説明

火花点火内燃機関

【課題】要求負荷が第一負荷L1から第二負荷L2へ低下したときに、吸気量を減少させるために第一時刻t1において吸気弁の閉弁時期を第一閉弁時期から第二閉弁時期とする遅角を開始する火花点火内燃機関において、吸気弁の閉弁時期が第二閉弁時期IVC2とされた第二時刻t2において所望機関出力が得られるようにする。
【解決手段】気筒内のEGR率の応答遅れにより、第二時刻t2には、気筒内のEGR率は第二負荷の第二EGR率R2まで低下しないが、第二時刻の気筒内のEGR率が、点火時期を第二点火時期IT2から第二閉弁時期後において最大に進角ΔITBさせた場合に所望機関出力が発生する特定EGR率R4以下となるように、第一時刻t1から第二時刻t2までのアクチュエータの作動時間を設定する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、火花点火内燃機関に関する。
【背景技術】
【0002】
圧縮行程の吸気弁の閉弁時期を遅角することにより吸気量を減少させることができ、このように吸気弁の閉弁時期を可変とすることにより吸入量を制御する内燃機関が知られている(特許文献1参照)。このような内燃機関においては、吸気通路のスロットル弁によって吸気量を制御する場合に比較して吸気量制御の応答性を高くすることができ、また、スロットル弁により吸気通路を絞ることにより発生するポンピング損失を無くすことができる。
【0003】
ところで、内燃機関において、排気ガスの一部を気筒内へ再循環させることにより、燃焼温度を低下させてNOXの発生を抑制する排気ガス再循環(EGR)が行われている。EGRにおいて、再循環排気ガス量が多いほど、NOXの発生量を低減することができるが、その一方で、燃焼を悪化させる。それにより、機関運転状態毎にEGR率(再循環排気ガス量/(再循環排気ガス量+新気量))を最適に制御するようになっている。一般的には、高出力が必要な高負荷時及び燃焼が不安定となり易い低負荷時には、EGR率を比較的低くし、中負荷時にはEGR率を比較的高くしている。
【0004】
それにより、吸気弁により吸気量を制御する内燃機関においてEGRが実施される場合においては、中負荷時から低負荷時への急激な負荷変化に際して、吸気量を中負荷時の第一吸気量から低負荷時の第二吸気量へ減少させるために、吸気弁の閉弁時期を、中負荷時の第一閉弁時期から低負荷時の第二閉弁時期へ遅角させ、EGR率を中負荷に適した第一EGR率から低負荷に適した第二EGR率へ低下させることとなる。また、点火時期も中負荷に適した第一点火時期から低負荷に適した第二点火時期へ進角させる。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2007−303423
【特許文献2】特開2010−090872
【特許文献3】特開2004−092639
【特許文献4】特開2004−197620
【発明の概要】
【発明が解決しようとする課題】
【0006】
圧縮行程の吸気弁の閉弁時期を遅角して吸気量を減少させることは、圧縮行程において気筒内から吸気系へ排出される吸気量を増加させることである。このような吸気量の制御では、圧縮行程において気筒内の再循環排気ガスも吸気系へ排出されるために、中負荷時から低負荷時への急激な負荷変化に際して、気筒内のEGR率を変化させるために吸気系のEGR率を所望値へ変化させる際に、吸気弁の閉弁時期の変化により気筒内から吸気系へ排出させる再循環排気ガス量も変化するために、吸気系のEGR率は所望値へ収束し難い。それにより、アクチュエータにより吸気弁の閉弁時期が第二閉弁時期に遅角されて吸気量が第二吸気量に減少した時にも、吸気系のEGR率は所望値に収束しておらず、吸気系のEGR率が所望値に収束して気筒内のEGR率が第二EGR率となるまでに遅れ時間が発生する。
【0007】
それにより、点火時期を吸気弁の閉弁時期に合わせて、吸気量が第二吸気量となった時に第二点火時期とすると、この時には、気筒内のEGR率は第二EGR率より高いEGR率となっているために、そのままでは、所望機関出力より低い機関出力しか発生させることができない。所望機関出力を発生させるためには、現在のEGR率と第二EGR率との差に基づき点火時期を第二点火時期より進角しなければならない。
【0008】
しかしながら、この時には、吸気弁の閉弁時期が第二閉弁時期に遅角されており、点火時期を吸気弁の第二閉弁時期より進角させることはできないために、点火時期を十分に進角させて所望機関出力を発生させることができないことがある。
【0009】
従って、本発明の目的は、吸気弁の閉弁時期を可変として吸気量を制御する火花点火内燃機関であって、要求負荷が第一機関負荷から第二機関負荷へ低下したときに、吸気量を減少させるために第一時刻において吸気弁の閉弁時期を第一閉弁時期から第二閉弁時期とする遅角を開始し、気筒内のEGR率を第一EGR率から第二EGR率へ低下させ、吸気弁の閉弁時期が第一閉弁時期であって気筒内のEGR率が第一EGR率である時には点火時期を第一点火時期とし、吸気弁の閉弁時期が第二閉弁時期であって気筒内のEGR率が第二EGR率である時には点火時期を第二点火時期とする火花点火内燃機関において、吸気弁の閉弁時期が第二閉弁時期とされた第二時刻において所望機関出力が得られるようにすることである。
【課題を解決するための手段】
【0010】
