説明

モータ駆動装置

【課題】回転位置センサを用いない安価なモータ駆動装置において、モータの起動時など比較的モータの回転数が低い場合でも正確に脱調判定を行う。
【解決手段】目標電流値、または、目標電流となるように駆動されたモータの駆動電流値とのいずれか一方と回転数指令値とを入力し、同回転数指令値に比例するモータの回転による誘起電圧と、固有のインピーダンス特性を持ったモータに駆動電流が流れた時に発生するインピーダンス特性電圧とから、モータの脱調の有無を判定するための脱調判定電圧閾値を出力する脱調判定電圧閾値算出手段を設け、電圧振幅指令値と脱調判定電圧閾値とを比較して、電圧振幅指令値が脱調判定電圧閾値よりも小さい場合、モータが脱調していると判定する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、センサレスのモータ駆動装置に係わり、より詳細には、モータの脱調を検出する構成に関する。
【背景技術】
【0002】
従来、モータの脱調を検出する構成を備えたセンサレスのモータ駆動装置は、例えば図4に示す180°通電方式による同期モータ制御装置が開示されている。
同期モータ制御装置71は、電流センサ80と、電流振幅情報検出部81と、目標電流制御部82と、制御切換部83と、電圧振幅制御部84と、目標電流位相算出部85と、脱調判定部86(脱調判定手段)と、位相誤差情報検出部87と、位相制御部88と、加算器89と、目標位相差算出部90と、モータ印加電圧波形生成部91と、回転数指令算出部92とから構成されている。
【0003】
同期モータ制御装置71には、回転位置センサを備えていない同期モータ72が接続され、同期モータ72にはコンプレッサ73が連結されている。また、電流センサ80は、同期モータ72の各相に流れる相電流を検出するためのセンサである。また、電流振幅情報検出部81は、電流センサ80の検出した各相の相電流から、相電流の振幅情報を検出するブロックである。
【0004】
目標電流制御部82は、電流振幅情報検出部81の検出した相電流の振幅情報を予め設定されている目標電流値と比較し、その比較結果に基づいて、電流制御用データを出力するブロックである。また、回転数指令算出部92は、システム制御ECU(図略)の出力する目標回転数となるよう所定の回転数で更新される回転数指令値を算出する。
【0005】
制御切換部83は、回転数指令算出部92の出力する回転数指令に基づいて、目標電流制御部82の出力する電流制御用データと、後述する位相制御部88の出力する位相制御用データとを切り換えて出力するブロックである。制御切換部83は、回転数指令が予め設定されている制御切換判定回転数閾値より大きいとき、電圧振幅制御部84に出力する制御用データを電流制御用データから位相制御用データに切り換えて出力する。
【0006】
電圧振幅制御部84は、回転数指令と、制御切換部83の出力する電流制御用データ又は位相制御用データに基づいて、同期モータ72に印加する交流電圧を決定する電圧振幅指令(印加電圧指令)を出力するブロックである。また、目標電流位相算出部85は、回転数指令に基づいて、同期モータ72の相電流の位相を決定する目標電流位相指令を出力するブロックである。
【0007】
脱調判定部86は、回転数指令と、電圧振幅制御部84の出力する電圧振幅指令に基づいて、同期モータ72の脱調を判定するとともに、同期モータ72が脱調したと判定したとき、同期モータ72への通電を停止させる通電停止指令を出力するブロックである。脱調判定部86は、回転数指令が予め設定されている脱調判定回転数閾値(所定回転数閾値)より大きいとき、同期モータ72の脱調の判定を行う。そして、電圧振幅指令が予め設定されている脱調判定電圧閾値(所定電圧閾値)以下のとき、同期モータ72が脱調していると判定する。
【0008】
