説明

半導体デバイスの製造方法

【課題】 金属エッチング処理工程は、有機マスキング層溶媒を用いることを省き、プラズマ金属エッチング工程の後に絶縁層68,81の一部をエッチングする。
【解決手段】 絶縁層68,81のエッチングは、1,2−エタンジオール,フッ化水素およびフッ化アンモニアを含むエッチング溶液を用いて行われる。このエッチング溶液は、絶縁層68,81の100〜900オングストロームの範囲でエッチングする。このエッチングは、絶縁層68,81内の移動イオンの少なくと75パーセントを除去し、移動イオンの少なくとも95パーセントを除去しなければならない。このプロセスは、酸フード,酸コンパチブル・スプレー・ツールまたはパドル処理ツールを用いて実施できる。このプロセスは、このプロセスを多くの異なる既存の処理工程に容易に統合できる多くの異なる実施例を含む。同様なプロセスは、レジスト・エッチバック処理工程でも利用できる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体装置を形成する方法に関し、さらに詳しくは、半導体装置において絶縁層および相互接続を形成する方法に関する。
【背景技術】
【0002】
相互接続は、半導体装置のさまざまな部品を半導体装置の他の部品と電気接続させることができる。残念ながら、相互接続を形成する方法は一般に、装置の信頼性を劣化させる移動イオンを導入する。ナトリウム,リチウム,カリウム,カルシウムおよびマグネシウムなどの移動イオンは、2つの発生源、すなわち、金属エッチング工程中に、そしてフォトレジスト・マスキング層を除去する際に一般に用いられる有機溶媒から一般に生じる。金属エッチング工程中に導入された移動イオンは、絶縁層の露出面または金属エッチング工程中に形成された相互接続にのみあるというのが当業者の従来の常識であった。フォトレジスト除去後に素早く脱イオン化水でリンスすることにより、移動イオンが露出面にあればこれらの移動イオンのほぼすべては除去される。しかし、フォトレジスト除去後に脱イオン化リンスのみを施した半導体装置では、装置信頼性の問題が極めて高い。有機マスキング層溶媒は、移動イオンを含む。本明細書で用いられる有機マスキング層溶媒とは、有機マスキング層(すなわち、フォトレジストなど)を容易に除去できる薬品のことである。有機マスキング層溶媒の例には、ケトン(2プロパノン(アセトン)など),脂肪族炭化水素(n−ヘプタンなど),アルカリアミン(水酸化テトラメチルアンモニウムなど)およびアリール炭化水素(トルエン,フェノールなど)が含まれる。有機マスキング層溶媒ではない薬品の例には、アルコール(メタノール,エタノール,2プロパノール(イソプロピルアルコール)など)およびグリコール(メタンジオール(メチレングリコール),1,2−エタンジオール(エチレングリコール),1、2−プロパンジオール(プロピレングリコール)など)が含まれる。一般に、後者の薬品は、分子内で10以下の炭素原子あたり少なくとも1つのヒドロキシル族を有し、このヒドロキシル族は、アリール・ラジカル(すなわちフェノール以外)の一部である炭素原子以外の炭素原子に直接結合する。アルコールおよび/またはグリコールは有機マスキング層を浸食するが、有機マスキング層を除去する速度は一般に十分遅いので、アルコールおよび/グリコールは有機マスキング層を容易に除去する薬品ではない。
【発明の開示】
【発明が解決しようとする課題】
【0003】
金属エッチング工程後の多くのフォトレジスト除去方法は、有機マスキング層溶媒自体や、プラズマ・アッシングと有機マスキング層溶媒の組合せを利用する。多くの市販の有機溶媒は、ppm(pats per million)単位で測定される移動イオン濃度を有する。約10ppmという低い移動イオン濃度の高純度有機溶媒が入手可能である。しかし、これらの高純度有機溶媒も半導体装置に移動イオン不純物を追加することがある。有機溶媒のコストは、高純度になるにつれて大幅に高くなる。
【0004】
レジスト・エッチバック処理方法も、一般にプラズマ・エッチング工程中に半導体装置に移動イオンを導入することがある。この場合も、移動イオンは望ましくなく、半導体装置における移動イオン濃度は、できるだけ低くしなければならない。
【課題を解決するための手段】
【0005】
本発明は、半導体装置を形成する方法を含む。本発明の方法は、半導体基板上に第1絶縁層を形成する工程と、第1絶縁層の上に金属含有層を被着する工程と、金属含有層の上にパターニングされた有機マスキング層を形成して、金属含有層の露出部分を形成する工
程と、この金属含有層の露出部分をハロゲン化物含有プラズマ・エッチング剤でエッチングして、相互接続部材を形成する工程と、パターニングされた有機マスキング層を、有機マスキング層溶媒ではなくプラズマ・ガスで除去する工程と、第1絶縁層の一部をフッ化物含有溶液でエッチングする工程と、相互接続部材の上に第2絶縁層を形成する工程によって構成される。第1絶縁層の一部をエッチングする段階は、第1絶縁層の少なくとも100オングストロームをエッチングするか、あるいは第1絶縁層から移動イオンの少なくとも75パーセントを除去する。第1絶縁層の一部をエッチングする工程は、露出部分をエッチングする工程の後で、相互接続部材の上に層を形成する前に行われる。
