説明

動圧軸受装置用軸部材およびその製造方法

【課題】 この種の動圧軸受装置における軸部材の寸法精度を高めると共に、寸法精度を低コストに高めるための軸部材の加工方法あるいは製造方法を提供する。
【解決手段】 軸部11とフランジ部12とを一体に有する軸素材10を鍛造加工により成形し、軸部11の外周面11aの一部又は全部の円筒度を矯正する。前記矯正加工を施した面13を基準として軸素材10の軸部端面11bおよびフランジ部12の反軸部側端面12bを研削加工し、この両端面11b、12bを基準として軸素材10の外周面10bに研削加工を施す。これにより製造された軸部材の、軸部外周に形成されたラジアル軸受面の円筒度が3μm以下となるようにした。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、動圧軸受装置用の軸部材およびその製造方法に関するものである。ここでいう動圧軸受装置は、情報機器、例えばHDD等の磁気ディスク装置、CD−ROM、CD−R/RW、DVD−ROM/RAM等の光ディスク装置、MD、MO等の光磁気ディスク装置等のスピンドルモータ、レーザビームプリンタ(LBP)のポリゴンスキャナモータ、その他の小型モータ用として好適である。
【背景技術】
【0002】
上記各種モータには、高回転精度の他、高速化、低コスト化、低騒音化等が求められている。これらの要求性能を決定づける構成要素の1つに当該モータのスピンドルを支持する軸受があり、近年では、上記要求性能に優れた特性を有する動圧軸受の使用が検討され、あるいは実際に使用されている。
【0003】
動圧軸受は、軸受隙間に生じる潤滑油の動圧作用で軸部材を回転自在に非接触支持するものであり、例えば、HDD等のディスク状記録媒体駆動装置のスピンドルモータに組込まれて使用される。この種の動圧軸受装置には、軸部材をラジアル方向に回転自在に非接触支持するラジアル軸受部と、軸部材をスラスト方向に回転自在に非接触支持するスラスト軸受部とが設けられ、ラジアル軸受部を構成する軸受スリーブの内周面または軸部材の外周面に、動圧発生用の溝(動圧溝)が形成される。また、スラスト軸受部を構成する軸部材のフランジ部の両端面、あるいは、これに対向する面(軸受スリーブの端面や、ハウジングに固定されるスラスト部材の端面、あるいはハウジングの底部の内底面等)に、動圧溝が形成される(例えば、特許文献1参照)。
【特許文献1】特開2002−61641号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
最近では、情報機器における情報記録密度の増大や高速回転化に対応するため、上記情報機器用のスピンドルモータには一層の高回転精度化が求められており、この要請に応じるために、上記スピンドルモータに組込まれる動圧軸受装置についても更なる高回転精度が要求されている。
【0005】
ところで、動圧軸受装置の回転精度を高めるためには、動圧が生じるラジアル軸受隙間やスラスト軸受隙間を高精度に管理することが重要となる。この隙間を適正に管理するため、上記各軸受隙間の形成に関与する動圧軸受装置の軸部材には、高い寸法精度が要求される。その一方で、既存の加工方法では、加工コストが著しく高騰するためにこれ以上の高精度化は困難であり、従って、軸部材について、加工精度と加工コストとを両立した新たな加工方法の提供が望まれる。
【0006】
本発明の課題は、この種の動圧軸受装置における軸部材の寸法精度を高めることである。
【0007】
本発明の他の課題は、この種の動圧軸受装置における軸部材の寸法精度を低コストに高めることのできる軸部材の加工方法を提供することである。
【課題を解決するための手段】
【0008】
前記課題を解決するため、本発明に係る動圧軸受装置用軸部材は、それぞれ鍛造で成形した軸部およびフランジ部を備え、軸部の外周にラジアル軸受隙間に面するラジアル軸受面を形成したものであって、ラジアル軸受面の円筒度が3μm以下であることを特徴とする。ここで、円筒度は、円筒形体(円筒度の対象となる面。ここでは軸部のラジアル軸受面を指す)を2つの同軸の幾何学的に正しい円筒で挟んだとき、同軸2円筒(内接円筒と外接円筒)の間隔が最小となる場合の、同軸2円筒の半径の差で表される。ラジアル軸受面は、動圧作用を生じるラジアル軸受隙間に面したものであればよく、動圧作用を生じるための動圧溝の有無は問わない。
【0009】
