説明

マイクロ構造体製造方法

【課題】基板から離隔して空隙を介して基板に対向する離隔対向部位を、基板上の犠牲層形成領域の凹凸態様に拘らず、所定の形状で形成するのに適したマイクロ構造体製造方法を提供する。
【解決手段】本発明のマイクロ構造体製造方法は、例えば、複数の金属犠牲層33,35からなる積層構造を有する金属犠牲部をめっき法により基板10’上に形成する工程と、金属犠牲部上に広がって基板10’から離隔する部位を有し且つ基板10’に支持される構造部14を形成する工程と、金属犠牲部を除去する工程とを含む。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、マイクロマシニング技術により形成される微小な構造を有するマイクロ構造体の製造方法に関し、特に、基板から離隔した部位を有する構造部を伴うマイクロ構造体の製造方法に関する。
【背景技術】
【0002】
近年、様々な技術分野において、マイクロマシニング技術により形成される微小構造を有するマイクロ構造体の応用化が図られている。そのようなマイクロ構造体としては、例えば、可動キャパシタ電極を可動部として有する可変キャパシタ素子や、所定の可動部を有するスイッチング素子を挙げることができる。これらマイクロ構造体の有する可動部は、一般に、基板から離隔して空隙を介して基板に対向する部位(離隔対向部位)を有し且つ基板に支持されている。可動部を伴うマイクロ構造体については、例えば、下記の特許文献1,2に記載されている。
【0003】
【特許文献1】特開2001−347500号公報
【特許文献2】特開2006−128912号公報
【0004】
可動部を伴うマイクロ構造体の従来の形成過程においては、例えば、基板上に単層の膜体として犠牲層を形成する工程と、当該犠牲層上に広がって基板から離隔する部位を有し且つ基板に支持される構造部(可動部)を形成する工程と、犠牲層をエッチング除去する工程とが含まれる。犠牲層としては、酸化シリコン膜や、PSG膜、樹脂膜が採用されることが多い。酸化シリコン犠牲層およびPSG犠牲層は、CVD法やスパッタリング法によって形成される。樹脂犠牲層は、スピンコーティング法を経て形成される。
【0005】
しかしながら、酸化シリコン膜による犠牲層およびPSG膜による犠牲層は、下地面の凹凸形状に追随した形状でコンフォーマルに形成されるので、基板上の犠牲層形成領域に例えば配線パターンが設けられているために凹凸が存在する場合、この配線パターンを覆うようにして形成された酸化シリコン犠牲層およびPSG犠牲層の成長端側表面には、配線パターンの存在に起因して凹凸が生じてしまう。このような凹凸が生じると、当該犠牲層上に更に積層形成されるべき上述の離隔対向部位を有する構造部を適切に形成できない場合がある。加えて、酸化シリコン犠牲層およびPSG犠牲層は、厚膜化が困難な傾向にある。酸化シリコン膜およびPSG膜の成長に長時間を要するからであり、また、酸化シリコン膜およびPSG膜の内部応力が大きいからである。上述の可動部ないし構造部の設計寸法に応じて、犠牲層を充分に厚く形成しなければならない場合がある。
【0006】
樹脂膜による犠牲層は、基板上の犠牲層形成領域に例えば配線パターンが設けられているために凹凸が存在する場合であっても、成長端側表面は平坦となる。しかしながら、樹脂犠牲層は比較的柔らかいので、上述の離隔対向部位を内部応力の大きな材料によって樹脂犠牲層上に形成すると、樹脂犠牲層が当該離隔対向部位の内部応力に抗することができずに変形し、その結果、当該離隔対向部位は不当に変形して形成される場合がある。
【0007】
また、従来の手法により形成される犠牲層の表面は、平坦であるか、或は、基板上の犠牲層形成領域の凹凸形状の存在に起因して凹凸が生じるか、であった。すなわち、従来の犠牲層形成手法によると、犠牲層表面において凹凸形状を積極的に精度よく形成するのは困難であった。
【0008】
本発明は、このような事情のもとで考え出されたものであり、基板から離隔して空隙を介して基板に対向する離隔対向部位を、基板上の犠牲層形成領域の凹凸態様に拘らず、所定の形状で形成するのに適したマイクロ構造体製造方法を提供することを、目的とする。
【発明の開示】
【発明が解決しようとする課題】
【0009】
本発明の第1の側面により提供されるマイクロ構造体製造方法は、めっき法により、基板上に第1の金属犠牲層を形成する工程と、めっき法により、第1の金属犠牲層の上位に第2の金属犠牲層を形成する工程と、第2の金属犠牲層上に広がって基板から離隔する部位を有し且つ基板に支持される構造部を形成する工程と、第1および第2の金属犠牲層(金属犠牲部)を除去する除去工程とを含む。この除去工程を経ることによって、基板から離隔して空隙を介して基板に対向する離隔対向部位が形成されることとなる。
【0010】
基板上の犠牲層形成領域に例えば配線パターンが設けられているために凹凸が存在する場合、本方法によると、まず、めっき法により、当該凹凸形状の凹部を充填するように第1の金属犠牲層を形成することが可能である。このような第1の金属犠牲層の形成により、第2の金属犠牲層の下地面が平坦化されることとなる。そして、当該第1の金属犠牲層の上位に第2の金属犠牲層を一様の厚さの膜体として形成すると、当該第2の金属犠牲層の成長端側表面は平坦となる。このような第2の金属犠牲層形成手法に代えて、第1の金属犠牲層の上位に第2の金属犠牲層を所定のパターンで形成すると、第1および第2の金属犠牲層からなる金属犠牲部の表面は、所定の凹凸形状を有することとなる。このようにして、本方法によると、基板上の犠牲層形成領域に例えば配線パターンが設けられているために凹凸が存在する場合において、金属犠牲部の表面を平坦とすることも可能であり、また、金属犠牲部の表面に所定の凹凸形状を形成することも可能である。表面が平坦な金属犠牲部の上には、平坦な離隔対向部位を形成することができる。表面に所定の凹凸形状を有する金属犠牲部の上には、当該凹凸形状に対応する凹凸形状を少なくとも基板側に伴う離隔対向部位を形成することができる。
