)とに基づき、参照基準面221A,221Bから被検面291A,291Bまでの測定光の光路上における光学距離を算出するように構成されている。
【0104】
上記画像解析部247は、本実施形態における解析手段を構成するものであり、生成された上記解析用干渉縞画像および算出された上記光学距離に基づき、被検面291A,291Bの傾斜角度、形状および被検面291A,291B間の距離を測定解析するように構成されている。
【0105】
なお、本実施形態では、上述の迂回距離調整制御部244および可動ミラー位置調整部207により光路長差調整部が構成されており、これら迂回距離調整制御部244および可動ミラー位置調整部207と、上述の迂回路部203および光学距離差算出部246とにより光学距離測定手段が構成されている。
【0106】
以下、第4実施形態に係る被検面測定装置の測定時の作用について説明する。なお、予め、測定光軸C200に対する光偏向素子30Cのアライメント調整および被検面291A,291B対する干渉計200のアライメント調整は完了しているものとする。また、参照基準板221A,221Bのアライメント調整も、基準板傾き調整ステージ270A、270Bを用いて、完了しているものとする。
【0107】
(測定時の作用)
〈1〉図11に示す低可干渉光源201から低可干渉光が出射される。この低可干渉光は、コリメータレンズ202により平行光に変換された後、迂回路部203に入射する。
【0108】
〈2〉迂回路部203に入射した低可干渉光は、ビームスプリッタ204の光束分岐面204aにおいて、可動ミラー205に向かう第1光束と固定ミラー206に向かう第2光束とに分岐された後、可動ミラー205および固定ミラー206によりそれぞれ再帰反射され、光束分岐面204aにおいて再合波される。本実施形態では、分岐されてから再合波されるまでの各々の光路長が、第1光束の方が第2光束よりも長くなるように設定されている。
【0109】
〈3〉再合波されてビームスプリッタ204から出射された光束は、ビーム径変換用レンズ208および偏波面保存シングルモードファイバ209を介してビームスプリッタ210に入射し、光束分岐面210aにおいて反射されてコリメータレンズ211に入射する。コリメータレンズ211に入射した光束は、平行光に変換されて光偏向素子30Cに向けて出射される。
【0110】
〈4〉光偏向素子30Cに入射した光束は、測定光偏向用反射平面37A,37Bにおいて2つの方向に分岐、偏向され、一方は測定光偏向用反射平面37Aから参照基準板220Aに照射され、他方は測定光偏向用反射平面37Bから参照基準板220Aに照射される。
【0111】
〈5〉参照基準板220Aに照射された光束は、参照基準面221Aにおいて再帰反射される光束と透過する光束とに分岐される。本実施形態では、参照基準面221Aで再帰反射される光束のうち、上記第1光束の経路を辿った光束成分が参照光(以下「第1参照光」と称する)とされ、参照基準面221Aを透過する光束が被検面291Aに照射される測定光(以下「第1測定光」と称する)とされる。
【0112】
〈6〉同様に、参照基準板220Bに照射された光束は、参照基準面221Bにおいて再帰反射される光束と透過する光束とに分岐される。本実施形態では、参照基準面221Bで再帰反射される光束のうち、上記第1光束の経路を辿った光束成分が参照光(以下「第2参照光」と称する)とされ、参照基準面221Bを透過する光束が被検面291Bに照射される測定光(以下「第2測定光」と称する)とされる。
【0113】
〈7〉被検面291Aに入射した第1測定光は、該被検面291Aより再帰反射されて参照基準板220Aに戻り、参照基準面221Aを再び透過する。本実施形態では、参照基準面221Aを再び透過する第1測定光のうち、上記第2光束の経路を辿った光束成分が、被検面291Aの波面情報を担持した被検光(以下「第1被検光」と称する)とされる。
【0114】
〈8〉同様に、被検面291Bに入射した第2測定光は、該被検面291Bより再帰反射されて参照基準板220Bに戻り、参照基準面221Bを再び透過する。本実施形態では、参照基準面221Bを再び透過する第2測定光のうち、上記第2光束の経路を辿った光束成分が、被検面291Bの波面情報を担持した被検光(以下「第2被検光」と称する)とされる。
【0115】
〈9〉上記第1被検光は、参照基準面221Aにおいて上記第1参照光と合波される(合波された光を以下「第1干渉光」と称する)。同様に、上記第1被検光は、参照基準面221Bにおいて上記第2参照光と合波される(合波された光を以下「第2干渉光」と称する)。
【0116】
