説明

MTJ膜及びその製造方法

【課題】高い結晶配向性を有する強磁性層の上にトンネルバリア層を形成することによってMTJ膜を作成する場合に、読み出し特性の劣化を抑制すること。
【解決手段】MTJ膜の製造方法は、第1強磁性層を形成する工程と、第1強磁性層の上にトンネルバリア層を形成する工程と、トンネルバリア層の上に第2強磁性層を形成する工程と、を含む。第1強磁性層は、垂直磁気異方性を有するCo/Ni積層膜である。トンネルバリア層を形成する工程は、単位成膜処理をn回(nは2以上の整数)繰り返すことを含む。単位成膜処理は、Mg膜をスパッタ法により堆積する工程と、堆積されたMg膜を酸化する工程と、を含む。1回目の単位成膜処理において堆積されるMg膜の膜厚は、0.3nm以上0.5nm以下である。2回目以降の単位成膜処理において堆積されるMg膜の膜厚は、0.1nm以上0.45nm以下である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、MTJ(Magnetic Tunnel Junction;磁気トンネル接合)膜の製造方法に関する。特に、本発明は、多段階酸化法によりトンネルバリア層を形成するMTJ膜の製造方法に関する。
【背景技術】
【0002】
磁気ランダムアクセスメモリ(MRAM:Magnetic Random Access Memory)は、高集積・高速動作の観点から有望な不揮発性メモリである。MRAMでは、磁気抵抗効果を示す磁気抵抗素子がメモリセルとして利用される。典型的な磁気抵抗素子として、トンネルバリア層が2層の強磁性層で挟まれたMTJ(Magnetic Tunnel Junction;磁気トンネル接合)が知られている。
【0003】
図1は、典型的なMTJ膜の構造を概略的に示している。典型的なMTJ膜は、第1強磁性層110、トンネルバリア層120及び第2強磁性層130が順番に積層された積層構造を含んでいる。トンネルバリア層120は、膜厚1〜2nm程度の薄い絶縁層であり、その材料はAlやMgの酸化物である。第1強磁性層110及び第2強磁性層130はそれぞれ磁化(図1の例では、共に面内方向磁化)を有している。ここで、第1強磁性層110と第2強磁性層130の一方は、磁化方向が固定された磁化固定層(ピン層)であり、その他方は、磁化方向が反転可能な磁化自由層(フリー層)である。磁化固定層と磁化自由層の磁化方向が“反平行”である場合のMTJの抵抗値は、磁気抵抗効果により、それらが“平行”である場合の抵抗値よりも大きくなる。MTJ膜は、このような抵抗値の変化を利用することによってデータを不揮発的に記憶する。MTJ膜に対するデータの書き込みは、磁化自由層の磁化方向を反転させることによって行われる。
【0004】
MRAMの書き込み特性及び読み出し特性は、MTJの膜特性により決定される。例えば、読み出し特性には、トンネルバリア層の被覆性や膜質が大きく寄与する。主な読み出し特性としては、抵抗面積積すなわち規格化接合抵抗(R×A;R=素子抵抗、A=接合面積)や磁気抵抗比(MR比)が挙げられる。これらR×AやMR比は、CIPT(Current In−Plane Tunneling)法によって得ることができる。トンネルバリア層の被覆性や膜質の劣化は、それらR×Aの低下(ショート)やMR比の低下を招く。従って、良好なトンネルバリア層を形成することが望まれる。
【0005】
トンネルバリア層の形成方法の1つとして、酸化物(例:MgO)ターゲットを用いたRFスパッタリングが挙げられる。しかしながら、RFスパッタリングによりトンネルバリア層を形成した場合、接合抵抗のウェハ面内均一性が良くないことが知られている。また、パーティクルの発生やターゲットコンタミネーションの観点から、RFスパッタリングはMRAMの量産には不向きである。
【0006】
トンネルバリア層の他の形成方法として、「後酸化法」が知られている。後酸化法によれば、(1)金属膜(Al膜やMg膜)をスパッタ法により堆積する金属堆積工程がまず実施され、その後に引き続いて、(2)酸素ラジカル等を導入することによって堆積金属膜を酸化する酸化工程が実施される。これにより、AlあるいはMgOからなるトンネルバリア層が形成される。後酸化法は、優れた接合抵抗のウェハ面内均一性が得られるという特徴を有しており、MRAMの量産には不可欠な技術と考えられている。
【0007】
「多段階酸化法」は、後酸化法の一種であり、上述の金属堆積工程と酸化工程を2回以上繰り返す。言い換えれば、1セットの金属堆積工程と酸化工程を「単位成膜処理」としたとき、その単位成膜処理が複数回繰り返し実行される。