本発明による請求項1に記載の火花点火内燃機関は、要求負荷が第一機関負荷から第二機関負荷へ低下したときに、吸気量を減少させるために第一時刻においてアクチュエータにより吸気弁の閉弁時期を第一閉弁時期から第二閉弁時期とする遅角を開始し、気筒内のEGR率を第一EGR率から第二EGR率へ低下させ、吸気弁の閉弁時期が前記第一閉弁時期であって気筒内のEGR率が前記第一EGR率となっている時には点火時期を第一点火時期とし、吸気弁の閉弁時期が前記第二閉弁時期であって気筒内のEGR率が前記第二EGR率となっている時には点火時期を第二点火時期とする火花点火内燃機関において、気筒内のEGR率の応答遅れにより、吸気弁の閉弁時期が前記第二閉弁時期とされた第二時刻には、気筒内のEGR率は前記第二EGR率まで低下せず、前記第二時刻の気筒内のEGR率が、前記第二EGR率よりは高くても、点火時期を前記第二点火時期から前記第二閉弁時期後において最大に進角させた場合に所望機関出力が発生する特定EGR率以下となるように、前記第一時刻から前記第二時刻までの前記アクチュエータの作動時間を設定することを特徴とする。
【0011】
本発明による請求項2に記載の火花点火内燃機関は、請求項1に記載の火花点火内燃機関において、機械圧縮比を変更可能な可変圧縮比機構を具備し、要求負荷が前記第一機関負荷から前記第二機関負荷へ低下した際には、吸気量の減少に対して実圧縮比が一定となるように、前記可変圧縮比機構により機械圧縮比を高めることを特徴とする。
【発明の効果】
【0012】
本発明による請求項1に記載の火花点火内燃機関によれば、要求負荷が第一機関負荷から第二機関負荷へ低下したときに、吸気量を減少させるために第一時刻においてアクチュエータにより吸気弁の閉弁時期を第一閉弁時期から第二閉弁時期とする遅角を開始し、気筒内のEGR率を第一EGR率から第二EGR率へ低下させ、吸気弁の閉弁時期が第一閉弁時期であって気筒内のEGR率が第一EGR率となっている時には点火時期を第一点火時期とし、吸気弁の閉弁時期が第二閉弁時期であって気筒内のEGR率が第二EGR率となっている時には点火時期を第二点火時期とする火花点火内燃機関において、気筒内のEGR率の応答遅れにより、吸気弁の閉弁時期が第二閉弁時期とされた第二時刻には、気筒内のEGR率は第二EGR率まで低下しない。ここで、第一時刻から第二時刻までのアクチュエータの作動時間を長くするほど、第二時刻の気筒内のEGR率を第二EGR率に近づけることができるために、第二時刻の気筒内のEGR率が、第二EGR率よりは高くても、点火時期を第二点火時期から第二閉弁時期後において最大に進角させた場合に所望機関出力が発生する特定EGR率以下となるように、アクチュエータの作動時間を設定しており、第二時刻の点火時期を実現可能な範囲で進角すれば、この時に所望機関出力を得ることができる。
【0013】
本発明による請求項2に記載の火花点火内燃機関によれば、請求項1に記載の火花点火内燃機関において、機械圧縮比を変更可能な可変圧縮比機構を具備し、要求負荷が第一機関負荷から第二機関負荷へ低下した際には、吸気量の減少に対して実圧縮比が一定となるように、可変圧縮比機構により機械圧縮比を高めるようになっており、それにより、実圧縮比が低下して失火が発生することは抑制される。
【図面の簡単な説明】
【0014】
【図1】火花点火式の内燃機関の全体図である。
【図2】可変圧縮比機構の分解斜視図である。
【図3】図解的に表した内燃機関の側面断面図である。
【図4】可変バルブタイミング機構を示す図である。
【図5】吸気弁および排気弁のリフト量を示す図である。
【図6】機械圧縮比、実圧縮比および膨張比を説明するための図である。
【図7】理論熱効率と膨張比との関係を示す図である。
【図8】通常のサイクルおよび超高膨張比サイクルを説明するための図である。
【図9】機関負荷に応じた機械圧縮比等の変化を示す図である。
【図10】本発明による火花点火内燃機関における負荷変化、吸気弁閉弁時期の変化、機械圧縮比の変化、EGR率の変化、及び点火時期の変化を示すタイムチャートである。
【発明を実施するための形態】
【0015】
図1に火花点火式の内燃機関の側面断面図を示す。図1を参照すると、1はクランクケース、2はシリンダブロック、3はシリンダヘッド、4はピストン、5は燃焼室、6は燃焼室5の頂面中央部に配置された点火栓、7は吸気弁、8は吸気ポート、9は排気弁、10は排気ポートを夫々示す。吸気ポート8は吸気枝管11を介してサージタンク12に連結され、各吸気枝管11には夫々対応する吸気ポート8内に向けて燃料を噴射するための燃料噴射弁13が配置される。なお、燃料噴射弁13は各吸気枝管11に取付ける代りに各燃焼室5内に配置してもよい。
【0016】
サージタンク12は吸気ダクト14を介してエアクリーナ15に連結され、吸気ダクト14内にはアクチュエータ16によって駆動されるスロットル弁17と例えば熱線を用いた吸入空気量検出器18とが配置される。一方、排気ポート10は排気マニホルド19を介して例えば三元触媒を内蔵した触媒装置20に連結され、排気マニホルド19内には空燃比センサ21が配置される。100は、排気マニホルド19等の機関排気系と、サージタンク12のような機関吸気系とを連通する排気ガス再循環通路であり、排気ガス再循環通路100には、排気ガス再循環通路100を介して気筒内へ再循環させる排気ガス量(外部EGR量)を制御するための制御弁101が設けられている。
【0017】