位相誤差情報検出部87は、目標電流位相指令と、電流センサ80の検出した各相の電流に基づいて、相電流の位相誤差情報を検出するブロックである。また、位相制御部88は、位相誤差情報検出部87の検出した相電流の位相誤差情報に基づいて、位相制御用データを出力するとともに、目標電流位相指令の補正用データを出力するブロックである。また、加算器89は、目標電流位相算出部85の出力する目標電流位相指令に、位相制御部88の出力する補正用データを加算して、目標電流位相指令を補正するブロックである。
【0009】
目標位相差算出部90は、回転数指令と、相電流の振幅情報に基づいて、同期モータ72に印加する交流電圧と流れる相電流の位相差を決定する目標位相差指令を出力するブロックである。また、モータ印加電圧波形生成部91は、同期モータ72の制御開始時、直流電圧を印加して同期モータ72を固定するブロックである。また、電圧振幅指令と、目標電流位相指令と、目標位相差指令とに基づいて、同期モータ72に印加する交流電圧を出力するブロックである。さらに、通電停止指令に基づいて、同期モータ72に印加する交流電圧を0にして、同期モータ72への通電を停止させるブロックである。
【0010】
次に、具体的動作について説明する。システム制御ECUから目標回転数が指示されると、同期モータ制御装置71は、同期モータ72の制御を開始する。モータ印加電圧波形生成部91は、同期モータ72に直流電圧を印加して、同期モータ72のロータを初期位置に固定させる。
【0011】
そして、同期モータ制御装置71は、同期モータ72の電流制御を開始する。制御切換部83は、目標電流制御部82の出力する電流制御用データを電圧振幅制御部84に出力する。電圧振幅制御部84は、回転数指令算出部92の出力する回転数指令と電流制御用データに基づいて、同期モータ72に印加される交流電圧を決定する電圧振幅指令をモータ印加電圧波形生成部91に出力する。
【0012】
目標電流位相算出部85は、回転数指令に基づいて、同期モータ72の相電流の位相を決定する目標電流位相指令をモータ印加電圧波形生成部91に出力する。なお、同期モータ72の起動時には位相制御を行わないため、目標位相差算出部90は、同期モータ72の印加電圧と相電流の位相差を決定する目標位相差指令を0にし、モータ印加電圧波形生成部91に出力する。
【0013】
モータ印加電圧波形生成部91は、電圧振幅指令と、目標電流位相指令とに基づいて、初期位置を基準として強制的に転流し、同期モータ72の相電流が目標電流となるとように電流制御するための交流電圧を出力する。同期モータ72は、交流電圧が印加されることで、相電流を目標電流に保ちながら回転数指令に応じて回転を開始する。
【0014】
その後、回転数指令算出部92は、目標回転数に達するまで同期モータ72の回転数を上昇させるため、回転数指令を徐々に上げる。一方、脱調判定部86は、回転数指令を脱調判定回転数閾値と比較する。ここで、脱調判定回転数閾値は、図5に示すように、同期モータ72の誘起電圧が小さい低速回転域の回転数指令に対応した値に設定されている。
【0015】
回転数指令が脱調判定回転数閾値より大きいとき、同期モータ72の脱調の判定を行うため、電圧振幅制御部84の出力する電圧振幅指令を脱調判定電圧閾値と比較する。ここで、脱調判定電圧閾値は、図5に示すように、安定駆動時の同期モータ72の電圧振幅指令に対して、出力限界電圧を十分考慮した値に設定されている。同期モータ72の誘起電圧は回転数に比例するため、脱調判定電圧閾値は、回転数指令にともなって変化する。
【0016】
これに対し、回転数指令が脱調判定回転数閾値以上で、かつ、電圧振幅指令が脱調判定電圧閾値以下のとき、脱調判定部86は、同期モータ72が脱調していると判定し、同期モータ72への通電を停止させる通電停止指令をモータ印加電圧波形生成部91に出力する。モータ印加電圧波形生成部91は、脱調判定部86の出力する通電停止指令に基づいて、同期モータ72に印加する交流電圧を0にして、同期モータ72への通電を停止させる。さらに、脱調判定部86は、同期モータ72の脱調を報知する脱調エラー信号をシステム制御ECUに送信する。