【0008】
特許文献1(特開2000−357829号公報)には、多段階酸化法に関連する技術が開示されている。当該関連技術によれば、1回目の単位成膜処理において、堆積される金属膜の膜厚は、0.3nm以上で1nm未満に設定される。また、2回目以降の単位成膜処理において、堆積される金属膜の膜厚は、0.1nm〜1.5nmに設定される。これにより過不足のない酸化状態のトンネルバリア層が形成されることが述べられている。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開2000−357829号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
近年、電流駆動磁壁移動型(Current−Driven Domain Wall Motion)のMRAMにおいて、書き込み電流低減の観点から、垂直磁気異方性を有する垂直磁化膜が着目されている。現在最も有望な垂直磁化膜の1つが、Co薄膜とNi薄膜とが交互に積層されたCo/Ni積層膜である。Co/Ni積層膜において垂直磁気異方性を発現させるためには、適切な下地層を用いた結晶配向の制御が重要である。適切な下地層上にCo/Ni積層膜を形成することにより、そのCo/Ni積層膜は強いfcc(111)配向を有する微結晶膜となり、その場合に、強い垂直磁気異方性を実現することができる。
【0011】
ここで、本願発明者は、実験を通して、次のような問題点を初めて見出した。その問題点とは、垂直磁気異方性を有するCo/Ni積層膜上に、上述の後酸化法や多段階酸化法によってMgO膜をトンネルバリア層として形成した場合、読み出し特性(R×A、MR比)が劣化する可能性があるということである。例えば、上述の特許文献1に記載された膜厚条件を満たすように、1回目、2回目の単位成膜処理においてそれぞれ0.7nmのMg膜を堆積したサンプルが作成された(後に説明される図8Bも参照)。そして、そのサンプルに関して、R×A及びMR比の劣化が確認された(後に説明される図11、図12等も参照)。
【0012】
また、本願発明者は、このような問題点は後酸化法や多段階酸化法に特有であり、RFスパッタリングの場合には発生しないという事も、実験的に確認した。つまり、MgOターゲットを用いたRFスパッタリングによって、Co/Ni垂直磁化膜上にMgO膜がトンネルバリア層として形成される場合には、上記問題は発生しなかった。
【0013】
これらのことから、本願発明者は、上記問題が「結晶粒の成長」に起因すると考えた。図2を参照して、本願発明者が考えた問題発生メカニズムを説明する。
【0014】
図2には、垂直磁気異方性を有するCo/Ni積層膜上に、1〜2nm程度のMg膜が堆積された様子が示されている。上述の通り、垂直磁気異方性を有するCo/Ni積層膜は、強いfcc(111)配向を有する微結晶膜である。そのような高結晶配向のCo/Ni積層膜は、Mg結晶成長に対する下地として働き、エピタキシャル的にMg結晶成長を促進すると考えられる。そのため、膜厚が1〜2nm程度であっても、Mg結晶粒の成長が始まってしまう。Mg結晶粒が成長すると、図2に示されるように、局所的に膜厚の薄い部分が生じてしまう。すなわち、トンネルバリア層の被覆性が劣化する。
【0015】
このようにMg堆積工程において局所的に薄い部分が生じると、続く酸化工程において、その局所的に薄い部分を通して、下層のCo/Ni積層膜も酸化されてしまう可能性がある。このことは、MR比低下の原因となる。また、熱処理により界面元素拡散が進んだ場合には、局所的に薄い部分がリークスポットとなり、そのことが接合ショート(R×Aの低下)及びMR比低下を引き起こす。熱処理によりR×AやMR比が低下するため、MTJ膜の耐熱性が劣化していると言える(後に説明される図9、図10も参照)。
【0016】
また、上述の通り、特許文献1に記載された膜厚条件を満たすサンプル(1回目、2回目の単位成膜処理においてそれぞれ0.7nmのMg膜を堆積)に関しても同様に、R×AやMR比の低下が見られた。この結果から、0.7nm程度の膜厚の場合であっても、同様の現象が発生したと考えられる。すなわち、特許文献1において規定された膜厚範囲では、読み出し特性の劣化が発生する可能性がある。これは、特許文献1では「結晶粒の成長」について認識されていなかったからである。
【0017】