【0006】
また、本発明の方法は、半導体基板の上に、高点を含む第1絶縁層を形成する工程と、第1絶縁層の上に有機層を形成する工程と、有機層および高点を同時にエッチングする工程と、第1絶縁層の一部をフッ化物含有溶液でエッチングする工程と、第1絶縁層の一部をエッチングする工程の後に基板をリンスする工程とによって構成される。第1絶縁層の一部をエッチングする工程は、第1絶縁層の少なくとも100オングストロームをエッチングするか、あるいは第1絶縁層から移動イオンの少なくとも75パーセントを除去する。第1絶縁層の一部をエッチングする工程は、同時にエッチングする工程の後で、1)第1絶縁層の上に層を形成する前、または2)第1絶縁層を含む基板をアニールする前に行われる。本発明の他の特徴および利点は、添付の図面および以下の詳細な説明から明らかになろう。
【発明を実施するための最良の形態】
【0007】
本発明は一例として説明し、添付の図面に制限されず、図面において同様な参照番号は同様な要素を表す。
本発明の実施例は、金属エッチング処理工程またはレジスト・エッチバック処理工程中に半導体装置に導入される移動イオン不純物を低減するために用いることができる。移動イオン不純物は、プラズマ金属エッチング工程中およびプラズマ金属エッチング工程のための有機マスキング層溶媒処理中に導入されると考えられる。有機マスキング層溶媒を省き、かつプラズマ金属エッチング工程の後に絶縁層の一部をエッチングすることにより、金属エッチング処理工程中に導入される移動イオン不純物は実質的に低減される。レジスト・エッチバック処理工程では、移動イオンは、有機層および絶縁層が同時にエッチングされるときに導入されることがある。絶縁層の一部はエッチングされ、絶縁層における移動イオン濃度を低減する。本発明は、以下で説明するいくつかの実施例でより理解される。
【0008】
(相互接続の例)
図1は、半導体装置を形成するために用いられる処理工程を含む。この処理工程は、コンタクトまたは穴(ビア)開口部を形成する工程11と、相互接続層を被着する工程12と、フォトレジスト・マスキング層を形成する工程13と、相互接続層を選択的にエッチングする工程14と、アッシング(有機マスキング層溶媒ではない)によりフォトレジスト・マスキング層を除去する工程15と、基板16を処理する工程16と、絶縁層を被着する工程17とを含む。
【0009】
図2は、半導体基板20の一部の断面図を示している。フィールド分離(field isolation) 領域21、ソース領域22およびドレイン領域23は、主面に隣接する基板20の一部から形成される。ソース領域22とドレイン領域23との間にあり、かつ主面に隣接する基板の領域は、チャネル領域26である。ゲート誘電層24およびゲート電極25は、チャネル領域26と、ソースおよびドレイン領域22,23の一部の上にある。側壁スペーサ27は、ゲート誘電層24およびゲート電極25に隣接して設けられるが、このスペーサ27は必ずしも設けなくてもよい。二酸化シリコン,BPSG(borophosphosilicate
glass) ,PSG(phosphosilicate glass) などからなる第1レベル間絶縁層(first int
erlevel insulating layer) 28は、基板20の上にあり、ドレイン・コンタクト開口部291およびゲート・コンタクト開口部292を有する。第1絶縁層28は、約8000オングストローム厚であるが、他の実施例では4000〜8000オングストローム厚でもよい。この時点で示される装置を形成するためには、従来の工程が用いられる。
【0010】
図3に示すように、ドレイン・コンタクト・プラグ31は、ドレイン・コンタクト開口部291に形成され、ゲート・コンタクト・プラグ32は、ゲート・コンタクト開口部292に形成される。コンタクト・プラグ31,32は、タングステン、チタン、タンタル、または、タングステン、チタンまたはタンタルの化合物、並びにこれらのさまざまな組合せからなることが可能である。
【0011】
図4に示すように、相互接続層41およびフォトレジスト部材421,422は、第1レベル間絶縁層28およびコンタクト・プラグ31,32の上に形成される。相互接続層41の露出部分は、フォトレジスト部材421,422が相互接続層41の上にない所に形成される。相互接続層41は金属含有層であり、アルミニウム,シリコンとアルミニウム,銅とアルミニウム,シリコンおよび銅とアルミニウム,銅または銅合金を含む。相互接続層41は、4000〜50,000オングストロームの範囲の厚さを有する。別の実施例では、接着(glue)または障壁層は、相互接続層41の一部でもよく、あるいは相互接続層41の下または上にあってもよい。接着または障壁層は、窒化チタン,チタン・タングステンまたはチタン・タンタルを含んでもよく、100〜3000オングストロームの範囲の厚さを有してもよい。さらに、反射防止コーティングは、相互接続層41の一部でもその上にあってもよい。この反射防止コーティングは、シリコン層,窒化チタン,チタン・タングステン合金またはチタン・タンタル合金を含んでもよく、50〜2000オングストロームの範囲の厚さを有してもよい。接着層,障壁層および/または反射防止コーティングは、(もしこれら3つのうちいずれかが存在するならば)フォトレジスト部材421,422を形成する前に形成される。