〈10〉上記第1干渉光は、光偏向素子30Cの測定光偏向用反射平面37Aにより干渉計200に向けて反射され、コリメータレンズ211、ビームスプリッタ210および結像レンズ212を介して撮像カメラ213に入射した後、その一部がビームスプリッタ214を透過して撮像素子215Aに入射する。このとき、第1参照光と第1被検光との光路長差(図11に示す番号の順番で、201→202→204a→205→204a→208→209→210a→211→37A→221A→291A→221Aまでの光路長と、201→202→204a→206→204a→208→209→210a→211→37A→221Aまでの光路長との差が、上記低可干渉光の可干渉距離以下となっていない場合には、第1参照光と第1被検光とによる光干渉は起きず、第1干渉光による干渉縞画像は形成されない。なお、第1干渉光の他の一部は、ビームスプリッタ214の光束分岐面214aにより図中下方に反射されるが、この第1干渉光は撮像素子215Bには入射しないように、結像レンズ212の倍率および撮像素子215Bの配設位置が設定されている。
【0117】
〈11〉同様に、上記第2干渉光は、光偏向素子30Cの測定光偏向用反射平面37Bにより干渉計200に向けて反射され、コリメータレンズ211、ビームスプリッタ210および結像レンズ212を介して撮像カメラ213に入射した後、その一部がビームスプリッタ214の光束分岐面214aにより図中下方に反射されて撮像素子215Bに入射する。このとき、第2参照光と第2被検光との光路長差(図11に示す番号の順番で、201→202→204a→205→204a→208→209→210a→211→37B→221B→291B→221Bまでの光路長と、201→202→204a→206→204a→208→209→210a→211→37B→221Bまでの光路長との差が、上記低可干渉光の可干渉距離以下となっていない場合には、第2参照光と第2被検光とによる光干渉は起きず、第2干渉光による干渉縞画像は形成されない。なお、第2干渉光の他の一部は、ビームスプリッタ214を透過して図中右方に出射されるが、この第2干渉光は撮像素子215Aには入射しないように、結像レンズ212の倍率および撮像素子215Aの配設位置が設定されている。
【0118】
〈12〉上述の第1参照光と第1被検光との光路長差および第2参照光と第2被検光との光路長差が低可干渉光の可干渉距離以下となるように、迂回路部203における上記第1光束の第2光束に対する迂回距離を調整する。この迂回距離の調整は、上記迂回距離調整制御部244が上記可動ミラー位置調節部207の駆動を制御して、可動ミラー205の位置を調節することにより行われる。
【0119】
〈13〉第1参照光と第1被検光との光路長差および第2参照光と第2被検光との光路長差が低可干渉光の可干渉距離以下となるように調整されると、上記第1干渉光により撮像素子215A上に干渉縞画像(以下「第1干渉縞画像」と称する)が形成される。より詳細には、該第1干渉縞画像の縞コントラスト(モジュレーションでも可)が最大となるように、リニアステージ280Aを用いて、被検面291Aと参照基準面221Aとの間の距離の微調整がなされる。この第1干渉縞画像が撮像素子215Aにより撮像される。
【0120】
〈14〉第1参照光と第1被検光との光路長差および第2参照光と第2被検光との光路長差が低可干渉光の可干渉距離以下となるように調整されると、上記第2干渉光により撮像素子215B上に干渉縞画像(以下「第2干渉縞画像」と称する)が形成される。より詳細には、該第2干渉縞画像の縞コントラスト(モジュレーションでも可)が最大となるように、リニアステージ280Bを用いて、被検面291Bと参照基準面221Bとの間の距離の微調整がなされる。この第2干渉縞画像が撮像素子215Bにより撮像される(撮像のタイミングは上記第1干渉縞画像の撮像と同時)。
【0121】
〈15〉2つの撮像素子215A,215Bにより同時に撮像された第1干渉縞画像および第2干渉縞画像の各画像データは、撮像素子215A,215Bから別個のビデオ信号として出力され、上記解析用画像生成部245により2つの解析用画像(第1干渉縞画像の画像データから生成されるものを「解析用第1干渉縞画像」、第2干渉縞画像の画像データから生成されるものを「解析用第2干渉縞画像」と称する)がそれぞれ生成され、その画像データ(解析用画像データ)が、上述の光学距離算出部246および画像解析部247にそれぞれ出力される。
【0122】
〈11〉光学距離算出部246において、上記解析用第1干渉縞画像と上記迂回距離の値(上記迂回距離調整制御部244による調整後の値)とに基づき、参照基準面221Aから被検面291Aまでの第1測定光の光路上における光学距離が算出される。具体的には、第1測定光の光路上における参照基準面221Aから被検面291Aまでの光学距離は、上記迂回路部203における第2光束に対する第1光束の迂回距離の値の2分の1に相当するので、この迂回距離の値のデータにより算出することができる。