【0011】
一方、基板上の犠牲層形成領域が平坦である場合、本方法によると、まず、めっき法により、第1の金属犠牲層を一様の厚さの膜体として形成することが可能である。次に、当該第1の金属犠牲層の上位に第2の金属犠牲層を所定のパターンで形成すると、第1および第2の金属犠牲層からなる金属犠牲部の表面は、所定の凹凸形状を有することとなる。このようにして、本方法によると、基板上の犠牲層形成領域が平坦である場合において、金属犠牲部の表面に所定の凹凸形状を形成することが可能である。表面に所定の凹凸形状を有する金属犠牲部の上には、当該凹凸形状に対応する凹凸形状を少なくとも基板側に伴う離隔対向部位を形成することができる。
【0012】
また、本方法において形成される金属犠牲層は、材料成長速度の速いめっき法によって形成されるものである。そのため、本方法における金属犠牲層ないし金属犠牲部については、厚膜化を図りやすい。
【0013】
加えて、本方法によって形成される金属犠牲層ないし金属犠牲部は金属よりなるため、充分に堅い。そのため、金属犠牲部上に積層形成される離隔対向部位が不当に変形することは抑制される。
【0014】
以上のように、本発明の第1の側面に係る方法は、基板上の犠牲層形成領域の凹凸態様に拘らず、基板から離隔して空隙を介して基板に対向する離隔対向部位を所定の形状で形成するのに適するのである。
【0015】
本発明の第2の側面により提供されるマイクロ構造体製造方法は、複数の金属犠牲層からなる積層構造を有する金属犠牲部をめっき法により基板上に形成する工程と、金属犠牲部上に広がって基板から離隔する部位を有し且つ基板に支持される構造部を形成する工程と、金属犠牲部を除去する除去工程とを含む。
【0016】
基板上の犠牲層形成領域に例えば配線パターンが設けられているために凹凸が存在する場合、本方法によると、まず、めっき法により、当該凹凸形状の凹部を充填するように一段目の金属犠牲層を形成することが可能である。このような金属犠牲層の形成により、二段目の金属犠牲層の下地面が平坦化されることとなる。そして、一段目金属犠牲層の上位に所定数の金属犠牲層を各々一様の厚さの膜体として形成すると、最上段の金属犠牲層の成長端側表面は平坦となる。一様の厚さの膜体として最上段の金属犠牲層を形成するのに代えて、最上段の金属犠牲層を所定のパターンで形成すると、当該複数の金属犠牲層からなる金属犠牲部の表面は、所定の凹凸形状を有することとなる。このようにして、本方法によると、基板上の犠牲層形成領域に例えば配線パターンが設けられているために凹凸が存在する場合において、金属犠牲部の表面を平坦とすることも可能であり、また、金属犠牲部の表面に所定の凹凸形状を形成することも可能である。表面が平坦な金属犠牲部の上には、平坦な離隔対向部位を形成することができる。表面に所定の凹凸形状を有する金属犠牲部の上には、当該凹凸形状に対応する凹凸形状を少なくとも基板側に伴う離隔対向部位を形成することができる。
【0017】
一方、基板上の犠牲層形成領域が平坦である場合、本方法によると、まず、めっき法により、一段目の金属犠牲層を一様の厚さの膜体として形成することが可能である。次に、当該一段目金属犠牲層の上位に所定数の金属犠牲層を各々一様の厚さの膜体として形成する。次に、最上段の金属犠牲層を所定のパターンで形成すると、当該複数の金属犠牲層からなる金属犠牲部の表面は、所定の凹凸形状を有することとなる。このようにして、本方法によると、基板上の犠牲層形成領域が平坦である場合において、金属犠牲部の表面に所定の凹凸形状を形成することが可能である。表面に所定の凹凸形状を有する金属犠牲部の上には、当該凹凸形状に対応する凹凸形状を少なくとも基板側に伴う離隔対向部位を形成することができる。
【0018】
また、本方法において形成される金属犠牲層は、材料成長速度の速いめっき法によって形成されるものである。そのため、本方法における金属犠牲層ないし金属犠牲部については、厚膜化を図りやすい。
【0019】
加えて、本方法によって形成される金属犠牲層ないし金属犠牲部は金属よりなるため、充分に堅い。そのため、金属犠牲部上に積層形成される離隔対向部位が不当に変形することは抑制される。
【0020】
以上のように、本発明の第2の側面に係る方法は、基板上の犠牲層形成領域の凹凸態様に拘らず、基板から離隔して空隙を介して基板に対向する離隔対向部位を所定の形状で形成するのに適するのである。
【0021】
本発明の第1および第2の側面において、好ましくは、金属犠牲層は、Cu、Ni、Al、Ti、Cr、Au、およびPtからなる群より選択される金属または当該金属を含む合金よりなる。
【0022】
好ましくは、めっき法は、電気めっき法および/または無電解めっき法である。電気めっき法ではCuまたはNiを堆積成長させるのが好ましい。無電解めっき法では、Cu、Ni、Ni−P、Ni−B、またはAuを堆積成長させるのが好ましい。
【0023】
