説明

ファイバー状の複合材料ベースのMEMS光スキャナー

MEMSは、基質材を使用しないでファイバーから作られる。装置は、ファイバーが基板のエッジに取り付けられる場所にのみ作ることが出来る(例えば、カンチレバー、ブリッジ)。動きは、弱い結合を有する複数のファイバー間の結合を調整することによって制御可能である(例えば、基礎部、先端、その中間)。駆動機構は、基礎部の加重(磁気、圧電、静電気)または先端の加重(磁気)を含む。光スキャナーを形成するために、ミラーがカンチレバーの自由端に形成される。

【発明の詳細な説明】
【技術分野】
【0001】
<関連出願>
本願は、2003年3月21日出願の米国特許出願第10/395,008号「ファイバー状の微小複合材料」に関連している。本願は米国仮出願第60/582,405号(2004年6月24日出願で、名称が「微小電気機械システム用ファイバー」)に対する優先権を主張しており、これを参照したことによってここに含まれるものとする。本願は、また米国仮出願第60/659,736号(2005年3月8日出願で、名称が「ファイバーを用いたMEMS光スキャナー」)に対する優先権を主張しており、これを参照したことによってここに含まれるものとする。
【0002】
本発明は、MEMSに関し、特にはファイバー構造のMEMSへの使用に関する。
【背景技術】
【0003】
今日、微小電気機械システム(MEMS:micro-electro-mechanical systems)ベースのアクチュエーター装置は、その広範な商用化が厳しく制限される基本的な性能の問題を抱えている。MEMSの製造者達はシリコン(多結晶および単結晶双方)および他の物質をベースにした構造の開発を推進してきたが、結果としてのシステムはまだ必要な機械的特性を欠いている。特定な例としてはMEMSベースの光スキャナーおよびスイッチ(OMEMS)がある。そのような装置は広角の偏向(数十度)、および何十億回にも渡る寿命の信頼性を有する数十キロヘルツを超える共振周波数を生じる必要がある。
【0004】
現在MEMSの製造に用いられている、シリコン、金属、セラミックの薄膜のような単一材料は、高度の弾性剛性、高強度、高度の疲労寿命、および低密度(単位容積あたりの質量)、すなわち、多くの潜在的なMEMSの応用に必要な基礎的な機械的柔軟性および欠陥許容性を欠いている。ポリマーは、それらがあまりに柔軟性がありすぎ、また強度が低いので、バルブや液体ポンプのように力が弱く、且つまたは変形が必要な、低周波数で運転される装置に限定される。
【0005】
結果的に、光スキャナーのような運動部材MEMSは、商用的には今日殆ど存在しない。MEMSの最も成功している応用は、圧力および加速度センサーのような準静的な装置に基づいたものにとどまっている。一つの運動部材MEMSは、アルミニウムMEMSミラーの2位置安定に基づくデジタル光プロセッサーである。
【0006】
進化した性能を有するMEMSの必要性は、特別な応用、すなわちMEMSベースの光スキャナー(OMEMS)を通して思い描くことが出来る。そのようなスキャナーは、3色のスキャナーを使用した大面積のディスプレーのために想定することができる。初期のMEMS光スキャナーは、ウェットエッチングを使って作られる、シリコンの捩りマイクロミラーを使用している。それは、共振周波数16.3kHzで角度0.8°に渡ってビーム(梁)を偏向させることが可能であった。今日開発されているMEMSスキャナーの殆どは、依然、トーションバー(その周りにシリコンミラー素子が回転する)またはカンチレバー(振動して走査動をもたらす)として動作する同様のシリコンビームを用いて設計されている。これらの種類の構造は両方とも磨耗する部品が無く、効率的である。
【発明の開示】
【発明が解決しようとする課題】
【0007】
一般的な応用は、共振周波数、最大偏向角度、最大復帰力に依存し、通常、各々高い値が望ましい。これらの特性は、注目する材質の大きさ、形状、および機械的特性に依存する。しかし、従来のICベースのMEMSの製造に使用される材料は、多くの応用に対して特別に適合させたり最適化することを可能にするような機械的特性を欠いている。今日、現存の材料システムを使用して高周波動作、大振幅変位、低作動電力、丈夫さ、繰り返し応力下での長期間の信頼性、を同時に設計できる方法は無い。シリコン、および単一材料の一般的な基本的問題は、充分な弾性剛性を有する一方、その強度および疲労寿命が低すぎ、また密度が高すぎることである。この組み合わせは、究極的な変位振幅および周波数を制限し、振動の維持に必要なパワーを増大する。
【0008】
MEMSおよびマイクロ機械装置に現在使用されている材料の性能には、基本的な限界がある。Si,SiC,金属、Siなどの上記材料は、多くのMEMS応用に必要とされる高速(>kHz)での大きな変位(>100um)をもたらすことは出来ずに、その商用化を妨げている。それ以前に、現存の材料は、多くのMEMS応用が必要としている何十億回もの繰り返し大変形を実行するのに必要な疲労寿命を持っていない。
【課題を解決するための手段】
【0009】
以下の記述において、発明が実施される特定の実施例が図で示され、その一部を形成する添付図を参照する。これらの実施例は、当業者が本発明を実施することが可能なように充分詳細に述べられており、また、他の実施例も利用可能であり、本発明の範囲から離れることなく構造的、論理的、電気的な変更が利用可能であることを理解されたい。以下の記述は、したがって、制限の意味で理解されるべきではなく、本発明の範囲は添付の請求項によって定義される。
【0010】
ファイバー状の微小複合材料はマイクロファイバーによって形成される。ファイバー状の微小複合材料が、新しい等級のMEMSの基礎として使用される。単純なファイバー部品や微小層部材に加えて、ファイバー状の中空および/または中実の編み紐が、捩れ、板の曲げ、伸ばされた糸または膜を含む変形から動きと回復力を生じる構造の中で使用される。いくつかの実施例において、これらの材料は、高い作動周波数、大きな振幅動および/または回転、および繰り返し応力の下での高い信頼性を同時に可能にする。
【0011】
1実施例において、ファイバー要素は、カーボン/グラファイトファイバー、カーボンナノチューブ、単層または多層のグラフェン(graphene)シート、または同様の構造的特徴を有する他の材料のような高強度で、ミクロン以下の大きさのファイバーを使用して形成される。
【0012】
