説明

エンジンの排気浄化装置

【課題】排気系に未燃焼ガスを供給して触媒を暖機する際に、より少ない燃料量で触媒を暖機して早期に活性化させ、触媒暖機完了前の排気エミッションを改善する。
【解決手段】触媒温度が目標温度(触媒活性化温度)未満で必要温度(未燃焼ガスが排気系で自然燃焼する温度)を超えている場合、触媒暖機判断部101から部分気筒点火カット部103に指示して一部の気筒の点火をカットし、触媒暖機点火時期制御部102による点火時期制御及び触媒暖機スロットル制御部104による空気量制御を実行させることにより、点火カット気筒からの未燃焼ガスと、他の点火気筒からの燃焼ガスとを排気系で混合させて触媒中で燃焼させ、より少ない燃料で触媒の昇温効果が最大限に得られるように制御する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、排気系に介装した触媒を暖機して触媒の早期活性化を図るエンジンの排気浄化装置に関する。
【背景技術】
【0002】
一般に、エンジンの排気浄化装置に用いられる触媒は、エンジンの冷態始動直後等の温度が低い状態では、触媒金属が活性化していないため、十分な排気ガス浄化性能を得ることは困難である。
【0003】
このため、従来から、触媒を電気ヒータで加熱する等して触媒の早期活性化を促進する技術が知られているが、電気ヒータは電気エネルギーの消費量が大きいことから、エンジンでの燃焼タイミングを遅くして後燃えにより生じる高温の排気ガスを積極的に触媒に送り込み、触媒の温度を早期に上昇させる触媒暖機制御が一般的に採用されている。
【0004】
例えば、特許文献1には、点火時期を遅角させて高温の排気ガスを浄化装置に流入させてNOx吸収剤を昇温させることにより、電気ヒータにより外部から加熱することなくNOx吸収剤に吸収されたイオウを放出する技術が開示されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開平10−54274号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、点火時期を遅角化することで排気温度を上げる従来の触媒暖機制御では、点火時期の遅角化でエンジントルクが低下するため、スロットル開度やエンジン回転数を大きくして空気量を増大させている。このため、空気量の増大に比例して燃料量も増えてしまい、暖機が完了する前に触媒から排出されるガス中に含まれる浄化処理不足のガス量が増大し、排気エミッションが悪化する。
【0007】
本発明は上記事情に鑑みてなされたもので、排気系に未燃焼ガスを供給して触媒を暖機する際に、より少ない燃料量で触媒を暖機して早期に活性化させ、触媒暖機完了前の排気エミッションを改善することのできるエンジンの排気浄化装置を提供することを目的としている。
【課題を解決するための手段】
【0008】
本発明によるエンジンの排気浄化装置は、排気系に介装した触媒を暖機して触媒の早期活性化を図るエンジンの排気浄化装置において、エンジン始動時に、前記触媒の温度状態に応じて触媒暖機制御を実行するか否かを判断する触媒暖機判断部と、前記媒暖機判断部からの指示により、一部の気筒の点火をカットして未燃焼ガスを前記排気系に供給する部分気筒点火カット部と、前記部分気筒点火カット部で一部の気筒の点火をカットするとき、前記触媒下流の空燃比に応じて点火気筒の点火時期を制御する触媒暖機点火時期制御部と、前記部分気筒点火カット部で一部の気筒の点火をカットするとき、前記触媒下流の空燃比に応じてスロットル開度を制御する触媒暖機スロットル制御部とを備えている。
【発明の効果】
【0009】
本発明によれば、排気系に未燃焼ガスを供給して触媒を暖機する際に、より少ない燃料量で触媒を暖機して早期に活性化させることができ、触媒暖機完了前の排気エミッションを改善することができる。
【図面の簡単な説明】
【0010】
【図1】エンジン制御系の全体構成図
【図2】触媒暖機制御に係る機能ブロック図