【0123】
〈12〉同様に、光学距離算出部246において、上記解析用第2干渉縞画像と上記迂回距離の値(上記迂回距離調整制御部244による調整後の値)とに基づき、参照基準面221Bから被検面291Bまでの第2測定光の光路上における光学距離が算出される。具体的には、第2測定光の光路上における参照基準面221Bから被検面291Bまでの光学距離は、上記迂回路部203における第2光束に対する第1光束の迂回距離の値の2分の1に相当するので、この迂回距離の値のデータにより算出することができる。
【0124】
〈13〉上記画像解析部247において、解析用第1干渉縞画像が解析され、その解析結果に基づき、被検面291Aの参照基準面221Aに対する傾斜角度および被検面291Aの形状が求められる。同様に、解析用第2干渉縞画像に基づき、被検面291Bの参照基準面221Bに対する傾斜角度および被検面291Bの形状が求められる。そして、求められた各傾斜角度に基づき、被検面291A,291Bの相対的な傾斜角度(平行度)が求められる。また、光学距離算出部246において求められた、参照基準面221Aと被検面291Aとの間の光学距離および参照基準面221Bと被検面291Bとの間の光学距離と、参照基準面221Aと参照基準面221Aとの光学距離(リニアステージ280A,280Bの調整値により算出される)とに基づき、被検面291A,291Bの間の光学距離が求められる。なお、同様の手法により、被検面291A,291Bに段差が形成されている場合の段差測定を行うことも可能である。
【0125】
このように本実施形態の被検面測定装置によれば、測定光偏向用反射平面37A,37Bと被検面291A,291Bとの間の各光路上に、参照基準板220A,220Bを配置したことにより、参照基準面221A,221Bと被検面291A,291Bとの間の光路長を短くすることができるので、被検面291A,291B間の空気の擾乱等の影響を受け難くすることが可能となる。
【0126】
また、上述の第1干渉縞画像および第2干渉縞画像を、2つの撮像素子215A,215Bを用いて別々に撮像するように構成することにより、これら2つの干渉縞画像を1つの撮像素子により撮像するように構成した場合よりも、第1干渉縞画像および第2干渉縞画像を拡大して撮像することができるので、より高精度な測定を行うことが可能となる。
【0127】
次に、本発明に係る被検面測定装置のアライメント調整方法について、上記第1実施形態を例にとって説明する。なお、このアライメント調整では、図13に示すように、平行平面板55および軸調整用治具60が用いられる。
【0128】
上記平行平面板55は、その光軸C55に対し垂直な反射平面56を備えており、アライメント調整時に、コリメータレンズ21と円錐レンズ31の配設位置との間の光路上に配置されるように構成されている。また、図示せぬ2軸傾き調整機構により保持されており、測定光軸C10に対する傾きを調整し得るように構成されている。
【0129】
上記軸調整用治具60は、その光軸C60に対し垂直な平面部61と、円錐レンズ31、回折光学素子32および該軸調整用治具60のアライメントが正しく調整されているときに、回折光学素子32からの0次回折光を再帰反射させ得る傾斜角度に形成された第1テーパ面62(光軸C60を中心軸とする円錐面からなる)と、同じくアライメントが正しく調整されているときに、回折光学素子32からの−1次回折光を再帰反射させ得る傾斜角度に形成された第2テーパ面63(光軸C60を中心軸とする円錐面からなる)とを備えてなり、アライメント調整時に、回折光学素子32の図中下側における測定光の光路上に配置されるように構成されている。また、図示せぬ2軸傾き調整機構および面内調整機構により保持されており、測定光軸C10に対する傾きの調整および測定光軸C10に対し垂直な面内での位置調整が可能に構成されている。
【0130】
なお、円錐レンズ31および回折光学素子32も、各々別の2軸傾き調整機構および面内調整機構により保持されており、測定光軸C10に対する傾きの調整および測定光軸C10に対し垂直な面内での位置調整が可能に構成されている。
【0131】
(アライメント調整)
