説明

プラズマからの蒸着のための成膜装置

分散型電子サイクロトロン共鳴で形成されたプラズマから基板上に膜を蒸着するために使用するプラズマ励起装置について記載している。本装置は、マイクロ波を放出する一端を有するマイクロ波アンテナと、前記アンテナ端の領域内に配置されて、その中でプラズマを生成できる電子サイクロトロン共鳴領域を画定する磁石と、膜用前駆ガスまたはプラズマガス用の排気口を有するガス進入要素とを備えている。前記排気口が、前記マイクロ波アンテナから見て、前記磁石の先に位置する膜蒸着区域に向けてガスを方向付けるように配置されている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明はプラズマから作業面上に蒸着を行う成膜方法に関する。本発明は、特に電子サイクロトロン共鳴でプラズマを生成する際のマイクロ波エネルギーの使用に関する。
【背景技術】
【0002】
特に関心の高い事項として、プラズマ化学気相成長法として知られている処理における、例えばSiH4、Si2H6あるいはより高次のオリゴマー等のシランの解離によるアモルファスシリコン(a-Si:H)製膜の蒸着がある。アモルファスシリコンまたはアモルファスシリコン合金の蒸着に使用可能な他の前駆ガスは、その中にシリコンが炭素、酸素または窒素のうち1つ以上と、更に要すれば水素と合わせて化合して存在する、分子を含む。シリコン合金の例として、SiOxNyで表される種類の構造がある。さらに、シリコン含有ガスは、例えばゲルマン等の他のガスと合わせて使用でき、またシリコンを含まないガスは違う種類の膜の蒸着に使用することもできる。アモルファスシリコン膜の利用に関して特に関心の高い事項は、太陽エネルギーを電力に変換する装置での利用である。このようなアモルファスシリコン材料は例えば表示装置用TFT等の電子技術の応用に利用できる。本明細書内にて使用しているように「アモルファスシリコン」という用語は、水素化非晶質シリコン、a-Si:H、を意味する。上述の分野での使用では、不都合なダングリングボンド(dangling bond)を不動態化すべく水素がある程度、通常3〜20%、存在しなければならない。
【0003】
またこの発明は、他の非晶形材料、例えばa-Ge:Hの蒸着に使用するゲルマン、を蒸着するための他の前駆ガスの利用に応用できると考えられている。さらに、μc-Si、μc-GeおよびDLC(ダイヤモンド状炭素)等の微晶質材料の蒸着に応用できると考えられている。
【0004】
電子サイクロトロン共鳴(以降「ECR」と略す)を起こすようにプラズマを励起する技術分野において、静磁場あるいは準静磁場にある電子の旋回周波数が印加した加速電場の周波数と等しい時に共鳴する。この共鳴は、磁場BにおいてBと下記の関係を持つ励起周波数fについて得られる。
【0005】
B=2πmf/e (1)
ここでmとeはそれぞれ質量と電子の電荷である。
【0006】
電子サイクロトロン共鳴周波数でプラズマを励起すると、電子は磁場と同位相で回転し、外部励起源から継続的にエネルギーを得てそこでガスの解離またはイオン化に必要なしきい値を達成するためのECR条件(1)が満たされる。この条件を満たすためには、第一に、電子を磁力線間に閉じ込めたままにすること、つまり電子がその回転中に概ね一定の磁場を確認できるようにその回転半径が静磁場の傾斜に対して十分小なること、第二に、上記回転周期が電子と、原子および/または分子等の中性元素間の衝突頻度に対して大なることを維持することが必要である。言い換えると、電子サイクロトロン共鳴でプラズマを励起するための最良の条件は、ガス圧力が比較的低いと同時に励起周波数fが高い時に得られると予想されており、これは磁場強度Bが高いに違いないことをも意味する。
【0007】
従来の拡散ECRの主な問題は、広範囲で概ね一定の密度を有するプラズマを生成することができないことにある。これは、例えば、広い作業面に概ね均一の材料層の蒸着には使用できないことを意味する。この問題を克服するために分散型電子サイクロトロン共鳴(DECR)として知られている技術が開発された。これには、その中に、合わせて作業面に概ね均一な密度のプラズマを発生する複数のプラズマ励起装置がネットワーク状に形成されている装置を用いる。個々のプラズマ励起装置はそれぞれマイクロ波エネルギー用ワイヤアプリケータで構成されており、一端はマイクロ波エネルギーを発生するソースに結合し、他端は一定の磁場と電子サイクロトロン共鳴に対応した一定の強度を持つ少なくとも1つの表面を形成するべく少なくとも1つの磁気ダイポールを装着している。このダイポールは、アプリケータの端部から離間したダイポールの横位置にプラズマ拡散区域を形成すべく、電子サイクロトロン共鳴するように加速した電子が電極間で確実に往復するような方法でマイクロ波アプリケータの端部に取付けられている。個々の励起装置は、共同して作業面に均一なプラズマを生成すべく作業面に近接して互いに分散して配置されている。