金属犠牲層がCuまたはCu合金よりなる場合、除去工程では、アンモニア銅錯塩を含むエッチング液を金属犠牲層に作用させるのが好ましい。この場合、エッチング液は、アンモニア銅錯塩、塩化アンモニウム、およびアンモニアを含む水溶液であるのが好ましい。このようなエッチング液は、Cu犠牲層またはCu合金犠牲層に対するエッチング速度が高く、他材料に対する侵食性が低く、粘性が低いために基板と離隔対向部位との間への浸透性が高い、という特長がある。
【発明を実施するための最良の形態】
【0024】
図1から図3は、本発明の第1の実施形態に係るマイクロ構造体X1を表す。図1は、マイクロ構造体X1の平面図である。図2および図3は、図1の線II−IIおよび線III−IIIに沿った拡大断面図である。
【0025】
マイクロ構造体X1は、可変フィルタ素子として構成されている。具体的には、マイクロ構造体X1は、基板10と、信号線11と、二本のグラウンド線12と、四本のシャントインダクタ13と、五つの可動キャパシタ電極14と、二つの駆動電極15と、二つの電極パッド16とを備え、特定の高周波数帯域にある電磁波ないし電気信号の通過を許容する、周波数可変の共振器フィルタとして構成されている。図4は、共振器フィルタたるマイクロ構造体X1のなす分布定数伝送線路を表す等価回路図である。
【0026】
基板10は石英またはガラスよりなる。信号線11、グラウンド線12、シャントインダクタ13、可動キャパシタ電極14、駆動電極15、および電極パッド16は、基板10上に設けられている。
【0027】
信号線11は、その両端に端子部11a(入射端)および端子部11b(出射端)を有して当該端子部11a,11b間を電気信号が通過する導体パターンであり、高周波フィルタたる本素子においてインダクタ成分を含む。端子部11a,11bを介して、本素子は図外の回路ないし他の素子と接続されることとなる。このような信号線11は、インピーダンスが例えば50Ωの分布定数線路であり、例えばCu,Ag,Au,Al,W,Moなどの低抵抗金属よりなる。信号線11の厚さは例えば0.5〜20μmである。このような信号線11上には、図2および図3に示すように、誘電体ドット17が設けられている。誘電体ドット17は、例えばAl23,SiO2,SixNy,SiOCなどの誘電体材料よりなり、信号線11と可動キャパシタ電極14とが短絡することを防止するのに資するとともに、信号線11および可動キャパシタ電極14により構成されるキャパシタの静電容量を増大するのに資する。当該静電容量の増大は、本素子について広い周波数可変域を確保するうえで好ましい。
【0028】
各グラウンド線12は、信号線11に沿って延び且つグラウンド接続されている導体パターンである。このようなグラウンド線12は、信号線11と協働して、容量固定キャパシタを構成する。また、信号線11および各グラウンド線12は、シャントインダクタ13を介して接続されている。グラウンド線12およびシャントインダクタ13は、例えばAu,Cu,Al,Agなどの低抵抗金属よりなる。グラウンド線12およびシャントインダクタ13の厚さは例えば0.5〜20μmである。
【0029】
各可動キャパシタ電極14は、図2に示すように、グラウンド線12間を架橋する(従ってグラウンド接続されている)。可動キャパシタ電極14は、グラウンド線12間において、基板10から離隔して空隙を介して基板10に対向する離隔対向部位14Aを有し、且つ、離隔対向部位14Aの一部として信号線11に対向する厚肉部14aを有する。このような可動キャパシタ電極14の両端部の、グラウンド線12に対する充分な接合を確保するため、アンカー部18が設けられている。具体的には、可動キャパシタ電極14の各端部は、図外で部分的にグラウンド線12に対して接合しているアンカー部18とグラウンド線12とに挟まれている。このような可動キャパシタ電極14は、例えばAu,Cu,Alなどの低抵抗金属よりなり、上述の信号線11と協働して容量可変キャパシタを構成する。上述の信号線11と可動キャパシタ電極14の間のギャップG1は、例えば0.1〜10μmである。
【0030】
各駆動電極15は、可動キャパシタ電極14との間に静電引力を発生させて可動キャパシタ電極14を変位させるためのものであり、信号線11およびグラウンド線12の間に配されて可動キャパシタ電極14の一部に対向する。駆動電極15は、所定の金属薄膜(高周波信号の漏れ防止の観点から比較的高抵抗のSiCr薄膜が望ましい)よりなる。上述の可動キャパシタ電極14と駆動電極15との間においていわゆるプルイン現象が生ずるのを回避すべく、可動キャパシタ電極14と駆動電極15の間のギャップG2は、上述のギャップG1の3倍以上に設定される。
【0031】
各電極パッド16は、駆動電圧印加用の端子であり、グラウンド線12とは空隙を介して分離されている。電極パッド16および駆動電極15は、図2に示すように基板10およびグラウンド線12の間を通過する配線19よって接続されている。配線19とグラウンド線12は、これらの間に介在する絶縁膜20によって電気的に分離されている。絶縁膜20は例えばSiO2よりなる。
【0032】