一方、図1に示される実施例ではクランクケース1とシリンダブロック2との連結部にクランクケース1とシリンダブロック2のシリンダ軸線方向の相対位置を変化させることによりピストン4が圧縮上死点に位置するときの燃焼室5の容積を変更可能な可変圧縮比機構Aが設けられており、更に実際の圧縮作用の開始時期を変更可能な実圧縮作用開始時期変更機構Bが設けられている。なお、図1に示される実施例ではこの実圧縮作用開始時期変更機構Bは吸気弁7の閉弁時期を制御可能な可変バルブタイミング機構からなる。
【0018】
図1に示されるようにクランクケース1とシリンダブロック2にはクランクケース1とシリンダブロック2間の相対位置関係を検出するための相対位置センサ22が取付けられており、この相対位置センサ22からはクランクケース1とシリンダブロック2との間隔の変化を示す出力信号が出力される。また、可変バルブタイミング機構Bには吸気弁7の閉弁時期を示す出力信号を発生するバルブタイミングセンサ23が取付けられており、スロットル弁駆動用のアクチュエータ16にはスロットル弁開度を示す出力信号を発生するスロットル開度センサ24が取付けられている。
【0019】
電子制御ユニット30はデジタルコンピュータからなり、双方向性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35および出力ポート36を具備する。吸入空気量検出器18、空燃比センサ21、相対位置センサ22、バルブタイミングセンサ23およびスロットル開度センサ24の出力信号は夫々対応するAD変換器37を介して入力ポート35に入力される。また、アクセルペダル40にはアクセルペダル40の踏込み量Lに比例した出力電圧を発生する負荷センサ41が接続され、負荷センサ41の出力電圧は対応するAD変換器37を介して入力ポート35に入力される。更に入力ポート35にはクランクシャフトが例えば30°回転する毎に出力パルスを発生するクランク角センサ42が接続される。一方、出力ポート36は対応する駆動回路38を介して点火栓6、燃料噴射弁13、スロットル弁駆動用アクチュエータ16、可変圧縮比機構A、可変バルブタイミング機構B、及び、排気ガス再循環通路100の制御弁101に接続される。
【0020】
図2は図1に示す可変圧縮比機構Aの分解斜視図を示しており、図3は図解的に表した内燃機関の側面断面図を示している。図2を参照すると、シリンダブロック2の両側壁の下方には互いに間隔を隔てた複数個の突出部50が形成されており、各突出部50内には夫々断面円形のカム挿入孔51が形成されている。一方、クランクケース1の上壁面上には互いに間隔を隔てて夫々対応する突出部50の間に嵌合せしめられる複数個の突出部52が形成されており、これらの各突出部52内にも夫々断面円形のカム挿入孔53が形成されている。
【0021】
図2に示されるように一対のカムシャフト54,55が設けられており、各カムシャフト54,55上には一つおきに各カム挿入孔53内に回転可能に挿入される円形カム58が固定されている。これらの円形カム58は各カムシャフト54,55の回転軸線と共軸をなす。一方、各円形カム58の両側には図3に示すように各カムシャフト54,55の回転軸線に対して偏心配置された偏心軸57が延びており、この偏心軸57上に別の円形カム56が偏心して回転可能に取付けられている。図2に示されるようにこれら円形カム56は各円形カム58の両側に配置されており、これら円形カム56は対応する各カム挿入孔51内に回転可能に挿入されている。また、図2に示されるようにカムシャフト55にはカムシャフト55の回転角度を表す出力信号を発生するカム回転角度センサ25が取付けられている。
【0022】
図3(A)に示すような状態から各カムシャフト54,55上に固定された円形カム58を図3(A)において矢印で示される如く互いに反対方向に回転させると偏心軸57が互いに離れる方向に移動するために円形カム56がカム挿入孔51内において円形カム58とは反対方向に回転し、図3(B)に示されるように偏心軸57の位置が高い位置から中間高さ位置となる。次いで更に円形カム58を矢印で示される方向に回転させると図3(C)に示されるように偏心軸57は最も低い位置となる。
【0023】
なお、図3(A)、図3(B)、図3(C)には夫々の状態における円形カム58の中心aと偏心軸57の中心bと円形カム56の中心cとの位置関係が示されている。
【0024】
図3(A)から図3(C)とを比較するとわかるようにクランクケース1とシリンダブロック2の相対位置は円形カム58の中心aと円形カム56の中心cとの距離によって定まり、円形カム58の中心aと円形カム56の中心cとの距離が大きくなるほどシリンダブロック2はクランクケース1から離れる。即ち、可変圧縮比機構Aは回転するカムを用いたクランク機構によりクランクケース1とシリンダブロック2間の相対位置を変化させていることになる。シリンダブロック2がクランクケース1から離れるとピストン4が圧縮上死点に位置するときの燃焼室5の容積は増大し、従って各カムシャフト54,55を回転させることによってピストン4が圧縮上死点に位置するときの燃焼室5の容積を変更することができる。
【0025】
図2に示されるように各カムシャフト54,55を夫々反対方向に回転させるために駆動モータ59の回転軸には夫々螺旋方向が逆向きの一対のウォーム61,62が取付けられており、これらウォーム61,62と噛合するウォームホイール63,64が夫々各カムシャフト54,55の端部に固定されている。この実施例では駆動モータ59を駆動することによってピストン4が圧縮上死点に位置するときの燃焼室5の容積を広い範囲に亘って変更することができる。
【0026】