【0017】
一方、電圧振幅指令が脱調判定電圧閾値より大きいとき、切換制御部83は、回転数指令を制御切換判定回転数閾値と比較する。ここで、制御切換判定回転数閾値は、脱調判定回転数閾値より大きい、コンプレッサ73の負荷変動が安定するのに充分な回転数に設定されている。
【0018】
回転数指令が制御切換判定回転数閾値より大きいとき、同期モータ72の制御が、電流制御からより効率の高い位相制御に切り換えられる。切換制御部83は、電圧振幅制御部84に出力する制御用データを電流制御用データから位相制御用データに切り換える。電圧振幅制御部84は、回転数指令と位相制御用データに基づいて、同期モータ72に印加される交流電圧を決定する電圧振幅指令をモータ印加電圧波形生成部91に出力する。加算器89は、目標電流位相算出部85の出力する目標電流位相指令に位相制御用データを加算して補正した目標電流位相指令をモータ印加電圧波形生成部91に出力する。
【0019】
目標位相差算出部90は、回転数指令と電流振幅情報検出部81の検出した相電流の振幅情報に基づいて、同期モータ72の印加電圧と相電流の位相差を決定する目標位相差指令をモータ印加電圧波形生成部91に出力する。モータ印加電圧波形生成部91は、電圧振幅指令と、補正された目標電流位相指令と、目標位相差指令とに基づいて、同期モータ72を位相制御するための交流電圧を出力する。同期モータ72は、交流電圧と相電流との位相差を目標位相差に保ちながら、回転数指令に応じて効率的に回転する。
【0020】
このように、同期モータ制御装置71は、コンプレッサ73の負荷変動が安定する回転数に達するまで、強制転流による電流制御を行い、それ以降は、効率の高い位相制御に切り換えて同期モータ72を介してコンプレッサ73を制御する。(例えば、特許文献1参照)。
【0021】
しかしながら、以上説明したように同期モータの起動時など、同期モータの回転が低速回転域の場合は誘起電圧もこれに対応して低いため、モータの脱調前後における電圧振幅指令の変化が小さくて脱調に関して誤判定する場合があり、低速回転域において脱調の検出ができなかった。
【先行技術文献】
【特許文献】
【0022】
【特許文献1】特開2006−136064号公報(第5−6頁、図1)
【発明の概要】
【発明が解決しようとする課題】
【0023】
本発明は以上述べた問題点を解決し、回転位置センサを用いない安価なモータ駆動装置において、モータの起動時など比較的モータの回転数が低い場合でも正確に脱調判定を行うことを目的とする。
【課題を解決するための手段】
【0024】
本発明は上述の課題を解決するため、モータの回転数指令を入力し、同回転数指令に対応して前記モータに流れる電流が目標電流となるように前記モータに印加する印加電圧を指示する電圧振幅指令値を制御するセンサレスのモータ駆動装置において、
前記目標電流値、または、前記目標電流となるように駆動された前記モータの駆動電流値とのいずれか一方と前記回転数指令値とを入力し、同回転数指令値に比例する前記モータの回転による誘起電圧と、固有のインピーダンス特性を持った前記モータに前記駆動電流が流れた時に発生するインピーダンス特性電圧とから、前記モータの脱調の有無を判定するための脱調判定電圧閾値を出力する脱調判定電圧閾値算出手段を備え、前記電圧振幅指令値と前記脱調判定電圧閾値とを比較して前記モータの脱調判定を行うことを特徴とする。
【0025】
また、前記脱調判定電圧閾値算出手段は、前記回転数指令値に比例して発生する誘起電圧の大きさを表す係数に前記回転数指令値を乗じた値と、前記駆動電流値または前記目標電流値のいずれかに前記インピーダンス特性の大きさを表す係数を乗じた値とを加算して前記脱調判定電圧閾値を算出することを特徴とする。
【発明の効果】
【0026】
以上の手段を用いることにより、本発明によるモータ駆動装置によれば、