以上のような構造を有するマイクロ構造体X1のなす可変キャパシタ素子は、図4に示すような、K01インバータと、K12インバータと、これらの間に配された共振回路部Rとからなる等価回路図で表すことができる。K01インバータは、端子部11a(入射端)側にて信号線11に接続する一対のシャントインダクタ13により構成される。K12インバータは、端子部11b(出射端)側にて信号線11に接続する一対のシャントインダクタ13により構成される。共振回路部Rは、インダクタL(共振回路部R全体におけるインダクタ成分)および容量可変のキャパシタC(共振回路部R全体におけるキャパシタ成分)を含み、主に、基板10と、信号線11と、グラウンド線12とから構成される。キャパシタCは、基板10上に形成された信号線11およびグラウンド線12により構成される上述の容量固定キャパシタと、信号線11(不動キャパシタ電極)および可動キャパシタ電極14により構成される上述の容量可変キャパシタとからなる。
【0033】
このような可変キャパシタ素子たるマイクロ構造体X1において、図1に示す空間的長さLは、図4に示す共振回路部Rの伝送路長(即ち、両インバータ間の伝送路長)が例えばλ/2(λ:抽出目的の特定高周波の、分布定数線路における波長)の整数倍となるように、設定されている。このような構成において、可変キャパシタ素子たるマイクロ構造体X1では、例えば端子部11aから入力された混合電気信号がフィルタリングされ、特定高周波数帯域の電気信号が抽出されて端子部11bから出力される。
【0034】
また、図4の等価回路図においては、共振回路部RがK01インバータおよびK12インバータの間に配されているところ、このような構成によると、入射端(K01インバータ側端子)から電磁波ないし高周波電気信号を反射なく共振回路部Rに入射させ、また、出射端(K12インバータ側端子)へと伝搬する電磁波を当該出射端から反射なく出射させることができる。K01インバータは特性インピーダンスK01を有し、K12インバータは特性インピーダンスK12を有し、各々、所定周波数帯域において長さλ/4の分布定数線路として機能するものである。
【0035】
可変キャパシタ素子たるマイクロ構造体X1においては、駆動電極15と可動キャパシタ電極14の間に所定電圧(駆動電圧)を印加することによって、図4に示すキャパシタCの静電容量を変化させることができる。駆動電極15への電位の付与は、電極パッド16および配線19を介して実現することができる。駆動電極15と可動キャパシタ電極14の間に駆動電圧を印加すると、両電極間に所定の静電引力が発生し、可動キャパシタ電極14が駆動電極15側へ所定量引き込まれ、その結果、信号線11と可動キャパシタ電極14の間のギャップG1が小さくなる。ギャップG1が小さくなると、キャパシタCの静電容量が増大し、可変キャパシタ素子たるマイクロ構造体X1の全体の伝送路長が等価的ないし実質的に増大し、通過が許容される周波数帯域が低周波側へシフトする。このような可変キャパシタ素子(マイクロ構造体X1)では、駆動電圧のオン・オフにより、図4に示すキャパシタCの容量を有意に切り替えて、高周波領域における通過周波数帯域を適宜にスイッチング(例えば18GHzと22GHzの間のスイッチング)することが可能である。また、駆動電圧をアナログ的に制御することで、通過周波数帯域を連続的に変化させることも可能である。
【0036】
図5から図9は、マイクロ構造体X1の製造方法を表す。図5から図9においては、マイクロ構造体X1の製造過程を断面の変化で表す。当該断面は、加工が施されるウエハにおける単一のマイクロ構造体形成区画の断面(図1の線V−Vに沿った断面)を含む。
【0037】
マイクロ構造体X1の製造においては、まず、図5(a)に示すように、上述の駆動電極15をウエハ10’上に形成する。これとともに、本工程では、上述の配線19をウエハ10’上に形成する。例えば、スパッタリング法によって所定の金属材料をウエハ10’上に成膜した後、所定のウェットエッチングまたはドライエッチングにより当該金属膜をパターニングすることによって、駆動電極15および配線19を形成することができる。本工程の後、上述の配線19上に絶縁膜20をパターン形成する。例えば、CVD法によって少なくとも配線19を覆うようにして所定の絶縁材料をウエハ10’上に成膜した後、当該絶縁材膜をパターニングすることによって、配線19を形成することができる。絶縁膜20は、駆動電極15を覆うように形成してもよい。
【0038】
次に、図5(b)に示すように、上述の信号線11およびグラウンド線12をウエハ10’上に形成する。例えば、信号線11およびグラウンド線12に対応する開口部を有するレジストパターンをウエハ10’上にパターン形成した後、めっき法(無電解めっき又は電気めっき)により当該開口部内に所定の金属材料を堆積成長させることによって、信号線11およびグラウンド線12を形成することができる。
【0039】
次に、図5(c)に示すように、上述の誘電体ドット17を信号線11上に形成する。例えば、ウエハ10’上において信号線11、グラウンド線12、および駆動電極15を覆うようにして誘電体膜を形成した後、当該誘電体膜をパターンニングすることによって、誘電体ドット17を形成することができる。
【0040】
次に、図6(a)に示すように、ウエハ10’上の全面にわたってシード層31を形成する。シード層31は、めっき法において金属材料が堆積成長するための基端となるものであって、例えば、Cr層およびその上のCu層からなる。
【0041】