一方、図4は図1において吸気弁7を駆動するためのカムシャフト70の端部に取付けられた可変バルブタイミング機構Bを示している。図4を参照すると、この可変バルブタイミング機構Bは機関のクランク軸によりタイミングベルトを介して矢印方向に回転せしめられるタイミングプーリ71と、タイミングプーリ71と一緒に回転する円筒状ハウジング72と、吸気弁駆動用カムシャフト70と一緒に回転しかつ円筒状ハウジング72に対して相対回転可能な回転軸73と、円筒状ハウジング72の内周面から回転軸73の外周面まで延びる複数個の仕切壁74と、各仕切壁74の間で回転軸73の外周面から円筒状ハウジング72の内周面まで延びるベーン75とを具備しており、各ベーン75の両側には夫々進角用油圧室76と遅角用油圧室77とが形成されている。
【0027】
各油圧室76,77への作動油の供給制御は作動油供給制御弁78によって行われる。この作動油供給制御弁78は各油圧室76,77に夫々連結された油圧ポート79,80と、油圧ポンプ81から吐出された作動油の供給ポート82と、一対のドレインポート83,84と、各ポート79,80,82,83,84間の連通遮断制御を行うスプール弁85とを具備している。
【0028】
吸気弁駆動用カムシャフト70のカムの位相を進角すべきときは図4においてスプール弁85が右方に移動せしめられ、供給ポート82から供給された作動油が油圧ポート79を介して進角用油圧室76に供給されると共に遅角用油圧室77内の作動油がドレインポート84から排出される。このとき回転軸73は円筒状ハウジング72に対して矢印方向に相対回転せしめられる。
【0029】
これに対し、吸気弁駆動用カムシャフト70のカムの位相を遅角すべきときは図4においてスプール弁85が左方に移動せしめられ、供給ポート82から供給された作動油が油圧ポート80を介して遅角用油圧室77に供給されると共に進角用油圧室76内の作動油がドレインポート83から排出される。このとき回転軸73は円筒状ハウジング72に対して矢印と反対方向に相対回転せしめられる。
【0030】
回転軸73が円筒状ハウジング72に対して相対回転せしめられているときにスプール弁85が図4に示される中立位置に戻されると回転軸73の相対回転動作は停止せしめられ、回転軸73はそのときの相対回転位置に保持される。従って可変バルブタイミング機構Bによって吸気弁駆動用カムシャフト70のカムの位相を所望の量だけ進角させることができ、遅角させることができることになる。
【0031】
図5において実線は可変バルブタイミング機構Bによって吸気弁駆動用カムシャフト70のカムの位相が最も進角されているときを示しており、破線は吸気弁駆動用カムシャフト70のカムの位相が最も遅角されているときを示している。従って吸気弁7の開弁期間は図5において実線で示す範囲と破線で示す範囲との間で任意に設定することができ、従って吸気弁7の閉弁時期も図5において矢印Cで示す範囲内の任意のクランク角に設定することができる。
【0032】
図1および図4に示される可変バルブタイミング機構Bは一例を示すものであって、例えば吸気弁の開弁時期を一定に維持したまま吸気弁の閉弁時期のみを変えることのできる可変バルブタイミング機構等、種々の形式の可変バルブタイミング機構を用いることができる。
【0033】
次に図6を参照しつつ本願において使用されている用語の意味について説明する。なお、図6の(A),(B),(C)には説明のために燃焼室容積が50mlでピストンの行程容積が500mlであるエンジンが示されており、これら図6の(A),(B),(C)において燃焼室容積とはピストンが圧縮上死点に位置するときの燃焼室の容積を表している。
【0034】
図6(A)は機械圧縮比について説明している。機械圧縮比は圧縮行程時のピストンの行程容積と燃焼室容積のみから機械的に定まる値であってこの機械圧縮比は(燃焼室容積+行程容積)/燃焼室容積で表される。図6(A)に示される例ではこの機械圧縮比は(50ml+500ml)/50ml=11となる。
【0035】
図6(B)は実圧縮比について説明している。この実圧縮比は実際に圧縮作用が開始されたときからピストンが上死点に達するまでの実際のピストン行程容積と燃焼室容積から定まる値であってこの実圧縮比は(燃焼室容積+実際の行程容積)/燃焼室容積で表される。即ち、図6(B)に示されるように圧縮行程においてピストンが上昇を開始しても吸気弁が開弁している間は圧縮作用は行われず、吸気弁が閉弁したときから実際の圧縮作用が開始される。従って実圧縮比は実際の行程容積を用いて上記の如く表される。図6(B)に示される例では実圧縮比は(50ml+450ml)/50ml=10となる。
【0036】
図6(C)は膨張比について説明している。膨張比は膨張行程時のピストンの行程容積と燃焼室容積から定まる値であってこの膨張比は(燃焼室容積+行程容積)/燃焼室容積で表される。図6(C)に示される例ではこの膨張比は(50ml+500ml)/50ml=11となる。
【0037】
次に図7および図8を参照しつつ本発明において用いられている超膨張比サイクルについて説明する。なお、図7は理論熱効率と膨張比との関係を示しており、図8は本発明において負荷に応じ使い分けられている通常のサイクルと超高膨張比サイクルとの比較を示している。
【0038】