以上に説明されたように、後酸化法や多段階酸化法によってトンネルバリア層を形成する場合、読み出し特性(R×A、MR比)が劣化する可能性がある。ここで、下層の強磁性層は、垂直磁気異方性を有するCo/Ni積層膜に限られない。結晶粒の成長という観点から言えば、高い結晶配向性を有する強磁性層の上に、後酸化法や多段階酸化法によってトンネルバリア層を形成する場合に、同様の問題が発生すると考えられる。高い結晶配向性を有する強磁性層の上にトンネルバリア層を形成することによってMTJ膜を作成する場合に、読み出し特性の劣化を抑制することが望まれる。
【課題を解決するための手段】
【0018】
本発明の1つの観点において、MTJ膜の製造方法が提供される。その製造方法は、第1強磁性層を形成する工程と、第1強磁性層の上にトンネルバリア層を形成する工程と、トンネルバリア層の上に第2強磁性層を形成する工程と、を含む。第1強磁性層は、垂直磁気異方性を有するCo/Ni積層膜である。トンネルバリア層を形成する工程は、単位成膜処理をn回(nは2以上の整数)繰り返すことを含む。単位成膜処理は、Mg膜をスパッタ法により堆積する工程と、堆積されたMg膜を酸化する工程と、を含む。1回目の単位成膜処理において堆積されるMg膜の膜厚は、0.3nm以上0.5nm以下である。2回目以降の単位成膜処理において堆積されるMg膜の膜厚は、0.1nm以上0.45nm以下である。
【0019】
本発明の他の観点において、MTJ膜の製造方法が提供される。その製造方法は、第1強磁性層を形成する工程と、第1強磁性層の上にトンネルバリア層を形成する工程と、トンネルバリア層の上に第2強磁性層を形成する工程と、を含む。第1強磁性層は、fcc(111)配向の結晶構造を有する。トンネルバリア層を形成する工程は、単位成膜処理をn回(nは2以上の整数)繰り返すことを含む。単位成膜処理は、Mg膜をスパッタ法により堆積する工程と、堆積されたMg膜を酸化する工程と、を含む。1回目の単位成膜処理において堆積されるMg膜の膜厚は、0.3nm以上0.5nm以下である。2回目以降の単位成膜処理において堆積されるMg膜の膜厚は、0.1nm以上0.45nm以下である。
【0020】
本発明の更に他の観点において、MTJ膜が提供される。そのMTJ膜は、第1強磁性層と、第1強磁性層の上に形成されたトンネルバリア層と、トンネルバリア層の上に形成された第2強磁性層と、を備える。第1強磁性層は、垂直磁気異方性を有するCo/Ni積層膜である。トンネルバリア層は、n層(nは2以上の整数)のMgO膜を備える。n層のMgO膜のうち第1強磁性層に最も近い第1MgO膜の膜厚は、0.2415nm以上0.4025nm以下である。n層のMgO膜のうち第1MgO膜以外の各々の膜厚は、0.0805nm以上0.36225nm以下である。
【発明の効果】
【0021】
本発明によれば、高い結晶配向性を有する強磁性層の上にトンネルバリア層を形成することによってMTJ膜を作成する場合に、読み出し特性の劣化を抑制することが可能となる。
【図面の簡単な説明】
【0022】
【図1】図1は、典型的なMTJ膜の構造を概略的に示している。
【図2】図2は、本発明が解決しようとする課題を説明するための図である。
【図3】図3は、本発明の実施の形態に係るMTJ膜の構造の一例を示す断面図である。
【図4】図4は、本発明の実施の形態に係るMTJ膜の構造の他の例を示す断面図である。
【図5】図5は、本発明の実施の形態に係るMTJ膜の製造方法を示す概念図である。
【図6】図6は、本発明の実施の形態に係るMTJ膜の製造方法の変形例を示す概念図である。
【図7】図7は、実験において用いられたサンプルの膜構成を示している。
【図8A】図8Aは、サンプルAのMg膜厚条件を示す概念図である。
【図8B】図8Bは、サンプルBのMg膜厚条件を示す概念図である。
【図8C】図8Cは、サンプルCのMg膜厚条件を示す概念図である。
【図8D】図8Dは、サンプルDのMg膜厚条件を示す概念図である。
【図9】図9は、サンプルAに関する、R×Aのアニール温度依存性を示すグラフである。
【図10】図10は、サンプルAに関する、MR比のアニール温度依存性を示すグラフである。
【図11】図11は、各サンプルに関する、R×Aの酸化時間依存性を示すグラフである。
【図12】図12は、各サンプルに関する、MR比の酸化時間依存性を示すグラフである。
【図13】図13は、各サンプルに関する、R×AのMg膜厚依存性を示すグラフである。
【図14】図14は、各サンプルに関する、MR比のMg膜厚依存性を示すグラフである。
【発明を実施するための形態】