請求項1に係わる発明は、回転数指令値に比例するモータの回転による誘起電圧と、インピーダンスを持ったモータに駆動電流が流れた時に発生する電圧であるインピーダンス特性電圧とから、モータの脱調の有無を判定するための脱調判定電圧閾値を算出している。このため、従来技術に比較して、中速や高速回転域だけでなく、比較的モータが低速回転で誘起電圧が低い場合であっても、確実に脱調判定を行うことができる。
【0027】
請求項2に係わる発明は、回転数指令値と、目標電流値、または、駆動電流値とにそれぞれ所定の係数を乗じて加算するだけで脱調判定電圧閾値を算出することができるため、処理が簡単で軽いため、低価格のマイコンなどで容易に実現することができる。
【図面の簡単な説明】
【0028】
【図1】本発明によるモータ駆動装置を備えた空気調和機の室外機を示す要部ブロック図である。
【図2】速度指令の変化における脱調判定電圧閾値と印加電圧(正常時)と脱調時の印加電圧との関係を示すグラフである。
【図3】図1の制御手段での処理を説明するグラフである。
【図4】従来のモータ駆動装置を示すブロック図である。
【図5】従来のモータ駆動装置での脱調判定電圧閾値を示すグラフである。
【発明を実施するための形態】
【0029】
以下、本発明の実施の形態を、添付図面に基づいた実施例として詳細に説明する。
【実施例1】
【0030】
図1は回転位置センサを備えていない同期モータを180°通電方式によって駆動するモータ駆動装置1を備えた空気調和機の室外機の実施例を示す要部ブロック図である。なお、室外機のファン、熱交換器等は本発明の説明に不要なため、図示、及び説明を省略する。また、同期モータ72とコンプレッサ73は室外機を構成する部品であり、モータ駆動装置には含まない。
【0031】
モータ駆動装置1は、電流センサ80と、電流振幅情報検出部81と、目標電流制御部82と、制御切換部83と、電圧振幅制御部84と、目標電流位相算出部85と、脱調判定手段3と、脱調判定電圧閾値算出手段2と、位相誤差情報検出部87と、位相制御部88と、加算器89と、目標位相差算出部90と、モータ印加電圧波形生成部91と、回転数指令算出部92とから構成されている。
【0032】
モータ駆動装置1には、回転位置センサを備えていない同期モータ72が接続され、同期モータ72にはコンプレッサ73が連結されている。また、電流センサ80は、同期モータ72の各相に流れる相電流を検出するためのセンサである。また、電流振幅情報検出部81は、電流センサ80の検出した各相の相電流から、相電流の振幅情報を検出するブロックである。
【0033】
目標電流制御部82は、電流振幅情報検出部81の検出した相電流の振幅情報を予め設定されている目標電流値と比較し、その比較結果に基づいて、電流制御用データを出力するブロックである。また、回転数指令算出部92は、システム制御ECU(図略)の出力する目標回転数となるよう所定の回転数で更新される回転数指令値を算出する。
【0034】
制御切換部83は、回転数指令算出部92の出力する回転数指令に基づいて、目標電流制御部82の出力する電流制御用データと、後述する位相制御部88の出力する位相制御用データとを切り換えて出力するブロックである。制御切換部83は、回転数指令が予め設定されている制御切換判定回転数閾値より大きいとき、電圧振幅制御部84に出力する制御用データを電流制御用データから位相制御用データに切り換えて出力する。
【0035】
電圧振幅制御部84は、回転数指令と、制御切換部83の出力する電流制御用データ又は位相制御用データに基づいて、同期モータ72に印加する交流電圧を決定する電圧振幅指令(印加電圧指令)を出力するブロックである。また、目標電流位相算出部85は、回転数指令に基づいて、同期モータ72の相電流の位相を決定する目標電流位相指令を出力するブロックである。
【0036】