次に、図6(b)に示すようにレジストパターン32を形成する。レジストパターン32は、一段目金属犠牲層形成用の開口部32aを有する。具体的には、レジストパターン32は、上述の複数の可動キャパシタ電極14を形成する領域に対応する位置に開口部32aを有する。レジストパターン32の形成においては、ウエハ10’上にフォトレジストをスピンコーティングにより成膜し、当該フォトレジスト膜を所定温度でベーキングし、所定のマスクを利用して当該フォトレジストに対して露光を施し、所定の現像液を使用して当該フォトレジストを現像する(後出のレジストパターンも、このようなスピンコーティング、ベーキング、露光、および現像を経て形成される)。
【0042】
次に、図6(c)に示すように金属犠牲層33を形成する。具体的には、レジストパターン32の開口部32a内にめっき法により金属材料を堆積成長させることによって、金属犠牲層33を形成することができる。めっき法としては、電気めっき法または無電解めっき法を採用する。或は、途中まで電気めっき法を採用して途中から無電解めっき法を採用してもよいし、途中まで無電解めっき法を採用して途中から電気めっき法を採用してもよい。金属犠牲層33は、例えば、Cu、Ni、Al、Ti、Cr、Au、およびPtからなる群より選択される金属または当該金属を含む合金よりなる。電気めっき法を採用する場合、堆積成長させる金属材料はCuまたはNiであるのが好ましい。無電解めっき法を採用する場合、堆積成長させる金属材料は、Cu、Ni、Ni−P、Ni−B、またはAuであるのが好ましい。本工程で形成される金属犠牲層33の厚さは、例えば、信号線11の厚さと同じであるのが好ましい。
【0043】
次に、図7(a)に示すようにレジストパターン32を除去する。所定の剥離液を作用させることによってレジストパターン32を除去することができる。
【0044】
次に、図7(b)に示すようにレジストパターン34を形成する。レジストパターン34は、二段目金属犠牲層形成用の開口部34aを有する。
【0045】
次に、図7(c)に示すように金属犠牲層35を形成する。具体的には、レジストパターン34の開口部34a内にめっき法により金属材料を堆積成長させることによって、金属犠牲層35を形成することができる。めっき法としては、電気めっき法または無電解めっき法を採用する。或は、途中まで電気めっき法を採用して途中から無電解めっき法を採用してもよいし、途中まで無電解めっき法を採用して途中から電気めっき法を採用してもよい。金属犠牲層35は、例えば、Cu、Ni、Al、Ti、Cr、Au、およびPtからなる群より選択される金属または当該金属を含む合金よりなる。電気めっき法を採用する場合、堆積成長させる金属材料はCuまたはNiであるのが好ましい。無電解めっき法を採用する場合、堆積成長させる金属材料は、Cu、Ni、Ni−P、Ni−B、またはAuであるのが好ましい。本工程で形成される金属犠牲層35の厚さによって、信号線11と上述の可動キャパシタ電極14との間のギャップG1が規定される。また、金属犠牲層33,35の総厚さによって、駆動電極15と可動キャパシタ電極14との間のギャップG2が規定される。
【0046】
次に、図8(a)に示すようにレジストパターン34を除去する。本図以降の工程図では、図面の簡潔化の観点から、シード層31を省略する。また、本工程では、シード層31において外部に露出している箇所を除去してもよい。シード層31の除去手法としては、イオンミリング法を採用することができる。
【0047】
次に、図8(b)に示すように、金属犠牲層35およびグラウンド線12を覆うようにしてウエハ10’上に例えばスパッタリング法によってシートバネ層14’を形成する。
【0048】
次に、図8(c)に示すようにレジストパターン36を形成する。レジストパターン36は、厚肉部14a形成用の開口部36aおよびアンカー部18形成用の開口部36bを有する。
【0049】
次に、図9(a)に示すように厚肉部14aおよびアンカー部18を形成する。レジストパターン36の開口部36a,36b内にめっき法により金属材料を堆積成長させることによって、厚肉部14aおよびアンカー部18を形成することができる。本工程では、シートバネ層14’をめっき法用のシード層として利用することが可能である。
【0050】
次に、図9(b)に示すように、レジストパターン36を除去した後、可動キャパシタ電極14の上述の離隔対向部位14Aをシートバネ層14’からパターン形成する。離隔対向部位14Aのパターン形成においては、シートバネ層14’上に所定のレジストパターンを形成した後、例えばイオンミリング法によってシートバネ層14’を所定の形状にパターニングする。
【0051】
次に、図9(c)に示すように金属犠牲層33,35を除去する。具体的には、金属犠牲層33,35を構成する金属材料種に応じた所定のエッチング液を作用させるウェットエッチングを行う。金属犠牲層33,35がCuまたはCu合金よりなる場合、エッチング液は、アンモニア銅錯塩、塩化アンモニウム、およびアンモニアを含む水溶液であるのが好ましい。金属犠牲層33,35がNiまたはNi合金よりなる場合、エッチング液としては、塩化鉄(III)水溶液を使用することができる。金属犠牲層33,35がAuまたはAu合金よりなる場合、エッチング液としては、ヨウ化アンモニウム、ヨウ素、およびメタノールを含む水溶液を使用することができる。
【0052】
この後、ウエハ10’を切断して個片を得る。以上のようにして、図1に示すマイクロ構造体X1を製造することができる。本方法によると、多数のマイクロ構造体形成区画を有するウエハ10’を用いることによって、マイクロ構造体X1を適切に大量生産することができる。
【0053】
