説明

スプリング座面部構造

【課題】スプリング座面部を構成する部材の摩耗を抑制することができるスプリング座面部構造を提供する。
【解決手段】バルブリフト可変機構14の入力アーム17に回動方向への付勢力を付与する付勢機構20において、ハウジング71のシート座面に回収溝を形成する。ハウジング71のシート座面とスプリングシート72とが摺動することでシート座面が摩耗して発生する摩耗粉を回収溝に回収し、シート座面とスプリングシート71との間に摩耗粉が残留しないようにすることで、この摩耗粉が研磨剤として機能してしまうことを回避し、これによって摩耗の促進を抑制する。また、回収溝は、放射状に延びる第1回収溝と、この第1回収溝の外周端に連続する円環状の第2回収溝とを有している。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、伸縮するスプリングが当接するスプリング座面部の構造に係る。特に、本発明は、このスプリング座面部を構成する部材の耐摩耗性を高めるための対策に関する。
【背景技術】
【0002】
従来より、内燃機関の運転状態に応じて、吸気バルブや排気バルブのバルブリフト量や作用角等の作動特性を可変とする可変動弁機構が知られている(例えば特許文献1や特許文献2を参照)。
【0003】
この可変動弁機構は、カムシャフトのカムとバルブ(例えば吸気バルブ)との間に配置される仲介駆動機構を有している。この仲介駆動機構は、ロッカシャフトの中心孔に挿通されるコントロールシャフトの軸線方向の動きに連動するスライダギアによって、カムに接触する入力部(カム被打部材)とバルブに接触する二つの揺動カム(バルブ打部材)とを相対的に回動させることで、それらの相対位相差を変更し、バルブのリフト量を調整するようになっている。
【0004】
なお、スライダギアの外周には、軸方向三列にヘリカルスプラインが設けられており、このスライダギアのセンタヘリカルスプラインに上記入力部が、また、スライダギアの二つのサイドヘリカルスプラインに上記二つの揺動カムがそれぞれスプライン嵌合されている。このセンタヘリカルスプラインに対して二つのサイドヘリカルスプラインの傾斜方向は反対になっている。
【0005】
さらに、上記入力部の近傍には、この入力部をカムシャフトのカムに当接させるための付勢力を付与するコイルスプリング(ロストモーションスプリングと呼ばれる)を備えた付勢機構が設置されている。
【0006】
この付勢機構は、ハウジング内部に、スプリングシート、コイルスプリング(以下、単にスプリングと呼ぶ)、リフタが収容された構成となっている。具体的に、上記ハウジングは、略円柱形状の内部空間を有するスプリング収容部を備えており、このスプリング収容部の下側(上記入力部側)が開放されている。また、このハウジングのスプリング収容部内の上面(天井面)はシート座面として形成されている。そして、このシート座面にスプリングシートを介してスプリングが当接されている。また、このスプリングと上記入力部との間にリフタが介在されており、このスプリングが、圧縮状態でリフタとスプリングシートとの間に介在され、このスプリングの付勢力がリフタを介して入力部に付与されるようになっている。
【0007】
このような構成により、スプリングの付勢力はリフタを介して入力部に付与され、この入力部がカムシャフトのカムに当接する回動方向へ付勢されている。これにより、カムシャフトの回転時に、入力部がカムから離れてしまうことを抑制し、カムから入力部への押圧力が確実に伝達されるようになっている。
【0008】
尚、このようなスプリングシート、スプリング、リフタを備えた付勢機構は、一般的なエンジンの動弁機構にも適用されている(例えば下記の特許文献3および特許文献4を参照)。
【特許文献1】特開2001−263015号公報
【特許文献2】特開2007−113516号公報
【特許文献3】特開2003−161121号公報
【特許文献4】特開2002−70510号公報
【発明の開示】
【発明が解決しようとする課題】
【0009】
ところで、上述したような付勢機構にあっては、ハウジングに対してスプリングシートが相対的に回転することがあり、この回転に伴ってハウジングのシート座面に摩耗が生じてしまう可能性があった。以下に詳しく説明する。
【0010】
上記付勢機構にあっては、スプリングが圧縮される際(バルブリフト時)にはその巻き数が多くなる方向に捻れが生じ、逆に、スプリングが伸長する際(非バルブリフト時)にはその巻き数が少なくなる方向に捻れが生じる。そして、上記スプリングシートはスプリングに当接または固定されているため、上記バルブリフト動作が繰り返されることで上記スプリングの捩れがスプリングシートに伝わり、このスプリングシートが軸心回りに回転することになる。
【0011】
一般に、上記ハウジングは、付勢機構の軽量化および加工性の観点からアルミニウム製となっている一方、上記スプリングシートは、スプリングからの付勢力を受けるので比較的高い強度が要求され、例えばスプリング鋼(バネ鋼)で形成されている。このため、上述したようなスプリングシートの回転が生じた場合、このスプリングシートによるハウジングに対する攻撃性が増し、シート座面に摩耗が生じてしまう可能性がある。