他の実施例において、カンチレバービームは単一のファイバー、単一層/複層のファイバーを並べたアレイ、または単一層/複層の織布によって作られる。そのような織布は、高い曲げ剛性、低質量、しかも大きな曲げ曲率を有する構造を生むファイバーの軸に沿った特に強い異方性の機械特性および高い強度を開拓する。単一ファイバーのカンチレバーは、横方向の剛性および強度の犠牲を払って、RFセンサーのような潜在的な応用に対して高い作動周波数をもたらす。複数ファイバーのカンチレバーは、ファイバーの損傷または本来備わっている不具合のときにも特性が平均化され、負荷が分担されることによる統計的改善と安定性を享受する。自然な延長上には、多方向および多モードの変位に最適化された特性を有するより複雑な織布がある。そのようなカンチレバーも、横および角度変位をもたらす編み紐の捩れ要素から作ることが出来る。
【0013】
さらに他の実施例において、板部材(2次元的変形が最小の部材)が、単一層/複層に並べられたファイバーアレイ、または単一層/複層の織布から作られる。この構成は、スキャナーMEMSにおけるミラー要素に必要とされるような、高周波数動作に必要な強度と共に質量対剛性比を最適化する。2軸内の相対的剛性が、ファイバー密度、種類、方向、位置取りおよび/または編み込み特性を通して駆動力のバランスを取るために適合させられる。
【0014】
さらに他の実施例において、ミクロン単位のファイバーから作られた中空または管状の微小編み紐が、高性能MEMSアクチュエーターをもたらすために、装置内の捩れ変形要素として用いられる。編み紐は、トーションバー内で、応力を剪断応力(捩れ動作から来る)から直交するファイバー軸に沿ったプラス/マイナス45度の引っ張り/圧縮応力に変える。その結果、編み紐は、ファイバーがその動きが格別優れたモードで動作することを可能にする。100ミクロン以下の尺度(MEMS装置の寸法とほぼ同じ)の捩れ要素は、直径50ミクロンのファイバーから作ることが出来、より小さなファイバーは等比的に小さな編み紐を作る。
【0015】
さらに、編み紐の寸法、編み紐角度、編み紐を作るために使用するファイバーの種類、編み紐内のファイバーの大きさと数、を巧みに扱うことによって、適合する強度、弾性剛性、密度および他の機械的特性を有する捩れ要素を作ることが出来る。この捩れ要素の強度および弾性剛性の強化および適合のしやすさは、MEMS装置が、高周波数で確実に大きな角度の変形と力を生じる結果に繋がる。
【0016】
ファイバー状のマイクロ複合材料はマイクロファイバーから形成される。新しい等級のマイクロ電気機械システム(MEMS)装置は、ファイバー状のマイクロ複合材料をベースにする。そのようなファイバー状のマイクロ複合材MEMSは、シリコンや現在使用されているMEMS材料では満たされない、高い作動周波数と繰り返し応力下での高信頼性を伴った大きな変形や力が必要とされる高性能の応用の要求を満たす見込みがある。
【0017】
MEMS装置は、約10ミクロンからサブミクロンのファイバー、ファイバー編み紐、または織布を有する単一または複数ファイバー構造から作られる。ファイバーは、すべて同じ種類(均質)か、または隣同士異なった種類か、または一緒に織り込まれる(不均質)。1実施例において、ファイバーの大多数はMEMS装置の機械特性を制御するために使用される。
【0018】
少数のファイバーは、他の電気的、機械的、生物学的、または光学的機能を与えるために加えられる。これらは、例えばMEMS装置を電気機械的に動作させ、または関連する制御回路として機能させて構造内の要素を検知するために使用される。
【0019】
微小複合体全体は、ファイバーを拘束し、ファイバーからファイバーへ負荷を伝達するために適切な結束材(エポキシ、ガラス、有機バインダー等)が注入される。結束材は基質と呼ばれる。1実施例において、基質は選択したファイバー、プロセス技術、およびMEMS装置が動作する環境と化学的に適合性がある。
【0020】
MEMSは、本来的にミクロン単位の装置である。典型的な装置は、先端で最大2〜3mmで、数十または数百ミクロンオーダーの厚みを有することが必要である。サブミクロン直径まで小さな高強度のファイバーがすでに商用的に入手可能である。これらのファイバーはあらゆる望まれる様式に予め適合させることが出来、および/または100〜200μm範囲内に収まるように織布に織られる。
【発明を実施するための最良の形態】
【0021】
図1において、シリコンウェハーのような適切な基板100が、適切な基質102内に置かれたファイバー101を支持するために用いられる。一本のファイバー101がウェハー100の表面に置かれる。基質102がウェハー面上のファイバーを封入する。それは、スピンコーティング、またはMEMSおよび半導体製造に共通のプロセスと相性の良いような他のいかなる方法によっても形成することが出来る。スピンコーティングは、ウェハー表面上でファイバーを封入する膜を形成し、次に熱的に、または、光または他の放射線を用いて硬化させ、複合材の膜を形成する。
【0022】
図2において、基板200は、実質的に平行で互いに隣り合って置かれた複数のファイバー201、202、203、204および205を支持している。基質210でファイバーを封入し、単層のファイバーアレイが出来る。
【0023】
カーボン/グラファイトは、ファイバー質ベースの織布および編み紐を形成するのに現在入手可能な最も強い材料で、高い応力レベルにおいても引っ張りおよび圧縮において非常に高い耐疲労性を有する。ファイバー材料は、曲げループテストにおいて20GPaを超える引っ張り強度が観測された。さらに、ファイバーの強度はそのサイズに依存し、ファイバーの長さがサブミリメーターレベルまで減少、またはファイバーの直径が連続して10ミクロン未満に減少すると増加する。1実施例において、マイクロファイバーの長さも、2cmとサブミリメートルの間で変化する。もっと長いファイバーも使用可能である。
【0024】
長さ2cmで5GPaの平均引っ張り強度を有するグラファイトファイバーは、サブミリメートル単位の長さでは10GPaの引っ張り強度を持つことが可能で、このことは、証明テストを通じて選択することによって“保証”することが出来る。したがって、グラファイトファイバーは、確実に5%を超える破壊歪を持つように選択することが出来る。このことは、特に、長さ数cmで8GPaの強度を持つと報告された最新世代のグラファイトファイバーでは、したがってサブミリメートル寸法では15GPaに至ることが可能である。
【0025】
グラファイトファイバーは、あらゆる材料の内で最も高い欠陥許容度を持っている。積み重ねられ折りたたまれたグラフェン“シート”性状のグラファイトファイバーはファイバーの外表面上の傷から内部コアを隔絶し、ファイバーはファイバー全体を壊すことなく外側の皮を落とす。ファイバーは、また、そのサイズが減じるとその強度が増す傾向があり、カーボンファイバーでは、その最大の破壊応力(>15GPa)は4〜5μmのファイバーにおいて観測される。別の実施例において、ファイバーは複数のカーボンナノチューブから構成されることが望まれる。そのようなファイバーは、ナノチューブをマイクロメートルまたはミリメートル単位のファイバー束内に使用することを許容する。
【0026】