【図3】サイクル毎の点火カット気筒を示す説明図
【図4】部分点火カットによるトルク変動を示す説明図
【図5】触媒暖機処理のフローチャート
【発明を実施するための形態】
【0011】
以下、図面を参照して本発明の実施の形態を説明する。
図1において、符号1はエンジンであり、本実施の形態においては、#1〜#4の4つの気筒を有する4気筒エンジンである。このエンジン1のシリンダヘッド2には、各気筒の吸気ポート或いは気筒内に燃料を噴射するインジェクタ30と、気筒内の混合気に火花放電して燃焼させる点火プラグ31とが配設されている。
【0012】
また、エンジン1の吸気系の構成として、各気筒の吸気ポートに連通するブランチ部を有する吸気マニホルド3がシリンダヘッド2に連設され、吸気マニホルド3の各ブランチが集合する吸気通路4に、スロットル弁5が介装されている。スロットル弁5は、電子制御装置(ECU)100からの制御信号によってスロットル開度を制御するスロットルアクチュエータ6に連設されている。
【0013】
更に、スロットル弁5の上流側に、インタークーラ7が介装され、インタークーラ7の上流側に、ターボ過給機8のコンプレッサ8aが介装され、コンプレッサ8a上流側に、エアクリーナ9が介装されている。エアクリーナ9の下流側には吸入空気量センサ10が介装されている。
【0014】
一方、エンジン1の排気系の構成としては、各気筒の排気ポートに連通するブランチ部を有する排気マニホルド11がシリンダヘッド2に連設され、排気マニホルド11の各ブランチが集合する排気通路12に、ターボ過給機8のタービン8bが介装されている。ターボ過給機8は、例えば、周知の可変ノズル式ターボ過給機(Variable Geometory Turbosupercharger:VGT)であり、タービン8bの周囲に設けられた可変ノズルのベーンに、ECU100からの制御信号によってベーン開度を制御するアクチュエータ13がリンク機構(図示せず)を介して連設されている。
【0015】
更に、排気通路12のタービン8b下流側には、タービン8bを通過した排気を浄化する触媒コンバータ20が介装されている。触媒コンバータ20は、例えば、排気ガス中の不完全燃焼成分であるHC(炭化水素)及びCO(一酸化炭素)の酸化と、空気中の窒素と燃え残りの酸素とが反応して生成されるNOx(窒素酸化物)の還元とを同時に促進する三元触媒や、三元触媒では浄化できない空燃比リーン域(酸素過剰雰囲気下)でのNOxを捕集して吸蔵し、還元浄化するNOx吸蔵還元型触媒(Lean NOx Trap catalyst;LNT)等の触媒を収容するものである。この触媒コンバータ20には、内部の触媒が活性状態にあるか否かを調べるため、触媒の温度を検出する触媒温度センサ21が装着されており、触媒コンバータ20の下流側には、触媒を通過した排気ガスの空燃比を検出するための空燃比センサ22が臨まされている。
【0016】
尚、タービン8bの上流側の排気通路12は、図示しない排気ガス還流(EGR)通路を介してスロットル弁5下流側の吸気通路4にバイパス接続されており、所定の運転領域でEGR通路に介装された開閉制御弁を介して排気ガスが排気通路12から吸気通路4に環流される。
【0017】
次に、ECU100を中心とするエンジン1の電子制御系について説明する。
ECU100は、CPU,ROM,RAM,I/Oインターフェイス等からなるマイクロコンピュータを備えて構成される電子制御装置であり、A/D変換器、タイマ、カウンタ、各種ロジック回路、各種駆動回路等を備えている。
【0018】
ECU100には、上述の吸入空気量センサ10、触媒温度センサ21、空燃比センサ22、その他、クランク軸の回転位置を検出するクランク角センサやアクセルペダルの踏込み量を検出するアクセルペダルセンサ等の図示しない各種センサ・スイッチ類が入力インターフェースを介して接続されている。また、ECU100には、出力インターフェースを介して、燃料噴射用のインジェクタ30、点火プラグ31に火花放電を発生させるための高電圧を誘起する点火コイル(図示せず)の通電を制御するイグナイタ32、スロットル弁5を開閉駆動するスロットルアクチュエータ6、ターボ過給機8のアクチュエータ13等の各種アクチュエータ類が接続されている。