【0012】
このような摩耗が生じた場合、その摩耗粉がシート座面とスプリングシートとの間に介在され、この状態でスプリングシートが回転することになる。このような状況では、上記摩耗粉が研磨剤として機能して更にシート座面の摩耗が進んでしまうことになる。
【0013】
また、上述したスプリングシートの回転は、以下の要因によっても生じる。つまり、上記リフタに対する入力部の接触位置を変更していくことで、リフタの偏摩耗を抑制する目的から、入力部の接触位置をリフタの軸心から外れた位置に設定し、入力部からの外力によってリフタを軸心回りに回転させる構成を採用する場合がある。この場合、リフタの回転力は、スプリングを介してスプリングシートに伝達され、このスプリングシートが回転することになり、この場合にも上述した如くシート座面に摩耗を生じさせてしまう。
【0014】
上記スプリングの取り付け荷重(組み付け時におけるスプリングの圧縮力)が高いほど上記スプリングシートの回転の抑制が可能であることが知られている。つまり、初期状態でのスプリングの取り付け荷重を高く設定しておけば、スプリングシートの回転が抑制でき、シート座面の摩耗も少なく抑えることが可能である。しかしながら、長期間使用に伴ってシート座面の摩耗が進んだ場合、この摩耗分(シート座面がスプリングから後退した分)だけスプリングの取り付け荷重が低くなり、スプリングシートの回転が次第に大きくなっていく。
【0015】
つまり、シート座面の摩耗→スプリングの取り付け荷重の低下→スプリングシートの回転の増大→摩耗粉が研磨剤として機能することによるシート座面の摩耗の促進→スプリングの取り付け荷重の更なる低下、といった悪循環が続き、ある時点からシート座面の摩耗が急速に進行してしまう可能性がある。
【0016】
このような課題は、上述した可変動弁機構の付勢機構に限らず、一般的なエンジンの動弁機構においても同様に生じる可能性がある。
【0017】
以上のようなシート座面の摩耗を抑制する対策として、シート座面の表面改質が挙げられる。例えば、アルマイト処理を行うことで、シート座面の硬度を高めるもの等である。
【0018】
しかしながら、この表面改質を行う場合の改質可能な膜厚寸法には限界があり、この改質された膜厚分だけの摩耗が生じた後には、硬度の低い材料が露出することになって、急速に摩耗が促進してしまうことになる。
【0019】
また、他の摩耗抑制の対策として、例えば、特許文献2には、上記ハウジングの上面に開口を設け、この開口からスプリング収容部内に向かって潤滑油を導入することが開示されている。しかしながら、特に、上述した可変動弁機構の場合には、上記スプリングシートが、スプリング収容部の天井面であるシート座面に接触しているため、上記開口から導入したオイルをこのシート座面に流し込むことは困難であり、摩耗抑制のための十分な効果を得ることは難しい。
【0020】
本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、スプリング座面部を構成する部材の摩耗を抑制することができるスプリング座面部構造を提供することにある。
【課題を解決するための手段】
【0021】
−課題の解決原理−
上記の目的を達成するために講じられた本発明の解決原理は、互いに摺接する部材同士間で発生した摩耗粉を回収するための空間を、これら互いに摺接する部材の少なくとも一方に形成しておき、これら部材同士間に摩耗粉が残留しないようにすることで、この摩耗粉が研磨剤として機能してしまうことを回避し、これによって摩耗の促進を抑制するようにしている。
【0022】
−解決手段−
具体的に、本発明は、リフタに向かって付勢力を与えるスプリングからの反力を受ける座面を有する座面部材と、この座面部材の座面とスプリングとの間に介在されたスプリングシートとを備えたスプリング座面部構造を前提とする。このスプリング座面部構造に対し、上記座面部材の座面およびこの座面に当接する上記スプリングシートの座面当接面のうち少なくとも一方に、これら座面部材とスプリングシートとの摺動によって生じた摩耗粉を上記座面と座面当接面との間から排出して回収する回収溝を設けた構成としている。
【0023】
この特定事項により、上記座面部材に対してスプリングシートが回転する場合、この座面部材の座面とスプリングシートの座面当接面とが摺接することで摩耗粉が発生する。この摩耗粉は、上記スプリングシートの回転に伴い、回収溝に向かって排出され、この回収溝に回収される。このため、座面部材の座面とスプリングシートの座面当接面との間に存在する摩耗粉の量が大幅に削減されることになり、この摩耗粉が研磨剤として機能して摩耗を助長させるといった状況が回避されて、摩耗量を抑制することができる。
【0024】