1実施例において、編み紐内でのファイバー強度を確保するために、長さ2〜3cmで約1.2Msi(〜8.3GPa)の強度と称している2〜5μmのTorayca T1000カーボンファイバーが使用される。1実施例において、5%を超える歪で証明テストされたカーボンファイバーのみが編み紐を作るために使用される。もちろん、他のファイバーも使用可能であるが結果は異なる。
【0027】
複数の異なったファイバー断面が図3に示されている。典型的な円形断面ファイバーが310に示されている。楕円形のファイバー断面が315に示されている。矩形のファイバー断面が320に示されている。325には、殆ど矩形であるが丸いエッジを持ったファイバー断面が示されている。溝の付いたファイバー断面が330に示され、犬の骨形の断面のファイバーが325に示されている。これら各々のファイバーが、ファイバー状の微小複合材料構造を生成するために使用される。
【0028】
基質の選択は、いくつかの実施例において、微小複合材料の所望の機械的特性を達成するために重要である。別の実施例は、基質を使用しない。1実施例において、基質は非常に多くの変形回数に耐える充分な耐性があり、複合材料内で負荷をファイバー全体に渡って信頼性高く移転させる。基質はまた、装置の外側の容器構造に強く付着し、ファイバー端部での効果的な負荷移転媒体として機能する。基質はまた、MEMS装置を作るのに用いられる技術やプロセスである蒸着、エッチング等と相性が良い。
【0029】
電気活性のポリマーを基質に使用しても良い。圧電ポリマーも基質の1部分として使用可能である。適合する電気機械特性を得るために、異なった材料の混合物を基質として使用しても良い。
【0030】
ファイバーと基質の結合を強化するため、多くの異なった方法が用いられる。例えば、基質の負荷移転特性は、異なったファイバーに適用するサイズを調整することで変更出来る。MEMSスキャナーのミラー、フレームおよび柔軟性を有する構成要素の要求は異なっており、表面処理の非常に大きな変更が有利である。
【0031】
MEMSの機械的特性を強化するように作用するファイバーに加えて、電気化学的に、機械的に、光学的に、生物学的に機能する材料も、アクチュエーターまたは検出素子として作用させるためのMEMS構造および装置に組み入れることが出来る。例えば、磁気アクチュエーターは、低電力で、高速大変位に必要な大きな力を発生させる。その作用力はMEMS構造の中に組み込むことが出来る磁気物質の量に依存する。従来は、磁気物質はMEMS装置構造の上に電気メッキされていた。織布の場合、強磁性のファイバーを直接織布の中に織り込み、作動作用を織布全体に一体化する。さらに、他の種類のファイバーを編み込みの中に入れて混種のファイバー構造を生成し、一体化したセンサー要素を持ったMEMS装置を作ることが出来る。
【0032】
MEMS構造は、図4の異なった特性を持った同方向を向いたファイバー410、415、420を積層したアレイによっても作ることが出来る。そのようなアレイは適切な基質430によって封入され剛性のある材料に変えられる。または、ファイバーを織布に織り込むことによって剛性を出す。織布基板は、ファイバーが織り合ったポイントが追加の剛性と、より良い横方向特性をもたらすため、作動中ミラーの平面を維持するのに役立つので、方向の揃ったファイバーのアレイを積層したアレイよりも有利である。MEMS内で織布を特定の要素または構造に調整することも、より簡単である。織布の織り方(平織り、あや織り、サテン織り、2重織り等)は、ミラー要素の望まれる剛性によって選択される。この複合材の中では、基質は、編み紐内では機械的安定性を保つようにも機能するが、主には小さい剪断応力および歪時の、ファイバー間の負荷移転材として機能する。所望の剛性を達成するために、広範囲の基質が使用され選択される。この織布ベースの(ファイバー性の)材料は、従来のシリコン基板に固着され、光スキャナー、および潜在的な多種類の他のMEMS構造のベースを形成する。
【0033】
ファイバー、基質、織り方、および編み紐の特性は、特定の要求を達成するために各々独立に最適化される。ファイバーの種類、並べ方/方向、織り方、およびファイバーの容積割合がマイクロ複合材の引っ張りおよび破壊強度、また弾性剛性を決める。微小複合材から形成される捩れ要素の剛性は、編み紐の特性に関連した湾曲と結びついたファイバー軸剛性に支配され、基質の割合、および編み紐内のファイバーと基質間の接着力の影響はずっと少ない。編み紐内のファイバーと織布は良く接着されている必要がある。個々の基質領域も、スキャナーのようなMEMS装置内の最適な機械的特性を達成するために、区域限定された交差結合技術を使って個々に改良される。
【0034】
この複合材料内において、基質は主にファイバー間の負荷移転材として機能する。ファイバー性材料MEMSの所望の働きを達成するために、広範囲の基質物質が選択される。この織布ベースの(ファイバー性の)材料は、従来のシリコン基板に固着され、光スキャナー、および潜在的な多くの種類の他のMEMS構造のベースを形成する。
【0035】
図5において、ファイバーの隣り合った層が、織り込まれない形で示されている。第1の層510は、1平面内に隣り合って平行に並べられたファイバーのグループからなり、また、それに隣接する第2の層515は、第1の層510に平行な1平面内に隣り合って平行に並べられたファイバーのグループからなる。1実施例において、2つの層内のファイバーは互いに実質的に直交している。2つの層のファイバーのなす実際の角度は、必要に応じて直角から平行まで大きく変えることが出来る。また、各層には、同様に並べられたファイバー、または、さまざまな織り方のように異なった風に並べられたファイバーを追加することが出来る。
【0036】
ミラーおよびフレームに対して必要な機械特性を得るために、さまざまな織り方および紐の編み方が可能である。図6に示すような平織りは、最も高い織り重ね密度という優位性を持ち、ミラー要素およびフレームに対する剛直な材料を生じる。図6において、織られた織布そのものは、600に見られるように数ミクロンからサブミクロンのファイバーから作られる微小複合材である。ファイバーの大多数は、織布の合成と強度を制御するために選択され(実線610で示される)、一方、ファイバーの小数部分のようないくつかのファイバー(点線615で示される)は、作動用のソレノイドと組になる強磁性体(すなわち、ニッケルまたはパーマロイ)である。トーションバーもファイバー編み紐で作られ、織物の中に組み込まれる。
【0037】
サテン織りは、最も低い織り重ね密度を有するが、織布内により多くファイバーや織り糸を許容出来、最終の複合材としては内蔵ファイバーを増すことが出来る。綾織りの折り重ね密度は、上記2つの中間で、綾織りの種類に依存する。異なった織り方が、比較的単純な作り方およびプロセスで最適な剛性を得る織り方を決定するためにテストされる。