本方法においては、金属犠牲層33,35が形成されるより前に、ウエハ10’上ないし基板10上の犠牲層形成領域に信号線11が設けられ、そのために犠牲層形成領域に凹凸が存在する。しかしながら、本方法によると、まず、図6(c)に示すように、めっき法により、当該凹凸形状の凹部を充填するように金属犠牲層33を形成することが可能である。このような金属犠牲層33の形成により、金属犠牲層35の下地面が平坦化されることとなる。そして、図7(c)に示すように、金属犠牲層33の上位に金属犠牲層35を一様の厚さの膜体として形成することにより、金属犠牲層35の成長端側表面は平坦となる。このようにして、本方法によると、基板10上の犠牲層形成領域に凹凸が存在する場合においても、金属犠牲部(金属犠牲層33,35)の表面を平坦とすることが可能である(本実施形態では二層構造の金属犠牲部が採用されるが、本発明では三層以上の多層構造を有する金属犠牲部を採用してもよい)。したがって、本方法によると、表面が平坦な金属犠牲部の上において、少なくとも基板10側が平坦な離隔対向部位14Aを形成することができる。
【0054】
また、本方法において形成される金属犠牲層33,35は、材料成長速度の速いめっき法によって形成されるものである。そのため、本方法における金属犠牲層33,35ないし金属犠牲部については、厚膜化を図りやすい。
【0055】
加えて、本方法によって形成される金属犠牲層33,35ないし金属犠牲部は金属よりなるため、充分に堅い。そのため、金属犠牲部上に積層形成される離隔対向部位14Aが不当に変形することは抑制される。
【0056】
図10および図11は、本発明の第2の実施形態に係るマイクロ構造体X2を表す。図10は、マイクロ構造体X2の平面図である。図11は、図10の線XI−XIに沿った拡大断面図である。
【0057】
マイクロ構造体X2は、基板10と、信号線11と、二本のグラウンド線12と、四本のシャントインダクタ13と、五つの可動キャパシタ電極21と、二つの駆動電極15と、二つの電極パッド16とを備え、特定の高周波数帯域にある電磁波ないし電気信号の通過を許容する、周波数可変の共振器フィルタとして構成されている。マイクロ構造体X2は、可動キャパシタ電極14に代えて可動キャパシタ電極21を備える点において、第1の実施形態たる上述のマイクロ構造体X1と異なる。
【0058】
可動キャパシタ電極21は、図11に示すように、グラウンド線12間を架橋し、グラウンド線12間において、基板10から離隔して空隙を介して基板10に対向する離隔対向部位21Aを有し、且つ、離隔対向部位21Aの一部として信号線11に対向する厚肉部21aを有する。離隔対向部位21Aは、図11に示すような凹凸形状21bを有する。凹凸形状21bにおける凹凸の程度や個数を変更することによって、可動キャパシタ電極21ないし離隔対向部位21Aの弾性を調整することが可能である。また、可動キャパシタ電極21の両端部は、グラウンド線12とアンカー部18に挟まれている。このような可動キャパシタ電極21は、例えばAu,Cu,Alなどの低抵抗金属よりなり、信号線11と協働して容量可変キャパシタを構成する。
【0059】
以上のような構造を有するマイクロ構造体X2が構成する可変キャパシタ素子は、図4に示すような等価回路図で表すことができる。この等価回路図におけるキャパシタCは、基板10上に形成された信号線11およびグラウンド線12により構成される容量固定キャパシタと、信号線11(不動キャパシタ電極)および可動キャパシタ電極21により構成される上述の容量可変キャパシタとからなる。等価回路図の他の構成については、マイクロ構造体X1が構成する可変キャパシタ素子に関して上述したのと同様である。
【0060】
可変キャパシタ素子たるマイクロ構造体X2においては、駆動電極15と可動キャパシタ電極21の間に所定電圧(駆動電圧)を印加することによって、図4に示すキャパシタCの静電容量を変化させることができる。駆動電極15への電位の付与は、電極パッド16および配線19を介して実現することができる。駆動電極15と可動キャパシタ電極21の間に駆動電圧を印加すると、両電極間に所定の静電引力が発生し、可動キャパシタ電極21が駆動電極15側へ所定量引き込まれ、その結果、信号線11と可動キャパシタ電極21の間のギャップG1が小さくなる。このギャップG1が小さくなると、キャパシタCの静電容量が増大し、可変キャパシタ素子たるマイクロ構造体X2の全体の伝送路長が等価的ないし実質的に増大し、通過が許容される周波数帯域が低周波側へシフトする。このような可変キャパシタ素子(マイクロ構造体X2)では、駆動電圧のオン・オフにより、図4に示すキャパシタCの容量を有意に切り替えて、高周波領域における通過周波数帯域を適宜にスイッチング(例えば18GHzと22GHzの間のスイッチング)することが可能である。また、駆動電圧をアナログ的に制御することで、通過周波数帯域を連続的に変化させることも可能である。
【0061】
図12から図14は、マイクロ構造体X2の製造方法における一部の工程を表す。図12から図14においては、マイクロ構造体X2の製造過程を断面の変化で表す。当該断面は、加工が施されるウエハにおける単一のマイクロ構造体形成区画の断面(図10の線XII−XIIに沿った断面)を含む。
【0062】
