説明

弾性表面波デバイス

【課題】第1、第2伝搬路が形成された領域の両方に対して、同時に、周波数特性の調整手法を実施して、所望の第1、第2伝搬路の周波数特性差を得ることが可能なSAWデバイスを提供する。
【解決手段】基板11の上面11aの一部に形成された結晶配向調整膜13と、基板11の上面11aにおける結晶配向調整膜13の形成領域上および非形成領域上に同じ材料で形成された圧電薄膜12と、圧電薄膜12の上下面の一方の面における異なる位置に形成された第1、第2伝搬路とを備え、圧電薄膜12のうち、結晶配向調整膜13の形成領域上に位置する第1領域12cと、結晶配向調整膜13の非形成領域上に位置する第2領域12dとは、結晶配向が異なっており、第1、第2伝搬路は、それぞれを占める第1、第2領域12c、12dの面積比が異なる構成とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、弾性表面波デバイスに関するものである。
【背景技術】
【0002】
同一基板上に異なる弾性表面波伝搬路である第1、第2伝搬路を有する弾性表面波(SAW)デバイスが特許文献1、2に開示されている。なお、ここでいう伝搬路は、SAWが伝搬する圧電体と、SAWの励振、受信、反射等を行う電極とによって構成されたものを意味する。
【0003】
特許文献1に開示のSAWデバイスは、2つのSAW共振子(SAW素子)が同一の圧電基板に形成された周波数変化検出型センサである。このセンサは、物理量によって2つのSAW共振子の発振周波数差が変化することを利用して、2つのSAW共振子の発振周波数の差分を求め、この差分の変化量から物理量を検出するものである。このセンサでは、2つのSAW共振子を同一基板に形成することで、2つのSAW共振子の温度特性を同一にし、2つのSAW共振子の発振周波数の差分を求めたときに、2つのSAW共振子の温度特性をキャンセルできる。
【0004】
特許文献2に開示のSAWデバイスは、弾性表面波フィルタであり、入力用櫛歯電極と、出力用櫛歯電極と、入力用櫛歯電極から伝搬された弾性表面波を受け、出力用櫛歯電極に向けて弾性表面波を伝搬させるマルチストリップカプラとが、同一の圧電基板に形成されている。
【0005】
ところで、周波数fを計測する手法として1波長の時間から求める場合、周波数分解能fsはfs=σfから求められる。ジッタσが一定であるとき、周波数fは小さい方が分解能は高いことになる。
【0006】
したがって、上述のセンサにおいて、上述の周波数計測手段を用いる場合、発振周波数差は小さい方がセンサの分解能が向上することになる。また、センサがデータを出力する周波数(サンプリング周波数)よりも発振周波数差は高くなければならないため、サンプリング周波数を100kHzと設定した場合、発振周波数差は100kHz以上かつ100kHz近傍であることが望ましい。
【0007】
一例として、200MHzの共振器を考えると、発振周波数差100kHzは発振周波数の0.0005%に相当する。SAW共振器を構成する一対の櫛歯電極における隣り合う櫛歯部の間隔(電極ピッチ)により共振周波数やアドミタンス特性等の周波数特性を変化させる場合、電極ピッチが10μmとすると、その0.0005%、つまり0.005μmの電極ピッチ調整を要求される。しかし、電極は、金属薄膜をフォトエッチング(フォトリソグラフィおよびエッチング)することにより形成されるため、そのような微小な電極ピッチ調整をしようとすると、実際には、フォトエッチング時のマスクの作製が困難・高価となる。そのため、電極形成後に、SAW素子の周波数特性を調整する手法が考案されている。
【0008】
このSAW素子の周波数特性を調整する方法としては、具体的には、基板表面にAu等の金属粒子を吹き付けて質量付加を行う方法(例えば、特許文献3参照)や、電極、圧電基板をエッチングする方法(例えば、特許文献3参照)等の手法が存在する。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開平9−80035号公報
【特許文献2】特許第2728023号公報
【特許文献3】特開2006−238211号公報
【特許文献4】特開平8―32392号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
しかし、同一基板上の第1、第2伝搬路の形成領域に対して、上述の周波数特性を調整する手法を同時に施すと、第1、第2伝搬路の周波数特性の差に変化が生じないか、変化が生じてもその変化量は微小である。
【0011】
そのため、第1、第2伝搬路の周波数特性の差を所望の大きさとするためには、第1、第2伝搬路が形成された領域の両方ではなく、どちらか一方のみに、これらの手法を施さなければならず、第1、第2伝搬路が形成された領域のうちこれらの手法を施さない他方に対して、マスクで保護する等のプロセスの追加が別途必要となる。
【0012】
本発明は上記点に鑑みて、第1、第2伝搬路の形成領域の両方に対して、同時に、周波数特性の調整手法を実施しても、所望の第1、第2伝搬路の周波数特性差が得られるようにすることを目的とする。
【課題を解決するための手段】
【0013】
上記目的を達成するため、請求項1に記載の発明では、
基板(11)と、基板(11)の上面(11a)の一部に形成された結晶配向調整膜(13)と、基板(11)の上面(11a)における結晶配向調整膜(13)の形成領域上および非形成領域上に同じ材料で形成された圧電薄膜(12)と、圧電薄膜(12)の上下面の一方の面に形成された第1伝搬路(2a、70)を構成する第1電極群(20、40、61)と、圧電薄膜(12)の前記一方の面であって、第1電極群(20、40、61)と異なる位置に形成された第2伝搬路(4a、80)を構成する第2電極群(30、50、62)とを備え、
圧電薄膜(12)のうち、結晶配向調整膜(13)の形成領域上に位置する第1領域(12c)と、結晶配向調整膜(13)の非形成領域上に位置する第2領域(12d)とは、結晶配向が異なっており、
第1、第2伝搬路(2a、4a、70、80)は、それぞれを占める第1、第2領域(12c、12d)の面積比が異なることを特徴としている。
【0014】
圧電薄膜の構成材料が同じであっても結晶配向が異なると、その圧電薄膜に形成された弾性表面波伝搬路の周波数特性が異なる。このため、第1、第2伝搬路を占める第1、第2領域の面積比が異なると、第1、第2伝搬路の周波数特性も異なる。さらに、第1伝搬路と第2伝搬路における圧電薄膜や電極の厚さを、第1伝搬路と第2伝搬路とで同じ変化量で変化させると、第1、第2伝搬路の周波数特性の差が変化する。
【0015】
したがって、本発明によれば、第1、第2伝搬路の形成領域の両方に対して、同時に、圧電薄膜の膜厚や第1、第2伝搬路に形成された電極の厚さを調整する等の周波数特性の調整手法を実施することにより、第1、第2伝搬路の周波数特性差を所望差とすることが可能となる。
【0016】
請求項2に記載の発明では、請求項1に記載の発明において、圧電薄膜(12)の上下面の一方に形成された第1櫛歯電極(21)と、