【0008】
このようなDECR装置は、米国特許第6,407,359号明細書(欧州特許第1075168号明細書に対応)に開示されており、これらに記載の本装置のより詳細な説明は図面を参照して以下に記載する。これらの図面から明らかなように、基板から見ると各励起装置は、長方形が正方形であるという特殊なケースをも含む、概ね長方形配列を成しており、このためこのような装置をマトリックスDECR(MDECR)装置と呼ぶことがある。しかしながら、本発明はDECR装置で、励起装置を非長方形二次元ネットワークに配置した場合、例えば六角形ネットワークまたは、一方の装置列が他方から離間して2列に平行に並んだ装置の場合にも適用できることを理解されたい。六角形配列の例は、ラガルデ(T. Lagarde)、アーナル(Y. Arnal)、ラコステ(A. Lacoste)、ペレティエ(J. Pelletier)、 「多極磁界上で励起された電子サイクロトロン共鳴プラズマにおけるラングミュアプローブ診断によるEEDFの測定(Determination of the EEDF by Langmuir probe diagnostic in a plasma excited at ECR above a multipolar magnetic field)」、Plasma Sources Sci. Technol. 10、2001年、p.181-190に開示されている。上記装置は、円形、一部円形またはほぼ円形配列に配置してもよい。本願の発明者らによる一部の研究では、それらの磁石の極性を中央プラズマ励起装置の磁石に相対させて配置し、それぞれが三角形または六角形配列に配置された3または6体の装置で中央プラズマ励起装置を囲んだ配置について実施していることに注意されたい。
【0009】
さらに、本発明はMDECR型でないDECR反応装置に適用できる。このため、例えば、長いアンテナおよびシリンダの頂部から底部まで延在する磁石を使用する、歴史的に見てMDECR型以前の円筒形のDECR反応装置に適用できる。このような配置は、ミシェル・モアサン(Michel Moisan)ジャック・ペレティエ(Jacques Pelletier)著、「マイクロ波励起プラズマ(Microwave Excited Plasmas)」、エルセビア(Elsevier)、1992年に開示されており、管または、プラズマの二極性平均自由行程と比較して寸法(長さ、半径)が短いという特徴を有する物体などの円筒形基板の均質なコーティングに適している(上記参考文献、付録9.1、p.269-271参照)。この物体はプラズマの中央部分に位置し、円筒の軸に対して垂直な平面を有することができる。
【0010】
多くの分散型ECR反応装置とは異なり、DECR反応装置はプラズマチャンバと蒸着チャンバの両方の機能を果たす1つのチャンバのみを使用する。これにより、別の特定プラズマガスを使用することなくプラズマで前駆ガスの直接分解を可能にする。基板はプラズマ内あるいは直接強力磁場に配置されてない。これにより、高温の電子およびイオンによる伸張する膜の不測のボンバードメントを防ぐ。プラズマは各MW-ECR区域で各アンテナに近接して、具体的にはECR区域を生成している磁石付近で生成される。
【0011】
各MW-ECRアンテナのネットワークの作成は、プラズマ領域の拡張と、基板へ向かう化学種の均一な流れの生成を可能にするという利点がある。添付図面のうち図3は、4本のアンテナで生成したプラズマを示す。
【0012】
DECRにおいて、膜用前駆ガスと異なるプラズマガスの使用は必須ではなく、別のプラズマガスを使用しないで膜用前駆ガスを単体で使用してもよい。このような場合、膜用前駆ガスは各アンテナ付近で分解し、蒸着して膜を形成すべく基板に向けて拡散する。この「移動」の際にプラズマから生成された化学種と非解離ガスとの間で二次反応がおきる場合もある。例えば、前駆ガスがSiH4の場合、SiH4の分解により生成された水素基は、非解離SiH4と反応して、高品質膜の蒸着に必要で最も重要な遊離基として考えられているSiH3基を形成できる。