脱調判定電圧閾値算出手段2は、電流振幅情報検出部81から出力される駆動電流値と、回転数指令算出部92から出力される回転数指令値とを入力し、後述する計算式を用いて脱調判定電圧閾値を算出し、これを脱調判定手段3へ出力する。
【0037】
脱調判定手段3は、脱調判定電圧閾値算出手段2で算出した脱調判定電圧閾値と、電圧振幅制御部84の出力する電圧振幅指令に基づいて、同期モータ72の脱調を判定するとともに、同期モータ72が脱調したと判定したとき、同期モータ72への通電を停止させる通電停止指令を出力するブロックである。脱調判定手段3は、電圧振幅指令が脱調判定電圧閾値以下のとき、同期モータ72が脱調している判定する。 従って、脱調判定電圧閾値とは、ある回転数指令で同期モータ72が回転している時の最低印加電圧を示している。
【0038】
位相誤差情報検出部87は、目標電流位相指令と、電流センサ80の検出した各相の電流に基づいて、相電流の位相誤差情報を検出するブロックである。また、位相制御部88は、位相誤差情報検出部87の検出した相電流の位相誤差情報に基づいて、位相制御用データを出力するとともに、目標電流位相指令の補正用データを出力するブロックである。また、加算器89は、目標電流位相算出部85の出力する目標電流位相指令に、位相制御部88の出力する補正用データを加算して、目標電流位相指令を補正するブロックである。
【0039】
目標位相差算出部90は、回転数指令と、相電流の振幅情報に基づいて、同期モータ72に印加する交流電圧と流れる相電流の位相差を決定する目標位相差指令を出力するブロックである。また、モータ印加電圧波形生成部91は、同期モータ72の制御開始時、直流電圧を印加して同期モータ72を固定するブロックである。また、電圧振幅指令と、目標電流位相指令と、目標位相差指令とに基づいて、同期モータ72に印加する交流電圧を出力するブロックである。さらに、通電停止指令に基づいて、同期モータ72に印加する交流電圧を0にして、同期モータ72への通電を停止させるブロックである。
【0040】
図2は本発明の特徴を説明するグラフである。
図2の横軸は回転数指令を示しており、右側に向かって指令値が増加する。一方、縦方向は電圧を示しており、同期モータ72の印加電圧と対応する電圧振幅指令値(正常時と脱調時)と、脱調判定電圧閾値とを示している。
【0041】
電圧振幅指令値(正常時)のグラフは同期モータ72が回転数指令に従って運転されている場合を示しており、一般的に、回転数指令値が大きくなると同期モータ72の誘起電圧も増加するするため、右肩上がりのグラフとなる。ただし、この印加電圧(電圧振幅指令値とほぼ同じ)には誘起電圧の他に、同期モータ72の図示しない電機子巻線に印加されるインピーダンス特性電圧も含まれている。
【0042】
このインピーダンス特性電圧は、同期モータ72の回転が停止している場合に、ある値の電流が電機子巻線に流れた時に発生する印加電圧を示している。一般的に、電圧振幅指令値によって指示されて正常回転している場合の同期モータ72への印加電圧は、このインピーダンス特性電圧と同期モータ72の回転によって発生する誘起電圧との和にほぼ等しい。
【0043】
ここで、インピーダンス特性電圧を決定するある値の電流は電流振幅情報検出部81から出力される駆動電流値を示しており、回転数指令算出部92で指示された回転数となるように制御した結果、同期モータ72に流れる電流である。この電流値は同期モータ72のトルク変化など影響で細かく変化する。図2ではこの電流の変化による電圧の変化を三角型の波の変化として模式化している。
【0044】
一方、脱調時の電圧振幅指令値のグラフは、同期モータ72が回転数指令に従って運転されていない場合、つまり、各回転数指令値の時に脱調時した場合の印加電圧を連続的にプロットした仮想的なグラフを示している。
一般的に、同期モータ72が脱調した場合、回転子の回転が停止してしまう。このため、電機子巻線に印加される印加電圧のうち、誘起電圧分が無くなり、前述したように、同期モータ72の電機子巻線に印加されるインピーダンス特性電圧のみとなる。