圧電薄膜(12)の上下面の一方に形成され、第1櫛歯電極(21)から伝搬される弾性表面波を反射する第1反射器(22)と、
圧電薄膜(12)の上下面の一方に形成された第2櫛歯電極(31)と、
圧電薄膜(12)の上下面の一方に形成され、第2櫛歯電極(31)から伝搬される弾性表面波を反射する第2反射器(32)とを備え、
第1伝搬路は、第1櫛歯電極から伝搬される弾性表面波を第1反射器が反射する領域(2a)であり、
第2伝搬路は、第2櫛歯電極から伝搬される弾性表面波を第2反射器が反射する領域(4a)であることを特徴としている。
【0017】
請求項1に記載の発明においては、例えば、請求項2に記載の発明の構成を採用することができる。
【0018】
また、請求項2に記載の発明においては、例えば、請求項3に記載のように、第1、第2櫛歯電極(21、31)は、平面パターン形状および厚さが同じである構成を採用できる。
【0019】
請求項4に記載の発明では、請求項1に記載の発明において、
圧電薄膜(12)の上下面の一方に形成された入力用櫛歯電極(40)と、
圧電薄膜(12)の上下面の一方に形成された出力用櫛歯電極(50)と、
圧電薄膜(12)の上下面の一方に形成され、入力用櫛歯電極(40)から伝搬された弾性表面波を受け、出力用櫛歯電極(50)に向けて弾性表面波を伝搬させるマルチストリップカプラ(60)とを備え、
第1伝搬路は、入力用櫛歯電極(40)からマルチストリップカプラ(60)に弾性表面波が伝搬する領域(70)であり、
第2伝搬路は、マルチストリップカプラ(60)から出力用櫛歯電極(50)に弾性表面波が伝搬する領域(80)であることを特徴としている。
【0020】
請求項1に記載の発明においては、例えば、請求項4に記載の発明の構成を採用することもできる。
【0021】
また、請求項4に記載の発明においては、例えば、請求項5に記載のように、入力用櫛歯電極(40)と出力用櫛歯電極(50)とは、平面パターン形状および厚さが同じである構成を採用できる。
【0022】
また、請求項1ないし5のいずれか1つに記載の発明においては、例えば、請求項6に記載のように、基板(11)はR面サファイアであり、結晶配向調整膜(13)はSiO膜であり、圧電薄膜(12)はAlN膜である構成を採用したり、請求項7に記載のように、基板(11)はR面サファイアであり、結晶配向調整膜(13)はSiO膜であり、圧電薄膜(12)はZnO膜である構成を採用したりすることができる。
【0023】
請求項8に記載の発明では、
基板(11)を用意する工程と、
基板(11)の上面(11a)の一部に結晶配向調整膜(13)を形成する工程と、
基板(11)の上面(11a)における結晶配向調整膜(13)の形成領域上および非形成領域上に同じ材料からなる圧電薄膜(12)を形成する工程と、
圧電薄膜(12)の上下面の一方の面における異なる位置に、第1伝搬路(2a、70)を構成する第1電極群(20、40、61)と、第2伝搬路(4a、80)を構成する第2電極群(30、50、62)とを形成する工程とを備え、
圧電薄膜(12)を形成する工程では、圧電薄膜(12)のうち、結晶配向調整膜(13)の形成領域上に位置する第1領域(12c)と、結晶配向調整膜(13)の非形成領域上に位置する第2領域(12d)とで、結晶配向を異ならせて結晶成長させ、
結晶配向調整膜(13)を形成する工程では、第1、第2伝搬路(2a、4a、70、80)のそれぞれを占める第1、第2領域(12c、12d)の面積比が異なるように、基板(11)の上面(11a)に結晶配向調整膜(13)を配置することを特徴としている。
【0024】
これによれば、請求項1に記載の弾性表面波デバイスを製造することができ、請求項1に記載の発明と同様の効果を奏する。
【0025】
すなわち、これによれば、請求項9に記載のように、第1電極群(20、40、61)と第2電極群(30、50、62)とを形成する工程の後に、第1、第2伝搬路(2a、4a、70、80)の形成領域に対して、同時に、圧電薄膜(12)の厚さを調整したり、請求項10に記載のように、同時に、第1、第2電極群(20、30、40、50、61、62)の厚さを調整することにより、第1、第2伝搬路(2a、4a、70、80)の周波数特性の差を調整する調整工程を行うことで、第1、第2伝搬路の周波数特性差を所望差とすることが可能となる。
【0026】
なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
【図面の簡単な説明】
【0027】
【図1】第1実施形態のSAW発振器の電気回路図である。
【図2】第1実施形態のSAW共振子の平面図である。
【図3】図2中のIII−III線断面図である。
【図4】図3中の圧電薄膜12の第1領域12cおよび第2領域12dにおける膜厚と位相速度との関係を示す図である。
【図5】図4から求めた圧電薄膜12の第1領域12cおよび第2領域12dの膜厚と位相速度変化量との関係を示す図である。
【図6】第2実施形態のSAW共振子の平面図である。
【図7】周波数とアドミタンス値を座標軸としてアドミタンス特性を示す図である。
【図8】第3実施形態のSAWフィルタの平面図である。
【図9】第4実施形態のSAWフィルタの平面図である。
【発明を実施するための形態】
【0028】
以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、説明の簡略化を図るべく、図中、同一符号を付してある。
【0029】
(第1実施形態)
図1にSAWデバイスとしてのSAW共振子を用いた第1実施形態のSAW発振器の電気回路図を示す。また、図2に、図1中のSAW共振子の平面図を示し、図3に図2中のIII−III線断面図を示す。本実施形態のSAW発振器は、周波数変化検出型センサとして利用されるものである。
【0030】
図1に示すように、SAW発振器1は、第1弾性表面波素子としての第1SAW共振子2を有する第1発振回路3と、第2弾性表面波素子としての第2SAW共振子4を有する第2発振回路5とを備えている。第1、第2発振回路3、5によって2つの発振器が形成されている。
【0031】
第1、第2発振回路3、5は、同じ構成のものであり、一般的な回路構成が採用可能である。第1、第2発振回路3、5は、例えば、インバータI1、I2と、受動部品である抵抗R1および容量C1、C2と、出力ポートT1とを有し、それぞれ、第1、第2SAW共振子2、4を構成要素とする正帰還ループを構成している。正帰還ループにおいて、インバータI1、I2に入力される電気信号のうち、位相が360°×nで、利得が1以上となる条件を満たす信号のみが増幅され、この信号のみが出力ポートT1から出力される。
【0032】
このSAW発振器1を周波数変化検出型センサとして用いる場合、第1、第2SAW共振子2、4の一方をリファレンス用とし、他方を検出用として用いる。そして、検出用のSAW素子を有する発振回路の発振周波数が変化すると、第1、第2発振回路3、5からの出力信号の差周波(両者の発振周波数の差分)が変化する。そこで、この差周波の変化を検出することで、検出用のSAW素子で生じた周波数変化が検出可能となる。