軸部外周に形成されたラジアル軸受面の円筒度は、特に軸部の外周と、軸部外周に対向する軸受部材(軸受スリーブやハウジングなど)との間に形成されるラジアル軸受隙間をの精度を大きく左右する。すなわち、円筒度が大きくなると、上記ラジアル軸受隙間が、円周方向あるいは軸方向に一定せず、隙間の大きい箇所と隙間の小さい箇所が顕著に現れる。そのため、上記軸受隙間の小さい箇所では、他所に比べて軸部材の回転トルクが大きくなるなど軸受損失が増加し、上記軸受隙間の大きい箇所では、他所に比べて軸受剛性が低下し、軸の振れが大きくなる。また、軸方向に隙間が一定していないと、軸方向への好ましくない潤滑流体の流れが生じ、適正な潤滑流体の循環に悪影響を及ぼす可能性がある。これらの観点から、本発明では、ラジアル軸受面の円筒度を3μm以下に規定した。これによれば、ラジアル軸受隙間の円周方向あるいは軸方向での寸法のばらつきが抑えられるので、上記軸受損失を抑えることができ、また上記軸受剛性を確保することができる。従って、この軸部材と、軸部材に対向する軸受部材との間のラジアル軸受隙間を高精度に管理でき、これら軸部材と軸受部材を備えた軸受装置の高回転精度が実現可能となる。
【0010】
この軸部材においては、軸部の外周に形成されたラジアル軸受面を基準とした、フランジ部の両端面の直角度および軸部の端面の直角度は、それぞれ5μm以下であることが好ましい。ここで、直角度とは、直角であるべき所定平面と基準面との組合わせにおいて、基準面(ここではラジアル軸受面)に対して幾何学的に直角な幾何学平面からの上記所定平面(ここではフランジ部の端面あるいは軸部の端面)のずれの大きさをいう。フランジ部の端面の直角度が5μmより大きいと、該端面と対向する面との間に形成されるスラスト軸受隙間にばらつきが生じることで、軸受損失が増加するなど軸受性能に悪影響を与える可能性があるためである。また、軸部の端面の直角度が5μmより大きいと、スラスト軸受隙間を精度良く設定することが難しくなる、あるいは軸部端面が軸部外周面やフランジ部の端面を研削加工する際の基準面となる場合には、これら研削面の加工精度が低下する可能性があるためである。
【0011】
上記軸部材は、軸部とフランジ部とをそれぞれ鍛造で形成したものであり、また、軸部材の両端面(軸部材の両端部に位置する軸部の端面とフランジ部の一方の端面)を研削面とすれば、これらの面を基準面として軸部材外周面の精密研削を行うことが可能となる。これにより、円筒度や直角度の値を小さく抑えたラジアル軸受面を有する軸部材を低コストに得ることができる。上記軸部材は、軸部とフランジ部とを共に鍛造で一体成形することもでき、これによれば、さらなる低コスト化が図られる。
【0012】
軸部とフランジ部との角部に傾斜状のヌスミ部を形成すれば、軸部の外周面およびフランジ部の端面の双方の研削時における砥石の逃げを確保することができる。このヌスミ部の形成方法としては、種々の方法が考えられるが、加工後のバリや不純物等の発生を抑制する観点から、塑性加工で形成するのが好ましい。
【0013】
本発明に係る動圧軸受装置用軸部材の製造方法は、軸部とフランジ部とを一体に有する軸素材を鍛造加工により成形する工程と、軸部の外周面の一部又は全部の円筒度を矯正する工程とを含むことを特徴とする。さらに好ましくは、前記矯正加工を施した面を基準として軸素材の両端面に第一の研削加工を施し、次いで該両端面を基準として少なくとも軸素材の外周面に第二の研削加工を施すことを特徴とする。
【0014】
このように本発明では、鍛造成形で軸部・フランジ部一体の軸部材(軸素材)を粗成形した後、軸部外周面の円筒度を矯正するので、後述の第一の研削工程において、矯正した面を基準とすることにより、高精度の研削加工(幅研削)を行うことができる。
【0015】
なお、上記円筒度の矯正加工には、例えば丸ダイスや平ダイス等による転造加工を挙げることができるが、この他にも絞りやしごき、あるいは割り型のプレス(挟み込み)によるサイジング加工等など、種々の塑性加工を用いることができる。
【0016】
第一の研削工程では、軸素材の軸方向両端部に位置する両端面、具体的には軸部の端面とフランジ部の一方の端面とに研削加工が施される。この際、上述のように矯正加工を施した軸部外周面を基準として各端面が研削されるので、これら軸素材の両端面の直角度や平面度を高精度に仕上げることが可能となる。
【0017】