【0023】
添付図面を参照して、本発明の実施の形態を説明する。
【0024】
1.構造
図3は、本実施の形態に係るMTJ膜1の構造の一例を示す断面図である。基板10の上に下地層20が形成されている。下地層20の上に第1強磁性層30が形成されている。第1強磁性層30の上にトンネルバリア層40が形成されている。トンネルバリア層40の上に第2強磁性層50が形成されている。第2強磁性層50の上にキャップ層60が形成されている。
【0025】
トンネルバリア層40は第1強磁性層30と第2強磁性層50との間に挟まれており、それら第1強磁性層30、トンネルバリア層40及び第2強磁性層50によって磁気トンネル接合(MTJ)が形成されている。このようなMTJ膜1において、例えば、第1強磁性層30が磁化自由層あるいは磁壁移動層として機能し、第2強磁性層50が磁化固定層として機能する。
【0026】
本実施の形態において、第1強磁性層30は、高い結晶配向性を有する。より詳細には、第1強磁性層30は、強いfcc(111)配向の結晶構造を有する。典型的には、第1強磁性層30は、Co薄膜とNi薄膜とが交互に積層されたCo/Ni積層膜である。下地層20を適切に選択することにより、強いfcc(111)配向の結晶構造を有するCo/Ni積層膜を形成することができる。その場合、Co/Ni積層膜は、垂直磁気異方性(磁化容易軸が膜面に対して垂直方向)を有するようになる。すなわち、垂直磁気異方性を有するCo/Ni積層膜は、高い結晶配向性を有するCo/Ni積層膜と等価である。尚、垂直磁気異方性を有するCo/Ni積層膜を磁壁移動型MRAMの磁壁移動層として用いることによって、書き込み電流を低減することができ、好適である。
【0027】
下地層20は、上述の高い結晶配向性を有する第1強磁性層30が実現されるような材料で形成される。下地層20は、複数の層が積層された積層構造を有していてもよい。好適な下地層20としては、Ta/Pt、Co/Pt、NiFeB/Pt、NiFeZr/Pt、NiFeZr/Pt/CoPt等が挙げられる。
【0028】
トンネルバリア層40は、膜厚1〜2nm程度のMgO膜である。後に詳しく説明されるように、トンネルバリア層40は、多段階酸化法によって、第1強磁性層30の上に形成される。
【0029】
第2強磁性層50は、Co、Ni、Feのいずれか又はそれらの合金を含む。第2強磁性層50は、複数の層が積層された積層構造を有していてもよい。例えば、第2強磁性層50は、Co薄膜とPt薄膜とが交互に積層されたCo/Pt積層膜である。また、第2強磁性層50は、積層フェリ構造を有していてもよい。
【0030】
キャップ層60は、熱処理や素子形状加工時のプロセスダメージによるMTJ膜の変質を防ぐための層である。キャップ層60の材料としては、TaやRu等が挙げられる。尚、キャップ層60は設けられなくてもよい。
【0031】
図4は、本実施の形態に係るMTJ膜1の構造の他の例を示している。図4に示されるように、第1強磁性層30とトンネルバリア層40との間に、薄い界面層35が介在していてもよい。つまり、トンネルバリア層40は、必ずしも第1強磁性層30の“直上”に形成されていなくてもよく、薄い界面層35を介して第1強磁性層30の上に形成されていてもよい。界面層35は、例えば、アモルファスCoFeB層である。この場合、MTJ膜1のMR比が向上することが知られている。
【0032】
2.製造方法
以下、本実施の形態に係るMTJ膜1の製造方法を詳しく説明する。図5は、本実施の形態に係るMTJ膜1の製造方法を示している。
【0033】
まず、基板10の上に、スパッタ法により、下地層20が形成される。下地層20は、高い結晶配向性を有する第1強磁性層30が成長可能な材料で形成される。好適な下地層20としては、Ta/Pt、Co/Pt、NiFeB/Pt、NiFeZr/Pt、NiFeZr/Pt/CoPt等が挙げられる。続いて、その下地層20の上に、スパッタ法により、高い結晶配向性を有する第1強磁性層30が形成される。好適には、Co膜とNi膜とが交互に繰り返しスパッタ堆積され、Co/Ni積層膜が第1強磁性層30として形成される。そのようなCo/Ni積層膜は、強いfcc(111)配向の結晶構造を有する微結晶膜であり、且つ、垂直磁気異方性を有する垂直磁化膜である。
【0034】
次に、第1強磁性層30の上に、トンネルバリア層40が形成される。尚、図4で示されたように、トンネルバリア層40は、薄い界面層35(例えば、アモルファスCoFeB層)を介して第1強磁性層30の上に形成されていてもよい。この場合であっても、第1強磁性層30の結晶配向は、界面層35を通して、トンネルバリア層40の形成に影響を与え得る。