【0038】
そのようなファイバー状の材料を使った本発明のMEMS装置の1実施例は、図7の700に示すような単純振動の複数ファイバーカンチレバーである。この実施例において、複数のファイバー715を封入している基質710が、基板720に取り付けられている。ファイバー715および基質710の一部が、730に示すように基板720を越えて延びている。延伸部の長さとファイバーおよび基質の特性がカンチレバー700の振動特性を決める。基質の上にアルミニウムまたは金のような他の層が追加されても良い。
【0039】
そのようなファイバー状の材料を使った本発明のMEMS装置の1つの実施例は、図8の800に示すような単純振動の単一ファイバーカンチレバーである。この実施例において、一本のファイバー815を封入している基質810が、基板820に取り付けられている。ファイバー815および基質810の一部が、830に示すように基板820を越えて延びている。延伸部の長さとファイバーおよび基質の特性がカンチレバー800の振動特性を決める。他の実施例において、別の層840が、少なくとも基板820に対応する形状内で基質の上に形成される。そのような別の材料は、1実施例においては金またはアルミニウムを含み、糊付けで結合されるか、または半導体製造プロセス技術で知られている多くの異なった方法で形成される。
【0040】
図9における複数ファイバーのカンチレバー900を有するMEMS装置の例において、数本のファイバーが基質915内に封入される。基質915は、基板920に結合する。940に示されるように、ファイバーと基質は基板920のエッジから延びている。ファイバー910および基質915は、所望の特性を得るために、必要に応じてカットされ、または刈り込まれる。
【0041】
図9のカンチレバーMEMS構造を作る方法の1例が、図10Aから10Lに示されている。1実施例において、束の中から1本ずつグラファイトファイバーが抜き取られ、図10Aにおけるファイバーアレイ1001を形成するために、シリコンウェハー1003の酸化層1002上に隣りあわせで並べられる。ファイバーアレイの端は、基板と、および互いに、整えられた状態を保つために糊付けされる。一方向に並べられたファイバーのアレイを有するウェハーは、ファイバーアレイ1001を封入するために、基板ウェハー1003上に液体基質をスピンコーティングすることによって、ポリイミドなどの適切な基質1004で塗布される。所望の厚さの基質が基板上に達成されて、ファイバーが封入されると、基質が炉内において350−400℃で固化される。
【0042】
次に、基板ウェハーの裏面1010(すなわち、ポリイミド内に封入されたファイバーが無い面)は、図10Bに示すように、溝エッチング用にマスクが施される。マスクは、例えばUV光によって選択的に露光され、CMOSプロセスで一般的なウェットエッチング薬品を使ってエッチングされる。特には、図10Cに見られるように、酸化層を取り除くためにHFが使用される。図10Dにおいて、基板の前面にあるポリイミドを保護するために、タングステン1015が約1000オングストローム、全面に堆積される。図10Eに見られるように、KOHを使って、その上をカンチレバーチップが自由に振動出来るような溝1020を生成する。次に、図10Fにおいて、タングステン1015が例えばHFを使って取り除かれる。
【0043】
図10Gにおいて、カンチレバーをパターニングするために、第2のマスク1023が使用される。アルミニウム1024の覆いがウェハー上に付けられ、カンチレバー以外の領域が剥がされる。するとポリイミド封入のファイバーを含んだウェハーが露出し、ポリマーおよび酸化層を取り除くために、セルフアラインのマスクとしてアルミニウムを使って図10Iに示すようにCF/Oプラズマ内でエッチングする。このプロセスは、図10Jおよび図10Kの横および上面図に各々示すように、基板ウェハーに掘られた溝のエッジからカンチレバー(片持ち梁)として突き出る、ポリイミドで封入されたファイバーの矩形のビーム(梁)を作り上げる。それ以外のポリイミド膜1035は、ウェハー上にかかる。
【0044】
図11、12、13に示すように、いくつかの異なった編み紐構造もファイバーから作ることが出来る。編みのパターンは、そのようなパターンを良く図解するために、編み紐に沿った単線で示している。編み紐の端面は、編み紐に使用されるファーバーの断面を示している。中実の編み紐1100は、中実構造で編みこまれた複数のファイバーを含む。各々のファイバーは糸巻きの上に巻きつけられ、編み紐を作る工程は、通常のファイバーの紐編みに使用されるのと非常によく似ている。中空編み紐1200は、中空のコアを持って編まれるリング状のファイバーを含む。中央に置かれる糸巻きは無く、構造の中央にファイバーが無い、隣り合ったファイバーのリングが出来る。最後に、紐編み工程が生じている間に編み紐の張力を調整することによって、低角度の編み紐1300が形成される。
【0045】
本発明のファイバー状の材料を使った他のMEMS装置の例は、図14の1400に示すような光機械式ねじりスキャナーである。スキャナー1400は、同軸で対向する1組の内部ねじり要素1420および1425によって内部フレーム1415と結合しているミラー1410を有する。内部フレーム1415は、今度は、内部ねじり要素と直交する同軸で対向する1組の外部ねじり要素1435および1440によって外部フレーム1430と繋がっている。1実施例において、2組のねじり要素は同一平面上にある。このフレームとねじり要素の配置によって、ねじり要素の両軸の周りにミラー1410を回転させることが出来る。
【0046】
1実施例において、内部および外部のフレーム1415および1430は、マイクロファイバーの2軸アレイを用いて形成され、ねじり要素は編み紐ファイバーを用いて形成され、また、中央のミラー1410は図6に示されるような織られたファイバーシートによって作られる。ねじり編み紐は中空で、色々な実施例における他の目的のためにそのコアにファイバーを有しても良い。編み紐は多くの異なった機構の一つによってフレームに結合される。1実施例において、それらはフレームと組み合わせられる。構造内のファイバー間の編み合わせの場所は、機械的安定性をもたらす。別の実施例において、ねじり要素は1本のファイバーでも良いし複数のファイバーでも良い、また、基質があってもなくても良い。
【0047】
スキャナー1400は、ぐらつくフレームの構造をしており、中央のミラーは任意の対称形の板材で、矩形のフレームからの対向する2つの端でねじり要素によって吊るされている。ミラーは、色々変わる実施例において、アルミニウム、クロム、銅、銀または金でコーティングされる。別の実施例において、ミラーは薄くて反射する金属膜、または研磨されたシリコン、反射する金属薄膜(金、チタン等)またはダイクロイックの膜のような他の反射材料から形成される。次に、フレームも対向する側にあるねじり要素によって基板から吊るされているが、これらの要素はミラー要素を吊るしている要素と直交するが同じ平面内にある。ねじり要素の、その軸に沿った傾き変形によって、直交する同一平面内の2つの軸の周りに中央ミラーの対応した回転を生じる。