【0045】
この脱調によって電機子巻線に印加される印加電圧が低下する原理を次に説明する。
同期モータ72が脱調した場合でも、この脱調をモータ駆動装置1が認識するまではそれ以前の正常回転時と同じように目標電流に従って印加電圧を決定して同期モータ72に供給する制御が継続される。このため、次のようなステップ動作となる。
【0046】
まず最初に脱調が発生すると目標電流位相に対して回転子の回転位置が遅れる。→結果的に目標電流位相が進む。→印加電圧と目標電流位相との差が大きくなる。→電圧振幅指令値を下げる。モータ駆動装置1では力率制御、つまり、印加電圧と目標電流位相との差が一定になるように制御しているため、この差が大きくなると印加電圧(電圧振幅指令値)を低下させるように制御する。このため、回転数指令値と電圧振幅指令値だけで中速、高速回転域は脱調判定が可能である。
【0047】
しかしながら、背景技術で説明したように、脱調の判定を回転数指令に比例した脱調判定電圧閾値と、電圧振幅指令値(印加電圧)との比較で行うと、低速回転域において脱調時の印加電圧が回転数指令に比例した脱調判定電圧閾値(図2の点線の直線)よりも大きくなり、脱調状態であるにも関わらずに正常であるとする誤った判定をしてしまう場合があった。(図2の網かけ部分)
【0048】
本実施例では脱調の判定を、回転数指令に比例した誘起電圧を基本とする部分と、インピーダンス特性電圧による部分とを考慮して、最終的な脱調判定電圧閾値を算出し、これと現在の電圧振幅指令とを比較して脱調を判定していることが特徴である。
【0049】
本実施例による脱調判定電圧閾値は次の式で算出される。なお、この計算は脱調判定電圧閾値算出手段2で実施される。
脱調判定電圧閾値=回転数指令値×誘起電圧係数+駆動電流値×インピーダンス特性係数・・・・式1
【0050】
ここで、回転数指令値は、回転数指令算出部92が出力する回転数指令を、誘起電圧係数は回転数指令に比例して発生する誘起電圧の大きさを表す係数を、駆動電流値は電流振幅情報検出部81から出力される電流値を、インピーダンス特性係数は同期モータ72の回転が停止している場合のインピーダンス特性の大きさを、それぞれ表すものである。従って、駆動電流にインピーダンス特性係数を乗じた値がインピーダンス特性電圧による電圧を示している。
【0051】
なお、ここで説明した誘起電圧係数とインピーダンス特性係数とは、モータ駆動装置1内の図示しないマイコン内の記憶部に記憶されている。また、インピーダンス特性係数は、同期モータ72内の電機子巻線のインダクタンスや直流抵抗、さらに、同期モータ72を駆動するための配線のインダクタンスや直流抵抗を含んだものの係数である。従って、これらを計算して求めてもよいが、予め実験的に、脱調した時の駆動電流から逆算して求めてもよい。
【0052】
次に図3で示すフローチャートを用いて、モータ駆動装置1での処理の流れを説明する。また、このフローチャートにおいて、Sはステップを表し、これに続く数字はステップ番号を、また、YはYesを、NはNoをそれぞれ表している。
【0053】
モータ駆動装置1は、まず最初に、システム制御ECUから目標回転数の指示を受けると、同期モータ72に直流電圧を印加して、同期モータ72のロータを初期位置に固定させる(S100)。
【0054】
そして、モータ駆動装置1は、同期モータ72の電流制御を開始する(S102)。制御切換部83は、目標電流制御部82の出力する電流制御用データを電圧振幅制御部84に出力する。電圧振幅制御部84は、回転数指令算出部92の出力する回転数指令と電流制御用データに基づいて、同期モータ72に印加される交流電圧を決定する電圧振幅指令をモータ印加電圧波形生成部91に出力する。
【0055】