次いで、これら研削加工を施した軸素材の両端面を基準として軸素材の外周面に第二の研削加工が施される。基準面である軸素材の両端面は、第一の研削工程で高精度に仕上げられているので、加工対象である軸素材の外周面も高精度に仕上げることができる。第二の研削加工は、軸素材の外周面のうち、少なくともラジアル軸受面となる部分に施されるが、この他にフランジ部の外周面に施すこともできる。さらには、未研削であるフランジ部の他方の(軸部側の)端面に施すこともできる。この第二の研削工程では、これら軸素材の研削すべき面に対応した形状の輪郭を有する砥石(総形砥石)を用いることにより、これら研削すべき面を一度に仕上げることができる。
【0018】
以上の手順を経ることにより、ラジアル軸受面の円筒度が3μm以下、さらにはフランジ部の両端面の直角度および軸部の端面の直角度がそれぞれ5μm以下の軸部材を低コストに製造することが可能となる。
【0019】
上記動圧軸受装置用軸部材は、軸部材が内周に挿入される軸受スリーブと、軸部の外周と軸受スリーブの内周との間のラジアル軸受隙間に生じる流体の動圧作用で圧力を発生させて軸部をラジアル方向に非接触支持するラジアル軸受部と、フランジ部一端側のスラスト軸受隙間に生じる流体の動圧作用で圧力を発生させてフランジ部をスラスト方向に非接触支持する第1スラスト軸受部と、フランジ部他端側のスラスト軸受隙間に生じる流体の動圧作用で圧力を発生させてフランジ部をスラスト方向に非接触支持する第2スラスト軸受部とを備えた動圧軸受装置として提供することが可能である。
【0020】
この場合には、例えばラジアル軸受隙間に面する軸部の外周面と、この外周面に対向する軸受スリーブの内周面の何れか一面に、流体の動圧作用を生じるための動圧溝を軸方向に非対称に形成することができる。
【0021】
また、上記動圧軸受装置は、動圧軸受装置と、ロータマグネットと、ステータコイルとを備えたモータとして提供することも可能である。
【発明の効果】
【0022】
本発明によれば、ラジアル軸受隙間やスラスト軸受隙間の形成に関与する軸部材の軸部外周面やフランジ部の端面を高精度にかつ低コストに加工することができるので、これら軸部材を組込んだ動圧軸受装置の各軸受隙間を高精度に管理することができる。その結果、上記動圧軸受装置に高回転精度を付与することが可能となる。
【発明を実施するための最良の形態】
【0023】
以下、本発明の実施形態を図面に基づいて説明する。
【0024】
図2は、本発明の一実施形態に係る動圧軸受装置1を組込んだ情報機器用スピンドルモータの一構成例を概念的に示している。この情報機器用スピンドルモータは、HDD等のディスク駆動装置に用いられるもので、軸部材2を回転自在に非接触支持する動圧軸受装置1と、軸部材2に取り付けられたディスクハブ3と、例えば半径方向のギャップを介して対向させたステータコイル4およびロータマグネット5と、ブラケット6とを備えている。ステータコイル4はブラケット6の外周に取り付けられ、ロータマグネット5は、ディスクハブ3の内周に取り付けられる。ブラケット6は、その内周に動圧軸受装置1を装着している。また、ディスクハブ3は、その外周に磁気ディスク等のディスクDを一枚または複数枚保持している。この情報機器用スピンドルモータは、ステータコイル4に通電すると、ステータコイル4とロータマグネット5との間の磁力によりロータマグネット5が回転し、それに伴って、ディスクハブ3および軸部材2が一体となって回転する。
【0025】
図3は、動圧軸受装置1を示している。この動圧軸受装置1は、一端に底部7bを有するハウジング7と、ハウジング7に固定された軸受スリーブ8と、軸受スリーブ8の内周に挿入される軸部材2とを主な構成部品として構成される。なお、説明の便宜上、ハウジング7の底部7bの側を下側、底部7bと反対の側を上側として以下説明を行う。
【0026】
ハウジング7は、図3に示すように、例えばLCPやPPS、PEEK等の樹脂材料で円筒状に形成された側部7aと、側部7aの一端側に位置し、例えば金属材料で形成された底部7bとで構成されている。底部7bは、この実施形態では側部7aとは別体として成形され、側部7aの下部内周に後付けされている。底部7bの上側端面7b1の一部環状領域には、動圧発生部として、図示は省略するが、例えばスパイラル状の動圧溝が形成されている。なお、底部7bは、この実施形態では側部7aとは別体に形成され、側部7aの下部内周に固定されるが、側部7aと例えば樹脂材料で一体に型成形することもできる。その際、上側端面7b1に設けられる動圧溝は、側部7aおよび底部7bからなるハウジング7の射出成形と同時に型成形することができ、これにより別途底部7bに動圧溝を成形する手間を省くことができる。