【0012】
相互接続層41の露出部分(図4に図示)は、プラズマ金属エッチング工程中にプラズマ・リアクタにおいてエッチングされ、図5に示すように第1ドレイン相互接続411およびゲート相互接続412を形成する。プラズマ金属エッチング工程は、反応性イオンエッチング(RIE)を利用して、あるいはMERIE(magnetically enhanced reactive ion etching),電子サイクロトロン共鳴(ECR),誘導結合型プラズマ(ICP)またはヘリコン波(HW:helicon wave)システムを利用して、単一基板リアクタまたはバッチ・リアクタ内で行うことができる。プラズマ金属エッチング工程は、ブレークスルー(breakthrough)または安定化部分,主エッチング部分,エンドポイント部分およびオーバエッチング部分を含む。この方法は、分子塩素,三塩化ホウ素,四塩化炭素、四塩化シリコンなどの塩素ガスを利用し、これらのいずれも、四フッ化炭素,トリフルオロメタン,窒素,ヘリウムまたはアルゴンなどの付加ガスとともにあるいはなしに利用できる。あるいは、臭化水素,三臭化ホウ素または他の臭素ガスの臭素ベースのエッチング・ガスを塩素ガスの代わりに利用してもよい。プラズマ金属エッチング工程の各部分において、ハロゲン化物含有プラズマ(一般に、塩素含有プラズマ)が形成される。プラズマ内のイオンは、相互接続層41の露出部分の実際のエッチングを行う。
【0013】
プラズマ金属エッチング工程の部分において、一般的な動作圧力は、15〜40ミリトル(204〜544ミリパスカル)の範囲であり、一般的な高周波パワーは、750〜2500ワットの範囲(あるいは、直流ボルト単位では、−125〜−300ボルトの範囲)である。ブレークスルー部分および主エッチング部分の長さは、相互接続層41の厚さおよび組成により可変である。エンドポイント部分の長さは、相互接続層41の少なくとも一部が第1レベル間絶縁層28の上で除去されたことを検出するのに十分な長さである。
【0014】
オーバエッチング部分は、レベル間絶縁層28への移動イオンの注入に大きな影響を及ぼす。これは、レベル間絶縁層28がプラズマ中のプラズマ・イオンおよび移動イオン不純物のイオン衝撃(ion bombardment) に曝されるためである。移動イオン不純物は、有機マスキング層を有するこの基板および他の前にエッチングされた基板のために相互接続層41およびフォトレジスト部材421,422をエッチングすることによって、プラズマ・リアクタの内面に一般に蓄積する。これらの不純物は、プラズマ金属エッチング処理工程中にイオン化することがある。バッチ・リアクタを利用するオーバエッチング部分の一般的なパラメータは、15ミリトル(204ミリパスカル)以上40ミリトル(544ミリパスカル)以下の圧力,1250ワット以上3000ワット以下の高周波パワーおよび220ボルト以上300ボルト以下の直流バイアスを含む。オーバエッチング部分の長さは、極めて可変的である。この長さは、エンドポイント工程時間の長さの50から500パーセントの範囲となり、100〜900秒の範囲の固定時間で表すことができる。別の実施例では、プラズマ金属エッチング工程に単一基板リアクタを利用してもよい。プラズマ金属エッチング工程の別の部分は、プラズマ金属エッチング工程のオーバエッチング部分の後に金属腐食を防ぐために行ってもよい。
【0015】
プラズマ金属エッチング工程の次に、フォトレジスト部材421,422は、少なくとも1つの従来のプラズマ・アッシング方法を利用して除去できる。フォトレジスト部材421,422は、プラズマ・アッシング工程によって実質的に除去される。フォトレジスト部材421,422は、有機マスキング層溶媒によって全体または部分的に除去されない。図5は、この時点における図である。
【0016】
第1レベル間絶縁層28および相互接続411,412は、脱イオン化水(任意)でリンスされ、フッ化物含有エッチング溶液に曝され、このエッチング溶液に曝された後リンスされる。一般に、このエッチング溶液は、フッ化水素,フッ化アンモニア,および1,2−エタンジオールなどのキャリア溶媒を含む。エッチング溶液内で、フッ化水素は溶液の0.01〜10重量パーセントの範囲で、フッ化アンモニアは1.0〜50.0重量パーセントの範囲で、1,2−エタンジオールはこの溶液の残りをなす。
【0017】