【0033】
したがって、上記したSAW発振器1と、図示しない第1、第2発振回路3、5からの出力信号の差周波を求めるための回路と、求められた差周波の変化から、予め定められた差周波変化量と物理量との関係に基づいて、物理量を算出する図示しない記憶演算装置とを用いてセンシングシステムを構成することで、物理量を検出することができる。
【0034】
図2に示すように、第1、第2SAW共振子2、4は、同一材料からなる圧電薄膜12に設けられており、第1SAW共振子2を構成する第1電極群20と、第2SAW共振子4を構成する第2電極群30とが、圧電薄膜12の上面の異なる位置に形成されている。圧電薄膜12は、圧電材料を結晶成長させたものであり、第1電極群20および第2電極群30は、金属材料で構成されたものである。
【0035】
第1、第2SAW共振子2、4は、どちらも、第1、第2電極群20、30として、櫛歯電極21、31および反射器22、32を備えている。第1SAW共振子2の櫛歯電極21および反射器22が第1櫛歯電極および第1反射器であり、第2SAW共振子4の櫛歯電極31および反射器32が第2櫛歯電極および第2反射器である。
【0036】
櫛歯電極21、31は、圧電薄膜12に弾性表面波を励振させるものである。櫛歯電極21、31は、具体的には、図2に示すように、それぞれ、互いに平行であってX軸方向に延びている複数の櫛歯部21a、31aと複数の櫛歯部21a、31aを連結するバスバー21b、31bとを有している。この櫛歯電極21、31によって、櫛歯部21a、31aの延伸方向に垂直な方向、すなわち、Y軸方向に、弾性表面波が伝搬する。なお、本明細書で言う櫛歯電極とは、一対の櫛歯電極の櫛歯部が1本ずつ交互に配置されたものを意味し、交差指状電極(IDT)とも呼ばれるものである。
【0037】
反射器22、32は、櫛歯電極21、31のY軸方向での両側に配置されており、櫛歯電極21、31から伝搬された弾性表面波を反射するものである。反射器22、32は、Y軸方向に並ぶ複数本の電極によって構成されている。1本の電極は、櫛歯部21a、31aと平行に延びており、その長さは櫛歯電極21、31の交差指幅と同じであり、複数本の電極同士は互いに平行である。
【0038】
本実施形態では、第1SAW共振子2と第2SAW共振子4とは、櫛歯電極21、31および反射器22、32の平面パターン形状および膜厚が同じである。平面パターン形状とは、櫛歯電極21、31の櫛歯部21a、31aの長さおよび幅、隣り合う櫛歯部21a、31aの間隔や、反射器22、32を構成する電極の長さおよび幅、隣り合う電極の間隔を意味する。
【0039】
また、図2に示すように、圧電薄膜12のうち、第1SAW共振子2の形成領域、すなわち、第1櫛歯電極21から伝搬される弾性表面波を第1反射器22が反射する領域2aが弾性表面波の第1伝搬路2aである。この第1伝搬路2aは、具体的には、第1櫛歯電極21および第1反射器22が配置された領域であって、第1櫛歯電極21の交差指幅と同じ幅の領域である。
【0040】
また、圧電薄膜12のうち、第2SAW共振子4の形成領域、すなわち、第2櫛歯電極31から伝搬される弾性表面波を第2反射器32が反射する領域4aが弾性表面波の第2伝搬路4aである。この第2伝搬路4aは、具体的には、第2櫛歯電極31および第2反射器32が配置された領域であって、第2櫛歯電極31の交差指幅と同じ幅の領域である。
【0041】
第1SAW共振子2と第2SAW共振子4は、弾性表面波の伝搬方向(Y軸方向)に対して垂直な方向(X軸方向)に並んで配置されており、第1SAW共振子2が形成された領域では第1櫛歯電極21から励振された弾性表面波のみが伝搬し、第2SAW共振子4が形成された領域では第2櫛歯電極31から励振された弾性表面波のみが伝搬する。したがって、第1、第2伝搬路2a、4aは、各伝搬路内のみを弾性表面波が伝搬し、一方の伝搬路と他方の伝搬路との間を弾性表面波は伝搬せず、独立した伝搬路を構成している。
【0042】
なお、本実施形態では、第1SAW共振子2と第2SAW共振子4との並び方向が、第1SAW共振子2における弾性表面波の伝搬方向(Y軸方向)に対して垂直な方向(X軸方向)であったが、第1SAW共振子2における弾性表面波の伝搬方向とは異なる方向であれば、他の方向であっても良い。
【0043】
図3に示すように、圧電薄膜12は、結晶成長用基板13の上面11aにおける結晶配向調整膜13の形成領域上および非形成領域上に形成されている。結晶成長用基板11は、その上面11aに圧電材料を結晶成長させることを目的とした基板である。なお、他の目的の基板であっても、その上面に圧電材料を結晶成長させることができれば、その基板を結晶成長用基板11の代わりに用いることができる。本実施形態では、結晶配向調整膜13の形成領域は、第1SAW共振子2が形成されている領域である。
【0044】
このような構成の第1、第2SAW共振子2、4は、結晶成長用基板11を用意する工程と、結晶成長用基板11の上面11aの一部に結晶配向調整膜13を形成する工程と、結晶成長用基板13の上面11aにおける結晶配向調整膜13の形成領域上および非形成領域上に同じ材料からなる圧電薄膜12を形成する工程と、圧電薄膜12の上面12aにおける異なる位置に、第1SAW共振子2を構成する第1電極群20と、第2SAW共振子4を構成する第2電極群30とを形成する工程とを順に行うことで製造される。
【0045】
ここで、結晶配向調整膜13を形成する工程では、結晶成長用基板11の上面11aのうち第1電極群20の形成予定領域の全域にわたって、結晶配向調整膜13を形成する。
【0046】
この結晶配向調整膜13は、結晶成長用基板11の上面11aに直接成膜したときの圧電薄膜12の結晶配向と、結晶成長用基板11の上面11aに結晶配向調整膜13を介して成膜したときの圧電薄膜12の結晶配向とを異ならせるためのものである。
【0047】
そして、圧電薄膜12を形成する工程では、結晶成長用基板13の上面11aにおける結晶配向調整膜13の形成領域上および非形成領域上に、同時に、同じ膜厚の圧電薄膜12を形成する。
【0048】
このとき、圧電薄膜2のうち、結晶配向調整膜13の形成領域上に位置する第1領域12cと、結晶配向調整膜13の非形成領域上に位置する第2領域12dとで、結晶配向が異なるように結晶成長させる。
【0049】
具体的には、結晶成長用基板11として基板面がR面であるサファイア基板を用い、結晶配向調整膜13として非晶質のSiO膜を形成し、圧電薄膜12としてAlN膜を形成する。サファイア基板の基板面上に六方晶系のAlN結晶をエピタキシャル成長させると、サファイア基板の結晶配向に倣って、AlN結晶はc軸が基板面に平行となって成長する。一方、非晶質のSiO膜上にAlN結晶を成長させると、サファイア基板の結晶配向と異なって、AlN結晶はc軸が基板面に垂直となって成長する。
【0050】
したがって、図3に示すように、圧電薄膜12のうち結晶配向調整膜13の非形成領域上の第2領域12dでは、AlN結晶のc軸が基板面11aに対し平行に配向するので、第2領域12dはR面配向を持つ。一方、圧電薄膜12のうち結晶配向調整膜13の形成領域上の第1領域12cでは、AlN結晶のc軸が基板面11aに対し垂直に配向するので、第1領域12dはC面配向を持つ。