目標電流位相算出部85は、回転数指令に基づいて、同期モータ72の相電流の位相を決定する目標電流位相指令をモータ印加電圧波形生成部91に出力する。なお、同期モータ72の起動時には位相制御を行わないため、目標位相差算出部90は、同期モータ72の印加電圧と相電流の位相差を決定する目標位相差指令を0にし、モータ印加電圧波形生成部91に出力する。
【0056】
モータ印加電圧波形生成部91は、電圧振幅指令と、目標電流位相指令とに基づいて、初期位置を基準として強制的に転流し、同期モータ72の相電流が目標電流となるとように電流制御するための交流電圧を出力する。同期モータ72は、交流電圧が印加されることで、相電流を目標電流に保ちながら回転数指令に応じて回転を開始する。
【0057】
その後、回転数指令算出部92は、目標回転数に達するまで同期モータ72の回転数を上昇させるため、回転数指令を徐々に上げる(S104)。一方、脱調判定電圧閾値算出手段2は、駆動電流値と回転数指令値とを入力し、式1の関係より脱調判定電圧閾値を算出する(S106)。そして、脱調判定手段3は、電圧振幅制御部84の出力する電圧振幅指令値を脱調判定電圧閾値と比較する(S108)。
【0058】
電圧振幅指令値が脱調判定電圧閾値より小さいか等しい時(S108−Y)、脱調判定手段3は、同期モータ72が脱調していると判定し、同期モータ72への通電を停止させる通電停止指令をモータ印加電圧波形生成部91に出力する。モータ印加電圧波形生成部91は、脱調判定手段3の出力する通電停止指令に基づいて、同期モータ72に印加する交流電圧を0にして、同期モータ72への通電を停止させる(S110)。さらに、脱調判定手段3は、同期モータ72の脱調を報知する脱調エラー信号をシステム制御ECUに送信する(S112)。そして制御を停止する。
【0059】
一方、電圧振幅指令値が脱調判定電圧閾値より大きいとき(S108−N)、切換制御部83は、回転数指令値を図2に示す制御切換判定回転数閾値と比較する。ここで、制御切換判定回転数閾値は、コンプレッサ73の負荷変動が安定するのに充分な回転数に設定されている。
【0060】
回転数指令値が制御切換判定回転数閾値より大きいとき(S114−Y)、切換制御部83は、電圧振幅制御部84に出力する制御用データを電流制御用データから位相制御用データに切り換える。この結果、同期モータ72の制御が、電流制御から位相制御に切り換えられる。以降はこの位相制御で同期モータ72が制御される(S116)。そして、モータ駆動装置1は脱調判定を継続して行うため、S106へジャンプする。
【0061】
一方、回転数指令値が制御切換判定回転数閾値より小さいか等しい時とき(S114−N)、S104へジャンプする。このように、同期モータ制御装置71は、コンプレッサ73の負荷変動が安定する回転数に達するまで、強制転流による電流制御を行い、それ以降は、位相制御に切り換えて同期モータ72を介してコンプレッサ73を制御する。
【0062】
次に、位相制御(S116)での動作について詳細に説明する。
電圧振幅制御部84は、回転数指令と位相制御用データに基づいて、同期モータ72に印加される交流電圧を決定する電圧振幅指令をモータ印加電圧波形生成部91に出力する。加算器89は、目標電流位相算出部85の出力する目標電流位相指令に位相制御用データを加算して補正した目標電流位相指令をモータ印加電圧波形生成部91に出力する。
【0063】
目標位相差算出部90は、回転数指令と電流振幅情報検出部81の検出した相電流の振幅情報に基づいて、同期モータ72の印加電圧と相電流の位相差を決定する目標位相差指令をモータ印加電圧波形生成部91に出力する。モータ印加電圧波形生成部91は、電圧振幅指令と、補正された目標電流位相指令と、目標位相差指令とに基づいて、同期モータ72を位相制御するための交流電圧を出力する。同期モータ72は、交流電圧と相電流との位相差を目標位相差に保ちながら、回転数指令に応じて回転する。
【0064】