〈1〉円錐レンズ31、回折光学素子32および軸調整用治具60が光路上に配置されていない状態において平行平面板55を光路上に配置し、反射平面56が測定光軸C10に対し垂直となるように傾きを調整する。この傾きの調整は、反射平面56上にコーナーキューブ(図示略)を配置して反射平面56に測定光を照射し、該反射平面56からの反射光とコーナーキューブからの戻り光により形成される干渉縞画像がヌル縞に最も近い状態となるように行われる。なお、干渉縞画像が形成されるようにするため、測定時と同様に、上述の迂回路部13(図1参照)における迂回距離の調整が行われる。この点は、以下のアライメント手順においても同様であるが、説明は省略する。
【0132】
〈2〉コーナーキューブを取り除いた後、回折光学素子32を光路上に配置し、該回折光学素子32の光軸C32が測定光軸C10に対し平行となるように、該回折光学素子32の傾き調整を行う。この傾き調整は、平行平面板55を介して回折光学素子32に測定光を照射し、該回折光学素子32からの反射光と反射平面56からの反射光とにより形成される干渉縞画像がヌル縞に最も近い状態となるように行われる。
【0133】
〈3〉軸調整用治具60を光路上に配置し、該軸調整用治具60の光軸C60が測定光軸C10に対し平行となるように、該軸調整用治具60の傾き調整を行う。この傾き調整は、平行平面板55および回折光学素子32を介して軸調整用治具60に測定光(回折光学素子32からの0次回折光)を照射し、該軸調整用治具60の平面部61からの反射光と反射平面56からの反射光とにより形成される干渉縞画像がヌル縞に最も近い状態となるように行われる。
【0134】
〈4〉円錐レンズ31を光路上に配置し、該円錐レンズ31の光軸C31が測定光軸C10に対し平行となるように、該円錐レンズ31の傾き調整を行う。この傾き調整は、平行平面板55を介して円錐レンズ31に測定光を照射し、該円錐レンズ31の参照基準面31bからの反射光と反射平面56からの反射光とにより形成される干渉縞画像がヌル縞に最も近い状態となるように行われる。
【0135】
〈5〉平行平面板55を光路外に移動させ、軸調整用治具60の光軸C60が円錐レンズ31の光軸C31と一致するように、該軸調整用治具60の測定光軸C10に対し垂直な面内での位置調整を行う。この位置調整は、円錐レンズ31および回折光学素子32を介して軸調整用治具60に測定光(回折光学素子32からの0次回折光)を照射し、該軸調整用治具60の第1テーパ面62からの反射光と円錐レンズ31の参照基準面31bからの反射光とにより形成される干渉縞画像がヌル縞に最も近い状態となるように行われる。
【0136】
〈6〉回折光学素子32の光軸C32が円錐レンズ31の光軸C31と一致するように、該回折光学素子32の測定光軸C10に対し垂直な面内での位置調整を行う。この位置調整は、円錐レンズ31および回折光学素子32を介して軸調整用治具60に測定光(回折光学素子32からの−1次回折光)を照射し、該軸調整用治具60の第2テーパ面63からの反射光と円錐レンズ31の参照基準面31bからの反射光とにより形成される干渉縞画像がヌル縞に最も近い状態となるように行われる。
【0137】
以上、本発明の実施形態について説明したが、本発明は上述の実施形態に態様が限定されるものではなく、種々の態様のものを実施形態とすることができる。
【0138】
例えば、図3に示す光偏向素子30Aの回折格子付参照基準板33において、透過型回折格子33aと参照基準面33bとを別体分離の構成とすることも可能である。同様に、図4に示す光偏向素子30Bにおいて、参照基準板34と円錐ミラー35とを別体分離の構成とすることも可能である。
【0139】
また、図1に示す光偏向素子30のように、円錐レンズと回折光学素子とを組み合わせたタイプの光偏向素子を用いて、図9や図10に示す被検面111,121のような凸状面の測定を行うように構成することも可能である。
【符号の説明】
【0140】
10,10A,10B,200 干渉計
11,201 低可干渉光源
11A 波長可変レーザ光源
12,21,21A,202,211 コリメータレンズ
13,203 迂回路部
14,20,20A,204,210,214 ビームスプリッタ
14a,20a,20Aa,204a,210a,214a 光束分岐面
15,205 可動ミラー
16,206 固定ミラー
17,207 可動ミラー位置調節部
18 PZT素子
19,19A,208 ビーム径変換用レンズ
22,22A,212 結像レンズ
23,23A,213 撮像カメラ
24,24A,215A,215B 撮像素子
30,30A,30B,30C,30D,30E,30F 光偏向素子
31 円錐レンズ
31a 光透過面
31b 参照基準面
32 (透過型の)回折光学素子
33 回折格子付参照基準板
33a 透過型回折格子
33b,34a,221A,221B 参照基準面
34,50,220A,220B 参照基準板
35 円錐ミラー