マイクロ構造体X2の製造においては、まず、マイクロ構造体X1の製造に関して図5(a)から図7(c)までを参照して上述したのと同様に、ウエハ10’上において、駆動電極15および配線19を形成し、信号線11およびグラウンド線12を形成し、誘電体ドット17を形成し、シード層31を形成し、レジストパターン32を形成し、金属犠牲層33を形成し、レジストパターン32を除去し、レジストパターン34を形成し、金属犠牲層35を形成し、レジストパターン34を除去して、図12(a)に示すのと同様の状態に至る。
【0063】
次に、図12(b)に示すように、所定の開口部37aを有するレジストパターン37を形成した後、図12(c)に示すように金属犠牲層38を形成する。具体的には、レジストパターン37の開口部37a内にめっき法により金属材料を堆積成長させることによって、金属犠牲層38を形成することができる。めっき法としては、電気めっき法または無電解めっき法を採用する。或は、途中まで電気めっき法を採用して途中から無電解めっき法を採用してもよいし、途中まで無電解めっき法を採用して途中から電気めっき法を採用してもよい。金属犠牲層37は、例えば、Cu、Ni、Al、Ti、Cr、Au、およびPtからなる群より選択される金属または当該金属を含む合金よりなる。電気めっき法を採用する場合、堆積成長させる金属材料はCuまたはNiであるのが好ましい。無電解めっき法を採用する場合、堆積成長させる金属材料は、Cu、Ni、Ni−P、Ni−B、またはAuであるのが好ましい。
【0064】
次に、図13(a)に示すようにレジストパターン37を除去する。本図以降の工程図では、図面の簡潔化の観点から、シード層31を省略する。また、本工程では、シード層31において外部に露出している箇所を除去してもよい。
【0065】
次に、図13(b)に示すように、例えばスパッタリング法により、金属犠牲層33,35,38およびグラウンド線12を覆うようにしてウエハ10’上に、凹凸形状21bを伴うシートバネ層21’を形成する。
【0066】
次に、図13(c)に示すようにレジストパターン39を形成する。レジストパターン39は、厚肉部21a形成用の開口部39aおよびアンカー部18形成用の開口部39bを有する。
【0067】
次に、図14(a)に示すように厚肉部21aおよびアンカー部18を形成する。レジストパターン39の開口部39a,39b内にめっき法により金属材料を堆積成長させることによって、厚肉部21aおよびアンカー部18を形成することができる。本工程では、シートバネ層21’をめっき法用のシード層として利用することが可能である。
【0068】
次に、図14(b)に示すように、レジストパターン39を除去した後、可動キャパシタ電極21の上述の離隔対向部位21Aをシートバネ層21’からパターン形成する。離隔対向部位21Aのパターン形成においては、シートバネ層21’上に所定のレジストパターンを形成した後、例えばイオンミリング法によってシートバネ層21’を所定の形状にパターニングする。
【0069】
次に、図14(c)に示すように金属犠牲層33,35,38を除去する。具体的には、金属犠牲層33,35,38を構成する金属材料種に応じた所定のエッチング液を作用させるウェットエッチングを行う。金属犠牲層33,35,38がCuまたはCu合金よりなる場合、エッチング液は、アンモニア銅錯塩、塩化アンモニウム、およびアンモニアを含む水溶液であるのが好ましい。金属犠牲層33,35,38がNiまたはNi合金よりなる場合、エッチング液としては、塩化鉄(III)水溶液を使用することができる。金属犠牲層33,35,38がAuまたはAu合金よりなる場合、エッチング液としては、ヨウ化アンモニウム、ヨウ素、およびメタノールを含む水溶液を使用することができる。
【0070】
この後、ウエハ10’を切断して個片を得る。以上のようにして、マイクロ構造体X2を製造することができる。本方法によると、多数のマイクロ構造体形成区画を有するウエハ10’を用いることによって、マイクロ構造体X2を適切に大量生産することができる。
【0071】
本方法においては、金属犠牲層33,35,38が形成されるより前に、ウエハ10’上ないし基板10上の犠牲層形成領域に信号線11が設けられ、そのために犠牲層形成領域に凹凸が存在する。しかしながら、本方法によると、まず、めっき法により、当該凹凸形状の凹部を充填するように一段目の金属犠牲層33を形成することが可能である。このような金属犠牲層33の形成により、二段目の金属犠牲層35の下地面が平坦化されることとなる。そして、金属犠牲層33の上位に金属犠牲層35を一様の厚さの膜体として形成することにより、金属犠牲層35の成長端側表面は平坦となる。そして、最上段の金属犠牲層38を所定のパターンで形成することにより、金属犠牲層33,35,38からなる金属犠牲部の表面は、所定の凹凸形状を有することとなる。このようにして、本方法によると、基板10上の犠牲層形成領域に凹凸が存在する場合においても、金属犠牲部(金属犠牲層33,35,38)の表面に所望の凹凸形状を形成することが可能である(本実施形態では三層構造の金属犠牲部が採用されるが、本発明では二層構造の金属犠牲部や四層以上の多層構造を有する金属犠牲部を採用してもよい)。表面に所定の凹凸形状を有する金属犠牲部の上には、当該凹凸形状に対応する凹凸形状21bを伴う離隔対向部位21Aを形成することができる。
【0072】
また、本方法において形成される金属犠牲層33,35,38は、材料成長速度の速いめっき法によって形成されるものである。そのため、本方法における金属犠牲層33,35,37ないし金属犠牲部については、厚膜化を図りやすい。
【0073】