図8(A)は吸気弁が下死点近傍で閉弁し、ほぼ吸気下死点付近からピストンによる圧縮作用が開始される場合の通常のサイクルを示している。この図8(A)に示す例でも図6の(A),(B),(C)に示す例と同様に燃焼室容積が50mlとされ、ピストンの行程容積が500mlとされている。図8(A)からわかるように通常のサイクルでは機械圧縮比は(50ml+500ml)/50ml=11であり、実圧縮比もほぼ11であり、膨張比も(50ml+500ml)/50ml=11となる。即ち、通常の内燃機関では機械圧縮比と実圧縮比と膨張比とがほぼ等しくなる。
【0039】
図7における実線は実圧縮比と膨張比とがほぼ等しい場合の、即ち通常のサイクルにおける理論熱効率の変化を示している。この場合には膨張比が大きくなるほど、即ち実圧縮比が高くなるほど理論熱効率が高くなることがわかる。従って通常のサイクルにおいて理論熱効率を高めるには実圧縮比を高くすればよいことになる。しかしながら機関高負荷運転時におけるノッキングの発生の制約により実圧縮比は最大でも12程度までしか高くすることができず、斯くして通常のサイクルにおいては理論熱効率を十分に高くすることはできない。
【0040】
一方、このような状況下で機械圧縮比と実圧縮比とを厳密に区分しつつ理論熱効率を高めることが検討され、その結果理論熱効率は膨張比が支配し、理論熱効率に対して実圧縮比はほとんど影響を与えないことが見い出されたのである。即ち、実圧縮比を高くすると爆発力は高まるが圧縮するために大きなエネルギーが必要となり、斯くして実圧縮比を高めても理論熱効率はほとんど高くならない。
【0041】
これに対し、膨張比を大きくすると膨張行程時にピストンに対し押下げ力が作用する期間が長くなり、斯くしてピストンがクランクシャフトに回転力を与えている期間が長くなる。従って膨張比は大きくすれば大きくするほど理論熱効率が高くなる。図7の破線ε=10は実圧縮比を10に固定した状態で膨張比を高くしていった場合の理論熱効率を示している。このように実圧縮比εを低い値に維持した状態で膨張比を高くしたときの理論熱効率の上昇量と、図7の実線で示す如く実圧縮比も膨張比と共に増大せしめられる場合の理論熱効率の上昇量とは大きな差がないことがわかる。
【0042】
このように実圧縮比が低い値に維持されているとノッキングが発生することがなく、従って実圧縮比を低い値に維持した状態で膨張比を高くするとノッキングの発生を阻止しつつ理論熱効率を大巾に高めることができる。図8(B)は可変圧縮比機構Aおよび可変バルブタイミング機構Bを用いて、実圧縮比を低い値に維持しつつ膨張比を高めるようにした場合の一例を示している。
【0043】
図8(B)を参照すると、この例では可変圧縮比機構Aにより燃焼室容積が50mlから20mlまで減少せしめられる。一方、可変バルブタイミング機構Bによって実際のピストン行程容積が500mlから200mlになるまで吸気弁の閉弁時期が遅らされる。その結果、この例では実圧縮比は(20ml+200ml)/20ml=11となり、膨張比は(20ml+500ml)/20ml=26となる。図8(A)に示される通常のサイクルでは前述したように実圧縮比がほぼ11で膨張比が11であり、この場合に比べると図8(B)に示される場合には膨張比のみが26まで高められていることがわかる。これが超高膨張比サイクルと称される所以である。
【0044】
一般的に言って内燃機関では機関負荷が低いほど熱効率が悪くなり、従って機関運転時における熱効率を向上させるためには、即ち燃費を向上させるには機関負荷が低いときの熱効率を向上させることが必要となる。一方、図8(B)に示される超高膨張比サイクルでは圧縮行程時の実際のピストン行程容積が小さくされるために燃焼室5内に吸入しうる吸入空気量は少なくなり、従ってこの超高膨張比サイクルは機関負荷が比較的低いときにしか採用できないことになる。従って本発明では機関負荷が比較的低いときには図8(B)に示す超高膨張比サイクルとし、機関高負荷運転時には図8(A)に示す通常のサイクルとするようにしている。
【0045】
次に図9を参照しつつ運転制御全般について概略的に説明する。図9には或る機関回転数における機関負荷に応じた吸入空気量、吸気弁閉弁時期、機械圧縮比、膨張比、実圧縮比およびスロットル弁17の開度の各変化が示されている。なお、図9は、触媒装置20内の三元触媒によって排気ガス中の未燃HC,COおよびNOXを同時に低減しうるように燃焼室5内における平均空燃比が空燃比センサ21の出力信号に基いて理論空燃比にフィードバック制御されている場合を示している。
【0046】
さて、前述したように機関高負荷運転時には図8(A)に示される通常のサイクルが実行される。従って図9に示されるようにこのときには機械圧縮比は低くされるために膨張比は低く、図9において実線で示されるように吸気弁7の閉弁時期は図5において実線で示される如く早められている。また、このときには吸入空気量は多く、このときスロットル弁17の開度は全開に保持されているのでポンピング損失は零となっている。
【0047】
一方、図9において実線で示されるように機関負荷が低くなるとそれに伴って吸入空気量を減少すべく吸気弁7の閉弁時期が遅くされる。またこのときには実圧縮比がほぼ一定に保持されるように図9に示される如く機関負荷が低くなるにつれて機械圧縮比が増大され、従って機関負荷が低くなるにつれて膨張比も増大される。なお、このときにもスロットル弁17は全開状態に保持されており、従って燃焼室5内に供給される吸入空気量はスロットル弁17によらずに吸気弁7の閉弁時期を変えることによって制御されている。
【0048】