別の実施例では、アルコールまたは他のグリコールを用いてもよい。一般に、アルコールまたはグリコールは、分子内の10炭素原子毎に少なくとも1つのヒドロキシル族を含み、このヒドロキシル族は、アリール・ラジカルの一部である炭素原子とは別の炭素原子と直接結合する。さらに、アルコールまたはグリコールは水よりも粘性が高い。摂氏20度におけるアルコールまたはグリコールの粘性は、一般に少なくとも2センチポイズである。1,2−エタンジオールは、摂氏20度で約20センチポイズの粘性を有する。エッチング溶液およびリンス液は、摂氏20〜50度の範囲の温度で維持される。
【0018】
さらに別の実施例では、フッ化水素は、別のフッ化アンモニアで代替してもよい。別の実施例では、エッチング溶液は、脱イオン化水および/またはカルボン酸(酢酸)を含んでもよい。エッチング溶液の組成は、フッ化水素と比較してアセトン酸を利用すると異なることがある。さらに別の実施例では、表面張力を低減し、溶液の湿潤性を改善するため、界面活性剤を含んでもよい。これらの湿潤剤は一般に、過フッ化界面活性剤、一次アルキルスルホン酸塩(linear alkyl sulfonate)またはアルキル・ベンゼンスルホン酸塩を含む。これらの他の実施例では、エッチング溶液の成分の内容は、前に述べたものと異なってもよい。
【0019】
溶液エッチング工程は、第1レベル間絶縁層28の100〜900オングストローム、より一般的には第1レベル間絶縁層の200〜500オングストロームをエッチングするように設計される。このエッチングにより、図6に示すように「洗浄された」第1レベル
間絶縁層68が得られる。さまざまな処理要因の組合せを利用して、洗浄された第1レベル間絶縁層68を形成できる。これらの組合せは、機器の安定性、プロセスの安定性、第1レベル間絶縁層28の除去速度の制御、基板表面における除去速度の均等性を考慮して選ばれる。洗浄された第1レベル間絶縁層68を形成するために処理工程を統合することの特定の詳細は、処理工程が統合される機器に依存する。処理工程は、酸フード(acid hood) ,酸コンパチブル・スプレー・ツール(acid-compatible spray tool)またはパドル処理ツール(puddle processing tool)で行うことができる。これらすべての装置は当技術分野で周知であるが、酸コンパチブル・スプレー・ツールおよびパドル処理ツールについて簡単に説明する。酸コンパチブル・スプレー・ツールは、酸を利用できるように修正されている点を除いて、スピン・リンス乾燥機(SRD:spin rinse dryer)に類似している。パドル処理ツールは、基板が薬品の少なくとも1つの「パドル」を介して送られる点を除いて、フォトレジストを基板にコーティングするために用いられるトラックに類似した装置である。一般に、基板はパドル内にあるときに回転される。
【0020】
各装置種類について所望の出力を得るための処理要因(レベル間絶縁層除去の厚さおよび均等性など)は柔軟性がある。酸フード処理の場合、エッチング溶液への露出時間は、一般に60〜120秒である。基板カセットは、この時間中に撹拌してもしなくてもよい。酸コンパチブル・スプレーまたはパドル処理ツールの場合、エッチング溶液への露出時間は、一般に45〜120秒である。この露出中に、基板カセットまたは基板は、20〜70rpmの範囲の速度で回転する。エッチング溶液は、20〜50ポンド/平方インチ(約138〜345キロパスカル)の範囲の圧力で、0.5から2.5ガロン/分(約1.9〜9.5リットル/分)の流量で、酸コンパチブル・スプレー・ツールまたはパドル処理ツールに供給される。これらの要因はエッチングの均等性に影響を与え、これらの要因はさまざまな基板寸法および表面について調整するためこれらの範囲内で設定される。エッチング溶液の温度は、レベル間絶縁層の除去速度に大きな影響を及ぼし、一般に摂氏20〜30度である。
【0021】
1実施例において、(エッチング溶液への露出後の)基板のリンスは、中間溶媒リンスとその後の脱イオン化水リンスを含んでもよい。一般に、中間溶媒リンスは、エッチング溶液とともに用いられるアルコールまたはグリコールと同様な種類のアルコールまたはグリコールを含む。中間溶媒の例には、1,2−エタンジオールがある。中間溶媒は、エッチング溶液で用いられるのと同じ溶媒である必要はなく、よって、中間溶媒は、2−プロパノール,1,2−プロパンジオールなどを含んでもよい。別の実施例では、中間溶媒は、脱イオン化水および/またはカルボン酸(例えば、酢酸)を含んでもよい。さらに別の実施例では、中間溶媒の湿潤性を改善するために、表面活性剤を含んでもよい。
【0022】
溶媒リンスは、一般に摂氏20〜90度の範囲の温度で行われる。中間溶媒リンス時間は、1〜10分の範囲である。酸フードの場合、この工程は、撹拌付きまたは撹拌なし出、オーバフロー・タンクまたはクイック・ダンプ・リンス装置(quick dump rinser) 内で行うことができる。酸コンパチブル・スプレー・ツールまたはパドル処理ツールの場合、基板カセットまたは基板は、25〜100rpmの範囲の速度で回転する。酸コンパチブル・スプレー・ツールまたはパドル処理ツールの場合、中間溶媒供給圧力および流量は、一般にエッチング溶液とほぼ同じである。中間溶媒リンスの次に、脱イオン化水リンスが行われる。脱イオン化水リンス処理は、25〜300rpmの範囲の速度で回転し、供給圧力および流量は一般にエッチング溶液の場合とほぼ同じである。