【0027】
軸受スリーブ8は、例えば、焼結金属からなる多孔質体、特に銅を主成分とする焼結金属の多孔質体で円筒状に形成され、ハウジング7の内周面7cの所定位置に固定される。
【0028】
軸受スリーブ8の内周面8aの全面又は一部円筒面領域には、動圧発生部としての動圧溝が形成される。この実施形態では、例えば図4に示すように、へリングボーン形状の動圧溝8a1、8a2がそれぞれ軸方向に離隔して2箇所形成される。上側の動圧溝8a1は、軸方向中心m(上下の傾斜溝間領域の軸方向中央)に対して軸方向非対称に形成されており、軸方向中心mより上側領域の軸方向寸法X1が下側領域の軸方向寸法X2よりも大きくなっている。
【0029】
軸受スリーブ8の下側端面8bの全面あるいは一部環状領域には、動圧発生部として、図示は省略するが、例えばスパイラル形状の動圧溝が形成される。
【0030】
シール手段としてのシール部材9は、図3に示すように、例えば真ちゅう等の軟質金属材料やその他の金属材料、あるいは樹脂材料で環状に形成され、ハウジング7の側部7aの上部内周に圧入、接着等の手段で固定される。この実施形態において、シール部材9の内周面9aは円筒状に形成され、シール部材9の下側端面9bは軸受スリーブ8の上側端面8cと当接している。
【0031】
軸部材2は、図1に示すように、ステンレス鋼等の金属材料で形成され、軸部21と軸部21の下端に設けられたフランジ部22とを一体に備える断面T字形をなす。軸部21の外周には、図3に示すように、軸受スリーブ8の内周面8aに形成された二つの動圧溝8a1、8a2の形成領域に対向するラジアル軸受面23a、23bが軸方向に離隔して2箇所形成されている。一方のラジアル軸受面23aの上方には、軸先端に向けて漸次縮径するテーパ面24が隣接して形成され、さらにその上方にディスクハブ3の取り付け部となる円筒面25が形成されている。二つのラジアル軸受面23a、23bの間、他方のラジアル軸受面23bとフランジ部22との間、およびテーパ面24と円筒面25との間には、それぞれ環状のヌスミ部26、27、28が形成されている。
【0032】
フランジ部22の両端面には、軸受スリーブの下側端面8bおよび底部7bの上側端面7b1にそれぞれ形成された動圧溝領域と対向するスラスト軸受面22a、22bが形成される。
【0033】
軸部21のテーパ面24と、テーパ面24に対向するシール部材9の内周面9aとの間には、ハウジング7の底部7b側から上方に向けて半径方向寸法が漸次拡大する環状のシール空間Sが形成される。組み立て完了後の動圧軸受装置1(図3参照)においては、シール空間Sの範囲内に油面がある。
【0034】
上述の如く構成された動圧軸受装置1において、軸部材2を回転させると、軸受スリーブ8内周の動圧溝8a1、8a2の形成領域(上下2箇所)と、これらの領域にそれぞれ対向する軸部21のラジアル軸受面23a、23bとの間のラジアル軸受隙間に潤滑油の動圧が発生し、軸部材2の軸部21がラジアル方向に回転自在に非接触支持される。これにより、軸部材2をラジアル方向に回転自在に非接触支持する第1ラジアル軸受部R1と第2ラジアル軸受部R2とが形成される。また、軸受スリーブ8の下側端面8bに形成される動圧溝領域と、この動圧溝領域に対向するフランジ部22の上側(軸部側)のスラスト軸受面22aとの間の第1スラスト軸受隙間、および底部7bの上側端面7b1に形成される動圧溝領域と、この面と対向するフランジ部22の下側(反軸部側)のスラスト軸受面22bとの間の第2スラスト軸受隙間に潤滑油の動圧がそれぞれ発生し、軸部材2のフランジ部22が両スラスト方向に回転自在に非接触支持される。これにより、軸部材2をスラスト方向に回転自在に非接触支持する第1スラスト軸受部T1と第2スラスト軸受部T2とが形成される。
【0035】
以下、上記動圧軸受装置1を構成する軸部材2の製造方法について説明する。
【0036】
軸部材2は、主に(A)成形工程と(B)研削工程の2工程を経て製造される。この実施形態では、このうちの(A)の成形工程に鍛造加工(A−1)と矯正加工(A−2)とが含まれ、(B)の研削工程に幅研削加工(B−1)と、全面研削加工(B−2)と、仕上げ研削加工(B−3)とが含まれる。