【0019】
尚、ECU100は、CAN(Controller Area Network)等の通信プロトコルに基づく車内ネットワーク(図示せず)に接続されている。車内ネットワークには、変速機を制御するトランスミッションECU、ブレーキを制御するブレーキECU等の各種車両制御を担うECUが接続されており、エンジン1を制御するECU100は、他のECUからの各種制御情報を車内ネットワークを介して受信すると共に、他のECUへの制御情報を車内ネットワークに送出する。
【0020】
ECU100は、上述の各種センサ・スイッチ類からの信号、車内ネットワークを介して入力される各種制御情報に基づいて、各種アクチュエータ類を駆動し、燃料噴射制御、点火時期制御、過給圧制御等のエンジン制御を実行する。このエンジン制御においては、通常運転時、クランク角センサからの信号に基づくエンジン回転数とアクセルペダルセンサからの信号に基づくアクセル開度とに基づいて、目標空燃比を実現する空気量及び燃料噴射量を決定し、空燃比センサ22の信号に基づく目標空燃比へのフィードバック制御により、エンジンの燃焼状態を最適に制御する。
【0021】
また、ECU100は、エンジン冷態始動時等の触媒コンバータ20の触媒が十分に活性化していない運転状態においては、触媒の早期活性化を促進する触媒暖機制御を行い、触媒を早期に昇温させてエンジンからの排気を良好に浄化可能とする。この触媒暖機制御は、基本的には、未燃焼ガスを排気系に送出して触媒内で燃焼させることで触媒温度を早期に上昇させる制御であるが、燃焼の安定性と触媒昇温までに必要な総ガス量が最も少ない値となるようにエンジン回転数及び点火時期を最適化するようにしており、これにより、従来の触媒暖機制御に比較して、より少ない燃料で触媒を早期に暖機することが可能となっている。
【0022】
このため、ECU100は、触媒暖機制御に係る機能として、図2に示すように、触媒暖機判断部101、触媒暖機点火時期制御部102、部分気筒点火カット部103、触媒暖機スロットル制御部104の各機能部を備えている。ECU100は、これらの機能部により、未燃焼ガスが自然燃焼する程度に排気系や触媒が昇温したところで一部の気筒の点火を意図的にカットし、点火カット気筒からの未燃焼ガスと、他の点火気筒からの燃焼ガスとを排気系で混合させて触媒中で燃焼させることにより、より少ない燃料で触媒の昇温効果が最大限に得られるように制御する。
【0023】
このとき、未燃焼ガスが触媒を通過する前に燃焼するのに十分な時間が得られるよう、スロットル開度と点火気筒の点火時期とを最適に制御し、急速暖機時の振動、騒音を抑制しつつ、触媒内燃焼を促進する。これにより、触媒を昇温させて活性化するまでに必要な燃料量を減らすことができ、低回転、低ガス流量での触媒暖機を実現して、触媒暖機前に排出される炭化水素(HC)、窒素酸化物(NOx)、粒子状物質(PM)等を抑制することができる。
【0024】
詳細には、触媒暖機判断部101は、エンジン始動時、触媒温度センサ21からの信号に基づいて、触媒コンバータ20内の触媒の温度が目標温度(触媒活性化温度)に達しているか否かを調べ、エンジン始動後に触媒暖機制御を実行するか、通常のアイドル制御に移行するかを判断する。触媒温度が目標温度以上である場合、通常アイドル運転への制御を指示し、触媒温度が目標温度未満の場合、触媒暖機制御の実行を指示する。
【0025】
また、触媒暖機判断部101は、未燃焼ガスが排気系で自然燃焼する温度を必要温度として、触媒暖機制御開始時に触媒温度が必要温度を超えているか否かを調べる。触媒温度が必要温度以下の場合には、触媒暖機点火時期制御部102に指示して点火時期リタードにより排気ガスを昇温させ、触媒温度が必要温度を超えている場合、部分気筒点火カット部103に指示して一部の気筒の点火をカットし、触媒暖機点火時期制御部102による点火時期制御及び触媒暖機スロットル制御部104による空気量制御を実行させる。