【0013】
しかし、必須ではないがDECRにおいて、膜用前駆ガスに加えてプラズマガスを使用してもよい。このようなプラズマガスの例として、H2、ArおよびHeがある。これらのプラズマガスは、膜用前駆ガスと反応する前に励起または分解することが好ましい。従来の方法でDECR反応装置内にガスを注入してこのような要件を達成するには複雑になり、これは特に非常に広い範囲で均質な膜を蒸着する際に、広範囲でプラズマの生成が必要な場合に当てはまる。
【発明の概要】
【課題を解決するための手段】
【0014】
本発明は、プラズマ励起装置を対象としており、これらの複数の要素をDECR装置内で組み合わせることができる。各プラズマ励起装置は、プラズマガス、膜用前駆ガスまたはプラズマガスと膜用前駆ガスの混合ガスにかかわらず、ガスを有利な方法で注入するための手段を備える。最後に挙げたものである可能性が、微晶質シリコンまたは他の微晶質材料の蒸着において特に注目に値する。膜用前駆ガスを導入する位置および導入ガスの向きの正しい選択によりDECR処理で蒸着した膜の品質および蒸着速度を向上させる方法の説明については、本願と同日に提出した、「プラズマからの蒸着による成膜方法および装置(Method and apparatus for forming a film by deposition from a plasma)」(出願人用参照番号G28331EP(欧州特許第出願06301115.9号明細書))と題する本願の出願人らによる同時係属出願に注意されたい。
【0015】
本発明によれば、分散型電子サイクロトロン共鳴で形成されたプラズマから基板上に膜を蒸着するために使用するプラズマ励起装置であって、前記要素がマイクロ波を放出する一端を有するマイクロ波アンテナと、前記アンテナ端の領域内に配置されて、その中でプラズマを生成できる電子サイクロトロン共鳴領域を画定している磁石と、膜用前駆ガスまたはプラズマガス用の排気口を有するガス進入要素とを備え前記排気口が前記磁石を通り過ぎて、前記マイクロ波アンテナから見て、前記磁石の先に位置する膜蒸着区域に向けてガスを方向付けるように配置されている装置を提供する。
【0016】
本明細書内にて使用しているような、ガスを膜蒸着範囲に向けて送るべく並んだ排気口への言及は、直接ガスを対象範囲に向けた場合のみでなく、対象範囲が完全に、先の排気口から該排気口からのガス流出方向へ延出した線と、該線に対して直角で該排気口を通る線との間に画定される角度の内側にある全てのケースも含むことを理解されたい。このような状況において、排気口から出てくるガスの流れは対象範囲のあらゆる部分を向いたベクトル成分を有することになる。さらに、本発明の要件である、排気口はガスが磁石を通り過ぎるようにガスを方向付ける配置とするべきである、ということはもちろん排気口の排気口から離れた後のガスの流れへの影響を示す。つまり、検討の対照となっているのはガスを排気口から磁石を通り過ぎるように方向付ける際の排気口の影響である。
【0017】
欧州特許第1075168号明細書の図6には、ガス出入り口がプラズマ領域に配置されているプラズマ励起装置を示すが、その位置はプラズマ領域の下部境界に近接しており、欧州特許第1075168号明細書に開示されている発明では本発明による効果が得られていないことに留意されたい。実際、欧州特許第1075168号明細書の図6では、排気口が磁石の下流端の先に配置されて磁石から離れる方向にガスを方向付けているため、ガスが磁石を通り過ぎるように排気口を方向付けるべきであるという本発明の要件を満たさない。
【0018】
本発明は添付の図面を参照して以下にさらに詳細に説明している。
【図面の簡単な説明】
【0019】
【図1】欧州特許第1075168号明細書に説明および示すプラズマ生成装置のガスの導入および排出手段を省略した概略立面図を示す。
【図2】図1の装置の平面図を示す。
【図3a】特定の磁石構成での高温電子閉じ込めエンベロープを示す。
【図3b】特定の磁石構成での高温電子閉じ込めエンベロープを示す。
【図4】本発明によるプラズマ励起装置の一実施形態を示す。
【図5】本発明によるプラズマ励起装置の一実施形態を示す。
【図6】本発明によるプラズマ励起装置の一実施形態を示す。
【図7】本発明によるプラズマ励起装置の一実施形態を示す。
【発明を実施するための形態】
【0020】