【0051】
なお、SiO膜の成膜方法としては、半導体装置の製造等で行われる一般的なSiO膜の成膜方法が採用可能であり、AlN膜の成膜方法としては、一般的な成膜方法が採用可能である。
【0052】
また、SiO膜の膜厚は、SiOが非晶質となり、AlN膜のc軸方向をサファイア基板の結晶配向と異ならせることができる膜厚であれば良い。ちなみに、図3では、SiO膜13が存在するため、圧電薄膜12の第1領域12cと第2領域12dとの膜厚が異なって図示されているが、SiO膜13の膜厚は、例えば、10〜20nm等のSiO膜13の存在をほとんど無視できる厚さであり、圧電薄膜12の第1領域12cと第2領域12dとの膜厚は同じである。
【0053】
第1電極群20と第2電極群30とを形成する工程では、Al等の金属薄膜を成膜した後、フォトエッチングを行うことにより、平面パターン形状および膜厚が同じ櫛歯電極21、31および反射器22、32を形成する。
【0054】
本実施形態では、結晶成長用基板11の上面11aのうち、第1SAW共振子2を構成する第1電極群20の形成予定領域の全域にわたって結晶配向調整膜13を形成しており、圧電薄膜12のうち第1SAW共振子2を構成する第1電極群20の形成領域の全域を第1領域12cとしている。すなわち、圧電薄膜12のうち第1SAW共振子2を構成する第1電極群20の形成領域を占める第1領域12cと第2領域12dとの面積比は、第1領域12c:第2領域12d=100:0である。
【0055】
一方、結晶成長用基板11の上面11aのうち、第2SAW共振子4を構成する第2電極群30の形成予定領域の全域にわたって結晶配向調整膜13を形成しておらず、第2SAW共振子4を構成する第2電極群30の形成領域の全域を第2領域12dとしている。すなわち、圧電薄膜12のうち第2SAW共振子4を構成する第2電極群30の形成領域を占める第1領域12cと第2領域12dとの面積比は、第1領域12c:第2領域12d=0:100である。
【0056】
このようにして、本実施形態では、圧電薄膜12の上面12aにおいて、第1SAW共振子2を構成する第1電極群20の形成領域と、第2SAW共振子4を構成する第2電極群30の形成領域とは、それぞれを占める圧電薄膜12の第1、第2領域12c、12dの面積比が異なっている。
【0057】
このため、第1、第2SAW共振子2、4は、圧電薄膜12の結晶配向の違いに起因する周波数特性(本実施形態では、共振周波数)の差を有しており、圧電薄膜12の厚さにより周波数特性差(本実施形態では、共振周波数差)が調整されている。
【0058】
ここで、図4に圧電薄膜12の第1領域12cおよび第2領域12dにおける膜厚と位相速度との関係を示し、図5に図4から求めた圧電薄膜12の第1領域12cおよび第2領域12dの膜厚と位相速度変化量との関係を示す。
【0059】
なお、図4、5は、圧電薄膜12としてAlN膜を成膜し、第1電極群20および第2電極群30としてAl膜を成膜し、このAl膜の膜厚を0.7μmとしたときのものである。また、図5の位相速度変化量の算出式は次の通りである。位相速度変化量[%]=100×(R面配向AlN膜の位相速度-C面配向AlN膜の位相速度)/R面配向AlN膜の位相速度
図4に示すように、圧電薄膜12の第1領域12cと第2領域12dとは、c軸配向が異なるので、圧電薄膜12の膜厚が所定値の場合を除き、第1領域12cと第2領域12dの膜厚が同じであっても位相速度(音速)が異なる。
【0060】
したがって、共振周波数は、圧電薄膜の位相速度および電極構造によって定まることから、本実施形態のように、第1領域12cと第2領域12dのそれぞれの表面上に、同一構造の電極を形成しても、共振周波数が異なる共振子を作ることができる。
【0061】
また、図5に示すように、第1領域12cと第2領域12dの膜厚が同じ場合、圧電薄膜12の膜厚が増大すると、第1領域12cと第2領域12dとの位相速度差である位相速度変化量が増大する傾向がある。具体的には、圧電薄膜12の膜厚を0.35μmから3.0μmまで増大させると、第1領域12cと第2領域12dとの位相速度差は−0.29%から+2.2%まで徐々に増大する傾向がある。
【0062】
したがって、圧電薄膜12を形成する工程において、この傾向に基づいて、所望の位相速度差を得るための圧電薄膜12の膜厚を予め設定しておき、この予め設定した膜厚にて圧電薄膜12を形成することにより、圧電薄膜12の膜厚が0.35μm〜3.0μmの範囲では、圧電薄膜12の第1領域12cと第2領域12dでの位相速度差を−0.29%から+2.2%の範囲内の所望差に設定することができる。
【0063】
また、上記した傾向からすれば、第1電極群20と第2電極群30とを形成する工程の後に、第1SAW共振子2を構成する第1電極群20の形成領域と第2SAW共振子4を構成する第2電極群30の形成領域との両方に対して、同時に、圧電薄膜12をエッチングしたり、圧電薄膜12の上面に圧電材料の結晶を成長させたりする等の圧電薄膜12の厚さを調整する調整工程を行うことによっても、圧電薄膜12の膜厚が0.35μm〜3.0μmの範囲では、圧電薄膜12の第1領域12cと第2領域12dでの位相速度差を−0.29%から+2.2%の範囲内の所望差に調整することもできる。
【0064】
このようにして、本実施形態では、第1、第2SAW共振子2、4の共振周波数の差が−0.29%〜+2.2%の範囲内の所望差に調整されている。これにより、第1SAW共振子2を有する第1発振回路3と、第2SAW共振子4を有する第2発振回路5との間の発振周波数差が調整されている。
【0065】
なお、本実施形態では、圧電薄膜12の第1領域12cと第2領域12dとの位相速度差を所望差とするために、圧電薄膜12の膜厚を設定もしくは調整したが、圧電薄膜12の膜厚の代わりに、第1、第2電極群20、30の膜厚を設定もしくは調整しても良い。
【0066】
これは、圧電薄膜12の膜厚を変化させるかわりに、第1、第2電極群20、30の膜厚を変化させても、第1、第2電極群20、30の膜厚と圧電薄膜の位相速度とには、図4、図5に示す膜厚と位相速度との関係と同様の関係がみられるからである。
【0067】
ところで、櫛歯電極の平面パターン形状によって、SAWデバイスの共振周波数が定まるため、用途が異なるSAWデバイスを製造する場合、用途によって求められる共振周波数が異なるため、SAWデバイスの用途に応じた櫛歯電極の平面パターン形状が必要となる。このため、櫛歯電極を形成するためのフォトリソグラフィ工程において、用途毎に設計されたフォトマスクを使用する必要があった。
【0068】
これに対して、本実施形態のSAWデバイスは、櫛歯電極21、31の平面パターン形状が同じであっても、圧電薄膜12もしくは第1、第2電極群20、30の膜厚が異なれば、第1、第2SAW共振子2、4の共振周波数が異なる。したがって、本実施形態のSAWデバイスによれば、フォトリソグラフィ工程において、同じフォトマスクを用いても、SAWデバイスの用途毎に、圧電薄膜の成膜条件(膜厚)を異ならせるだけで、共振周波数の差が異なるSAWデバイスを製造することも可能になる。