【0048】
1実施例において、カーボン/グラファイトファイバーの微小編み紐が、ねじり要素として機能する。シリコンや関連する材質に基づくMEMSスキャナーと違って、このねじり要素はグラファイトファイバーの編み紐、またはグラファイトファイバーを2重コイルにして捩れ構造にしたものを用いる。そのような構造は、ねじり要素内の応力を、剪断力から個々のファイバーに沿った引っ張りまたは圧縮力に変換する。そのようなファイバーは、典型的には強さの点で、剪断応力と比べて引っ張りまたは圧縮応力の下では何等級も強いので、このねじり要素は、今日使用されているいかなる均質材料よりも非常に強く、軽く、また、適合可能な剛性を有する。さらに、ねじり要素の特性は、編み紐の寸法、編みの角度、編み紐の製造に用いられるファイバーの種類を通して適合可能である。この強度、剛性、および密度の強化および適合可能性は、MEMSスキャナー装置が多くの回数、破損することなく、非常に高い共振周波数でもっと大きな角度変化を起こすことが出来るという結果につながる。この結果、スキャナーを特定の走査または光スイッチ応用に適するように適合させ、または設定することが出来る。
【0049】
マイクロ編み紐をねじり要素として使用するのに加えて、スキャナー装置の残りの部材、すなわちフレーム1415および1430も、並べたアレイまたは織布として、ファイバーを並べたもので構成することが出来る。1実施例において、織布の折り重ね部分が剥がれを困難にするので、織布ベースのものが、ランダムまたは整列させたアレイに対抗する物として使用され、機械的特性を良くする。さらに、マイクロ編み紐を織布に織ることが出来、装置の構築、製造を容易にする。
【0050】
特定のMEMS構造において、ファイバーと編み紐の整列も織布を用いることでより容易である。ねじり要素におけるマイクロ編み紐に加えて、織られた織布は、例えば高い共振周波数から生じる慣性力によって非常に大きな変形を受ける中央ミラープレートおよび周囲のフレーム要素のような、装置内の構造体の機械的特性を強化するのに役立つ。中央ミラー要素の変形は、不調和な光走査につながり、ミラー要素に加えてのフレーム要素の変形は、MEMSスキャナーを所望の作動モード以外で振動させてしまう原因となる。織布ベースの構造は、動的作動中における慣性効果による変形を最小化させるようにこれらの要素を堅くし、一方、これらの構造物の質量を最小限に保つ。単に織り方、ファイバー種類、織布内の基質の量と種類を変えさえすれば、異なった構造の異なった特性を有する装置が出来る。
【0051】
上記の特性の下で、編み紐内の個々の捩れたファイバーを作っている一本の細径ファイバーは、その直径の10倍の半径まで一様に曲げることが可能である。ここで、ファイバー壁の引っ張り応力のレベルは、曲げ曲率に反比例する。ねじり要素の製造時には、初期のファイバー構造はその部分曲率が最小可能半径の数倍の曲率を持ち、したがって、まげ応力はその破壊閾値よりもはるかに低い。これによって、現行のMEMS材料を、用いて可能である性能に比べて(数倍)優れたねじれ性能を有する動きを生じる捩れ変形(ひねり動作)を使用する動的/可動なMEMS装置を創成することが出来る。
【0052】
1実施例において、ねじり要素は数十本のみのファイバーからなる一本だけの編み紐である。他の実施例においては、複数層の編み紐が使用される。
【0053】
管状編み紐のねじり強度および剛性は、コイル角度(すなわち、編み紐を形成するために個々のコイルが周囲に巻かれる角度)、および折り目角度(すなわち、ファイバーが交差する地点で作られる角度)に依存する。さらに、編み紐を作っているファイバーの数および直径、ファイバーによって作られる交差地点の数、個々のコイル間の空隙、編み紐の直径と長さ、編み紐内の封入材の量と種類のような他の要素が引っ張り強度および剛性に影響を与える。
【0054】
低コイル角で巻いた細径(2−6μm)ファイバーを、ファイバーの交差地点を少なく、また、適度なコイル間の空隙を持たせて作った大きな直径(100μm)の編み紐は、ファイバーが初期的にその可能限界の数分の1の応力がかかった、すなわちファイバー直径の約4−5倍の曲げ曲率の編み紐になる。例えば、直径5μmのファイバーをコイル角度(α)45度で巻いて作られた直径(R)100μmの編み紐の、歪の無い編み紐内のファイバーの曲率は、以下で与えられる。
【0055】

他の実施例において、ファイバーは広げた扇状に(たわみ範囲を越えて)広げることで固定され、その後、ミラーやフレーム構造に埋め込まれる。この領域で編み紐を広げることによって、実質的に扇内のファイバーの数に等しい係数分だけ固定が強化される。この解決法は装置の製造を複雑化するが、最も少ない要素数で達成することが出来る。
【0056】
図6におけるスキャナー1400のファイバーの大多数(実線610で示す)は織布の剛性と強度を制御するために選択され、一方ファイバーの少数部分(点線615で示す)のようないくつかは、駆動または検出機能のために電気機械的な機能を有する。例えば、それらは強磁性体のニッケルまたはパーマロイであり、ソレノイドと組になって全体の要素を磁気的な相互作用で動作させる。各々のスキャナー1400に対して、編み物部材はトーションバーとして機能する一本の小径グラファイトファイバー編み紐620を含んでいる。
【0057】
スキャナー装置を振動させるために磁気駆動が用いられる実施例において、構造内に取り入れられるパーマロイファイバーの密度は、直接ソレノイドアクチュエーターの強さに結びついている。駆動の強さは、MEMS構造の中に組み込むことが出来る磁気材料の全体量に依存する。従来は、これらはMEMS構造の上に電気メッキされていた。織布の場合には、同方向を向いた構造のファイバーに組み入れられるか、または直接織布の中に織られ、駆動作用を直接織布またはファイバーアレイ全体の中に一体化する。さらに、他の種類のファイバー615がMEMS要素のなかに組み込まれ、いくつかのファイバーが一体化したセンサー要素として作用するハイブリッドの織布構造を作り出す。光スイッチ応用では、検出機能は特に重大である。例えば、ねじり編み紐620が、図15に示すように圧電コア1510で作られるか、または編み紐内に圧電特性を持った1本以上のファイバーを組み込むことで作られる。編み紐620は、そこで、ミラーの角度変化を能動的に検出するために使用される。
【0058】
上述のねじりスキャナーを製造する方法は、半導体製造、現状のMEMSプロセス、および上述した同様の方法を使用する。
【0059】