【0026】
触媒暖機点火時期制御部102は、触媒暖機判断部101からの指示により、触媒温度が必要温度以下の場合、点火時期を遅角(リタード)することにより排気行程に近い段階で燃焼を行わせ、温度の高い排気ガスを排気系に供給して触媒温度を上昇させ、触媒温度が必要温度を超えた場合、点火カットされない点火気筒の点火時期を制御する。この点火気筒の点火時期制御は、一部の気筒の点火カットによるエンジントルクの低下を補償するため、点火気筒の点火時期を進角させる制御であり、予め実験或いはシミュレーション等によって求めた制御マップに従って最適な点火時期への制御を行う。
【0027】
部分気筒点火カット部103は、触媒暖機判断部101からの指示により、触媒温度が必要温度より高い場合、燃焼サイクル毎に一部の気筒の点火をカット(部分気筒点火カット)して失火を発生させ、排気系に未燃焼ガスを供給する。この部分気筒点火カットの制御パターンは、安定した回転を維持するに必要なエンジンの耐力を考慮して決定される。本実施の形態におけるエンジン1のような4気筒エンジンでは、燃焼サイクル毎に1つの気筒の点火をカットする点火パターンP1と、燃焼サイクル毎に2つの気筒の点火を同時にカットする点火パターンP2との何れかを採用することができる。
【0028】
例えば、#1〜#4気筒の点火順序が#1→#3→#4→#2である場合、図3(a)に示す全気筒点火の通常の点火パターンP0に対して、点火パターンP1は、図3(b)に示すように、サイクル毎に、#1,#3,#4,#2気筒の点火をカットする制御パターンとなる。また、点火パターンP2は、図3(c)に示すように、#1,#4気筒の同時点火カットと、#2,#3気筒の同時点火カットとをサイクル毎に繰り返す制御パターンとなる。
【0029】
図4は、部分負荷運転における点火パターン毎のエンジンの軸トルクを例示している。図4(a)に示す全気筒点火の通常のトルクに対して、図4(b)に示す点火パターンP1でのトルクは、トルクピークが1つ減るだけであるため、フライホイール等による慣性重量が小さいエンジンでも比較的容易に回転を持続させることができる。一方、図4(c)に示す点火パターンP2でのトルクは、図4(a)の通常のトルクに対して、トルクピークが2つ減っており、軽量フライホイール等を有するエンジンでは回転持続が困難となる可能性がある。
【0030】
触媒暖機スロットル制御部104は、触媒暖機判断部101からの指示により、触媒温度が必要温度より高く、触媒下流の空燃比センサ22で検出した触媒下流の空燃比が設定値(例えば理論空燃比)より大きい場合、触媒内で燃焼が終了していないとして、スロットルアクチュエータ6を介してスロットル弁5を絞り、エンジンの空気量を減らしてエンジン回転数を抑制する。
【0031】
すなわち、排気系内においては、点火カット気筒からの未燃焼ガスは他の点火気筒からの燃焼ガスと混合しつつ直接触媒に流れるが、このとき、気化→昇温(混合による)→緩慢な燃焼へと進み、通常のエンジン内燃焼より燃焼が遅いと見られる。このため、触媒出口までに燃焼を終了可能な時間を確保することのできる空気量(スロットル開度)の制御マップを予め実験或いはシミュレーション等によって作成しておき、この制御マップに従ってスロットル開度を最適に制御することにより、エンジン回転数を抑制して燃焼時間を確保する。
【0032】
以上のECU100における触媒暖機処理は、具体的には、図5のフローチャートに示すソフトウエア処理によって実行される。以下、触媒暖機のソフトウエア処理について、図5のフローチャートを用いて説明する。
【0033】