【0069】
(第2実施形態)
図6に、本実施形態におけるSAWデバイスとしてのSAW共振子の平面図を示す。図6は図2に対応している。本実施形態のSAW共振子は、圧電薄膜12の第1領域12c、第2領域12dの形成位置が、第1実施形態と異なるものであり、その他の構成は、第1実施形態と同じである。
【0070】
具体的には、図6に示すように、第1SAW共振子2と第2SAW共振子4は、どちらも、圧電薄膜12の第1領域12cと第2領域12dの両方にまたがって形成されている。すなわち、圧電薄膜12において、第1、第2SAW共振子2、4の形成領域2a、4aには、それぞれ、第1領域12cと第2領域12dの両方が存在している。
【0071】
そして、第1SAW共振子2の形成領域2aでは、第1領域12cよりも第2領域12dの方が面積が大きく、第2SAW共振子4の形成領域4aでは、第2領域12dよりも第1領域12cの方が面積が大きくなっている。このように、第1、第2SAW共振子2、4の形成領域2a、4aは、それぞれを占める第1領域12cと第2領域12dの面積比が異なっている。
【0072】
本実施形態のSAW共振子は、第1実施形態で説明した製造方法において、結晶配向調整膜13の形成位置を変更することで製造される。
【0073】
具体的には、結晶配向調整膜13を形成する工程で、第1、第2SAW共振子2、4の形成領域2a、4aのそれぞれに第1領域12cと第2領域12dの両方が存在し、第2SAW共振子2、4の形成領域2a、4aのそれぞれを占める第1領域12cと第2領域12dの面積比が異なるように、結晶成長用基板11の上面11aに結晶配向調整膜13を配置する。
【0074】
これにより、圧電薄膜12を形成する工程では、第1SAW共振子2の形成予定領域と、第2共振子4の形成予定領域のそれぞれに、第1領域12cと第2領域12dの両方が存在する圧電薄膜12が形成される。
【0075】
そして、圧電薄膜12の上面12aに第1電極群20と第2電極群30とを形成する工程では、第1SAW共振子2の形成予定領域において、圧電薄膜12の第1領域12cと第2領域12dの両方にまたがって第1電極群20を形成し、同様に、第2SAW共振子4の形成予定領域において、圧電薄膜12の第1領域12cと第2領域12dの両方にまたがって第2電極群30を形成する。
【0076】
このように、本実施形態では、第1、第2SAW共振子2、4の形成領域2a、4aでは、それぞれを占める第1領域12cと第2領域12dの面積比が異なることにより、第1、第2SAW共振子2、4は周波数特性の差を有している。
【0077】
そして、この第1、第2SAW共振子2、4における周波数特性の差は、圧電薄膜12の厚さ、第1、第2電極群20、30の厚さ、第1領域12cと第2領域12dの面積比を設定したり、調整したりすることにより、所望差にすることができる。
【0078】
具体的には、第1、第2SAW共振子2、4における周波数特性の差として、アドミタンスピーク高さの差を所望差とする場合、圧電薄膜12の第1領域12cと第2領域12dの位相速度が等しくなるように、圧電薄膜12の厚さまたは第1、第2電極群20、30の厚さを設定する。例えば、図4、5に示すように、圧電薄膜12としてAlN膜を成膜し、第1、第2電極群20、30としてAl膜を成膜し、このAl膜の膜厚を0.7μmとしたとき、AlN膜の膜厚を0.75μmに設定する。
【0079】
そして、第1、第2SAW共振子2、4の形成領域2a、4aにおける第1領域12cと第2領域12dの面積比と、第1、第2SAW共振子2、4のアドミタンスピーク高さの差との関係を予め実験等により求めておき、この関係に基づいて、第1、第2SAW共振子2、4の形成領域2a、4aにおける第1領域12cと第2領域12dの面積比を設定すれば、第1、第2SAW共振子2、4におけるアドミタンスピーク高さの差を所望差とすることができる。
【0080】
ここで、圧電薄膜の構成材料および膜厚が同じであって、結晶配向が異なる2つの圧電薄膜を比較すると、圧電薄膜の位相速度が等しくなるように、圧電薄膜や電極の厚さを設定しても、両者の圧電薄膜に形成したSAW素子のアドミタンス特性が異なる。また、1つのSAW素子の形成領域に、結晶配向が異なる領域が存在すると、1つのSAW素子の特性は、結晶配向が異なる領域それぞれの特性を加算したものとなる。このため、第1、第2SAW共振子2、4の形成領域2a、4aにおいて、圧電薄膜12の第1領域12cと第2領域12dの面積比を異ならせることで、第1、第2SAW共振子2、4のアドミタンス特性を異ならせることができる。
【0081】
また、第1、第2SAW共振子2、4の共振周波数が同じであっても、第1、第2SAW共振子2、4のアドミタンスピーク高さが異なれば、第1SAW共振子2を有する第1発振回路3の発振周波数と第2SAW共振子4を有する第2発振回路5の発振周波数が異なる。
【0082】
これは、発振回路の発振周波数は、弾性表面波素子と発振回路との組み合せによって定まるからである。すなわち、図7に示すように、周波数とアドミタンス値を座標軸としてアドミタンス特性を図示(グラフ化)したとき、第1SAW共振子2のアドミタンス特性と第1発振回路3のアドミタンス特性との第1交点X1が第1発振回路3の発振周波数であり、第2SAW共振子4のアドミタンス特性と第2発振回路5のアドミタンス特性との第2交点X2が第2発振回路5の発振周波数である。なお、図7では、第1発振回路3と第2発振回路5とが同じ回路構成であり、アドミタンス特性も同じであるので、発振回路のアドミタンス特性を示す直線は1つとなっている。そして、図7からわかるように、第1、第2SAW共振子2、4のアドミタンスピークの位置が同じであっても、第1、第2SAW共振子2、4のアドミタンスピーク高さ、すなわち、アドミタンス特性を示す波形の振幅A1、A2が異なれば、発振回路のアドミタンス特性との交点X1、X2が異なる。
【0083】
したがって、本実施形態では、第1、第2SAW共振子2、4におけるアドミタンスピーク高さの差が調整されることにより、第1SAW共振子2を有する第1発振回路3と第2SAW共振子4を有する第2発振回路5との間の発振周波数差が調整されている。
【0084】
なお、本実施形態では、第1、第2SAW共振子2、4の形成領域2a、4aには、それぞれ、第1領域12cと第2領域12dとが1つずつ存在したが、第1領域12cと第2領域12dとが複数ずつ存在しても良い。
【0085】
ただし、この場合、弾性表面波の伝搬方向(Y軸方向)では同一の結晶配向の領域が存在するように、第1領域12cと第2領域12dは、それぞれ、1つの領域が弾性表面波の伝搬方向(Y軸方向)に延びた形状であって、弾性表面波の伝搬方向に垂直な方向(X軸方向)に並んで配置された構成を採用することが好ましい。
【0086】
(第3実施形態)