上記回収溝の具体的な構成としては以下のものが挙げられる。つまり、この回収溝に、座面部材の座面に形成され、この座面の中心に対して放射状に延びる第1回収溝と、この第1回収溝の外側端に連続して形成され且つ上記摩耗粉をスプリングシートの外縁よりも外側に排出する環状の第2回収溝とを備えさせている。
【0025】
これにより、上記スプリングシートの回転に伴って第1回収溝に回収された摩耗粉は、この第1回収溝に順次回収されていく摩耗粉によって外周側に押し出されていき、第2回収溝に達する。そして、この第2回収溝は、スプリングシートの外縁よりも外側に摩耗粉を排出する位置に形成されているため、回収溝に一旦回収された摩耗粉が、座面部材の座面とスプリングシートの座面当接面との間に再び戻ってしまうといったことが回避され、摩耗抑制効果を高く得ることができる。
【0026】
上述したスプリング座面部構造の適用形態として具体的には以下のものが挙げられる。つまり、上記スプリングを、内燃機関のバルブリフト可変機構に対してリフタを介して付勢力を付与するものとする。そして、上記バルブリフト可変機構は、バルブにリフト方向への押圧力を与えるための出力部材と、動弁系のカムからの押圧力を受ける入力部材と、このカムからの押圧力を入力部材から出力部材に伝達すると共にこれら出力部材と入力部材との回動方向の相対的な位相差を可変とする位相差可変機構とを有しており、上記スプリングが上記入力部材に対してカムに向かう回動方向への付勢力を付与する構成としている。
【0027】
上述したスプリング座面部構造によって、座面部材の座面等の摩耗が抑制されるため、スプリングの付勢力(取り付け荷重)が大幅に低下してしまうことがない。このため、このスプリングから上記入力部材に対してカムに向かう回動方向への付勢力も安定的に維持され、カムシャフトの回転時にカムから入力部が離れてしまうことを抑制し、カムから入力部へ押圧力が確実に伝達され、バルブリフト可変機構の作動の信頼性を高めることができる。
【発明の効果】
【0028】
本発明では、互いに摺接する座面部材とスプリングシートとの間で発生した摩耗粉を回収するための回収溝を、これら部材の少なくとも一方に形成しておき、これら部材同士の間に摩耗粉が残留しないようにしている。このため、摩耗粉が研磨剤として機能して摩耗が促進してしまうといった状況を回避することができる。
【発明を実施するための最良の形態】
【0029】
以下、本発明の実施の形態を図面に基づいて説明する。本実施形態は、自動車用エンジンの動弁系に備えられた可変動弁機構に本発明を適用した場合について説明する。
【0030】
−エンジンおよび可変動弁機構の構成−
まず、本発明の特徴部分の説明に先立ち、本実施形態に係るエンジンの可変動弁機構の構成を説明する。ここでは、図1および図2に示すように、エンジン1として直列4気筒型DOHCエンジンを例に挙げている。
【0031】
図1は、エンジン1の第1番気筒〜第4番気筒のうちの所定気筒におけるシリンダヘッド2周りの構造を示す拡大断面図である。このエンジン1においては、シリンダヘッド2、シリンダブロック3、ピストン5によって燃焼室6が区画され、この燃焼室6には吸気通路7および排気通路8が各々二つに分岐した状態で接続されている(図1では一方のみを図示している)。そして、吸気通路7と燃焼室6との間は吸気バルブ9の開閉動作によって連通・遮断され、排気通路8と燃焼室6との間は排気バルブ10の開閉動作によって連通・遮断される。なお、これら吸気バルブ9および排気バルブ10はそれぞれ気筒毎に二つずつ設けられている。
【0032】
シリンダヘッド2には、吸気バルブ9および排気バルブ10を駆動するための吸気カムシャフト11および排気カムシャフト12が設けられている。これら吸気カムシャフト11および排気カムシャフト12は、エンジン1のクランクシャフトからの回転力の伝達によって回転する。また、吸気カムシャフト11および排気カムシャフト12には、それぞれ吸気カム11aおよび排気カム12aが設けられている。そして、これら吸気カム11aおよび排気カム12aが吸気カムシャフト11および排気カムシャフト12と一体的に回転することによって、吸気バルブ9および排気バルブ10の開閉動作が行われる。
【0033】
エンジン1には、吸気バルブ9および排気バルブ10といった機関バルブのバルブ特性
を可変とするバルブリフト可変機構として、吸気バルブ9の最大リフト量および吸気カム11aの作用角(吸気バルブ9の作動角)を可変とするバルブリフト可変機構14が吸気カム11aと吸気バルブ9との間に設けられている。このバルブリフト可変機構14の駆動により、例えば吸入空気量を多く必要とするエンジン運転状態になるほど、最大リフト量および作用角が大となるよう制御される。これは最大リフト量および作用角を大とするほど、吸気通路7から燃焼室6への空気の吸入が効率よく行われ、上述した吸入空気量に関する要求を満たすことが可能なためである。
【0034】
次に、バルブリフト可変機構14の詳細な構造について説明する。
【0035】