【0035】
本実施の形態によれば、トンネルバリア層40は「多段階酸化法」によって形成される。すなわち、トンネルバリア層40は、単位成膜処理をn回(nは2以上の整数)繰り返すことによって形成される。各単位成膜処理は、Mg堆積工程と酸化工程を含む。酸化工程は、Mg堆積工程の後に引き続いて実施される。
【0036】
Mg堆積工程では、Mg膜41がスパッタ法により堆積される。図5では、i回目(i=1〜n)のMg堆積工程において堆積されるMg膜は、Mg膜41−iと表されている。
【0037】
酸化工程では、Mg堆積工程によって堆積されたMg膜41の酸化が行われる。その結果、MgO膜42が形成される。図5では、i回目(i=1〜n)の酸化工程により得られるMgO膜は、MgO膜42−iと表されている。ここで、最も好適な酸化方法は、真空中に純酸素を導入することにより行われる「自然酸化法」である。あるいは、ラジカル状態に活性化された酸素を真空中に導入する「ラジカル酸化法」が用いられてもよい。
【0038】
本実施の形態によれば、結晶粒の成長が抑制されるように、各単位成膜処理が実施される。具体的には、各Mg堆積工程において堆積されるMg膜41の膜厚が、結晶粒が成長しない程度に設定される。結晶粒の成長が抑制される好適なMg膜厚範囲は、実験を通して、本願発明者によって見出された。その実験及び好適なMg膜厚範囲については、後述する。結晶粒の成長が抑制されるため、図2で示されたような局所的に薄い部分の発生が防止される。その結果、R×AやMR比といった読み出し特性の劣化が防止される。
【0039】
トンネルバリア層40の形成が完了した後、そのトンネルバリア層40の上に第2強磁性層50が形成される。第2強磁性層50は、Co、Ni、Feのいずれか又はそれらの合金を含む。例えば、Co膜とPt膜とが交互に繰り返しスパッタ堆積され、Co/Pt積層膜が第2強磁性層50として形成される。また、第2強磁性層50は、積層フェリ構造を有していてもよい。
【0040】
図6は、変形例を示している。変形例では、最終回(n回目)の単位成膜処理における酸化工程が省略される。すなわち、n回目のMg堆積工程によってMg膜41−nが形成されると、トンネルバリア層40の形成が完了する。この場合、第2強磁性層50は、Mg膜41−nの上に形成される。第2強磁性層50と酸素との接触を防ぐことができ、好適である。
【0041】
尚、図5及び図6で示された工程は、途中で大気開放させることなく、真空槽中で連続的に実施される。
【0042】
3.実験及び好適なMg膜厚範囲
本願発明者は、結晶粒の成長が抑制される好適なMg膜厚範囲を、実験を通して見出した。以下、その実験及び好適なMg膜厚範囲について説明する。
【0043】
図7は、実験において用いられたサンプルの膜構成を示している。下地層20は、NiFeZr(1.5nm)、Pt(2nm)、Co(0.4nm)、Pt(0.8nm)、Co(0.4nm)、Pt(0.8nm)の積層膜である。第1強磁性層30は、Co(0.3nm)、Ni(0.6nm)、Co(0.3nm)、Ni(0.6nm)、Co(0.3nm)、Ni(0.6nm)、Co(0.3nm)、Ni(0.6nm)、Co(0.3nm)の積層膜である。トンネルバリア層40については別途説明する。
【0044】
第2強磁性層50は、Co(0.4nm)、Pt(0.4nm)、Co(0.4nm)、Pt(0.4nm)、Co(0.4nm)、Pt(0.4nm)、Co(0.4nm)、Ru(0.95nm)、Co(0.4nm)、Pt(0.4nm)、Co(0.4nm)、Pt(0.4nm)、Co(0.4nm)、Pt(0.4nm)、Co(0.4nm)、Pt(0.8nm)の積層フェリ膜である。キャップ層60は、Ru層(7nm)である。
【0045】
トンネルバリア層40は、多段階酸化法により形成されるMgO膜である。ここで、異なるMg膜厚条件で、4種類のサンプル(サンプルA、サンプルB、サンプルC、サンプルD)が作成された。図8A、図8B、図8C及び図8Dは、それぞれ、サンプルA、サンプルB、サンプルC及びサンプルDのMg膜厚条件を示している。各図には、各Mg堆積工程において堆積されるMg膜41の膜厚が示されている。また、三角マークは、酸化工程の実施を表す。ここでは、図6で示された変形例が採用され、最終回(n回目)の単位成膜処理における酸化工程が省略されている。