図8に、本実施形態におけるSAWデバイスとしてのSAWフィルタの平面図を示す。図8に示すように、本実施形態のSAWフィルタは、入力用櫛歯電極40と、出力用櫛歯電極50と、マルチストリップカプラ60とが、同一材料からなる圧電薄膜12の上面に設けられている。入力用櫛歯電極40、出力用櫛歯電極50およびマルチストリップカプラ60は、金属材料で構成されている。
【0087】
入力用櫛歯電極40は、圧電薄膜12に弾性表面波を励振させ、その弾性表面波をマルチストリップカプラ60に伝搬させるものである。マルチストリップカプラ60は、2種類のフィルタを結合する結合器であり、入力用櫛歯電極40から伝搬された弾性表面波を受け、出力用櫛歯電極50に向けて弾性表面波を伝搬させるものである。出力用櫛歯電極50は、マルチストリップカプラ60から伝搬された弾性表面波を受信するものである。
【0088】
本実施形態のSAWフィルタでは、入力用櫛歯電極40が励振する弾性表面波と、出力用櫛歯電極50が受信する弾性表面波の周波数が異なっており、入力用櫛歯電極40に入力された電気信号のうち、入力用櫛歯電極40と出力用櫛歯電極50の両方に対応する電気信号のみが出力用櫛歯電極50から出力されるようになっている。
【0089】
入力用櫛歯電極40および出力用櫛歯電極50は、どちらも、互いに平行であってX軸方向に延びている複数の櫛歯部40a、50aと複数の櫛歯部40a、50aを連結するバスバー40b、50bとを有している。櫛歯部40a、50aの延伸方向に垂直な方向、すなわち、Y軸方向が、弾性表面波の伝搬方向である。
【0090】
マルチストリップカプラ60は、Y軸方向に並ぶ複数本の電極によって構成されている。1本の電極は、櫛歯部40a、50aと平行に延びており、その長さは、入力用櫛歯電極40の交差指幅と出力用櫛歯電極50の交差指幅の和よりも長く、複数本の電極同士は互いに平行である。
【0091】
入力用櫛歯電極40は、マルチストリップカプラ60を挟んだ両側の一方側(図8の左側)であって、マルチストリップカプラ60を構成する電極の延伸方向の一方側(図8の上側)に配置されている。出力用櫛歯電極50は、マルチストリップカプラ60を挟んだ両側の他方側(図8の右側)であって、マルチストリップカプラ60を構成する電極の延伸方向の他方側(図8の下側)に配置されている。このように、入力用櫛歯電極40と出力用櫛歯電極50とは、弾性表面波の伝搬方向に対して斜めの方向に並んで配置されている。なお、出力用櫛歯電極50は、入力用櫛歯電極40からの弾性表面波の伝搬方向とは異なる方向に並んで配置されていれば良い。
【0092】
本実施形態では、入力用櫛歯電極40からマルチストリップカプラ60に弾性表面波が伝搬する領域が第1伝搬路70である。この第1伝搬路70は、具体的には、図8に示すように、入力用櫛歯電極40およびマルチストリップカプラ60のうち入力用櫛歯電極40に対応する部分61が配置された領域であって、入力用櫛歯電極40の交差指幅と同じ幅の領域である。
【0093】
また、マルチストリップカプラ60から出力用櫛歯電極50に弾性表面波が伝搬する領域が第2伝搬路80である。この第2伝搬路80は、具体的には、図8に示すように、出力用櫛歯電極50およびマルチストリップカプラ60のうち出力用櫛歯電極50に対応する部分62が配置された領域であって、出力用櫛歯電極50の交差指幅と同じ幅の領域である。
【0094】
本実施形態においても、第1、第2伝搬路70、80は、各伝搬路内のみを弾性表面波が伝搬し、一方の伝搬路と他方の伝搬路との間を弾性表面波は伝搬せず、独立した伝搬路を構成している。
【0095】
また、本実施形態では、入力用櫛歯電極40とマルチストリップカプラ60のうち入力用櫛歯電極40に対向する部分61とが第1伝搬路70を構成する第1電極群に相当し、出力用櫛歯電極50とマルチストリップカプラ60のうち出力用櫛歯電極50に対向する部分62とが第2伝搬路80を構成する第2電極群に相当する。
【0096】
圧電薄膜12は、第1実施形態と同様に、結晶成長用基板11の上面11aにおける結晶配向調整膜13の形成領域上および非形成領域上に形成されている(図3参照)。本実施形態では、図8に示すように、圧電薄膜12のうち、入力用櫛歯電極40およびマルチストリップカプラ60のうち入力用櫛歯電極40に対応する部分の形成領域の全域を第1領域12cとし、それ以外の領域を第2領域12dとしている。したがって、第1伝搬路70を占める第1領域12cと第2領域12dとの面積比は、第1領域12c:第2領域12d=100:0であり、第2伝搬路80を占める第1領域12cと第2領域12dとの面積比は、第1領域12c:第2領域12d=0:100である。
【0097】
本実施形態のSAWフィルタは、第1実施形態と同様に、結晶成長用基板11を用意する工程と、結晶成長用基板11の上面11aの一部に結晶配向調整膜13を形成する工程と、結晶成長用基板13の上面11aにおける結晶配向調整膜13の形成領域上および非形成領域上に同じ材料からなる圧電薄膜12を形成する工程と、圧電薄膜12の上面12aに入力用櫛歯電極40、出力用櫛歯電極50およびマルチストリップカプラ60を形成する工程とを順に行うことで製造される。
【0098】
具体的には、結晶配向調整膜13を形成する工程では、第1、第2伝搬路70、80の形成予定領域のうち、第1伝搬路70の形成予定領域のみに、結晶配向調整膜13を配置する。
【0099】
圧電薄膜12を形成する工程では、圧電薄膜2のうち、結晶配向調整膜13の形成領域上に位置する第1領域12cと、結晶配向調整膜13の非形成領域上に位置する第2領域12dとで、結晶配向が異なるように結晶成長させる。このとき、第1領域12cと第2領域12dの膜厚は同じである。
【0100】
そして、入力用櫛歯電極40、出力用櫛歯電極50およびマルチストリップカプラ60を形成する工程では、金属薄膜を成膜した後、フォトエッチングにより、圧電薄膜12の第1領域12cに入力用櫛歯電極40を形成し、圧電薄膜12の第2領域12dに出力用櫛歯電極50を形成し、圧電薄膜12の第1領域12cと第2領域12dとにまたがるようにマルチストリップカプラ60を形成する。
【0101】
本実施形態のSAWフィルタは、入力用櫛歯電極40からマルチストリップカプラ60に弾性表面波が伝搬する第1伝搬路70と、マルチストリップカプラ60から出力用櫛歯電極50に弾性表面波が伝搬する第2伝搬路80のそれぞれの伝達関数の積を伝達関数として持つ狭帯域フィルタである。第1伝搬路70と第2伝搬路80のそれぞれの伝達関数は、第1、第2伝搬路70、80のそれぞれを占める圧電薄膜12の第1領域12cと第2領域12dの面積比と、圧電薄膜12の厚さ、入力用櫛歯電極40および出力用櫛歯電極50の平面パターン形状および厚さによって決定される。
【0102】
したがって、圧電薄膜12の厚さ、入力用櫛歯電極40および出力用櫛歯電極50の平面パターン形状および厚さを適切に設定することにより、SAWフィルタの帯域を所望の帯域に設定することが可能である。
【0103】
ここで、第1実施形態での説明の通り、圧電薄膜12の構成材料および膜厚が同じであっても結晶配向が異なると、それぞれの圧電薄膜12の位相速度が異なり、それらの圧電薄膜12に形成された弾性表面波伝搬路の周波数特性が異なる。