図1および図2には、基板に膜を蒸着するためのプラズマを生成する装置を示す。装置は、概略にて示す、ガスの導入およびガスをポンプで排出するための機器(図1に示さず)を装備した密閉容器1を備える。上記機器は、イオン化または解離するガスの圧力を所望の値に、例えば、ガスの性質と励起周期にもよるが概ね10-2から2x10-1Paのこともある、維持することができる。しかしながら、10-2Paよりも低い(例えば10-4Pa)あるいは2x10-1Paを超える(例えば5x10-1Pa、または1Pa以上まで)ガス圧力を使用してもよい。例えば、容器からガスを抽出するために1600l/sアルカテル・ターボ分子ポンプ(Alcatel Turbo-molecular pump)を用いてポンピングできる。
【0021】
適切なガス源、例えば、加圧ガスの入ったボンベから、ガスを質量流量制御器(MFC)で制御しながら容器内へ入れる。ガスは、例えば膜用前駆ガスとしてSiH4を、または上述にてアモルファスシリコンの蒸着と関連して言及した他のガスのいずれかを含む場合もある。膜用前駆体に加えて、He,NeおよびAr等の非反応希釈ガス、水素,窒素および酸素等の反応性ガス、あるいはジボラン、トリメチルボロンまたはホスフィン等のドーパントガスを導入してもよい。通常、類似した他のガスはいずれも膜用前駆ガスと同じ1つ以上の出入り口から容器内へ膜用前駆ガスとの混合ガスとして導入されるが、別々に導入することもできる。ガス供給システムは、通常は1から1000sccm(立法センチメートル毎秒)の範囲で、ガスの反応装置内への適切な流動を確実にするべきである。本発明における容器内へのガス導入方法は、図4から図7に示す実施形態を参照して以下にて説明する。
【0022】
プラズマ室は、装置に固定された部分として示す基板保持部材10を具備している。基板保持部材の機能の1つは基板を必要蒸着温度まで加熱することである。通常、これは室温と600℃との間にあり、アモルファスシリコンの蒸着の場合は200℃を超えていることが好ましく、225°Cと350°Cとの間にあることがより好ましい。ここで参照している温度は基板の実温度であり、基板保持部材の温度を測って求められる公称温度とは異なる。この差異の有意性は本願と同日に提出した、「プラズマによる蒸着でのアモルファスシリコン膜の形成方法(Method for forming a film of amorphous silicon by deposition from a plasma)」(出願人用参照番号G27558EP(欧州特許第出願06301114.2号明細書))と題する本願の出願人らによる同時係属出願に詳しく説明している。
【0023】
少なくとも1枚の基板14、また要すれば複数枚の同様の基板をその上に載置した搬送板12が基板保持部材10の上に取外し可能に取付けてある。このようにして、搬送板12をコーティングする各基板とともに室内へ運び入れ、またコーティングされた後に各基板とともに室外へ取り出すことができる。しかしながら、別の方法として熱伝導性接着剤を用いて基板を基板保持部材に直接接着してもよい。これにより、さもなければ低圧状態では達成することの難しい、基板と基板保持部材間の熱接触を向上させる。これについては、本願と同日に提出した、「プラズマによる蒸着でのアモルファスシリコン膜の形成方法(Method for forming a film of amorphous silicon by deposition from a plasma)」(出願人用参照番号G27558EP(欧州特許第出願06301114.2号明細書))と題する本願の出願人らによる同時係属出願に詳しく説明している。この場合、保持部材はその各基板とともに蒸着処理前に容器内へ取り入れて、後に容器内から取り出さなければならない。接着剤を使用しない場合、基板の加熱を進めるための一方法は、低圧膜蒸着処理ステップの前に容器内を比較的高圧(通常約100から200Pa)のガスで満たすステップを先行させることである。高圧のガスは、基板と加熱した保持部材との間に存在しうるあらゆる間隙間で熱を伝導させ、基板の初期加熱を確実にする。別の選択肢として、基板と基板保持部材との間に熱伝導炭素膜を配置することがある。基板保持部材の中で高温液体を循環させて基板保持部材を加熱できるが、代わりに基板保持部材内に埋め込んだ電熱抵抗器を用いて加熱することもできる。しかしながらもう一つの選択肢として、例えば、赤外線ランプを使用して基板を直接加熱することもできる。
【0024】