【0023】
別の実施例では、追加の脱イオン化水リンスを含んでもよい。例えば、基板をクイック・ダンプ・リンス装置で脱イオン化水でリンスして、次に回転−リンス−乾燥のサイクルの一部中にリンスしてもよい。
【0024】
プロセス統合を最大限にするため、フッ化物含有溶液,中間溶媒リンス,脱イオン化水リンスおよび基板の乾燥を利用するエッチングは、酸コンパチブル・スプレー・ツールを利用すると、わずか一回のサイクルで順次実施できる。この種のプロセス統合は、サイクル時間を短縮し、作業者の作業を低減する。
【0025】
更なる処理により、図7に示すように、第2レベル間絶縁層71,穴プラグ73および第2レベル相互接続75が形成される。第2レベル間絶縁層71は、第1レベル間絶縁層28(形成済み)と同じまたは異なる組成でもよい。一般に、第2レベル間絶縁層71は、酸化物を含む。第2レベル間絶縁層71は、平坦化して示されているが、別の実施例では、第2レベル間絶縁層71は、平坦化する必要はない。穴プラグ73および第2レベル相互接続75の形成は、コンタクト・プラグ31,32および相互接続411,412の形成とそれぞれ同様である。
【0026】
第2レベル相互接続75が形成された後、第2レベル間絶縁層71は処理され、図8位示すような「洗浄された」第2レベル間絶縁層81を形成する。この「洗浄された」第2レベル間絶縁層81を形成するための処理は、洗浄された第1レベル間絶縁層68の形成について説明した条件を満たすプロセスを利用する。さらに、洗浄された第2絶縁層を形成するためのプロセスは、洗浄された第1レベル間絶縁層68を形成するためのプロセスと同じでも同じでなくてもよい。絶縁層であるパッシベーション層82は、洗浄された第2レベル間絶縁層81および第2レベル相互接続75の上に形成され、図8に示すように実質的に完成された装置を形成する。追加の絶縁層,穴プラグおよび相互接続層ならびに他の電気接続も、必要に応じて作ってもよい。
【0027】
図9は、別の実施例の断面図を含む。この別の実施例は、コンタクト・プラグおよび相互接続の組合せが相互接続91,92によって置き換えられている点を除いて、図5に示すものと同様である。従って、コンタクト・プラグは必要ない。実質的に完成した装置を形成するため、更なる処理が行われる。酸フードまたは酸コンパチブル・スプレー・ツールまたはパドル処理ツールによる処理は、それ以前の図面で説明したように行われ、洗浄された第1レベル間絶縁層98を形成する。相互接続91,92と同様に、穴プラグ73および第2レベル相互接続75(図7に図示)は、一つの相互接続で置き換えてもよい。
【0028】
(レジスト・エッチバックの例)
相互接続の例で説明したのと同様な移動イオンおよび他の装置信頼性の問題の一部は、レジスト・エッチバック・プロセスでも生じることがある。図10は、レジスト・エッチバック(REB)処理工程の前の半導体基板の一部の断面図を含む。フィールド分離領域101,ソース領域102,ドレイン領域103およびチャネル領域106は、基板100内に少なくとも部分的にある。ゲート誘電層104およびゲート電極105は、チャネル領域106とソースおよびドレイン領域102,103の一部の上にある。
【0029】
薄膜トランジスタは、フィールド分離領域101の1つの上にあり、ゲート電極1071,ゲート誘電層1072および活性層1073を含む。活性層1073は、ドレイン領域103と接触する。第1絶縁層108は、薄膜トランジスタと、基板100の他の部分の上にあり、前述の第1絶縁層28と同様な組成を有する。第1絶縁層108は、高点1081および低点1082を含む。高点1081と低点1082との間の高さの差は、1ミクロン以上でもよい。このような差により、その後の層の被着またはリソグラフ工程で問題が生じることがある。この差を低減するために、REB処理工程が一般に行われる。薄膜トランジスタは、金属相互接続などの他の部材で置き換えてもよい。いずれにせよ、第1絶縁層108の高点1081と低点1082との間の高さの差は大きすぎ、小さくする必要がある。レジスト層などの有機層109は、第1絶縁層108の上にある。
【0030】
REB工程は、図11に示すように有機層109の少なくとも一部および第1絶縁層108の一部を除去するために用いられる。有機層109および第1絶縁層108を同時にエッチングするREB工程の一部は、第1絶縁層108への移動イオンの注入に大きな影響を及ぼす。これは、前述のようにプラズマ金属エッチング工程のオーバエッチング部分について説明したのと同様な影響によるものである。バッチ・リアクタを利用する場合のREB工程の同時エッチング部分の一般的なパラメータには、30ミリトル(408ミリパスカル)以上70ミリトル(952ミリパスカル)以下の圧力,800ワット以上1500ワット以下の高周波パワーおよび−350ボルト〜−500ボルトの範囲の直流バイアスならびにフッ化物含有ガス1対酸素1以上でフッ化物含有ガス4対酸素1以下のガス・フロー比が含まれる。REB工程の長さは、極めて可変的である。この長さは、10〜60分の範囲である。リアクタ清浄度は、プラズマ金属エッチング工程のオーバエッチング部分で説明したのと同様な影響により、移動イオン注入に大きな影響を及ぼす。別の実施例では、REB工程で単一基板リアクタを利用してもよい。