【0046】
図8Aを参照して、サンプルAのトンネルバリア層40の形成方法を説明する。1回目のMg堆積工程が実施され、Mg膜41−1(1.3nm)が堆積された。続いて、ラジカル酸化法により1回目の酸化工程が行われた。最後に、2回目のMg堆積工程が実施され、Mg膜41−2(0.35nm)が堆積された。
【0047】
図8Bを参照して、サンプルBのトンネルバリア層40の形成方法を説明する。1回目のMg堆積工程が実施され、Mg膜41−1(0.7nm)が堆積された。続いて、ラジカル酸化法により1回目の酸化工程が行われた。次に、2回目のMg堆積工程が実施され、Mg膜41−2(0.7nm)が堆積された。続いて、ラジカル酸化法により2回目の酸化工程が行われた。最後に、3回目のMg堆積工程が実施され、Mg膜41−3(0.35nm)が堆積された。尚、このサンプルBのMg膜厚条件は、特許文献1に記載された膜厚条件を満たしていることに留意されたい。
【0048】
図8Cを参照して、サンプルCのトンネルバリア層40の形成方法を説明する。1回目のMg堆積工程が実施され、Mg膜41−1(0.5nm)が堆積された。続いて、ラジカル酸化法により1回目の酸化工程が行われた。次に、2回目のMg堆積工程が実施され、Mg膜41−2(0.45nm)が堆積された。続いて、ラジカル酸化法により2回目の酸化工程が行われた。次に、3回目のMg堆積工程が実施され、Mg膜41−3(0.45nm)が堆積された。続いて、ラジカル酸化法により3回目の酸化工程が行われた。最後に、4回目のMg堆積工程が実施され、Mg膜41−4(0.35nm)が堆積された。
【0049】
図8Dを参照して、サンプルDのトンネルバリア層40の形成方法を説明する。1回目のMg堆積工程が実施され、Mg膜41−1(0.5nm)が堆積された。続いて、ラジカル酸化法により1回目の酸化工程が行われた。次に、2回目のMg堆積工程が実施され、Mg膜41−2(0.3nm)が堆積された。続いて、ラジカル酸化法により2回目の酸化工程が行われた。次に、3回目のMg堆積工程が実施され、Mg膜41−3(0.3nm)が堆積された。続いて、ラジカル酸化法により3回目の酸化工程が行われた。次に、4回目のMg堆積工程が実施され、Mg膜41−4(0.3nm)が堆積された。続いて、ラジカル酸化法により4回目の酸化工程が行われた。最後に、5回目のMg堆積工程が実施され、Mg膜41−5(0.35nm)が堆積された。
【0050】
また、最適な酸化時間条件での特性比較を可能とするために、各種類のサンプル毎に、酸化時間を変化させた複数のサンプルを作成した。そして、作成したそれぞれのサンプルに対して、熱処理(アニーリング)が実施され、R×A及びMR比が測定された。尚、R×A及びMR比は、CIPT法により得られた。
【0051】
図9は、サンプルAに関する、R×Aのアニール温度依存性を示している。また、図10は、サンプルAに関する、MR比のアニール温度依存性を示している。300℃以上の高温で熱処理が行われると、R×Aの極端な低下及びMR比の低下が発生することがわかる。酸化時間を変化させても、この問題は解決されなかった。図2で説明されたように、結晶粒の成長により生じた局所的に薄い部分がリークスポットとなり、そのことが接合ショート(R×Aの低下)及びMR比低下を引き起こしたと考えられる。熱処理によりR×AやMR比が低下するため、MTJ膜の耐熱性が劣化していると言える。
【0052】
図11は、各サンプルに関する、R×Aの酸化時間依存性を示すグラフである。図12は、各サンプルに関する、MR比の酸化時間依存性を示すグラフである。横軸は、それぞれの酸化工程における酸化時間の合計を表している。また、三角がサンプルA、丸がサンプルB、菱形がサンプルC、四角がサンプルDの特性をそれぞれ示している。また、サンプルAについては、300℃の熱処理が行われた後の特性が示されており、その他のサンプルB、C、Dについては、350℃の熱処理が行われた後の特性が示されている。
【0053】
図12から、サンプルB、C、Dに関して、MR比が酸化時間に依存して変化することがわかる。特に、酸化時間が50秒程度の場合に、いずれのMR比も最も高くなっている。酸化時間が50秒の場合、サンプルB、C、DのMR比は、それぞれ、7.5%、11%、12%程度である。その一方で、MgO(酸化物)ターゲットを用いたRFスパッタリング法でトンネルバリア層を形成した実験からは、本来得られるMR比が11%〜12%であることが確認されている。従って、サンプルC及びサンプルDにおいては、MR比が低下するという問題が解消できていることがわかる。しかしながら、サンプルBのMR比は、サンプルC、Dの場合と比較して明らかに低くなっており、問題が十分に解消されていない。尚、図10でも示された通り、サンプルAに関してはMR比が極端に低くなっており、問題が顕著である。