【0037】
(A)成形工程
(A−1)鍛造加工
まず、成形すべき軸部材2の素材となるステンレス鋼等の棒状の金属材を冷間鍛造して、図5に示すように、軸部11およびフランジ部12を一体に有する断面T字形の軸素材10を成形する。冷間鍛造方法としては、押し込み、据込み、ヘッディング等の何れか、もしくはこれらの組合わせを使用することができる。図示例では、鍛造加工後の軸部11の外周面11aを、テーパ面14を介在させた異径形状としているが、テーパ面14を省略し全長に亘って均一径に成形することもできる。
【0038】
このように、軸素材10を鍛造で形成すれば、例えば切削加工等により同様の軸素材10を形成する場合と比べて、削り代を生じることなく、素材の無駄を省くことができる。また、プレス作業であるため、軸素材10一個当りのサイクルタイムを高めることができ、生産性の向上が図られる。
【0039】
(A−2)矯正加工
次いで、鍛造加工後の軸素材10の軸部外周面11aに、円筒度矯正のための塑性加工が施される。これにより、軸素材10の軸部外周面11aのうち、矯正加工を施した面13の円筒度が所要の範囲内(例えば10μm以下)に改善される。この際、円筒度の矯正加工としては、例えば図6(a)、(b)に示すように、丸ダイス34や平ダイス35等による転造加工を採用することができるが、この他にも、絞りやしごき、あるいは割り型のプレス(挟み込み)によるサイジング加工等など、種々の加工方法を採用することができる。矯正加工は軸部11の外周面全長に亘って行う他、その一部のみに行うこともできる。一部のみを矯正する場合、その加工領域には、少なくとも軸部材2のラジアル軸受面23a、23bとなる領域を含める。
【0040】
(B)研削工程
(B−1)幅研削加工
矯正加工を経た軸素材10の両端面となる、軸部端面11bおよびフランジ部12の反軸部側端面12b(図5参照)を、軸部外周面11aのうち前記矯正加工を施した面13を基準として研削加工する(第一の研削工程)。この研削工程に用いられる研削装置40は、例えば図7(a)、(b)に示すように、ワークとしての軸素材10を複数保持するキャリア41と、キャリア41によって保持された軸素材10の軸部端面11b、およびフランジ部12の反軸部側端面12bを研削する一対の砥石42、42とを備えている。
【0041】
図示のように、キャリア41の外周縁の円周方向一部領域には、複数の切欠き43が円周方向等ピッチに設けられる。軸素材10は、その矯正加工面13を切欠き43の内面43aにアンギュラコンタクトさせた状態で切欠き43に収容される。軸素材10の矯正加工面13はキャリア41の外周面よりも僅かに突出しており、キャリアの外径側には、軸素材10の突出部分を外径側から拘束する形でベルト44が張設されている。切欠き43に収容した軸素材10のキャリア41の軸方向両端側には、一対の砥石42、42がその端面(研削面)同士を対向させて所定の間隔で同軸配置されている。
【0042】
キャリア41の回転に伴い、軸素材10が定位置から切欠き43に順次投入される。投入された軸素材10は、切欠き43からの脱落をベルト44で拘束された状態で、回転する砥石42、42の端面上をその外径端から内径端にかけて横断する。これに伴い、軸素材10の両端面、換言すれば軸部端面11bとフランジ部12の反軸部側端面12bとが砥石42、42の端面で研削される。この際、軸素材10の矯正加工された面13がキャリア41に支持され、かつこの矯正加工された面13が高い円筒度を有するので、予め砥石42の回転軸心と砥石42の研削面との直角度、および砥石42の回転軸心とキャリア41の回転軸心との平行度等を高精度に管理しておけば、この矯正加工面13を基準として、軸素材10の前記両端面11b、12bを高精度に仕上げることができ、矯正加工面13に対する直角度の値を小さく抑えることができる。また、軸素材10の軸方向幅(フランジ部12を含めた全長)が所定寸法に仕上げられる。
【0043】
(B−2)全面研削加工
次いで、研削した軸素材の両端面11b、12bを基準として軸素材10の外周面10bおよびフランジ部12の軸部側端面12aの研削加工を行う(第二の研削工程)。この研削工程で用いられる研削装置50は、例えば図9に示すように、バッキングプレート54およびプレッシャプレート55を軸素材10の両端面に押し当てながら砥石53でプランジ研削するものである。軸素材10の矯正加工された面13はシュー52によって回転自在に支持される。