バルブリフト可変機構14は、回転する吸気カム11aにより押されて上記吸気カムシャフト11と平行に延びるロッカシャフト15およびコントロールシャフト16の軸線を中心に揺動する入力アーム(入力部材)17と、この入力アーム17の揺動に基づき上記軸線を中心に揺動する出力アーム(出力部材)18とを備えている。
【0036】
入力アーム17にはローラ19が回転可能に取り付けられている。そして、そのローラ19が吸気カム11aに押しつけられるよう、後述する付勢機構20によって入力アーム17が吸気カム11a側に付勢されている。また、出力アーム18は、その揺動時にロッカアーム21に押しつけられ、同ロッカアーム21を介して吸気バルブ9をリフトさせる。
【0037】
このロッカアーム21の基端部はラッシュアジャスタ22によって支持され、同ロッカアーム21の先端部は吸気バルブ9に接触している。また、ロッカアーム21は吸気バルブ9のバルブスプリング24によって出力アーム18側に付勢され、これによりロッカアーム21の基端部と先端部との間に回転可能に支持されたローラ23が出力アーム18に押しつけられている。尚、上記ラッシュアジャスタ22は、油圧式のものであって吸気バルブ9のタペットクリアランスを常にゼロに保つように機能する公知の構成となっている。
【0038】
従って、吸気カム11aの回転に基づき入力アーム17および出力アーム18が揺動すると、出力アーム18がロッカアーム21を介して吸気バルブ9をリフトさせ、吸気バルブ9の開閉動作が行われる。そして、バルブリフト可変機構14では、入力アーム17と出力アーム18との揺動方向についての相対位置(回転方向の位相差)が変更されることで、上記吸気バルブ9の最大リフト量、および吸気カム11aの吸気バルブ9に対する作用角を可変とする。即ち、入力アーム17と出力アーム18とを揺動方向について互いに接近させるほど、吸気バルブ9の最大リフト量および作用角は小となってゆく。逆に、入力アーム17と出力アーム18とを揺動方向について互いに離間させるほど、吸気バルブ9の最大リフト量および作用角は大となってゆく。このようにして本発明でいう位相差可変機構が構成されている。
【0039】
次に、上記バルブリフト可変機構14のシリンダヘッド2への取り付け構造、およびバルブリフト可変機構14の駆動に用いられる上記ロッカシャフト15およびコントロールシャフト16のシリンダヘッド2への取り付け構造について、図2を参照して説明する。
【0040】
図2は、シリンダヘッド2の上部に形成されたカムキャリア41を上方から見た平面図である。
【0041】
このカムキャリア41には複数の立壁部45が各気筒に対応して互いに平行となるように設けられている。これら立壁部45はエンジン1の軽量化を図るべくアルミ合金等の軽量な材料によって形成されている。そして、各立壁部45の間にはエンジン1の各気筒に
対応して上記バルブリフト可変機構14が配設されている。また、隣り合うバルブリフト可変機構14は立壁部45によって隔てられている。バルブリフト可変機構14の駆動に用いられる上記ロッカシャフト15およびコントロールシャフト16は、各バルブリフト可変機構14および各立壁部45を貫通している。そして、各バルブリフト可変機構14は、ロッカシャフト15を介して上記各立壁部45に支持されている。また、同機構14の入力アーム17および出力アーム18は立壁部45に挟まれた状態となっている。
【0042】
ロッカシャフト15はパイプ状に形成されており、ロッカシャフト15の内部には上記コントロールシャフト16が軸線方向に往復移動可能に支持されている。これらロッカシャフト15とコントロールシャフト16とは共に、必要な強度を確保することを重視して鉄系材料といった強度の高い材料を用いて形成されている。そして、コントロールシャフト16においては、その基端部(図中の左端部)がアクチュエータ47に連結されており、アクチュエータ47の駆動を通じて同シャフト16の軸線方向に移動される。各気筒のバルブリフト可変機構14は、コントロールシャフト16の軸線方向への移動を通じて駆動され、入力アーム17と出力アーム18との揺動方向についての相対位置を変更させる。
【0043】
次に、バルブリフト可変機構14の内部構造について、図3〜図5を参照して説明する。
【0044】
図3は、バルブリフト可変機構14における入力アーム17および出力アーム18の内側の構造を示す破断斜視図である。
【0045】
バルブリフト可変機構14は、入力アーム17および出力アーム18の内側に配設された円筒状のスライダ26を備えている。このスライダ26の内部には上記ロッカシャフト15が挿入され、ロッカシャフト15の内部には上記コントロールシャフト16が挿入されている。そして、コントロールシャフト16が軸線方向に移動すると、その移動がコントロールシャフト16に取り付けられた係合部材61(図5参照)によって、スライダ26に伝達されて同スライダ26も上記軸線方向に変位する。スライダ26の外壁において、長手方向中央部にはヘリカルスプライン(センタヘリカルスプライン)27を有する入力ギヤ27aが固定され、長手方向両端部にはヘリカルスプライン(サイドヘリカルスプライン)29を有する出力ギヤ29a,29aが固定されている。