基板保持部材のもう一つの機能は、例えば、基板に向かうイオンのエネルギーを制御するために基板面の分極を起こすことである。分極は、高周波電圧源または直流電圧を用いて達成でき、基板保持部材を地面から電気的に絶縁する必要がある。分極は電気的に絶縁した基板保持部材を適切な高周波または直流発電機16へ、高周波分極の場合は相応の整合回路と共に、結合することにより達成される。絶縁基板上または先に基板(絶縁/非絶縁)上に蒸着した絶縁層上に蒸着を行う場合、高周波発振器を使用することが好ましい。伝導性基板上または先に絶縁/非絶縁基板上に蒸着した伝導層上に蒸着を行う場合、基板面に好適に電気結合した高周波発振器あるいは直流発電機を用いてバイアスを与えることができる。具体的な実施例において、基板保持部材に結合したドレスラ(Dressler)製の13.56MHz発電機を用いて、自動調整ボックスを介して高周波バイアスを与えた。高周波発振器を用いた場合でさえも、プラズマの状態によっては、基板面上に結果として得られるバイアスは直流バイアス成分を含む。これがどのようにして起こるかの説明は、鈴木らによる「無線周波数バイアスしたマイクロ波プラズマエッチング技術:SiO2エッチング速度の増加方法(Radio-frequency biased microwave plasma etching technique: A method to increase SiO2 etch rate)」、Journal of Vacuum Science and Technology B 3(4), 1985年7/8月号、p1025-1033の全く異なるプラズマ処理に関する説明の中にある。
【0025】
プラズマ生成装置Iは、各基板が共同して均一なプラズマを生成するために、各基板に近接して互いに離間した一連の個別プラズマ励起装置Eを有する。個々のプラズマ励起装置Eはそれぞれ伸張マイクロ波エネルギー印加電極4を備えている。各印加電極4の両端のうち一方は容器1の外に置かれたマイクロ波エネルギー源にそれぞれ結合している。しかしながら、代わりにマイクロ波を1つのマイクロ波エネルギー源から全ての印加電極4に供給してもよく、あるいは印加電極より少ない複数のエネルギー源から供給してもよい。例えば、各々最大出力2kWの2.45GHzマイクロ波発生器2台で、一台のパワースプリッター(power splitter)と各々のスラグ同調器を介してそれぞれ8台の印加電極、合わせて16台の印加電極配列に都合よく供給することができる。各印加電極4は好都合に同軸管4’で囲まれた管状になっており、これにより放射マイクロ波を防ぎつつマイクロ波エネルギーがその自由端へ伝搬することを可能にし、また各印加電極間でのマイクロ波結合を減らしている。マイクロ波エネルギーのプラズマ内への適切な移動を確実にするために、各印加電極が反射電力を最小にする、または少なくとも減少させる整合した装置が備えられていることが好ましい。
【0026】
各マイクロ波エネルギー印加電極4の自由端は少なくとも1つの永久磁石5に結合している。各磁石の磁気軸は磁石自体の長軸と平行になっていることが好ましい。この配列のうちある特定の形では、全てのプラズマ励起装置の磁石が同じ方向を向いている(単極構成)。つまり、これらの全てのN極が上にあり全てのS極が下にある、あるいはその逆になっている。別の形では、各極の一部が上にあり各極の一部が下にある(多極構成)。後者の配列の一例では、図2でのように一端から装置のある横列または縦列に沿って見ると交互の極がある。さらに別の例では、ある横列(縦列)の全ての磁石は同じ極性を有するが、縦列(横列)の磁石は異なる極性を有する。しかしながら、磁界の磁力線がマイクロ波の伝搬ベクトルに平行になっている有効な領域があることを前提として、各磁石の磁気軸が磁石自体の長軸に平行でない配列をも使用できる。これは、電子サイクロトロン共鳴の減衰が生じ得る有効な領域の存在を確実にするために必要である。
【0027】
本明細書内では、「高温電子閉じ込めエンベロープ」について記載している。「高温電子閉じ込めエンベロープ」の定義にはまず「高温成分区域」の定義が必要である。高温電子閉じ込め区域とは、高温(速い)一次電子が閉じ込められている領域である。これらは、電子が1つの磁石(以降「内部磁極」と称する)の両極または2つの隣接する磁石(以降「相互磁極」と称する)の2つの極のこともある互いに反対の極性を有する2つの隣接した磁極間を往復する領域である。この領域では、断熱近似条件が満たされ(傾斜磁場に対してラーモア半径が小さい)、電子はECR結合条件が満たされた領域を横切ることによりエネルギーを得る。
【0028】