【0044】
砥石53は、完成品としての軸部材2の外周面形状に対応した研削面56を備える総形砥石である。研削面56は、軸部11の軸方向全長に亘る外周面11aおよびフランジ部12の外周面12cを研削する円筒研削部56aと、フランジ部12の軸部側端面12aを研削する平面研削部56bとを備えている。図示例の砥石53では、円筒研削部56aとして、軸部材2のラジアル軸受面23a、23bに対応する領域を研削する部分56a1・56a2、テーパ面24に対応する領域を研削する部分56a3、円筒面25に対応する領域を研削する部分56a4、各ヌスミ部26〜28を研削加工する部分56a5〜56a7、フランジ部12の外周面12cを研削する部分56a8を備えている。
【0045】
上記構成の研削装置50における研削加工は以下の手順で行われる。まず、軸素材10および砥石53を回転させた状態で砥石53を斜め方向(図中の矢印1方向)に送り、軸素材10のフランジ部軸部側端面12aに砥石53の平面研削部56bを押し当て、主として軸部側端面12aを研削する。これにより、軸部材2のフランジ部22における軸部側端面12aが研削される。次いで、砥石53を軸素材10の回転軸心と直交する方向(図中の矢印2方向)に送り、軸素材10の軸部11の外周面11aおよびフランジ部12の外周面12cに砥石53の円筒研削部56aを押し当てて、各面11a、12cを研削する。これにより、軸部材2の軸部21外周面のうち、軸素材10のラジアル軸受面23a・23bに対応する領域13a・13b、テーパ面24、円筒面25に対応する領域15、およびフランジ部22の外周面22cが研削され、さらに各ヌスミ部26〜28が形成される。なお、上記研削の際には、例えば図9に示すように、計測ゲージ57で残りの研削代を計測しつつ研削を行うのが好ましい。
【0046】
この第二の研削工程においては、事前に幅研削加工で軸素材10の両端面11b、12bの直角度の精度出しが行われているから、各被研削面を高精度に研削することができる。
【0047】
(B−3)仕上げ研削加工
(B−2)全面研削加工で研削を施した面のうち、軸部材2のラジアル軸受面23a
・23b、および円筒面25に対応する領域13a・13b、15に最終的な仕上げ研削を施す。この研削加工に用いる研削装置は、図10に示す円筒研削盤で、バッキングプレート64とプレッシャプレート65とで挾持した軸素材10を回転させながら、砥石63でプランジ研削するものである。軸素材10は、シュー62で回転自在に支持される。砥石63の研削面63aは、ラジアル軸受面23a・23bに対応する領域13a・13bを研削する第一の円筒研削部63a1と、円筒面25に対応する領域15を研削する第二の円筒研削部63a2とからなる。
【0048】
上記構成の研削装置60において、回転する砥石63に半径方向の送りを与えることにより、ラジアル軸受面23a・23bおよび円筒面25に対応する領域13a・13b、15がそれぞれ研削され、これらの領域が最終的な表面精度に仕上げられる。この実施形態では、ラジアル軸受面23a・23bに対応する領域と円筒面25に対応する領域の双方を仕上げ研削しているが、円筒面25に対応する領域の研削は省略することもできる。
【0049】
上記(A)成形工程および(B)研削工程を経た後、必要に応じて熱処理や洗浄処理を施すことで、図1に示す軸部材2が完成する。
【0050】
上述の製造方法によって製造した軸部材2であれば、軸部21外周に形成されたラジアル軸受面23a、23bの円筒度を、例えば3μm以下(望ましくは1.5μm以下)に仕上げることができる。これにより、例えば動圧軸受装置1における軸受スリーブ8内周との間に形成されるラジアル軸受隙間の、円周方向あるいは軸方向へのばらつきが所定の範囲内に抑えられ、上記ラジアル軸受隙間のばらつきによる軸受性能への悪影響を回避することができる。従って、係るラジアル軸受隙間を高精度に管理でき、この種の動圧軸受装置の回転精度を高レベルに維持することができる。なお、本実施形態では、ラジアル軸受面23a、23bのみならず、円筒面25に対応する領域にも仕上げ研削加工(図10参照)を行っているので、円筒面25も上記円筒度に仕上げられる。従って、ディスクハブ3等の部材を軸部材2に取り付ける際の取り付け精度が高まり、モータ性能の向上にも寄与することができる。