【0054】
図11から、サンプルB、C、Dに関して、R×Aが酸化時間に依存して変化することがわかる。一方、サンプルAに関しては、酸化時間に依存せずR×Aが極端に低くなっており、このことは接合ショートの発生を意味している。サンプルC及びサンプルDに関しては、酸化時間の増加に伴ってR×Aが単調増加することがわかる。MR比が最も高くなる最適酸化時間(50秒)でのR×Aは、サンプルCの場合は約200Ωum、サンプルDの場合は約300Ωumであり、充分に高い。すなわち、サンプルC及びサンプルDにおいては、接合ショートは発生しておらず、R×Aが低下するという問題が解消できていることがわかる。尚、酸化時間の増加に伴うR×Aの単調増加は、次のように解釈可能である。すなわち、酸化時間が最適酸化時間よりも短い場合、未酸化のMgが残留し、それによってR×Aが低下する。また、酸化時間が最適酸化時間よりも長い場合、磁性層の酸化によってR×Aが増加する。このような酸化時間の増加に伴うR×Aの単調増加は、後酸化法の場合に一般的に見られる現象である。
【0055】
サンプルBにおいては、接合ショートの状態は回避できていると考えられるが、そのR×Aの酸化時間依存性は極めて特異である。具体的には、酸化時間が最適酸化時間を超えた場合、酸化時間の増加に伴ってR×Aが減少している。この現象は解釈が困難であるが、サンプルBではR×Aに関する耐熱性劣化問題が完全には解消できていない可能性が高い。
【0056】
図13は、各サンプルに関する、R×AのMg膜厚依存性を示すグラフである。図14は、各サンプルに関する、MR比のMg膜厚依存性を示すグラフである。横軸は、Mg堆積工程におけるMg膜厚を示している。より詳細には、サンプルAに関しては、1回目のMg堆積工程におけるMg膜厚=1.3nmが採用されている。サンプルBに関しては、1回目、2回目のMg堆積工程におけるMg膜厚=0.7nmが採用されている。サンプルCに関しては、2回目、3回目のMg堆積工程におけるMg膜厚=0.45nmが採用されている。サンプルDに関しては、2〜4回目のMg堆積工程におけるMg膜厚=0.3nmが採用されている。また、縦軸は、MR比が最も高くなる最適酸化時間での特性(R×A、MR比)を示している。
【0057】
図13及び図14から、堆積Mg膜厚がより小さい方が、良い特性が得られることが分かる。これは、堆積Mg膜厚が小さいと、結晶粒の成長が抑制されるからである。また、サンプルCとサンプルDを比較すると、1回目のMg堆積工程におけるMg膜厚は共に0.5nmで同じであるが、特性はサンプルDの方が良くなっている。これは、2回目以降のMg堆積工程におけるMg膜厚の差(サンプルCの場合0.45nm、サンプルDの場合0.3nm)に起因していると考えざるを得ない。すなわち、2回目以降のMg堆積工程におけるMg膜厚も、より小さい方が好ましい。2回目以降のMg堆積工程においても、下方のCo/Ni積層膜の結晶配向性の影響があると考えられる。
【0058】
以上に説明された実験結果から、サンプルA、Bでは特性劣化の問題は解消されないが、サンプルC、Dでは特性劣化の問題が解消されることが判明した。サンプルC、DのMg膜厚条件から、1回目のMg堆積工程におけるMg膜厚は少なくとも0.5nm以下であればよく、2回目以降のMg堆積工程におけるMg膜厚は少なくとも0.45nm以下であればよいと言える。特許文献1では、「結晶粒の成長による特性劣化」という課題認識が無かったため、膜厚範囲の上限値が大きくなっていた。本発明は、「結晶粒の成長を抑える」という観点から、膜厚範囲の上限値をより好適に規定したと言える。尚、Mg膜厚範囲の下限値は、特許文献1に記載されたものと同様でよい。従って、好適なMg膜厚範囲は、次のようになる。
【0059】
1回目のMg堆積工程におけるMg膜厚 :0.3nm以上0.5nm以下
2回目以降のMg堆積工程におけるMg膜厚:0.1nm以上0.45nm以下
【0060】