【0031】
第1絶縁層108および有機層109がほぼ同じ速度でエッチングするように、REBエッチング条件は選択される。第1絶縁層108のエッチング速度は、有機層109のエッチング速度の0.5〜2.0倍の範囲である。REB工程の少なくとも一部において、第1絶縁層108および有機層109の両方は同時にエッチングされる。移動イオンは、第1絶縁層108がREB工程中に露出されるときに、第1絶縁層108に注入されると考えられる。REB工程後、有機層109および絶縁層108の部分は、基板100の上に存在する。別の実施例では、すべての誘電層109が除去されるか、第1絶縁層108が平坦になるように、第1絶縁層108の厚さまたはREBエッチング条件は変更してもよい。REB工程は、第1絶縁層108の表面をより平坦にするために行われ、第1絶縁層108内に開口部を一般に形成しない(すなわち、コンタクトまたは穴エッチング工程はない)。
【0032】
有機層90の残りの部分は、有機マスキング層溶媒を用いずに、プラズマ・アッシングによって除去される。別の実施例では、有機層109の部分は、有機マスキング層溶媒自体を用いてあるいはプラズマ・アッシング工程で除去してもよい。有機マスキング層溶媒は、相互接続または他の層が露出されていないので利用できる。
【0033】
第1絶縁層は、相互接続の例の第1レベル間絶縁層28で説明したのと同様な方法で「洗浄」され、図6に示す洗浄された第1レベル間絶縁層68と同様な、図12に示すような洗浄された第1絶縁層128を形成する。この洗浄された第1絶縁層128は、高点1281および低点1282を含む。別の実施例では、第1絶縁層は、例えば、脱イオン化水50対フッ化水素酸1の割合の希釈フッ化物含有溶液を有するメガソニック・シンク(megasonic sink)内で洗浄してもよい。用いられる装置および薬液にかかわらず、洗浄された第1絶縁層128を形成するために除去される第1絶縁層の量は、洗浄された第1絶縁層68について説明したガイドラインを満たさなければならない。
【0034】
高点1281と低点1282との間の高さの差は、REB工程の前の高点1081と低点1082との間の高さの差よりも小さい。この差は一般に1ミクロン以下であり、より詳しくは、100から3000オングストロームの範囲である。REBの例の洗浄工程は、REB工程の後で、第1絶縁層108の上に他の層を形成する前,第1絶縁層108を含む基板をアニールする前あるいはその両方の前に一般に行われる。
【0035】
本発明の実施例は、いくつかの効果を含む。プラズマ金属エッチング工程から絶縁層に注入された移動イオンは、エッチング溶液で絶縁層の表面をエッチングすることによってほぼ除去される。このエッチングは、絶縁層から移動イオンの少なくとも75パーセントを除去し、絶縁層からすべての移動イオンの少なくとも95パーセントを除去する。
【0036】
絶縁層内の移動イオンの濃度および深さは、相互接続層の組成および厚さに一般に依存するプラズマ金属エッチング・パラメータに左右される。接着または障壁層あるいは反射防止コーティングが存在し、エッチングされる場合、プラズマ金属エッチング工程は、これらの層がない場合とは異なる条件で行うことができる。異なるプラズマ金属エッチング・パラメータは、絶縁層内の移動イオンの濃度および深さに影響を与えることがある。移動イオンに関するプラズマ金属エッチング・リアクタの清浄度は、絶縁層内の移動イオンの濃度に影響を及ぼす。
【0037】
プラズマ・エッチング処理の結果、移動イオンを含む有機マスキング層および他のポリマ膜は消費され、移動イオンをプラズマ中に放出する。リアクタ内の移動イオン濃度は、連続したプラズマ金属エッチング・サイクル中に増加し続け、内部リアクタ表面が分解・洗浄されるまで、より高濃度の移動イオンが露出した絶縁層に注入されることになる。この蓄積により、リアクタ部品の頻繁な分解および広範な洗浄が必要とされ、そのため処理時間が失われる結果となる。本発明の実施例は、必要な洗浄回数を大幅に低減し、プラズマ・リアクタ内の移動イオン濃度を低減するためにのみ洗浄する必要性をほとんど省く。
【0038】