【0046】
一方、図4に示されるように、入力アーム17の内壁にはヘリカルスプライン28を有する円環状の内歯ギヤ28aが形成され、出力アーム18,18の内壁にはヘリカルスプライン30,30を有する円環状の内歯ギヤ30a,30aが形成されている。そして、入力アーム17の内歯ギヤ28aはスライダ26の入力ギヤ27a(図3)と噛み合わされ、出力アーム18の内歯ギヤ30aはスライダ26の出力ギヤ29a(図3)と噛み合わされている。なお、ヘリカルスプライン27,28とヘリカルスプライン29,30とは、互いに傾斜角が異なっており、例えば互いに歯すじの傾斜方向が逆となっている。
【0047】
そして、コントロールシャフト16の軸線方向への移動に基づきスライダ26が同軸線方向に変位すると、ヘリカルスプライン27,29とヘリカルスプライン28,30との噛み合いにより、入力アーム17と出力アーム18との揺動方向についての相対位置が変更される。具体的には、スライダ26を図3の矢印L方向に変位させるほど入力アーム17と出力アーム18との揺動方向についての相対位置が互いに接近するように変更され、スライダ26を矢印H方向に変位させるほど上記相対位置が互いに離間するように変更される。こうした入力アーム17および出力アーム18の揺動方向についての相対位置の変更を通じて、吸気カム11aの回転により出力アーム18が揺動したときの吸気バルブ9の最大リフト量および作用角が可変とされる。従って、バルブリフト可変機構14におい
ては、入力アーム17および出力アーム18が吸気バルブ9のバルブ特性を可変とすべく駆動される可変駆動部となる。
【0048】
なお、入力アーム17および出力アーム18の内部にはエンジン1によって駆動されるオイルポンプから油通路を介して潤滑油が供給されており、その潤滑油によって入力アーム17および出力アーム18とスライダ26との間で互いに噛み合うギヤ(スプライン)間等の潤滑が行われる。
【0049】
図5は、入力アーム17、出力アーム18、スライダ26およびロッカシャフト15等の内部構造を示す断面図である。
【0050】
同図に示されるように、バルブリフト可変機構14を駆動するためのロッカシャフト15およびコントロールシャフト16は、シリンダヘッド2に設けられた複数の立壁部45を貫通するとともに、それら立壁部45の間に位置するバルブリフト可変機構14の入力アーム17および出力アーム18も貫通している。
【0051】
コントロールシャフト16に対するスライダ26の係合は、係合部材61を用いて実現されている。そして、スライダ26とコントロールシャフト16とは、上記係合部材61によってコントロールシャフト16の軸線方向に一体移動可能となるように繋がれている。この係合部材61は、スライダ26の内周面に周方向に延びるように形成された溝34に挿入されるブッシュ35と、そのブッシュ35を貫通するとともにロッカシャフト15の長穴33を貫通した状態でコントロールシャフト16に対しその径方向に挿入されるピン51とを備えている。なお、ピン51が貫通する上記長穴33は、ロッカシャフト15の軸線方向(図中の左右方向)に延びている。そして、この長穴33とピン51とは、上記軸線方向についての相対移動のみ可能となっており、ロッカシャフト15の周方向についての相対移動は不能となっている。
【0052】
従って、コントロールシャフト16が軸線方向に移動すると、それに伴いピン51がロッカシャフト15の長穴33に沿って移動する。その結果、ピン51がブッシュ35の外側面を介して溝34の内側面に押しつけられ、スライダ26がコントロールシャフト16の軸線方向に変位する。そして、このスライダ26の変位を通じて入力アーム17と出力アーム18との揺動方向についての相対位置が可変とされ、吸気カム11a(図1)の回転により入力アーム17および出力アーム18が揺動したときの吸気バルブ9の最大リフト量および作動角が可変とされる。なお、入力アーム17および出力アーム18が揺動するときには、それに伴ってスライダ26も周方向に揺動(回動)する。このとき、スライダ26の溝34の内側面がブッシュ35の外側面に対して摺動し、両者の間の摩擦力によってブッシュ35およびピン51も上記周方向に揺動しようとする。しかし、スライダ26の揺動につられてのブッシュ35およびピン51の揺動は、ロッカシャフト15の長穴33の対向する内側面によって規制される。尚、図5における符号57は、入力アーム17および出力アーム18の軸心方向の位置調整を行うためのシムである。
【0053】
−付勢機構20−