上述の織布MEMS装置およびスキャナーの1製造方法は、酸化シリコンウェハーの表面上にファイバーアレイまたは織布を並べ、適切な基質材料で封入することを含む。基質材料は、スキャナー装置の異なる部分にさまざまな程度の剛性を与えるためにある領域が選択的に硬化させられる。例えば、ミラーおよびねじり要素の剛性を強化するようにそれらを構成する構造材を選択的に硬化するため、レーザーエネルギーが使用される。
【0060】
基板を部分的に硬化させることによって、剛性と強度を適正化することが出来る。スキャナーにおいて、走査中の動的な変形を避けるためにミラー要素は極度に剛体である必要がある。しかし、ねじれビームは高周波数作動に充分なだけの剛性があればよく、それ以上の剛性は必要な電力を増大させる。この異なった要求を解決するために、基板はスキャナーの異なった部分が選択的に硬化される。1実施例において、ミラー要素および支持構造材を選択的に硬化するために、1064nmのNd:YAGパルスレーザーおよび308nmのXeClエキシマパルスレーザーの両方が使用される。ねじり要素に対しては、硬化は調整される。パルスレーザー(30ns)は、照射領域のみに熱的影響を与え、この時間域内では熱の拡散は殆ど純粋に1次関数的である。100mJ/cmの流束量は、1領域当り5−10パルスで充分である。これらの条件の下で、従来のエキシマレーザー(50W)は、1分以内にウェル内の200mmのウェハー領域を処理することが出来る。このように、ミラー要素が非常に高い剛性(係数>150GPa)を持ち、一方、大きな剪断変形が出来るほど弾性のある、しかし高周波共振に対して充分剛直なトーションバーを有するスキャナー装置が作られる。
【0061】
1実施例において、織布内のねじり要素編み紐は、それらがリソグラフィ的に決められた範囲内に確実に全部収まるように精密に並べられる。ねじりビームは欠陥無しに保たれ、編み紐の外面要素はいかなる引っかき傷をも回避、または少なくとも最小化することが重要である。1実施例において、図16に示すように、シリコン基板に整列スロットの事前エッチングが施される。より分厚く編まれた撚り糸(ねじりビームを形成する)が他の細径ファイバーから分離され、スロットの中に捕捉される。こうして方向決めされたファイバー、または織布を基板に並べる。
【0062】
カーボンファイバーは、従来のMEMSおよびICプロセスで使用される酸素または他のプラズマ内で、良くエッチングされる。基質および使用されるファイバーも、CF/H/OまたはClおよびアルゴンのような同様のプラズマ内でエッチングされる。シリコンウェハーの要素は、標準のウェットエッチング薬品を用いてエッチングされる。
【0063】
1軸のスキャナーも、2軸スキャナーと同じ方法でねじり編み紐および織布ミラー要素を組み込んで作られる。
【0064】
現存のMEMS材料の課題は、グラファイトファイバー、ガラス、金属合金、セラミック等のような本来的に異方性の材料を使用することによって乗り越えることができる。ファイバーは、MEMS構造の機械的骨格として用いられた時には、その並べ方、数、材料の種類を変えることによって、所望の特性を与えるように適合させることが出来る。さらに、それらは今日存在する最も融通性のある、また破損許容度のある材料のいくつかである。
【0065】
半導体プロセスから導き出される、シリコンまたは他の従来のMEMS材料の代わりに、ファイバー/糸および織布材料がMEMSの構造要素を形成するために使用される。すなわち、単一、または特定的に同一方向に並べられた複数のファイバーが個々のMEMS構造材を作り上げ、それらは基板上に予めパターニングされた微小構造に、それらを基板上に結合、または互いを結合する基質を含み、または含まずに、加えられ、または適切に結合される。
【0066】
1実施例において、MEMS構造は、ファイバーをカンチレバー、ねじりバネ、板、膜等の形に並べることによって形成することが出来る。一本のファイバーは、カンチレバー、微小ブリッジ、張力糸またはトーションバーを形成することが出来、または、これらの構造は、複数のファイバーを並べてそれらが一体としてそのような構造を形成するようにそれらを結合することによって作ることが出来る。並べられたファイバー層も、所望の特性を備えたMEMS構造を作り上げるために使用される。
【0067】
ファイバーを使用して創成することが出来る最も簡単な構造は、適切な取り付け方法で1端が基板に取り付けられ、他端が、ファイバーの材料特性、長さ、および断面の慣性モーメントによって決まる周波数で振動する自由端である、単一ファイバーカンチレバーである。さらに、例えば反射光を1方向または両方向に走査する鏡面のような質量をファイバー先端に取り付けることが出来る。
【0068】
他の実施例において、同一平面内に並べられた複数のファイバーが、その先端および根元で結合され、先端が振動のために自由端で、根元が把持されているカンチレバー構造を作るために使用される。そのような構造は、バルブ、ポンプ等として使用されるか、または走査ミラーを形成するために反射要素と一体化されるか、またはセンサーとして使用するために生物化学的、光学的、電気的、圧電的な要素と一体化される。
【0069】
さらに他の実施例において、方向の揃ったファイバーが基板上の予めパターニングされた構造の内部または上に配置され、置かれて、所望のMEMS装置/構造を形成するために、構造要素として特定の方向を向いたファイバー、糸およびファイバー状材料のみで構成されるか、または他のMEMS構造と結合される。
【0070】
同様に、微小ブリッジ構造、ダイヤフラム等を、基板上に複数のファイバーまたはファイバー層を並べることによって作ることができる。その構造は、一本のファイバー、同一方向を向いた複数のファイバー、またはファイバーの層を含む。ファイバーは、従来のMEMS材料で作った現状のMEMS構造の強化材として使用することも出来る。これには、シリコンおよび関連するMEMS材料からカンチレバーのようなMEMS構造を創成するために基板を予めパターニングすること、および必要な機械的特性を添付するために同一方向を向いたファイバーまたはファイバーアレイを構造材の上に適用することを含む。
【0071】
カーボンおよびグラファイトファイバーは、現在入手可能な最も強い材料であり、極度に化学物質に耐性があり、高応力レベル下で引っ張りおよび圧縮において極度に耐疲労性がある。これらの材料の曲げにおいて、歪5%を超える非常に大きな弾性変形と20GPaに達する応力を示し、kHzオーダーの周波数で1010を超える寿命を示したことがある。
【0072】
グラファイトファイバーは、現存するあらゆる材料の中で、最大の欠陥許容性を示す。グラファイトファイバーの積載された/折りたたまれたグラフェンシートの性質は、ファイバーの外部表面の欠陥から内部コアを絶縁し、ファイバーはファイバー全体を壊すことなく外部の被覆を剥ぎ落とす。ファイバーは、直径が小さいほど、また長さが短いほど強度が増す傾向がある。さらに他の実施例において、ファイバーは、複数のカーボンナノチューブを含むか、またはそれで代替することが望まれる。