移動イオン低減レベルを達成するために除去すべき絶縁層の厚さの範囲は、プラズマ金属エッチング工程を行った後、絶縁層を溶液エッチングする前およびその後で絶縁層を分析することによって決定できる。この分析は、2次イオン質量分析法(SIMS)等によって行い、絶縁層内の移動イオンの濃度を調べることができる。この方法は、1次イオンのエネルギ・ビームを利用して、固体サンプルから2次イオンをスパッタリングする。与えられた質量の2次イオンと電荷との比率は、スパッタリング時間の関数として表すことができる。生データは、深さの関数としてイオン濃度に関する情報を必ずしも提供しない。SIMS分析のエネルギの影響のため、絶縁層においてイオンの移動が発生し、このことが、分析前のイオンの位置に比べて、深さ分布中にイオンの位置に影響を及ぼす。深さ分布の全積分は、比較することにより、移動イオン低減情報を提供する。SIMS深さ分布の前に絶縁層を溶液エッチングすることによって酸化物の既知の厚さが除去されると、移動イオンの残りの部分は積分によって測定し、その差を求めることができる。100オングストローム以下の酸化物厚さをエッチングすることにより、絶縁層における移動イオンは75パーセント以下に低減される。900オングストローム以上の酸化物厚さをエッチングすることにより、一般に移動イオン濃度はそれ以上あまり減少せず、移動イオンとは関係ない他の問題が生じることがある。ほとんどの移動イオン低減のためには、プラズマ金属エッチング工程後に、絶縁層の200〜500オングストロームがフッ化物含有溶液によってエッチングされる。
【0039】
移動イオン低減の効果は、REBの例でも得られる。一般に、移動イオンの低減は装置の信頼性を向上させる。第1絶縁層108における移動イオンの量および深さは、REB工程中のエッチング・パラメータに依存する。洗浄工程中に第1絶縁層108をどの程度エッチングするかを決めることは、上記と同様なSIMS分析によって行うことができる。100オングストローム以下の酸化物厚さの除去により、絶縁層における移動イオンの75パーセント以下が低減される。900オングストローム以上の酸化物厚さの除去により、一般に移動イオン濃度はそれ以上あまり減少されず、移動イオンとは関係ない別の問題が生じることがある。ほとんどの移動イオン低減のためには、REB工程の後に、絶縁層の200〜500オングストロームが溶液エッチングされる。
【0040】
別の効果として、有機マスキング層溶媒が必要ないことがある。これらの有機マスキング層溶媒(特に、アルカリアミン溶媒)の多くは、少なくとも10ppb(parts per billion) の濃度で移動イオンが存在する。これは低い濃度であるが、装置信頼性の問題を発生するのには十分高い。溶媒中に含まれる移動イオンは、残留塩素を有する相互接続の露
出面に結合して、移動イオンを引きつけ、装置における移動イオン濃度を増加することがあると考えられる。高い移動イオン濃度は、装置の性能および信頼性を低減することが知られている。
【0041】
本発明の実施例の他の利点には、アッシング不可能な残留物をほぼ完全に除去することや、相互接続層の破損が少ないことがある。一般に、残留物除去は、これらの残留物を除去するために、アルカリアミン溶媒などの有機マスキング層溶媒に露出する必要がある。有機マスキング層溶媒に露出されることにより、装置に移動イオンが追加されることはほぼ間違いない。エッチング溶液は、構造をさらに小さい部分に分解する有機マスキング層溶媒とは異なり、残留物を溶解する。(上記の実施例で説明した)エッチング溶液は、相互接続に対する残留物の接着を低下させる。有機マスキング層溶媒は、相互接続を破損し、この破損には、電解融解による相互接続の点食(pitting) や、粒界除去(grain removal) による表面の粗面化がある。有機マスキング層溶媒は用いられないので、本発明の実施例は相互接続の表面に破損が少ない。
【0042】
本発明の実施例は、有機マスキング層溶媒プロセスに比べて、サイクル当たりで必要とする処理時間は短く、薬液は少ない。上記の実施例で用いられる薬液は、含有粒子が少なく、本質的にあまり不良を発生しない。この結果、よりクリーンな処理,改善された装置性能および歩留りが得られる。金属エッチング後の脱イオン化水リンスおよび薬液洗浄の個別の段階は、1つの装置サイクルに組み合わせることができ、処理および段取り時間を短縮し、必要な機器を低減できる。キャリア溶媒としてグリコールまたはアルコール薬液を利用することは、エッチング薬液に比べて高い粘性のため有利である。これは、パッシベーション剤として機能して、相互接続表面をエッチング薬液への過度の露出から保護し、相互接続の浸食および他の破損を防ぐ。
【0043】
以上、特定の実施例を参照して、本発明について説明した。ただし、特許請求の範囲に規定されるように、発明のより広い精神または範囲から逸脱せずに、さまざまな修正や変更が可能なことが明らかである。よって、本明細書および図面は、制限的ではなく例示的な意味でみなされる。
【図面の簡単な説明】
【0044】
【図1】本発明により半導体装置を形成するための1実施例の処理工程を示すフローチャート。
【図2】コンタクト開口部を形成した後の基板の一部を示す断面図。
【図3】図2の基板にコンタクト・プラグを形成した状態を示す断面図。
【図4】図3の基板の基板に相互接続レベルおよびフォトレジスト部材を形成した状態を示す断面図。