次に、本実施形態の特徴部分である付勢機構20の構成について説明する。この付勢機構20は、上述した如く上記入力アーム17に設けられたローラ19が吸気カム11aに押しつけられるよう、入力アーム17に対して吸気カム11aに向かう回転方向への付勢力を付与するものである。具体的には、図1に示すように、上記入力アーム17には、上記ローラ19の配設位置に対して軸心回りに約180°の位相を存した位置に突出片17aが形成されており、この突出片17aに対して上記付勢機構20から付勢力(図1における下向きの付勢力)が付与されることで、吸気カム11aに向かう回転方向への付勢力が与えられている。
【0054】
図6は付勢機構20の分解斜視図である。この図6に示すように、付勢機構20は、ハウジング(座面部材)71、スプリングシート72、スプリング(一般にロストモーションスプリングと呼ばれる)73、リフタ74が一体的に組み付けられた構成となっている。以下、具体的に説明する。
【0055】
上記ハウジング71は、例えばアルミニウムにより形成されており、有底円筒形状に形成された本体部71aと、この本体部71aの下端縁から水平方向に延びるフランジ部71bとを備えている。
【0056】
上記本体部71aの内部は、略円柱形状で下方に開放したスプリング収容空間71cとして形成されている。つまり、このスプリング収容空間71cに、上記スプリングシート72、スプリング73、リフタ74が順に挿入されて一体的に組み付けられるようになっている。
【0057】
一方、このハウジング71のフランジ部71bは、2箇所にボルト孔71d,71dが形成されており、このボルト孔71d,71dによってハウジング71がエンジン1に取り付けられるようになっている。例えば、上記カムキャリア41の立壁部45にボルト孔(図示省略)が形成されており、このボルト孔と上記フランジ部71bのボルト孔71dとが位置合わせされた状態で、ハウジング71がカムキャリア41上に載置され、各ボルト孔に亘って締結ボルトが挿通されることで、各気筒毎に対応してハウジング71が取り付けられている。この取り付け状態では、上記リフタ74の下面が入力アーム17の突出片17aに当接することになる。
【0058】
スプリングシート72は、スプリング鋼で形成されたリング状の板材で形成されている。このスプリングシート72の外径寸法は、上記ハウジング71の本体部71aに設けられている上記スプリング収容空間71cの内径寸法に対して略同一寸法か又は僅かに小さい寸法(例えば2mm程度小さい寸法)であって且つスプリング73の外径寸法よりも僅かに大きく設定されている。また、このスプリングシート72の中央部に形成されている開口72aの内径寸法は、スプリング73の内径寸法よりも僅かに小さく設定されている。これにより、スプリング73の一端縁(上端縁)の全体がスプリングシート72に当接されることになり、スプリング73からの荷重(反力)を、このスプリングシート72の全体で受けることが可能になっている。また、このスプリングシート72の厚さ寸法は2mm程度に設定されている。これら値はこれに限定されるものではなく、適宜設定可能である。
【0059】
スプリング73は、スプリング鋼で形成されたコイルスプリングであって、上記スプリング収容空間71cにおいて、スプリングシート72とリフタ74との間に圧縮状態で配設されている。つまり、このスプリング73の伸長力(弾性復元力)が、リフタ74に作用し、このリフタ74から入力アーム17の突出片17aに付与されるようになっている。
【0060】
尚、このスプリング73の弾性復元力つまり入力アーム17の突出片17aに対する付勢力は、スプリング73の初期圧縮量を大きく設定すればする程強くなり、スプリング73の初期圧縮量を小さくすればする程弱くなるが、必要に応じて適切に設定されている。
【0061】
リフタ74は、有底円筒形状の部材であって、円筒部分74aと底面部分74bとを備えている。円筒部分74aは、その外径寸法が上記スプリング収容空間71cの内径寸法よりも僅かに小さく設定されている一方、その内径寸法が上記スプリング73の外径寸法よりも僅かに大きく設定されている。また、この円筒部分74aの高さ寸法(軸心に沿う
方向の寸法)は上記スプリング収容空間71cの高さ寸法よりも小さく設定されている。
【0062】
また、このリフタ74の底面部分74bは、その中央部分が下側に向かって僅かに突出する突出部74cを備えており、この突出部74cの下面が入力アーム17の突出片17aに当接している。また、このリフタ74の底面部分74bの内面(リフタ74の内部空間の底面)にはスプリング73の下側の端縁が当接している。
【0063】
以上の構成により、上記ハウジング71およびスプリングシート72によって本発明でいうスプリング座面部が構成されている。
【0064】
そして、本実施形態の特徴は、上記ハウジング71における本体部71aの内面のうち上面(天井面)75の構成にある。つまり、上記スプリング収容空間71cの天井面の形状にある。以下、この面をシート座面75と呼ぶ。
【0065】
図7(a)は、上記ハウジング71のスプリング収容空間71cおよびその周辺部を下側から見た下面図である。また、図7(b)は、図7(a)におけるB−B線に沿った断面図である。これら図では、スプリングシート72およびスプリング73を仮想線で示している。