このように機関高負荷運転状態から機関負荷が低くなるときには実圧縮比がほぼ一定のもとで吸入空気量が減少するにつれて機械圧縮比が増大せしめられる。即ち、吸入空気量の減少に比例してピストン4が圧縮上死点に達したときの燃焼室5の容積が減少せしめられる。従ってピストン4が圧縮上死点に達したときの燃焼室5の容積は吸入空気量に比例して変化していることになる。なお、このとき図9に示される例では燃焼室5内の空燃比は理論空燃比となっているのでピストン4が圧縮上死点に達したときの燃焼室5の容積は燃料量に比例して変化していることになる。
【0049】
機関負荷が更に低くなると機械圧縮比は更に増大せしめられ、機関負荷が低負荷L2まで低下すると機械圧縮比は燃焼室5の構造上限界となる限界機械圧縮比(上限機械圧縮比)に達する。機械圧縮比が限界機械圧縮比に達すると、機械圧縮比が限界機械圧縮比に達したときの機関負荷L2よりも負荷の低い領域では機械圧縮比が限界機械圧縮比に保持される。従って機関低負荷運転時には、即ち、機関低負荷運転側では機械圧縮比は最大となり、膨張比も最大となる。別の言い方をすると機関低負荷運転側では最大の膨張比が得られるように機械圧縮比が最大にされる。
【0050】
一方、図9に示される実施例では機関負荷がL2まで低下すると吸気弁7の閉弁時期が燃焼室5内に供給される吸入空気量を制御しうる限界閉弁時期となる。吸気弁7の閉弁時期が限界閉弁時期に達すると吸気弁7の閉弁時期が限界閉弁時期に達したときの機関負荷L2よりも負荷の低い領域では吸気弁7の閉弁時期が限界閉弁時期に保持される。
【0051】
吸気弁7の閉弁時期が限界閉弁時期に保持されるともはや吸気弁7の閉弁時期の変化によっては吸入空気量を制御することができない。図9に示される実施例ではこのとき、即ち吸気弁7の閉弁時期が限界閉弁時期に達したときの機関負荷L2よりも負荷の低い領域ではスロットル弁17によって燃焼室5内に供給される吸入空気量が制御され、機関負荷が低くなるほどスロットル弁17の開度は小さくされる。
【0052】
前述したように図8(B)に示す超高膨張比サイクルでは膨張比が26とされる。この膨張比は高いほど好ましいが図7からわかるように実用上使用可能な下限実圧縮比ε=5に対しても20以上であればかなり高い理論熱効率を得ることができる。従って本実施例では膨張比が20以上となるように可変圧縮比機構Aが形成されている。
【0053】
ところで、本実施例の火花点火内燃機関において、排気ガス再循環通路100を介して排気ガスの一部を気筒内へ再循環させることにより、燃焼温度を低下させてNOXの発生を抑制する排気ガス再循環(EGR)が行われる。排気ガス再循環通路100を介して再循環させる排気ガス量は、外部EGR量として、制御弁101の開度により制御される。
【0054】
また、排気行程末期から吸気行程初期の間に吸気弁と排気弁とが両方とも開弁しているバルブオーバーラップ期間が設けられていると、このバルブオーバーラップ期間においては、排気系に比較して吸気系の圧力が低いために、吸気系から気体が気筒内へ供給されることはなく、気筒内及び排気系内の排気ガスが吸気系へ逆流し、この逆流排気ガスは、内部EGRとして吸気行程において排気弁の閉弁後に気筒内へ供給される。バルブオーバーラップ期間を長くするほど内部EGR量を多くすることができる。それにより、例えば、排気弁の閉弁時期を可変とするように前述同様な可変バルブタイミング機構を設ければ、バルブオーバーラップ期間を変化させて内部EGR量を制御することができる。この場合には、排気ガス再循環通路100を省略して外部EGRを実施しなくても、内部EGRだけでEGRを実施することができる。
【0055】
外部EGR及び内部EGRの両方又は排気ガス再循環通路が省略されて内部EGRだけにより気筒内のEGR率(再循環排気ガス量/(再循環排気ガス量+新気量))が制御される。本内燃機関においては、吸気弁7の閉弁時期を可変とすることにより吸気量が制御され、すなわち、圧縮行程において吸気弁7の閉弁時期を遅角することにより、気筒内の吸気の一部を吸気系へ排出して吸気量を制御しており、その際に、吸気行程において気筒内へ供給された再循環排気ガスの一部も吸気系へ排出される。その結果、吸気系には、外部EGR及び内部EGRによる再循環排気ガス又は内部EGRだけによる再循環排気ガスと、圧縮行程において気筒内から排出された排気ガスとが混在し、これらが次回の吸気行程において気筒内へ吸入され、吸気行程において気筒内に残留する排気ガスと共に気筒内のEGR率が決定されることとなる。
【0056】
EGRは多少の燃焼悪化を伴うために、高出力が必要な高負荷時及び燃焼が不安定となり易い低負荷時には、EGR率を比較的低くし、中負荷時にはEGR率を比較的高くしている。それにより、図9に示す中負荷L1から低負荷L2への急激な負荷変化に際しては、吸気量を減少させるために、吸気弁7の閉弁時期は、第一閉弁時期から第二閉弁時期へ遅角され、バルブオーバーラップ期間を制御するなどして、気筒内のEGR率を第一EGR率から第二EGR率へ低下させることとなる。また、点火時期は、中負荷L1時の第一点火時期から低負荷L2時の第二点火時期へ進角させる。
【0057】
このように吸気弁7の閉弁時期を変化させると、圧縮行程において気筒内から吸気系へ排出される再循環排気ガス量が変化するために、吸気系のEGR率が所望値へ収束し難くなり、吸気弁7の閉弁時期が第二閉弁時期に遅角されて吸気量が第二吸気量に減少した時にも、吸気系のEGR率は所望値に収束しておらず、吸気系のEGR率が所望値に収束して気筒内のEGR率が第二EGR率R2となるまでに遅れ時間が発生する。