【図5】図4の基板の基板にフォトレジスト部材を除去した状態を示す断面図。
【図6】本発明により相互接続が形成された後に第1絶縁層の一部をエッチングした後で、第1絶縁層および相互接続の上に別の層を形成する前の第5図の基板を示す断面図。
【図7】図6の基板に第2絶縁層,穴プラグおよび相互接続を形成した状態を示す断面図。
【図8】図7の基板に本発明により第2絶縁層の一部をエッチングし、パッシベーションを形成した状態を示す断面図。
【図9】図2の基板に本発明により相互接続を形成し第1絶縁層の一部をエッチングした状態を示す断面図。
【図10】レジスト・エッチバック工程前の基板の一部の断面図。
【図11】図10の基板にレジスト・エッチバック工程中に有機層の一部および第1絶縁層をエッチングした状態を示す断面図。
【図12】図11の基板に本発明によりレジスト・エッチバック工程後に第1絶縁層をの一部をエッチングした状態を示す断面図。
【符号の説明】
【0045】
20…半導体基板、21…フィールド分離領域、22…ソース領域、23…ドレイン領域、24…ゲート誘電層、25…ゲート電極、26…チャネル領域、27…側壁スペーサ、28…第1レベル間絶縁層、291…ドレイン・コンタクト開口部、292…ゲート・コンタクト開口部、31…ドレイン・コンタクト・プラグ、32…ゲート・コンタクト・プラグ、41…相互接続層、411…ドレイン相互接続、412…ゲート相互接続、421,422…フォトレジスト部材、68…洗浄された第1レベル間絶縁、71…第2レベル間絶縁層、73…穴プラグ、75…第2レベル相互接続、81…洗浄された第2レベル間絶縁層、82…パッシベーション層、91,92…相互接続、98…洗浄された第1レベル間絶縁層、100…基板、101…フィールド分離領域、102…ソース領域、103…ドレイン領域、104…ゲート誘電層、105…ゲート電極、106…チャネル領域、1071…ゲート電極、1072…ゲート誘電層、1073…活性層、108…第1絶縁層、1081…高点、1082…低点、109…有機層、128…洗浄された第1絶縁層、1281…高点、1282…低点。

【特許請求の範囲】
【請求項1】
半導体基板(20)の上方に第1絶縁層(28,71)を形成する工程と、
前記第1絶縁層(28,71)の上方に金属含有層(41)を被着する工程と、
前記金属含有層の上方にパターニングされた有機マスキング層(421,422)を形成することによって、金属含有層(41)に露出部分を形成する工程と、
前記金属含有層(41)の露出部分を、ハロゲン化物含有プラズマ・エッチング剤でエッチングして、相互接続部材(411,412,75)を形成する工程であって、このエッチング工程の間に前記第1絶縁層に移動イオンが入れられる、相互接続部材の形成工程と、
パターニングされた有機マスキング層(421,422)を、有機マスキング層溶媒ではなくプラズマ・ガスで除去する工程と、
第1絶縁層(28,71)の一部をエッチング溶液でエッチングする工程であって、この工程は、前記露出部分のエッチング工程の後、かつ前記相互接続部材(411,412,75)の上方にいかなる層を形成する前に行われて、前記第1絶縁層(68,81)の少なくとも10nm(100オングストローム)をエッチングし、または前記第1絶縁層から少なくとも75パーセントの移動イオンを除去する、第1絶縁層の一部のエッチング工程と、
前記相互接続部材の上方に第2絶縁層(71,82)を形成する工程とを備える、半導体装置の製造方法。
【請求項2】
前記エッチング溶液は摂氏20度で少なくとも2センチポイズの粘性を有するキャリア溶媒を含有する、請求項1に記載の半導体装置の製造方法。
【請求項3】
前記基板を脱イオン水で洗浄する前に、前記基板をアルコールおよびグリコールからなる群から選択された薬品によって洗浄する工程と、
前記基板を脱イオン水で洗浄する工程と、
前記基板を乾燥する工程とをさらに備え、
前記基板を薬品で洗浄する工程、脱イオン水で洗浄する工程、および乾燥する工程は、前記第1絶縁層の一部のエッチング工程と、前記第2絶縁層の形成工程との間に行われる、請求項1に記載の半導体装置の製造方法。
【請求項4】
前記第1絶縁層の一部のエッチング工程、および前記基板を薬品で洗浄する工程、脱イオン水で洗浄する工程、および乾燥する工程は、酸コンパチブル・スプレー・ツールの内部で同一のサイクルの間に行われる、請求項3に記載の半導体装置の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2006−261687(P2006−261687A)
【公開日】平成18年9月28日(2006.9.28)
【国際特許分類】
【出願番号】特願2006−129423(P2006−129423)
【出願日】平成18年5月8日(2006.5.8)
【分割の表示】特願平7−82035の分割
【原出願日】平成7年3月15日(1995.3.15)
【出願人】(504199127)フリースケール セミコンダクター インコーポレイテッド (806)
【Fターム(参考)】