【0066】
これらの図に示すように、ハウジング71のシート座面75には、回収溝76,77が形成されている。この回収溝76,77は、上記シート座面75と上記スプリングシート72の上面(座面当接面)72aとの摺動によって生じた摩耗粉を回収するための溝であって、放射状に延びる複数(本実施形態では4つ)の第1回収溝76,76,…と、この第1回収溝76の外周端に連続して形成された円環状の第2回収溝77とを備えている。尚、上記第1回収溝76の数はこれに限定されるものではない。
【0067】
より具体的に、上記第1回収溝76は、シート座面75の中心部には形成されておらず、このシート座面75の中心から所定寸法を存した外周側の位置から、このシート座面75の外周側端に向かって直線状に延びている。例えば、この第1回収溝76の長手方向の寸法はシート座面75の内径寸法に対して約1/3程度に設定されている。
【0068】
また、第2回収溝77は、上記シート座面75の外周縁に沿うように形成されており、その内径寸法は、上記スプリングシート72の外径寸法よりも僅かに小さく設定されている一方、その外径寸法は、上記スプリングシート72の外径寸法よりも僅かに大きく且つスプリング収容空間71cの内径寸法に略一致した寸法に設定されている。
【0069】
また、各回収溝76,77は共に深さ寸法が一致しており、例えばハウジング71の本体部71aの厚さ寸法に対して約半分の深さ寸法に設定されている。
【0070】
−摩耗粉の回収動作−
次に、上述の如く構成された回収溝76,77による摩耗粉の回収動作について説明する。
【0071】
バルブリフト可変機構14の作動に伴い、上記ハウジング71に対してスプリングシート72が回転する。つまり、ハウジング71のシート座面75とスプリングシート72との間で相対的な回転が生じる(回転方向を図7(a)に矢印Aで示す)。また、ハウジング71はアルミニウム製であるのに対し、スプリングシート72はスプリング鋼で形成されているため、この両者の相対回転に伴ってハウジング71のシート座面75に摩耗が生じ、それに伴う摩耗粉が発生する。
【0072】
尚、スプリングシート72に回転力が発生する原因としては、上述した如く、スプリング73の伸縮に伴う捩れがスプリングシート72に伝達されることや、リフタ74の偏摩耗を抑制するために、入力アーム17の突出片17aの接触位置をリフタ74の軸心から外れた位置に設定してリフタ74を強制的に回転させ、その回転力がスプリングシート72に伝達されることなどが挙げられる。
【0073】
上述したように、ハウジング71のシート座面75がスプリングシート72によって攻撃されて摩耗が生じ、それに伴う摩耗粉が発生した場合、この摩耗粉は、スプリングシート72の回転に伴い、シート座面75の周方向に沿って所定角度だけ移動した後に第1回収溝76の内部に回収される。これのような動作が各第1回収溝76,76,…の形成位置において行われる。このため、ハウジング71のシート座面75とスプリングシート72の上面(図7(b)では下側の面)72aとの間に存在する摩耗粉の量が大幅に削減されることになり、この摩耗粉が研磨剤として機能して摩耗を助長させるといった状況が回避され、それ以上に摩耗が促進されてしまういったことが抑制される。
【0074】
また、各第1回収溝76,76,…に回収された摩耗粉は、この第1回収溝76に順次回収されていく摩耗粉によって外周側に押し出されていき、第2回収溝77に達する。そして、この第2回収溝77の外周縁は、スプリングシート72の外縁よりも外側に位置しているため、この第2回収溝77に一旦回収された摩耗粉が、ハウジング71のシート座面75とスプリングシート72の上面72aとの間に再び戻ってしまうといったことが回避され、上述した摩耗抑制効果を高く得ることができる。
【0075】
(変形例)
次に、複数の変形例について説明する。以下に述べる変形例は第1回収溝76の形状の変形例であって、その他の構成および動作は上述した実施形態のものと同様である。従って、ここでは第1回収溝76の形状についてのみ説明する。
【0076】
図8は第1の変形例における図7(a)に相当する図である。この図8に示すように、本変形例における第1回収溝76は、シート座面75をその軸心に沿う方向から見た形状が略扇形に形成されている。つまり、外周側に向かって次第に幅寸法(シート座面75の周方向に沿う方向の寸法)が大きくなるような形状となっている。
【0077】
図9は第2の変形例における図7(a)に相当する図である。この図9に示すように、本変形例における第1回収溝76は、スプリングシート72の回転方向(図中の反時計回り方向)に向かって次第に外周側へ延びる曲線状に形成されている。
【0078】
これらの変形例によれば、第1回収溝76に回収された摩耗粉を円滑に第2回収溝77に向けて送り出すことが可能になり、摩耗粉が、ハウジング71のシート座面75とスプリングシート72の上面72aとの間に再び戻ってしまうといったことを確実に防止することができる。