【0073】
図6に示すような複数の異なった断面およびファイバーを使用することが出来る。MEMS構造を形成するファイバーに加えて、他の、電気化学的、生物学的、光学的、磁気的、機械的に機能するファイバーが所望のMEMS構造を形成するために一緒にされ、組み合わされる。
【0074】
所望の適合した特性を持ったMEMS構造を形成するために、種々の種類の材料の複数のファイバーを組み合わしても良い。
【0075】
そのようなファイバー状の材料を使ったMEMS装置の1例は、図19Aおよび19Bに示すような単純振動の複数ファイバーカンチレバーである。この実施例において、ファイバーは、ファイバーを封入し、かつ基板に固着する結束材またはエポキシのような適切な方法で基板に結合される。結束材のいくつかの例は、エポキシ、SUS,フォトレジスト、ポリイミド、および他の結束材である。ファイバーは、自由端カンチレバーを形成するために基板を越えて延伸している。ファイバーの先端も、ファイバーが一体として振動するように結束材を用いて結合される。作動性を備えるため、またはファイバー間の結合を強めるため、または例えば金属の反射層がカンチレバーの先端に取り付けられて振動および光の走査束を生成することが出来るなどの、MEMS装置の機能素子を形成するために、さらなる層を先端、基礎部、またはファイバーの長さ方向に沿った他の地点に加えても良い。
【0076】
本発明のそのようなファイバー状の材料を用いたMEMS装置の1例は、図18に示した単純振動の単一ファイバーカンチレバーである。この実施例において、ファイバーは適切な方法で基板に取り付けられる。ファイバーは基板を越えて延びて自由端になっており、その長さ、材料特性、慣性モーメント、先端質量、大きさ、掛けられる力の方向と位置等によって指定される行動に従って振動する。
【0077】
他の例は、機械的特性を拡大するために、予め決められた現行のMEMS構造に方向の揃ったファイバーを追加することである。ファイバーは、そのような構造に単純に糊付けまたは半導体プロセス技術で知られた方法を用いて結合される。
【0078】
図19Aおよび19BのカンチレバーMEMS構造を製造する方法の例を図24A−24Jに示す。1実施例において、一本一本のグラファイトファイバーが束から抜き取られ、パターニングされた窒化物で被覆されたシリコンウェハー(図24A、24B、および24C)の表面に隣り合って配置され、図24Gおよび24Hにあるファイバーアレイを形成する。ウェハーは、背面に溝を有し、それを横切って窒化シリコンの膜/棚が形成されており、図24D,24E,および24Fに示すようにアルミニウムのような適切な反射材でコーティングされている。ファイバーの端部は、伸ばされて基板との整列および互いの整列を保つようにその場所に支持される。次に、図24D、E,およびFに示すように、カンチレバー構造が形成される領域では先端と基礎部を除きファイバーに塗らないように、基板上の色々な地点で適切な結束材をファイバーに塗布する、すなわち、ファイバーは、ウェハー内の予めパターニングされた溝の2つの相対する端部で同時に基板上に接着され、1端は基礎部を形成し、反射性のコーティングをされた窒化シリコンの突き出し棚に結合した他方はカンチレバー先端を形成する。YAGレーザーを使ってカンチレバーの端がカットされ、カンチレバー先端が基板から自由になる。これは、図24I、24Jに示すようにレーザーエネルギーをファイバー、およびそれが取り付けられている窒化物の隔壁/飛び出し棚を切断することに使用することを含んでいる。反射コーティングは最終のカンチレバーの自由端に残る。
【0079】
ファイバーMEMS構造は、種々の方法で作動させることが出来る。カンチレバーおよびねじり構造は、磁気的、静電気的または従来のMEMS技術で使用される作動方法の組み合わせを用いて、必要な大きな力または変形を発生する先端から駆動される。あるいは、基質材料または電気駆動の/電気機械的なファイバーおよび他の構造がさまざまな箇所でグラファイトファイバーの骨組と結合して必要な作用または動きを作り出す。1実施例において、ファイバーMEMS構造における大きな先端変位および力を、構造をその基礎部における共振状態に駆動することによって発生させる。磁気的、圧電的、静電気的、電気熱的、電気歪的、またはそのような作動機構の組み合わせが、基板に固定されているファイバーMEMS構造の基礎部を励起するために使用される。そのような振動のエネルギーはこれらの構造の自由端に連結されて、増幅され、先端での大きな振幅および力を生じる。
【0080】
図20は、ファイバーがその長さに沿ったいかなる位置でも互いに、また共通の基板と結合しても良いことを示している。この実施例において、ファイバーアレイ2010は、基板の所望の位置で、基板2025に対する結合材2020の中に埋め込まれる。結合材2020は、エポキシ、金属、合金、SiO、または所望の応用にとって基板に対する充分な結合をもたらす他の結合材である。1実施例において、ファイバーアレイは、エポキシのような結合材で互いに結合され、また、第2の端で適切な結合材で基板に結合される。
【0081】
図21は、平行に互いに隣りあわせで整列する複数のファイバー2110を用い、基板2115に結合されたMEMSカンチレバー構造の配置を示す。
【0082】
図22は、シリコンカンチレバー上のファイバーの強化を示す。ファイバーアレイ2210が、直接シリコンカンチレバー2215に結合される。ファイバー2210は、シリコンカンチレバーの曲がりや周波数特性を所望の様に変えるために使用される。ファイバーの本数および並べ方は、選択された応用に向けてのそのような特性改良の良い手段をもたらす。1実施例において、カンチレバーは基板2220に結合される。ファイバー2210は、所望の特性を得るために、カンチレバーのみに結合されるか、またはカンチレバーと基板に結合される。
【0083】
図23A、23B、23C,23D,および23Eは、ファイバーの形成される種々の断面を示す。断面は、円形、長円形、矩形などの単純な幾何学形状から図23Cの星形のような複雑な多角形までいろいろある。断面は、剛性を強化するか、または、ある寸法を薄くすることによって所望の方向に更なる柔軟性を与えるような構造的特性をもたらすように設計される。例えば、図23Bおよび23Eの形状は、厚手方向の軸に沿った左右の動きを妨げるが、薄手方向の軸に沿っては、薄い断面に応じたより大きな動きを許容する。
【0084】