【0051】
また、上記製造方法によれば、軸部21外周に形成されたラジアル軸受面23a、23bを基準とした、フランジ部22の両端面(スラスト軸受面)22a、22bの直角度および軸部端面21bの直角度が、共に5μm以下となる軸部材2を成形することもできる。このうち、フランジ部22の両端面に形成したスラスト軸受面22a、22bは、対向する面(軸受スリーブ8の下側端面8bやハウジング7の底部7bの上側端面7b1など)との間のスラスト軸受隙間を形成することから、斯かる直角度の数値を小さく抑えることにより、上記スラスト軸受隙間のばらつきを抑えることができる。また、軸部の端面21bは、軸部21外周面やフランジ部22の上側端面(スラスト軸受面22a側)を研削加工する際の基準面となるだけでなく、上記スラスト軸受隙間を設定する際の基準面にもなる。そのため、軸部端面21bの直角度の数値を小さく抑えることにより、係る研削加工面のみならずスラスト軸受隙間を精度良く管理することもできる。
【0052】
なお、以上の説明では、図9に示す全面研削加工において、軸素材10の外周面10bの円筒研削とフランジ部12の軸部側端面12aの平面研削とを共通の砥石53で行うこととしているが、両者を別砥石を用いて別工程で行うこともできる。
【0053】
また、以上の説明では、軸部材2のヌスミ部26〜28を、図9に示す全面研削加工(B−2)で形成する場合を例示したが、これらのヌスミ部26〜28は、図6(a)、(b)に示す矯正加工時と同時に塑性加工(例えば転造成形)することもできる。この場合、特に軸部21とフランジ部22との間の角部のヌスミ部27を図11に示すように傾斜状に形成することにより、全面研削加工(図9参照)において、フランジ部12の軸部側端面12aと軸部外周面11aとを同時研削する際の砥石53の逃げとして機能させることができる。
【0054】
また、以上の実施形態では、軸部材2のラジアル軸受面23a、23bおよびスラスト軸受面22a、22bを、全て動圧溝のない平滑面とした場合を例示したが、これらの軸受面に動圧溝を形成することもできる。この場合、ラジアル動圧溝は、図9に示す全面研削加工の前の段階で、転造あるいは鍛造により形成することができ、スラスト動圧溝は、プレスあるいは鍛造により形成することができる。
【0055】
また、以上の実施形態では、ラジアル軸受部R1、R2およびスラスト軸受部T1、T2を構成する動圧軸受として、例えばへリングボーン形状やスパイラル形状の動圧溝からなる動圧発生部を用いた軸受を例示しているが、動圧発生部の構成はこれに限定されるものではない。ラジアル軸受部R1、R2として、例えば多円弧軸受、ステップ軸受、テーパ軸受、テーパ・フラット軸受等を使用することもでき、スラスト軸受部T1、T2として、ステップ・ポケット軸受、テーパ・ポケット軸受、テーパ・フラット軸受等を使用することもできる。
【0056】
また、以上の実施形態では、動圧軸受装置1の内部に充満し、軸受スリーブ8と軸部材2との間のラジアル軸受隙間や、軸受スリーブ8およびハウジング7と軸部材2との間のスラスト軸受隙間に動圧作用を生じる流体として、潤滑油を例示したが、特にこの流体に限定されるものではない。動圧溝を有する各軸受隙間に動圧作用を生じ得る流体、例えば空気等の気体や、磁性流体等の流動性を有する潤滑剤を使用することもできる。
【図面の簡単な説明】
【0057】
【図1】本発明の一実施形態に係る動圧軸受装置用の軸部材の側面図である。
【図2】軸部材を備えた動圧軸受装置を組み込んだ情報機器用スピンドルモータの断面図である。
【図3】動圧軸受装置の縦断面図である。
【図4】軸受スリーブの縦断面図である。
【図5】鍛造加工により成形された軸素材の側面図である。
【図6】矯正加工の一例を示す図であり、(a)は丸ダイスによる転造加工の概略図、(b)は平ダイスによる転造加工の概略図である。
【図7】(a)は軸素材の幅研削工程に係る研削装置の一例を示す概略図、(b)は軸素材を保持するキャリアの切欠き周辺の拡大図である。
【図8】上記幅研削工程に係る研削装置の一例を示す一部断面図である。
【図9】軸素材の全面研削工程に係る研削装置の一例を示す概略図である。
【図10】軸素材の研削仕上げ工程に係る研削装置の一例を示す概略図である。