この触媒暖機処理では、先ず、最初のステップS1において、触媒温度センサ21からの信号を読み込み、触媒コンバータ20内の触媒の温度Tが触媒活性化の目標温度TGT以上になっているか否かを調べる。そして、T≧TGTの場合には、ステップS2で通常のアイドル運転に移行し、T<TGTの場合、ステップS3へ進んで、スロットル開度(エンジン回転数)、点火時期を、それぞれ、暖機運転時のファーストアイドルの基準値に初期設定し、触媒の急速暖機運転を開始する。
【0034】
その後、ステップS3からステップS4へ進み、触媒温度Tが必要温度(未燃焼ガスが排気系で自然燃焼する温度)TNを超えているか否かを調べる。その結果、T≦TNの場合には、ステップS5で点火時期をリタードさせて排気温度を上昇させ、T>TNの場合、ステップS6で一部の気筒の点火をカットする(部分気筒点火カット)。部分気筒点火カットは、例えば、上述した点火パターンP1や点火パターンP2等のように、エンジンに応じて予め設定された最適な制御パターンで該当気筒の点火がカットされる。
【0035】
ステップS6で部分気筒点火カットを実施した後は、ステップS7へ進んで触媒下流の空燃比センサ22からの信号を読み込み、触媒下流の空燃比を設定値(例えば理論空燃比)と比較する。そして、触媒下流の空燃比が設定値以下の場合には、現在のスロットル開度と点火気筒の点火時期を維持し、触媒下流の空燃比が設定値を超えてリーン側の値となっている場合、ステップS8でスロットル開度を絞ると共に点火気筒の点火時期を現在の値より進角させ、エンジン回転数、空気流量、空燃比を最適化する。
【0036】
このように本実施の形態における触媒暖機制御では、エンジン回転数、空気流量を少なくした上で触媒内燃焼を促進するように制御しており、これにより、触媒活性化までに必要な燃料量を低減することができ、触媒暖機が完了するまでの排気エミッションを低減することができる。
【符号の説明】
【0037】
1 エンジン
12 排気通路
20 触媒コンバータ
21 触媒温度センサ
22 空燃比センサ
100 電子制御装置
101 触媒暖機判断部
102 触媒暖機点火時期制御部
103 部分気筒点火カット部
104 触媒暖機スロットル制御部

【特許請求の範囲】
【請求項1】
排気系に介装した触媒を暖機して触媒の早期活性化を図るエンジンの排気浄化装置において、
エンジン始動時に、前記触媒の温度状態に応じて触媒暖機制御を実行するか否かを判断する触媒暖機判断部と、
前記媒暖機判断部からの指示により、一部の気筒の点火をカットして未燃焼ガスを前記排気系に供給する部分気筒点火カット部と、
前記部分気筒点火カット部で一部の気筒の点火をカットするとき、前記触媒下流の空燃比に応じて点火気筒の点火時期を制御する触媒暖機点火時期制御部と、
前記部分気筒点火カット部で一部の気筒の点火をカットするとき、前記触媒下流の空燃比に応じてスロットル開度を制御する触媒暖機スロットル制御部と
を備えることを特徴とするエンジンの排気浄化装置。
【請求項2】
前記触媒暖機点火時期制御部は、前記触媒下流の空燃比が設定値よりもリーン側であるとき、前記点火気筒の点火時期を進角側に制御し、
前記触媒暖機スロットル制御部は、前記触媒下流の空燃比が設定値よりもリーン側であるとき、前記スロットル開度を小さくする方向に制御する
ことを特徴とする請求項1記載のエンジンの排気浄化装置。
【請求項3】
前記触媒暖機判断部は、前記触媒の温度が活性化温度以下且つ前記排気系で前記未燃焼ガスが自然燃焼可能な温度以上のとき、前記一部の気筒の点火カットを指示することを特徴とする請求項1又は2記載のエンジンの排気浄化装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2013−47498(P2013−47498A)
【公開日】平成25年3月7日(2013.3.7)
【国際特許分類】
【出願番号】特願2011−186352(P2011−186352)
【出願日】平成23年8月29日(2011.8.29)
【出願人】(000005348)富士重工業株式会社 (3,010)
【Fターム(参考)】