【0079】
−他の実施形態−
以上説明した実施形態および変形例は、自動車用エンジンの動弁系に備えられたバルブリフト可変機構14の付勢機構20に本発明を適用した場合について説明した。本発明はこれに限らず、一般的なエンジンの動弁機構に対しても適用可能である。また、燃料ポンプ等に適用されるプランジャの往復移動機構に対しても本発明は適用可能である。
【0080】
また、上述した実施形態および変形例では、バルブリフト可変機構14を吸気側に設けた場合について説明したが、同様のバルブリフト可変機構を排気側に設け、同様の付勢機構を備えさせるようにしてもよい。
【0081】
また、上記実施形態および変形例では、各回収溝76,77をハウジング71のシート座面75に形成していた。本発明はこれに限らず、スプリングシート72の上面72a(シート座面75との当接面)に同様の回収溝を形成するようにしてもよい。また、シート座面75およびスプリングシート72の上面の両方に回収溝を形成する構成としてもよい。
【0082】
更に、上記実施形態および変形例では、ハウジング71の本体部71aを有底円筒形状とし、その内部に潤滑油を供給しない構成としていた。本発明はこれに限らず、ハウジング71の本体部71aの上面に開口を形成しておき、この開口からスプリング収容空間71cに向けて潤滑油を供給する構成としてもよい。この場合、各回収溝76,77に回収された摩耗粉を、スプリング収容空間71cから流れ落ちる潤滑油と共に排出することが期待でき、シート座面75の摩耗抑制効果をよりいっそう高めることができる。
【図面の簡単な説明】
【0083】
【図1】実施形態に係るエンジンのシリンダヘッドおよびその周辺部を示す断面図である。
【図2】バルブリフト可変機構の構成を示すシリンダヘッドの平面図である。
【図3】バルブリフト可変機構における各アームとスライダとが組み付けられた状態を示す一部を破断させた斜視図である。
【図4】バルブリフト可変機構における各アームを示す一部を破断させた斜視図である。
【図5】バルブリフト可変機構の内部構造を示す縦断面図である。
【図6】付勢機構の分解斜視図である。
【図7】図7(a)は付勢機構におけるハウジングのスプリング収容空間およびその周辺部を下側から見た下面図であり、図7(b)は、図7(a)におけるB−B線に沿った断面図である。
【図8】第1の変形例における図7(a)に相当する図である。
【図9】第2の変形例における図7(a)に相当する図である。
【符号の説明】
【0084】
1 エンジン(内燃機関)
9 吸気バルブ
11a 吸気カム
14 バルブリフト可変機構
17 入力アーム(入力部材)
18 出力アーム(出力部材)
71 ハウジング(座面部材)
72 スプリングシート
73 スプリング
74 リフタ
75 シート座面
76 第1回収溝
77 第2回収溝

【特許請求の範囲】
【請求項1】
リフタに向かって付勢力を与えるスプリングからの反力を受ける座面を有する座面部材と、この座面部材の座面とスプリングとの間に介在されたスプリングシートとを備えたスプリング座面部構造において、
上記座面部材の座面およびこの座面に当接する上記スプリングシートの座面当接面のうち少なくとも一方には、これら座面部材とスプリングシートとの摺動によって生じた摩耗粉を上記座面と座面当接面との間から排出して回収する回収溝が設けられていることを特徴とするスプリング座面部構造。
【請求項2】
上記請求項1記載のスプリング座面部構造において、
上記回収溝は、座面部材の座面に形成され、この座面の中心に対して放射状に延びる第1回収溝と、この第1回収溝の外側端に連続して形成され且つ上記摩耗粉をスプリングシートの外縁よりも外側に排出する環状の第2回収溝とを備えていることを特徴とするスプリング座面部構造。
【請求項3】
上記請求項1または2記載のスプリング座面部構造において、
上記スプリングは、内燃機関のバルブリフト可変機構に対してリフタを介して付勢力を付与するものであって、
上記バルブリフト可変機構は、バルブにリフト方向への押圧力を与えるための出力部材と、動弁系のカムからの押圧力を受ける入力部材と、このカムからの押圧力を入力部材から出力部材に伝達すると共にこれら出力部材と入力部材との回動方向の相対的な位相差を可変とする位相差可変機構とを有し、上記スプリングは上記入力部材に対してカムに向かう回動方向への付勢力を付与していることを特徴とするスプリング座面部構造。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2010−38038(P2010−38038A)
【公開日】平成22年2月18日(2010.2.18)
【国際特許分類】
【出願番号】特願2008−201923(P2008−201923)
【出願日】平成20年8月5日(2008.8.5)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【Fターム(参考)】