各磁石および各高温電子閉じ込め領域で高温電子閉じ込めエンベロープを画定し、これが配列された磁石のエンベロープの容量(volume)である。前記エンベロープは各磁石の磁気軸の両側へ、各磁石の端部の先へ相互磁気区域(あれば)の延出する距離だけ平行に広がり、かつ各磁石のあらゆる方向を向いた各磁気軸に対して垂直に、内部磁気区域が各磁石の外向き面の先へ延出する距離だけ広がる。
【0029】
上述のように、図3aおよび図3bには2つの特定磁石構成の高温電子閉じ込めエンベロープを示す。各図において、エンベロープを太線で描いた平行六面体の箱で示す。図3aには全ての磁石が中ほどの隣接磁石のそれぞれと反対に配置されている完全多極構成の場合を示す。図3bには全ての磁石が同じ方向を向いている同極構成の場合を示す。他の磁石構成に適切なエンベロープ、例えば、ある特定の列の全ての磁石は同じ方向を向いているが隣接する列の磁石は互いに異なる方向を向いている、を構築することができる。
【0030】
図4にて概略を示すプラズマ励起装置の実施形態は、コネクタ102を介してその中へマイクロ波が供給される中空の円筒管100を備える。複数のこのような装置は、全ての装置の各端部を包むプラズマ領域を生成するために、例えば図1および図2に示すように、配列されている。出入り口104を介して装置の上部端に冷却液が供給されている。
【0031】
管100の上流端中には石英窓106があり、この窓はその中に一対のOリングシール108が配置されている2本の環状溝を有する。石英は、通常このような装置で使用する波長のマイクロ波放射を通す。
【0032】
永久磁石110は管100の下流開放端111の先に配置されている。磁石は通常その両端に磁極を有し、図示のように、管100の開放端111の近接端にN極とその遠隔端にS極、あるいはN極とS極がそれぞれ反対に配置されている。磁石はロッド112で支持されている。図示の場合とは異なるが、ロッド112は実際には一対の同軸管であり、出入り口104から進入した冷却液はこの管を流れて磁石内の空洞に入り、各管の間にある環状空間を上ってもどり、これにより磁石を冷やしている。
【0033】
ガス進入管路114は、その中でプラズマが生成され、また要素が配置されているチャンバの外側から、管100の円筒壁を通って延びて管の内部へガスを供給する。ガスはその開放端111を通って出、こうして磁石110の付近でチャンバの内部へ入る。また、図4に示すように、コーティングする基板が要素の下に配置されていると仮定すると、移動の初期方向は基板を向いていることに注意されたい。管100の内部プラズマガス圧は、その中でプラズマが点火しないように十分低くするべきである。
【0034】
別のプラズマガスを使用しない場合、管路114を通って管100内へ供給されるガスは膜用前駆ガス、例えば、シランである。ガスが管100の開放端111を出ると、プラズマ領域の中心にある反応チャンバに入り、その上に膜が形成される基板に向けてその領域を通ってかなりの距離を移動しなければならない。この位置での膜用前駆ガスの導入は、早い蒸着速度で蒸着した高品質の膜を生成することが知られている。これについては、本願と同日に提出した、「プラズマからの蒸着による成膜方法および装置(Method and apparatus for forming a film by deposition from a plasma)」(出願人用参照番号G28331EP(欧州特許第出願06301115.9号明細書))と題する本願の出願人らによる同時係属出願に詳しく説明している。
【0035】
別のプラズマガスを使用する場合、このプラズマガスは管路114を通って供給され、その後膜用前駆ガスを、好ましくはコーティングする基板に向けて、別の位置で反応チャンバ内へ導入してもよい。このようにすると、早い蒸着速度で蒸着した高品質の膜を生成することが知られている。だが、少なくとも微晶質材料を生成する場合、プラズマガスおよび前駆ガスは管路114を介して一緒に導入してもよい。
【0036】
図5に示す実施形態は、管100の外壁から外を向いた排気口216を有するガス進入管路214を管100の下方端111に近接して有するという点で図4に示すものと異なる。この装置はさらに、閉じた上方壁220を有する管状ガスシールド218、周辺壁222および開放端224を備える。ガスシールドは、どのような適切な耐熱性の非磁性材料でできていてもよい。非磁性材料とは、例えば、石英、セラミックまたはアルミナ、あるいは非磁性材料(シールド内のマイクロ波を閉じ込めるという利点をもたらすもの)である。