【図11】軸部材の軸部とフランジ部との角部周辺の拡大断面図である。
【符号の説明】
【0058】
1 動圧軸受装置
2 軸部材
3 ディスクハブ
4 ステータコイル
5 ロータマグネット
7 ハウジング
8 軸受スリーブ
10 軸素材
10b 外周面
11 軸部対応領域(軸部)
11a 外周面
12 フランジ部対応領域(フランジ部)
12a 軸部側端面
12b 反軸部側端面
13 矯正加工面
21 軸部
22 フランジ部
22a スラスト軸受面
22b スラスト軸受面
23a ラジアル軸受面
23b ラジアル軸受面
24 テーパ面
25 円筒面
26、27、28 ヌスミ部
34 丸ダイス
35 平ダイス
40 研削装置
41 キャリア
42 砥石
43 切欠き
43a 内面
50、60 研削装置
51、61 回転支持部材
52、62 支持部材
53 砥石
54、64 バッキングプレート
55、65 プレッシャプレート
56 研削面
63 砥石
63a 研削面
R1、R2 ラジアル軸受部
T1、T2 スラスト軸受部

【特許請求の範囲】
【請求項1】
それぞれ鍛造で成形した軸部およびフランジ部を備え、軸部の外周にラジアル軸受隙間に面するラジアル軸受面を形成したものであって、
前記ラジアル軸受面の円筒度が3μm以下である動圧軸受装置用軸部材。
【請求項2】
前記ラジアル軸受面を基準とした、フランジ部の両端面の直角度および軸部の端面の直角度がそれぞれ5μm以下である請求項1記載の動圧軸受装置用軸部材。
【請求項3】
前記軸部とフランジ部が鍛造により一体成形されたものである請求項1記載の動圧軸受装置用軸部材。
【請求項4】
前記軸部材の両端面が研削面である請求項1記載の動圧軸受装置用軸部材。
【請求項5】
前記軸部とフランジ部との角部に、傾斜状のヌスミ部が形成されている請求項1記載の動圧軸受装置用軸部材。
【請求項6】
請求項1〜5の何れか記載の動圧軸受装置用軸部材と、該軸部材が内周に挿入される軸受スリーブと、軸部の外周と軸受スリーブの内周との間のラジアル軸受隙間に生じる流体の動圧作用で圧力を発生させて軸部をラジアル方向に非接触支持するラジアル軸受部と、フランジ部一端側のスラスト軸受隙間に生じる流体の動圧作用で圧力を発生させてフランジ部をスラスト方向に非接触支持する第1スラスト軸受部と、フランジ部他端側のスラスト軸受隙間に生じる流体の動圧作用で圧力を発生させてフランジ部をスラスト方向に非接触支持する第2スラスト軸受部とを備えた動圧軸受装置。
【請求項7】
ラジアル軸受隙間に面する軸部の外周面と、この外周面に対向する軸受スリーブの内周面の何れか一面に、流体の動圧作用を生じるための動圧溝が軸方向に非対称に形成されている請求項6記載の動圧軸受装置。
【請求項8】
請求項6又は7記載の動圧軸受装置と、ロータマグネットと、ステータコイルとを備えたモータ。
【請求項9】
軸部とフランジ部とを一体に有する軸素材を鍛造加工により成形する工程と、軸部の外周面の一部又は全部の円筒度を矯正する工程とを含む動圧軸受装置用軸部材の製造方法。
【請求項10】
前記矯正工程を転造で行う請求項9記載の動圧軸受装置用軸部材の製造方法。
【請求項11】
前記矯正加工を施した面を基準として軸素材の両端面に第一の研削加工を施し、該両端面を基準として少なくとも軸素材の外周面に第二の研削加工を施す請求項9又は10記載の動圧軸受装置用軸部材の製造方法。
【請求項12】
第一の研削加工を、フランジ部の一方の端面と軸部の端面に施す請求項11記載の動圧軸受装置用軸部材の製造方法。
【請求項13】
前記第二の研削加工を、軸素材のうち、少なくとも軸部外周のラジアル軸受隙間に面するラジアル軸受面となる部分に施す請求項11又は12記載の動圧軸受装置用軸部材の製造方法。
【請求項14】
第二の研削加工で、さらにフランジ部の他方の端面を研削する請求項13記載の動圧軸受装置用軸部材の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2006−77861(P2006−77861A)
【公開日】平成18年3月23日(2006.3.23)
【国際特許分類】
【出願番号】特願2004−261446(P2004−261446)
【出願日】平成16年9月8日(2004.9.8)
【出願人】(000102692)NTN株式会社 (9,006)
【出願人】(390011198)福井鋲螺株式会社 (41)
【Fターム(参考)】