36,36A,36B 光反射面
37A,37B 測定光偏向用反射平面
38 反射型回折格子
40,40A,240 解析制御部
41,41A,241 解析制御装置
42,42A,242 モニタ装置
43,43A,243 入力装置
44,244 迂回距離調整制御部
45,245 解析用画像生成部
46,46A,246 光学距離算出部
47,47A,247 画像解析部
48 波長走査部
49 画像生成部
55 平行平面板
56 反射平面
60 軸調整用治具
61 平面部
62 第1テーパ面
63 第2テーパ面
70 被検レンズ
71,81,91A,91B,101,111,121,291A,291B 被検面
80 円筒体
90A,90B 板状被検体
100 筒状体
110 円錐台状被検体
120 円錐台状被検体
10,C10A,C10B,C200 測定光軸
209 偏波面保存シングルモードファイバ
270A,270B 参照基準板調整ステージ
280A,280B リニアステージ
290A,290B 金型
30B〜C30F,C31,C32,C33,C40,C50,C55,C60,C70 光軸


【特許請求の範囲】
【請求項1】
回転対称な線織面または互いに離間した複数の平面からなる被検面を測定する被検面測定装置であって、
光源からの出力光を参照基準面において測定光と参照光とに分岐し、該測定光を測定光軸に沿って出射する干渉計と、
前記干渉計と前記被検面との間の前記測定光の光路上に配置され、該干渉計から出射された該測定光を偏向して該被検面の各部に垂直に入射させるとともに、該被検面の各部から再帰反射された被検光を偏向して該干渉計に向けて出射する光偏向素子と、
前記光偏向素子からの前記被検光と前記参照光との光干渉により形成される干渉縞画像を撮像する撮像手段と、
前記参照基準面から前記被検面までの前記測定光の光路上における光学距離を測定する光学距離測定手段と、
前記撮像手段により撮像された前記干渉縞画像を解析する解析手段と、を備えてなることを特徴とする被検面測定装置。
【請求項2】
前記光源が複数の波長成分を含む低可干渉光を出力する低可干渉光源であり、
前記光学距離測定手段は、前記低可干渉光源から出力された前記低可干渉光を2光束に分岐し、一方の光束を他方の光束に対して迂回させた後に1光束に再合波する迂回路部と、該迂回路部における該他方の光束に対する該一方の光束の迂回距離を調節して、前記被検光と前記参照光との光路長差を前記低可干渉光の可干渉距離以下に調整する光路長差調整部と、前記撮像手段により撮像された干渉縞画像と前記迂回距離の値とに基づき、前記光学距離を算出する光学距離算出部と、を有してなることを特徴とする請求項1記載の被検面測定装置。
【請求項3】
前記光源が波長可変レーザ光源であり、
前記光学距離測定手段は、前記波長可変レーザ光源からの出力光の波長を走査する波長走査部と、該波長走査部により該出力光の波長を走査しながら前記撮像手段により順次撮像された干渉縞画像の所定の画素における干渉縞変化の回数に基づき、前記光学距離を算出する光学距離算出部とを有してなることを特徴とする請求項1記載の被検面測定装置。
【請求項4】
前記被検面が回転対称な線織面からなるものであり、
前記光偏向素子は、複数の輪帯状の回折格子が同心に形成されてなる回折光学素子を有してなるものであることを特徴とする請求項1〜3のうちいずれか1項記載の被検面測定装置。
【請求項5】
前記被検面が回転対称な線織面からなるものであり、
前記光偏向素子は、円錐状の光透過面を備えた屈折素子を有してなるものであることを特徴とする請求項1〜4のうちいずれか1項記載の被検面測定装置。
【請求項6】
前記被検面が回転対称な線織面からなるものであり、
前記光偏向素子は、円錐状の光反射面を備えた反射素子を有してなるものであることを特徴とする請求項1〜5のうちいずれか1項記載の被検面測定装置。
【請求項7】
前記被検面が互いに離間した複数の平面からなるものであり、
前記光偏向素子は、互いに異なる向きに配置された複数の測定光偏向用反射平面を有する反射素子を有してなるものであることを特徴とする請求項1〜3のうちいずれか1項記載の被検面測定装置。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate


【公開番号】特開2011−252774(P2011−252774A)
【公開日】平成23年12月15日(2011.12.15)
【国際特許分類】
【出願番号】特願2010−126316(P2010−126316)
【出願日】平成22年6月1日(2010.6.1)
【出願人】(306037311)富士フイルム株式会社 (25,513)
【Fターム(参考)】