【0058】
それにより、点火時期を吸気弁の閉弁時期に合わせて、吸気量が第二吸気量となった時に第二点火時期とすると、この時には、気筒内のEGR率は第二EGR率まで低下しておらず、そのままでは、所望機関出力より低い機関出力しか発生させることができない。所望機関出力を発生させるためには、現在のEGR率と第二EGR率との差に基づき点火時期を第二点火時期より進角しなければならない。
【0059】
図10は、本発明による火花点火内燃機関において、機関負荷Lが中負荷L1から低負荷L2へ急激に変化した際の吸気弁の閉弁時期IVC、機械圧縮比E、EGR率R、及び点火時期ITの各制御を示すタイムチャートである。機関負荷Lが中負荷L1から低負荷L2へ変化すると、それと同時に(又はその直後に)、第一時刻t1において、吸気量を減少させるために、可変バルブタイミング機構Bによって吸気弁の閉弁時期を中負荷L1の第一閉弁時期IVC1から低負荷L2の第二閉弁時期IVC2とする遅角を開始する。また、第一時刻t1又はその直後において、気筒内のEGR率を中負荷L1の第一EGR率R1から低負荷L2の第二EGR率R2へ向けて低下させる。
【0060】
前述したように、中負荷L1から低負荷L2への負荷変化時において吸気弁の閉弁時期が変化するために、圧縮行程において気筒内から吸気系へ排出される再循環排気ガス量が変化し、吸気系のEGR率は所望値に収束し難い。それにより、可変バルブタイミング機構B、すなわち、アクチュエータによって、吸気弁の閉弁時期IVCを点線で示す等速度で第一閉弁時期IVC1から第二閉弁時期IVC2へ変化させた場合において、第一EGR率R1から第二EGR率R2へ変化させる気筒内のEGR率Rは、点線で示すように、吸気弁の閉弁時期IVCが低負荷L2の第二閉弁時期IVC2となる第二時刻t2’から遅れ時間DAが発生して第二EGR率R2となる。
【0061】
気筒内の吸気量は、吸気弁の閉弁時期の変化に対して殆ど遅れなく追従するために、点火時期ITを吸気弁の閉弁時期に合わせて中負荷L1の第一点火時期IT1から第二点火時期IT2へ進角させると、第二時刻t2’において、気筒内のEGR率Rは低負荷L2の第二EGR率R2より高い第三EGR率R3となっているために、所望機関出力を発生させることができない。それにより、点火時期を第二点火時期IT2より進角させて機関出力を高めることが必要となる。
【0062】
しかしながら、第二時刻t2’の時の気筒内の第三EGR率R3は、第二EGR率R2よりかなり高く、その差(R3−R2)に対応する点火時期の進角量ΔITAは大きくなり、点線で示すように、第一時刻t1から第二時刻t2’までにおいて所望機関出力を発生させるように点火時期を進角すると、第二時刻t2’においては、その時の吸気弁の閉弁時期IVC2より進角側となり、すなわち、吸気弁が閉弁される前に点火を実施しなければならなくなるために、実現不可能である。
【0063】
それにより、本実施例では、吸気弁の閉弁時期IVCを実線で示す等速度で第一閉弁時期IVC1から第二閉弁時期IVC2へ変化させるようにしており、こうして、アクチュエータの作動速度を遅くすることにより、第一EGR率R1から第二EGR率R2へ変化させる気筒内のEGR率は、実線で示すように、吸気弁の閉弁時期が低負荷L2の第二閉弁時期IVC2となる第二時刻t2(アクチュエータの作動速度が遅いために点線の場合の第二時刻t2’より遅い時刻なる)から遅れ時間DBが発生して第二EGR率R2となる。
【0064】
遅れ時間DBは、吸気弁の閉弁時期を遅角させるアクチュエータの作動速度を遅くするほど、吸気系のEGR率が所望値へ収束し易くなるために、実際的には短くなるが、仮に、遅れ時間(吸気弁の閉弁時期が第二閉弁時期IVC2となる第二時刻から気筒内のEGR率が第二EGR率となるまでの時間)がアクチュエータの作動速度に係わらずに一定であるとしても、吸気弁の閉弁時期を第二閉弁時期とする第二時刻自身が遅くなるために、第二時刻におけるEGR率は第二EGR率R2に近くなる。また、実際には、アクチュエータの作動速度を遅くして吸気弁の閉弁時期を第二閉弁時期とする第二時刻が遅くなるほど、遅れ時間が短くなるために、第二時刻におけるEGR率Rは顕著に第二EGR率R2に近くなる。
【0065】
それにより、アクチュエータの作動速度を遅くした場合において、実線で示すように、第二時刻t2のEGR率は、第三EGR率R3より小さな第四EGR率R4となっており、点線で示す場合に比較して、第二EGR率との差(R4−R2)は小さくなり、この差に対応する点火時期の進角量ΔITBも小さくなるために、第一時刻t1から第二時刻t2までにおいて所望機関出力を発生させるように点火時期を進角すると、第二時刻t2においては、その時の吸気弁の閉弁時期IVC2より遅角側となり、すなわち、吸気弁が閉弁された後に混合気を圧縮してから点火を実施することとなり、実現可能である。点火時期ITは、気筒内のEGR率の低下に伴って、第二時刻t2から徐々に遅角され、遅れ時間DBの終了時には第二点火時期IT2とされ、この間においても所望機関出力を発生させる。
【0066】
吸気弁の閉弁時期IVCが第二閉弁時期IVC2となる第二時刻から気筒内のEGR率が第二EGR率R2となるまでの遅れ時間は、前述したように、吸気弁の閉弁時期を第一閉弁時期IVC1から第二閉弁時期IVC2とする遅角を開始する第一時刻から第二時刻までのアクチュエータの作動時間を長くするほど短くなり、また、中負荷の第一EGR率R1と低負荷の第二EGR率R2との差が小さいほど短くなる。