なお、位相制御(S116)でのステップでは、上記で説明した複雑な処理をこのステップを通過する毎に少しずつ実行し、S106→S108→S114→S116→S106の各ステップのループを周回する間に同期モータ72を位相制御する。
【0065】
なお、このモータ駆動装置1はプログラムを内蔵した図示しないマイコンを備えており、このマイコンで実行されるプログラム、つまり、図3の各ステップと対応するプログラムが実行されることで図1の各手段や各部の動作が実現される。図3ではプログラムと対応するステップで手段を表しており、図3のS106が脱調判定電圧閾値算出手段2を、また、ST108が脱調判定手段3をそれぞれ示している。
【0066】
以上説明したように、回転数指令値に比例する同期モータ72の回転による誘起電圧と、インピーダンスを持った同期モータ72に駆動電流が流れた時に発生する電圧であるインピーダンス特性電圧とから、同期モータ72の脱調の有無を判定するための脱調判定電圧閾値を算出している。このため、従来技術に比較して、中速や高速回転域だけでなく、比較的モータが低速回転で誘起電圧が低い場合あっても、確実に脱調判定を行うことができる。
【0067】
また、式1で示すように、回転数指令値と、駆動電流値とにそれぞれ所定の係数を乗じて加算するだけで脱調判定電圧閾値を算出することができるため、処理が簡単でかつ、処理が軽いため、低価格のマイコンなどで容易に実現することができる。なお、駆動電流値は目標電流値とほぼ等しくなるので、駆動電流値に代替して目標電流値を用いてもよい。
【0068】
なお、本実施例では3相のモータを用いて説明しているが、これに限るものではなく、他の多相モータに適用してもよい。また、本実施例で説明した180°通電方式でなく120°通電方式に応用してもよい。
【符号の説明】
【0069】
1 モータ駆動装置
2 脱調判定電圧閾値算出手段
3 脱調判定手段
71 同期モータ制御装置
72 同期モータ
73 コンプレッサ
80 電流センサ
81 電流振幅情報検出部
82 目標電流制御部
83 制御切換部
83 切換制御部
84 電圧振幅制御部
85 目標電流位相算出部
87 位相誤差情報検出部
88 位相制御部
89 加算器
90 目標位相差算出部
91 モータ印加電圧波形生成部
92 回転数指令算出部

【特許請求の範囲】
【請求項1】
モータの回転数指令を入力し、同回転数指令に対応して前記モータに流れる電流が目標電流となるように前記モータに印加する印加電圧を指示する電圧振幅指令値を制御するセンサレスのモータ駆動装置において、
前記目標電流値、または、前記目標電流となるように駆動された前記モータの駆動電流値とのいずれか一方と前記回転数指令値とを入力し、同回転数指令値に比例する前記モータの回転による誘起電圧と、固有のインピーダンス特性を持った前記モータに前記駆動電流が流れた時に発生するインピーダンス特性電圧とから、前記モータの脱調の有無を判定するための脱調判定電圧閾値を出力する脱調判定電圧閾値算出手段を備え、前記電圧振幅指令値と前記脱調判定電圧閾値とを比較して前記モータの脱調判定を行うことを特徴とするモータ駆動装置。
【請求項2】
前記脱調判定電圧閾値算出手段は、前記回転数指令値に比例して発生する誘起電圧の大きさを表す係数に前記回転数指令値を乗じた値と、前記駆動電流値または前記目標電流値のいずれかに前記インピーダンス特性の大きさを表す係数を乗じた値とを加算して前記脱調判定電圧閾値を算出することを特徴とする請求項1記載のモータ駆動装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2010−213518(P2010−213518A)
【公開日】平成22年9月24日(2010.9.24)
【国際特許分類】
【出願番号】特願2009−58983(P2009−58983)
【出願日】平成21年3月12日(2009.3.12)
【出願人】(000006611)株式会社富士通ゼネラル (1,266)
【Fターム(参考)】