【0104】
したがって、第1伝搬路70と第2伝搬路80とで圧電薄膜12の厚さを同じとし、入力用櫛歯電極40と出力用櫛歯電極50とを同じ平面パターン形状および同じ厚さとしても、圧電薄膜12の厚さ、入力用櫛歯電極40および出力用櫛歯電極50の厚さを適切に設定することにより、SAWフィルタの帯域を所望の帯域に設定することが可能である。
【0105】
さらに、第1伝搬路70と第2伝搬路80とで圧電薄膜12や電極40、50の厚さを同じとしたまま、圧電薄膜12や電極40、50の厚さを変化させると、第1、第2伝搬路70、80の周波数特性差が変化する。
【0106】
したがって、入力用櫛歯電極40、出力用櫛歯電極50およびマルチストリップカプラ60を形成する工程の後に、第1、第2伝搬路70、80が形成された領域の両方に対して、同時に、圧電薄膜12または電極をエッチングしたり、さらに成膜したりする等の圧電薄膜12または電極40、50の厚さを調整する調整工程を行うことにより、第1、第2伝搬路70、80の伝達関数をそれぞれ異ならせながら調整でき、SAWフィルタの帯域を所望の帯域にすることができる。
【0107】
(第4実施形態)
図9に、本実施形態におけるSAWデバイスとしてのSAWフィルタの平面図を示す。図9は図8に対応している。本実施形態のSAWフィルタは、圧電薄膜12の第1領域12c、第2領域12dの形成位置が、第3実施形態と異なるものであり、その他の構成は、第3実施形態と同じである。
【0108】
具体的には、図9に示すように、入力用櫛歯電極40と出力用櫛歯電極50は、どちらも、圧電薄膜12の第1領域12cと第2領域12dの両方にまたがって形成されている。すなわち、圧電薄膜12において、第1、第2伝搬路70、80の形成領域には、それぞれ、第1領域12cと第2領域12dの両方が存在している。
【0109】
そして、第1伝搬路70の形成領域では、第1領域12cよりも第2領域12dの方が面積が大きく、第2伝搬路80の形成領域では、第2領域12dよりも第1領域12cの方が面積が大きくなっている。このように、第1、第2伝搬路70、80の形成領域は、それぞれを占める第1領域12cと第2領域12dの面積比が異なっている。
【0110】
このような構成のSAWフィルタにおいても、第3実施形態と同様に、圧電薄膜12の厚さ、入力用櫛歯電極40および出力用櫛歯電極50の平面パターン形状および厚さを適切に設定することにより、SAWフィルタの帯域を所望の帯域に設定することが可能である。
【0111】
また、入力用櫛歯電極40、出力用櫛歯電極50およびマルチストリップカプラ60を形成する工程の後に、第1、第2伝搬路70、80が形成された領域の両方に対して、同時に、圧電薄膜12または電極の厚さを調整する調整工程を行うことにより、第1、第2伝搬路70、80の伝達関数を調整でき、SAWフィルタの帯域を所望の帯域にすることができる。
【0112】
(他の実施形態)
(1)上述の各実施形態では、圧電薄膜12としてAlN膜を成膜し、第1領域12cと第2領域12dとでAlN膜のc軸配向を異ならせていたが、c軸に限らず、a軸等の他の軸配向を異ならせても良い。
【0113】
(2)上述の各実施形態では、圧電薄膜12としてAlN膜を用いていたが、結晶配向調整膜13によって、結晶配向調整膜無しの場合と比較して、結晶配向の向きを第1領域12cと第2領域12dとで異ならせることができるものであれば、AlN膜以外の圧電薄膜を用いることができる。例えば、AlN膜と同じ六方晶系であるZnO膜を用いることができる。
【0114】
(3)上述の各実施形態では、結晶配向調整膜13として非晶質のSiO膜を用いていたが、結晶配向調整膜13の有無により、圧電薄膜12の結晶配向を異ならせることができるものであれば、SiO以外の非晶質膜であっても良く、他の無機材料からなる結晶膜や、金属薄膜であっても良い。
【0115】
(4)上述の各実施形態では、基板11として基板面がR面であるサファイア基板を用いていたが、その上面11aに圧電材料を結晶成長させることができるものであれば、他の基板を用いても良い。
【0116】
(5)第1実施形態では、第1、第2SAW共振子2、4の周波数特性の差として、共振周波数の差を所望差に設定もしくは調整したが、第2実施形態と同様に、アドミタンスピーク高さの差を所望差に設定もしくは調整しても良い。
【0117】
同様に、第2実施形態では、第1、第2SAW共振子2、4の周波数特性の差として、アドミタンスピーク高さを所望差に設定もしくは調整したが、第1実施形態と同様に、共振周波数の差の差を所望差に設定もしくは調整しても良い。
【0118】
(6)第1、第2実施形態では、第1電極群20と第2電極群30とを、圧電薄膜12の上面12aに形成したが、圧電薄膜12の下面12bに形成しても良い。要するに、第1電極群20と第2電極群30とは、圧電薄膜12の上下面の一方の面(同じ側の面)に形成されていれば良い。
【0119】
同様に、第3、第4実施形態では、入力用櫛歯電極40と、出力用櫛歯電極50と、マルチストリップカプラ60とを、圧電薄膜12の上面12aに形成したが、圧電薄膜12の下面12bに形成しても良い。要するに、入力用櫛歯電極40と、出力用櫛歯電極50と、マルチストリップカプラ60とは、圧電薄膜12の上下面の一方の面(同じ側の面)に形成されていれば良い。
【0120】
なお、各電極を圧電薄膜12の下面12bに形成した場合、圧電薄膜12の上面12aには電極が存在しないので、圧電薄膜12の膜厚調整が容易である。
【0121】
(7)第1、第2実施形態では、第1伝搬路2aと第2伝搬路4aとにおいて、圧電薄膜12の膜厚、櫛歯電極21、31の平面パターン形状、櫛歯電極21、31の厚さを、それぞれ同一としていたが、それらのうちの1つ以上が異なっていても良い。
【0122】
同様に、第3、第4実施形態では、第1伝搬路70と第2伝搬路80とにおいて、圧電薄膜12の膜厚、入力用櫛歯電極40および出力用櫛歯電極50の平面パターン形状、入力用櫛歯電極40および出力用櫛歯電極50の厚さを、それぞれ同一としていたがそれらのうちの1つ以上が異なっていても良い。
【0123】
これらの場合であっても、第1、第2伝搬路を占める圧電薄膜12の第1、第2領域12c、12dの面積比が異なっていれば、第1、第2伝搬路における圧電薄膜12や電極の厚さを第1、第2伝搬路で同じ変化量で変化させたとき、第1、第2伝搬路の周波数特性差が変化する。
【0124】
したがって、第1伝搬路と第2伝搬路とにおいて、圧電薄膜の膜厚、電極の平面パターン形状、電極の厚さのいずれか1つ以上が異なっていても、周波数特性の調整工程において、第1、第2伝搬路の形成領域の両方に対して、同時に、圧電薄膜の膜厚や第1、第2伝搬路に形成された電極の厚さを調整することにより、第1、第2伝搬路の周波数特性差を所望差とすることが可能となる。
【符号の説明】
【0125】
2 第1SAW共振子
2a 第1SAW共振子の形成領域(第1伝搬路)
4 第2SAW共振子
4a 第2SAW共振子の形成領域(第2伝搬路)