【0067】
こうして遅れ時間が推定されれば、例えば気筒内のEGR率は等速度で変化するとして、第二時刻の気筒内のEGR率を推定することができる。それにより、第二時刻の気筒内のEGR率が、点火時期ITを第二点火時期IT2から吸気弁の第二閉弁時期後において最大に進角させた場合(吸気弁が第二閉弁時期において閉弁された後に、気筒内の混合気をある程度を圧縮するためのクランク角度範囲が必要である)に所望機関出力が発生する特定EGR率となるアクチュエータの作動時間(第一時刻から第二時刻までの時間)を逆に推定することができる。
【0068】
それにより、要求負荷が中負荷L1から低負荷L2へ低下したときに、吸気量を減少させるために第一時刻t1においてアクチュエータにより吸気弁の閉弁時期を第一閉弁時期IVC1から第二閉弁時期IVC2とする遅角を開始し、気筒内のEGR率を第一EGR率R1から第二EGR率R2へ低下させ、吸気弁の閉弁時期が第一閉弁時期IVC1であって気筒内のEGR率が第一EGR率R1となっている時には点火時期を第一点火時期IT1とし、吸気弁の閉弁時期が第二閉弁時期IVC2であって気筒内のEGR率が第二EGR率R2となっている時には点火時期を第二点火時期IT2とする場合において、気筒内のEGR率の応答遅れにより、吸気弁の閉弁時期が第二閉弁時期IVC2とされた第二時刻t2には、気筒内のEGR率は第二EGR率R2まで低下しないが、気筒内のEGR率が、点火時期を第二点火時期IT2から第二閉弁時期IVC2後において最大に進角させた場合に所望機関出力が発生する特定EGR率以下となるように、第一EGR率R1と第二EGR率R2と第一閉弁時期IVC1と第二閉弁時期IVC2とに基づきアクチュエータの作動時間を設定することができる。
【0069】
こうして、要求負荷が中負荷L1から低負荷L2へ低下したときには、設定されたアクチュエータの作動時間で吸気弁の閉弁時期を第一閉弁時期IVC1から第二閉弁時期IVC2へ変化させることにより、第二時刻t2の点火時期を実現可能な範囲で進角すれば、この時に所望機関出力を得ることができる。アクチュエータの作動時間は、早期に低負荷L2の吸気量を実現するために短い方が好ましく、第二時刻の気筒内のEGR率が点火時期を最大に進角させた場合に所望機関出力が発生する特定EGR率となるように設定されることが好ましい。
【0070】
このように、中負荷から低負荷への負荷変化時に、第一EGR率R1と第二EGR率R2と第一閉弁時期IVC1と第二閉弁時期IVC2とに基づき、第二時刻において所望機関出力を発生させる点火時期の進角を実現可能とするアクチュエータ(吸気弁の閉弁時期を遅角させるためのアクチュエータ)の作動時間を予め設定してマップ化することができる。しかしながら、中負荷から低負荷への負荷変化時に、第一EGR率R1と第二EGR率R2と第一閉弁時期IVC1と第二閉弁時期IVC2とに基づき、第二時刻において所望機関出力を発生させる点火時期の進角を実現可能とするアクチュエータの作動時間を算出して設定するようにしても良い。
【0071】
また、図10に示すように、機械圧縮比Eは、要求負荷が中負荷L1から低負荷L2へ低下した際には、吸気量の減少に対して実圧縮比が一定となるように、可変圧縮比機構により第一機械圧縮比E1から第二機械圧縮比E2へ高められるようになっており、それにより、実圧縮比が低下して失火が発生することは抑制される。
【符号の説明】
【0072】
A 可変圧縮比機構
B 可変バルブタイミング機構

【特許請求の範囲】
【請求項1】
要求負荷が第一機関負荷から第二機関負荷へ低下したときに、吸気量を減少させるために第一時刻においてアクチュエータにより吸気弁の閉弁時期を第一閉弁時期から第二閉弁時期とする遅角を開始し、気筒内のEGR率を第一EGR率から第二EGR率へ低下させ、吸気弁の閉弁時期が前記第一閉弁時期であって気筒内のEGR率が前記第一EGR率となっている時には点火時期を第一点火時期とし、吸気弁の閉弁時期が前記第二閉弁時期であって気筒内のEGR率が前記第二EGR率となっている時には点火時期を第二点火時期とする火花点火内燃機関において、気筒内のEGR率の応答遅れにより、吸気弁の閉弁時期が前記第二閉弁時期とされた第二時刻には、気筒内のEGR率は前記第二EGR率まで低下せず、前記第二時刻の気筒内のEGR率が、前記第二EGR率よりは高くても、点火時期を前記第二点火時期から前記第二閉弁時期後において最大に進角させた場合に所望機関出力が発生する特定EGR率以下となるように、前記第一時刻から前記第二時刻までの前記アクチュエータの作動時間を設定することを特徴とする火花点火内燃機関。
【請求項2】
機械圧縮比を変更可能な可変圧縮比機構を具備し、要求負荷が前記第一機関負荷から前記第二機関負荷へ低下した際には、吸気量の減少に対して実圧縮比が一定となるように、前記可変圧縮比機構により機械圧縮比を高めることを特徴とする請求項1に記載の火花点火内燃機関。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2012−97687(P2012−97687A)
【公開日】平成24年5月24日(2012.5.24)
【国際特許分類】
【出願番号】特願2010−247380(P2010−247380)
【出願日】平成22年11月4日(2010.11.4)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【Fターム(参考)】