【0037】
図5に示す実施形態は、ガスシールドのおかげで特定の利益をもたらすが、電子の動きを妨げ、よってプラズマ密度を低減するという不利益をもたらす。しかしながら、この不利益が存在すれば、これは反応装置が備えている全プラズマ励起装置の各下流端回りの領域を包んでいる一つのガスシールドを使用することにより十分克服することができる。
【0038】
図6に示す実施形態はガスシールドを持たないという点で図4のものと同じであるが、図5の実施形態と同様に、ここでは符号314で示すそのガス進入管路の下流部を管100の周辺壁内に有する。しかしながら、ここで管路314の排気口316は、管の長軸と平行かつ排気口から離れる方向に向いており、従ってその上に膜が形成される基板を向いている。
【0039】
図7に示す実施形態における管100は、互いに同軸に配置されて、それらの間に管状路100cを画定している内管100aと外管100bとから構成されている。ここで、符号414で示すガス進入管路は管状路100cと連通し、膜用前駆ガスは通路100aの下方端から基板に向けて退出する。

【特許請求の範囲】
【請求項1】
分散型電子サイクロトロン共鳴で形成されたプラズマから基板上に膜を蒸着するために使用するプラズマ励起装置であって、前記要素が
マイクロ波を放出する一端を有するマイクロ波アンテナと、
前記アンテナ端の領域内に配置されて、その中でプラズマを生成できる電子サイクロトロン共鳴領域を画定している磁石と、
膜用前駆ガスまたはプラズマガス用の排気口を有するガス進入要素とを備え
前記排気口が前記磁石を通り過ぎて、前記マイクロ波アンテナから見て、前記磁石の先に位置する膜蒸着区域に向けてガスを方向付けるように配置されている
装置。
【請求項2】
前記排気口が、本明細書内に記載のように、高温電子閉じ込めエンベロープの中に配置されている請求項1に記載の装置。
【請求項3】
前記排気口が前記マイクロ波を放出する前記マイクロ波アンテナの一端にまたは隣接して配置されている請求項1に記載の装置。
【請求項4】
前記マイクロ波アンテナが管を備え、前記ガス進入要素は、そのソースから前記管内へガスを導入するように構成されているガス供給管路と共同して前記管に備えられている請求項3に記載の装置。
【請求項5】
前記ガス進入管路が前記管の内部へ前記ガスを導入するように構成されている請求項4に記載の装置。
【請求項6】
前記ガス進入管路が前記ガスを前記管の壁の内側に画定されている領域内へ導入するように構成されており、前記排気口は前記領域と連通している請求項4に記載の装置。
【請求項7】
前記管がその中をマイクロ波が移動する内管部材と、前記内管部材と共にその中に前記ガス供給管でガスが導入される管状領域を画定する外管部材を備える同軸管である請求項4に記載の装置。
【請求項8】
前記磁石がその磁気軸が前記アンテナからのマイクロ波伝搬方向と概ね揃うように配置されている請求項1から7のいずれかに記載の装置。
【請求項9】
容器と、前記容器内に配置された請求項1から8のいずれかに記載の複数のプラズマ励起装置と、前記基板を支持する前記容器内にある手段とを備えるプラズマから基板上に膜を蒸着する装置。
【請求項10】
単一のガスシールドが各前記アンテナ端と各前記関連磁石を包む請求項9に記載の装置。

【図1】
image rotate

【図2】
image rotate

【図3a】
image rotate

【図3b】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公表番号】特表2010−508445(P2010−508445A)
【公表日】平成22年3月18日(2010.3.18)
【国際特許分類】
【出願番号】特願2009−535597(P2009−535597)
【出願日】平成19年10月26日(2007.10.26)
【国際出願番号】PCT/EP2007/009304
【国際公開番号】WO2008/052704
【国際公開日】平成20年5月8日(2008.5.8)
【出願人】(502053328)ダウ・コーニング・コーポレイション (12)
【氏名又は名称原語表記】DOW CORNING CORPORATION
【住所又は居所原語表記】2200 West Salzburg Road, Midland, MI 48611ー0994, U.S.A.
【出願人】(509127608)エコール ポリテクニック (9)
【氏名又は名称原語表記】ECOLE POLYTECHNIQUE
【Fターム(参考)】