11 結晶成長用基板(基板)
12 圧電薄膜
12c 圧電薄膜の第1領域
12d 圧電薄膜の第2領域
13 結晶配向調整膜
20 第1電極群
21 第1SAW共振子の櫛歯電極(第1櫛歯電極)
22 第1SAW共振子の反射器(第1反射器)
30 第2電極群
31 第2SAW共振子の櫛歯電極(第2櫛歯電極)
32 第2SAW共振子の反射器(第2反射器)
40 入力用櫛歯電極(第1電極群)
50 出力用櫛歯電極(第2電極群)
60 マルチストリップカプラ
61 マルチストリップカプラのうち入力用櫛歯電極に対向する部分(第1電極群)
62 マルチストリップカプラのうち出力用櫛歯電極に対向する部分(第2電極群)
70 入力用櫛歯電極からマルチストリップカプラまでの弾性表面波の伝搬領域(第1伝搬路)
80 マルチストリップカプラから出力用櫛歯電極までの弾性表面波の伝搬領域(第2伝搬路)


【特許請求の範囲】
【請求項1】
異なる弾性表面波伝搬路である第1、第2伝搬路を有する弾性表面波デバイスにおいて、
基板(11)と、
前記基板(11)の上面(11a)の一部に形成された結晶配向調整膜(13)と、
前記基板(11)の前記上面(11a)における前記結晶配向調整膜(13)の形成領域上および非形成領域上に同じ材料で形成された圧電薄膜(12)と、
前記圧電薄膜(12)の上下面の一方の面に形成された前記第1伝搬路(2a、70)を構成する第1電極群(20、40、61)と、
前記圧電薄膜(12)の前記一方の面であって、前記第1電極群(20、40、61)と異なる位置に形成された前記第2伝搬路(4a、80)を構成する第2電極群(30、50、62)とを備え、
前記圧電薄膜(12)のうち、前記結晶配向調整膜(13)の形成領域上に位置する第1領域(12c)と、前記結晶配向調整膜(13)の非形成領域上に位置する第2領域(12d)とは、結晶配向が異なっており、
前記第1、第2伝搬路(2a、4a、70、80)は、それぞれを占める前記第1、第2領域(12c、12d)の面積比が異なることを特徴とする弾性表面波デバイス。
【請求項2】
前記圧電薄膜(12)の上下面の一方に形成された第1櫛歯電極(21)と、
前記圧電薄膜(12)の上下面の前記一方に形成され、前記第1櫛歯電極(21)から伝搬される弾性表面波を反射する第1反射器(22)と、
前記圧電薄膜(12)の上下面の前記一方に形成された第2櫛歯電極(31)と、
前記圧電薄膜(12)の上下面の前記一方に形成され、前記第2櫛歯電極(31)から伝搬される弾性表面波を反射する第2反射器(32)とを備え、
前記第1伝搬路は、前記第1櫛歯電極から伝搬される弾性表面波を前記第1反射器が反射する領域(2a)であり、
前記第2伝搬路は、前記第2櫛歯電極から伝搬される弾性表面波を前記第2反射器が反射する領域(4a)であることを特徴とする請求項1に記載の弾性表面波デバイス。
【請求項3】
前記第1、第2櫛歯電極(21、31)は、平面パターン形状および厚さが同じであることを特徴とする請求項2に記載の弾性表面波デバイス。
【請求項4】
前記圧電薄膜(12)の上下面の一方に形成された入力用櫛歯電極(40)と、
前記圧電薄膜(12)の上下面の前記一方に形成された出力用櫛歯電極(50)と、
前記圧電薄膜(12)の上下面の前記一方に形成され、前記入力用櫛歯電極(40)から伝搬された弾性表面波を受け、前記出力用櫛歯電極(50)に向けて弾性表面波を伝搬させるマルチストリップカプラ(60)とを備え、
前記第1伝搬路は、前記入力用櫛歯電極(40)から前記マルチストリップカプラ(60)に弾性表面波が伝搬する領域(70)であり、
前記第2伝搬路は、前記マルチストリップカプラ(60)から前記出力用櫛歯電極(50)に弾性表面波が伝搬する領域(80)であることを特徴とする請求項1に記載の弾性表面波デバイス。
【請求項5】
前記入力用櫛歯電極(40)と前記出力用櫛歯電極(50)とは、平面パターン形状および厚さが同じであることを特徴とする請求項4に記載の弾性表面波デバイス。
【請求項6】
前記基板(11)は、R面サファイアであり、
前記結晶配向調整膜(13)は、SiO膜であり、
前記圧電薄膜(12)は、AlN膜であることを特徴とする請求項1ないし5のいずれか1つに記載の弾性表面波デバイス。
【請求項7】
前記基板(11)は、R面サファイアであり、
前記結晶配向調整膜(13)は、SiO膜であり、
前記圧電薄膜(12)は、ZnO膜であることを特徴とする請求項1ないし5のいずれか1つに記載の弾性表面波デバイス。
【請求項8】
異なる弾性表面波伝搬路である第1、第2伝搬路を有する弾性表面波デバイスの製造方法において、
基板(11)を用意する工程と、
前記基板(11)の上面(11a)の一部に結晶配向調整膜(13)を形成する工程と、
前記基板(11)の前記上面(11a)における前記結晶配向調整膜(13)の形成領域上および非形成領域上に同じ材料からなる圧電薄膜(12)を形成する工程と、
前記圧電薄膜(12)の上下面の一方の面における異なる位置に、前記第1伝搬路(2a、70)を構成する第1電極群(20、40、61)と、前記第2伝搬路(4a、80)を構成する第2電極群(30、50、62)とを形成する工程とを備え、
前記圧電薄膜(12)を形成する工程では、前記圧電薄膜(12)のうち、前記結晶配向調整膜(13)の形成領域上に位置する第1領域(12c)と、前記結晶配向調整膜(13)の非形成領域上に位置する第2領域(12d)とで、結晶配向を異ならせて結晶成長させ、
前記結晶配向調整膜(13)を形成する工程では、前記第1、第2伝搬路(2a、4a、70、80)のそれぞれを占める前記第1、第2領域(12c、12d)の面積比が異なるように、前記基板(11)の上面(11a)に前記結晶配向調整膜(13)を配置することを特徴とする弾性表面波デバイスの製造方法。
【請求項9】
前記第1電極群(20、40、61)と前記第2電極群(30、50、62)とを形成する工程の後に、前記第1、第2伝搬路(2a、4a、70、80)の形成領域に対して、同時に、前記圧電薄膜(12)の厚さを調整することにより、前記第1、第2伝搬路(2a、4a、70、80)の周波数特性の差を調整する調整工程を有することを特徴とする請求項8に記載の弾性表面波デバイスの製造方法。
【請求項10】
前記第1、第2伝搬路(2a、4a、70、80)の形成領域に対して、同時に、前記第1、第2電極群(20、30、40、50、61、62)の厚さを調整することにより、前記第1、第2伝搬路(2a、4a、70、80)の周波数特性の差を調整する調整工程を有することを特徴とする請求項8に記載の弾性表面波デバイスの製造方法。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2013−9173(P2013−9173A)
【公開日】平成25年1月10日(2013.1.10)
【国際特許分類】
【出願番号】特願2011−140708(P2011−140708)
【出願日】平成23年6月24日(2011.6.24)
【出願人】(000004260)株式会社デンソー (27,639)
【Fターム(参考)】