加えて、本方法によって形成される金属犠牲層33,35,38ないし金属犠牲部は金属よりなるため、充分に堅い。そのため、金属犠牲部上に積層形成される離隔対向部位21Aが不当に変形することは抑制される。
【0074】
以上のまとめとして、本発明の構成およびそのバリエーションを以下に付記として列挙する。
【0075】
(付記1)めっき法により、基板上に第1の金属犠牲層を形成する工程と、
めっき法により、前記第1の金属犠牲層の上位に第2の金属犠牲層を形成する工程と、
前記第2の金属犠牲層上に広がって前記基板から離隔する部位を有し且つ前記基板に支持される構造部を形成する工程と、
前記第1および第2の金属犠牲層を除去する除去工程と、を含むマイクロ構造体製造方法。
(付記2)複数の金属犠牲層からなる積層構造を有する金属犠牲部をめっき法により基板上に形成する工程と、
前記金属犠牲部上に広がって前記基板から離隔する部位を有し且つ前記基板に支持される構造部を形成する工程と、
前記金属犠牲部を除去する除去工程と、を含むマイクロ構造体製造方法。
(付記3)前記金属犠牲層は、Cu、Ni、Al、Ti、Cr、Au、およびPtからなる群より選択される金属または当該金属を含む合金よりなる、付記1または2に記載のマイクロ構造体製造方法。
(付記4)前記めっき法は、電気めっき法および/または無電解めっき法である、付記1または2に記載のマイクロ構造体製造方法。
(付記5)前記電気めっき法ではCuまたはNiを堆積成長させる、付記4に記載のマイクロ構造体製造方法。
(付記6)前記無電解めっき法では、Cu、Ni、Ni−P、Ni−B、またはAuを堆積成長させる、付記4に記載のマイクロ構造体製造方法。
(付記7)前記金属犠牲層はCuまたはCu合金よりなり、前記除去工程では、アンモニア銅錯塩を含むエッチング液を前記金属犠牲層に作用させる、付記1または2に記載のマイクロ構造体製造方法。
(付記8)前記エッチング液は、アンモニア銅錯塩、塩化アンモニウム、およびアンモニアを含む水溶液である、付記7に記載のマイクロ構造体製造方法。
【図面の簡単な説明】
【0076】
【図1】本発明の第1の実施形態に係るマイクロ構造体の平面図である。
【図2】図1の線II−IIに沿った拡大断面図である。
【図3】図1の線III−IIIに沿った拡大断面図である。
【図4】図1に示すマイクロ構造体(可変フィルタ素子)のなす分布定数伝送線路を表す等価回路図である。
【図5】図1に示すマイクロ構造体の製造方法における一部の工程を表す。
【図6】図5の後に続く工程を表す。
【図7】図6の後に続く工程を表す。
【図8】図7の後に続く工程を表す。
【図9】図8の後に続く工程を表す。
【図10】本発明の第2の実施形態に係るマイクロ構造体の平面図である。
【図11】図10の線XI−XIに沿った拡大断面図である。
【図12】図10に示すマイクロ構造体(可変フィルタ素子)の製造方法における一部の工程を表す。
【図13】図12の後に続く工程を表す。
【図14】図13の後に続く工程を表す。
【符号の説明】
【0077】
X1,X2 マイクロ構造体
10 基板
10’ ウエハ
11 信号線
12 グラウンド線
14,21 可動キャパシタ電極
14A,21A 離隔対向部位
14a,21a 厚肉部
15 駆動電極
17 誘電体ドット
18 アンカー部
21b 凹凸形状
33,35,38 金属犠牲層

【特許請求の範囲】
【請求項1】
めっき法により、基板上に第1の金属犠牲層を形成する工程と、
めっき法により、前記第1の金属犠牲層の上位に第2の金属犠牲層を形成する工程と、
前記第2の金属犠牲層上に広がって前記基板から離隔する部位を有し且つ前記基板に支持される構造部を形成する工程と、
前記第1および第2の金属犠牲層を除去する除去工程と、を含むマイクロ構造体製造方法。
【請求項2】
複数の金属犠牲層からなる積層構造を有する金属犠牲部をめっき法により基板上に形成する工程と、
前記金属犠牲部上に広がって前記基板から離隔する部位を有し且つ前記基板に支持される構造部を形成する工程と、
前記金属犠牲部を除去する除去工程と、を含むマイクロ構造体製造方法。
【請求項3】
前記めっき法は、電気めっき法および/または無電解めっき法である、請求項1または2に記載のマイクロ構造体製造方法。
【請求項4】
前記電気めっき法ではCuまたはNiを堆積成長させる、請求項3に記載のマイクロ構造体製造方法。
【請求項5】
前記無電解めっき法では、Cu、Ni、Ni−P、Ni−B、またはAuを堆積成長させる、請求項3に記載のマイクロ構造体製造方法。
【請求項6】
前記金属犠牲層はCuまたはCu合金よりなり、前記除去工程では、アンモニア銅錯塩を含むエッチング液を前記金属犠牲層に作用させる、請求項1または2に記載のマイクロ構造体製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate


【公開番号】特開2009−83018(P2009−83018A)
【公開日】平成21年4月23日(2009.4.23)
【国際特許分類】
【出願番号】特願2007−253946(P2007−253946)
【出願日】平成19年9月28日(2007.9.28)
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成19年度、総務省、「高マイクロ波帯基盤技術の高度化のための研究開発」委託研究、産業技術力強化法第19条の適用を受ける特許出願
【出願人】(000005223)富士通株式会社 (25,993)
【Fターム(参考)】