尚、Mg膜41を酸化して得られるMgO膜42の膜厚は、元のMg膜41の膜厚よりも小さくなる。理論的には、MgO膜42の膜厚は、Mg膜41の膜厚の80.5%となる。従って、第1層のMgO膜42−1(第1強磁性層30に最も近いMgO膜)の好適な膜厚範囲は、理論上、0.2415nm以上0.4025nm以下である。また、第2層目以降のMgO膜42−j(j=2〜n)の好適な膜厚範囲は、理論上、0.0805nm以上0.36225nm以下である。
【0061】
以上、本発明の実施の形態が添付の図面を参照することにより説明された。但し、本発明は、上述の実施の形態に限定されず、要旨を逸脱しない範囲で当業者により適宜変更され得る。
【符号の説明】
【0062】
1 MTJ膜
10 基板
20 下地層
30 第1強磁性層
35 界面層
40 トンネルバリア層
41 Mg膜
42 MgO膜
50 第2強磁性層
60 キャップ層

【特許請求の範囲】
【請求項1】
第1強磁性層を形成する工程と、
前記第1強磁性層の上にトンネルバリア層を形成する工程と、
前記トンネルバリア層の上に第2強磁性層を形成する工程と
を含み、
前記第1強磁性層は、垂直磁気異方性を有するCo/Ni積層膜であり、
前記トンネルバリア層を形成する工程は、単位成膜処理をn回(nは2以上の整数)繰り返すことを含み、
前記単位成膜処理は、
Mg膜をスパッタ法により堆積する工程と、
前記堆積されたMg膜を酸化する工程と
を含み、
1回目の単位成膜処理において堆積される前記Mg膜の膜厚は、0.3nm以上0.5nm以下であり、
2回目以降の単位成膜処理において堆積される前記Mg膜の膜厚は、0.1nm以上0.45nm以下である
MTJ膜の製造方法。
【請求項2】
請求項1に記載のMTJ膜の製造方法であって、
n回目の単位成膜処理において、前記堆積されたMg膜を酸化する工程は省略される
MTJ膜の製造方法。
【請求項3】
請求項1又は2に記載のMTJ膜の製造方法であって、
前記堆積されたMg膜を酸化する工程は、自然酸化により実施される
MTJ膜の製造方法。
【請求項4】
請求項1乃至3のいずれか一項に記載のMTJ膜の製造方法であって、
前記トンネルバリア層は、アモルファスCoFeB層を介して、前記第1強磁性層の上に形成される
MTJ膜の製造方法。
【請求項5】
請求項1乃至4のいずれか一項に記載のMTJ膜の製造方法であって、
前記第1強磁性層は、下地層の上に形成され、
前記下地層は、Ta/Pt、Co/Pt、NiFeB/Pt、NiFeZr/Pt、NiFeZr/Pt/CoPtのうちいずれである
MTJ膜の製造方法。
【請求項6】
第1強磁性層を形成する工程と、
前記第1強磁性層の上にトンネルバリア層を形成する工程と、
前記トンネルバリア層の上に第2強磁性層を形成する工程と
を含み、
前記第1強磁性層は、fcc(111)配向の結晶構造を有し、
前記トンネルバリア層を形成する工程は、単位成膜処理をn回(nは2以上の整数)繰り返すことを含み、
前記単位成膜処理は、
Mg膜をスパッタ法により堆積する工程と、
前記堆積されたMg膜を酸化する工程と
を含み、
1回目の単位成膜処理において堆積される前記Mg膜の膜厚は、0.3nm以上0.5nm以下であり、
2回目以降の単位成膜処理において堆積される前記Mg膜の膜厚は、0.1nm以上0.45nm以下である
MTJ膜の製造方法。
【請求項7】
第1強磁性層と、
前記第1強磁性層の上に形成されたトンネルバリア層と、
前記トンネルバリア層の上に形成された第2強磁性層と
を備え、
前記第1強磁性層は、垂直磁気異方性を有するCo/Ni積層膜であり、
前記トンネルバリア層は、n層(nは2以上の整数)のMgO膜を備え、
前記n層のMgO膜のうち前記第1強磁性層に最も近い第1MgO膜の膜厚は、0.2415nm以上0.4025nm以下であり、
前記n層のMgO膜のうち前記第1MgO膜以外の各々の膜厚は、0.0805nm以上0.36225nm以下である
MTJ膜。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8A】
image rotate

【図8B】
image rotate

【図8C】
image rotate

【図8D】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate


【公開番号】特開2012−164821(P2012−164821A)
【公開日】平成24年8月30日(2012.8.30)
【国際特許分類】
【出願番号】特願2011−24227(P2011−24227)
【出願日】平成23年2月7日(2011.2.7)
【出願人】(302062931)ルネサスエレクトロニクス株式会社 (8,021)
【Fターム(参考)】