光学スキャナーの種々の具体例を形成する中でのファイバーの使用について述べる。光学スキャナーの構成を図25Aおよび25Bに示す。カーボンファイバーアレイ2510を支持するために、シリコン基板のような基板2505が使用される。1実施例において、基板面上に、実質的に隣り合って、また任意で実質的に平行に並べられた直径10.5μmのファイバーがある。このスキャナー装置の構造的な骨格は、ファイバーアレイから成っている。ファイバーは、グラファイトファイバーで、シリコン基板上にその長さに沿って並べられる。
【0085】
図26において、ファイバーの両端は、1端2615が基板2505に固定され(固定端)、他端は、基板2620(自由端)上に予めパターニングされた光反射要素2625に固定されるように、光パターナブルなエポキシ2615及び2622中に封入され、固定端と自由端の間のある長さのファイバーは露出され、基板に固定されない。両端は、電着材料の使用を含む多くの方法で基板に固定される。
【0086】
導電物質の薄い層でコーティングされたウェハー上の固定点に開口を規定するために、通常のフォトレジストが使用される。ウェハーに電圧を印加し、それを電解槽に入れると金属が基板上に凝結し、ファイバーを取り囲んで基板に固着する。次に、フォトレジストを取り除くと、選択的に固定されたファイバーが電着した金属に取り囲まれてウェハー表面に残る。物理蒸着、SiO、Al,Cuなどの化学蒸着、またはスピンオングラスの利用を含む、ファイバーを基板またはフレームに取り付ける他の方法も使用される。
【0087】
図27Aおよび27Bに示すように、封入されて光反射要素に取り付けられたファイバーの端の下から、固定されずに露出したファイバーアレイが、基板にアレイが固定されている位置までずっと基板物質を取り除くことによってカンチレバービームが形成される。
【0088】
図28に示すように、機械的な刺激を基板、または直接カンチレバーに与えることによって、カンチレバー構造に振動が生じ、基板から延びている封入されていないファイバーに折れや曲がりを生じさせ、封入され光反射要素に取り付けられているファイバーを含むカンチレバー自由端に変位を起こさせる。図28に示すように、カンチレバー構造を構成するある長さのファイバーは、封入されないままにおかれ、カンチレバーの固定端と自由端の間のヒンジ構造のようなバネを形成する。そのようなカンチレバー構造は、グラファイトファイバーの本来的な優れた微小機械としての振る舞いを開拓し、それは本質的に硬く、曲がりまたはたわみ変形に遭ったときに高い曲げ強さを持ち、疲労しない。
【0089】
図29に示すように、製造工程において、一枚のシリコンウェハー上に平行して複数のカンチレバー構造を形成することが出来、各々は分離して他から独立している。
【0090】
図30に示すように、その共振周波数に合った周波数でファイバーアレイカンチレバーを機械的に刺激することによって、カンチレバー先端に非常に大きな変位が達成される。さらに、この光反射振動カンチレバーを光路3005の中に置くことによって、カンチレバー先端に配置したミラー表面2625から反射する光が、振動するファイバーアレイカンチレバー構造から少しはなれた場所にある面を横切って往復走査することが出来る。カンチレバーが休んでいるときは、光は3010のように反射する。振動時には、最初の上位置3015において光は実質的に異なった角度3020で反射する。下位置3025においては、ミラーは入力光路の外になり、光は反射しない。入力光の位置、およびカンチレバーすなわちミラーの変位量は、所望の表面を走査するために好きなように変えられる。
【0091】
そのような構造はいかなる周波数ででも作動可能であるが、いくつかの実施例においては共振周波数での作動が望ましく、なぜならば、共振周波数では変位および、したがって走査角度/走査長が最大になり、大きな振動を維持するのに必要なエネルギー(したがって電力)がシステム内で最小になるからである。
【0092】
カンチレバースキャナーの共振周波数は、基板からは自由で反射要素に取り付けられているファイバーアレイの長さを変える、すなわち図31A、31B、31C、および31Dに示すようにカンチレバーの長さを変えることによって制御可能である。長いファイバーアレイのカンチレバーは、より遅い共振周波数を持つ。ファイバーをミラーに付けるために使用する“糊”の量を変えることでも共振で振動するスキャナーの振動数を制御できる。図32A、32Bおよび32Cに見るように、ファイバー先端を反射要素に取り付けるために使用する光パターナブルなエポキシの厚みを変えることで、カンチレバースキャナーの速度を低下させるために更なる質量が加えられる。図32Aは、正常の封入材の量で封入された先端を示す。図32Bは、より厚めの封入材、図32Cは、より広い量の封入材を有するファイバー先端を示す。両方の封入は先端の質量を増し、カンチレバーの振動のより遅い共振周波数に繋がる。
【0093】
あるいは、カンチレバー共振速度に影響を与えるために、光反射要素の厚み、表面積、または両方を変えることによってファイバーアレイ先端に付ける光反射要素の質量を変えることもできる。
【0094】
極端に硬くはあるが、グラファイトファイバーは非常に大きな弾性変位が可能である(最大、曲げにおいて歪が5%に達する)。スキャナーの機械的変位は、ファイバーが露出して封入されていないカンチレバー構造の部分の長さを変えても制御できるし、カンチレバースキャナーの全体の長さを変えても制御できる。
【0095】
図33に示すように、スキャナー装置は、カンチレバー構造を固定しているシリコン基板2505を圧電曲げ素子3315の先端3310に取り付けることで振動するように作ることが出来る。圧電素子に電圧が掛けられ、素子を、ファイバーベースのMEMSカンチレバー構造の共振周波数に適するように調整された周波数で曲げ/振動させる。圧電素子(バイモルフ)内の動きは、ファイバーカンチレバーを固定しているシリコン基板、すなわち、カンチレバーの基礎部すなわち固定端の動きを引き起こし、それがカンチレバーの自由端すなわち先端で増幅される。圧電曲げ素子3315は、必要ならば把持具または結束具3320で他の構造材に把持され、本質的に第2のカンチレバー、またはスキャナー装置のカンチレバーに直角方向に動く(回転、ねじれ、曲がり)ことの出来る他の結合構造を形成する。スキャナー装置の振動が図34に示されており、曲げ要素3315によって起こされた基板の動きが結果としてカンチレバーおよびミラーの動きになる。更なる実施例において、第2のカンチレバーはニッケルまたは他の強磁性体材料で作られ、電磁気的に駆動される。
【0096】
図35に示すように、カンチレバーを形成するのに異なった本数のファイバーが使用される。カンチレバーMEMS光スキャナーの構造的骨格を形成するファイバーアレイを構成するために、一本のファイバー3510および任意の数のファイバーが使用可能である。2本ファイバーが3515に、4本ファイバーカンチレバーが3520に示されている。アレイ内の個々のファイバーの直径は、約10μmから100μmの範囲である。もっと細い直径も使用可能である。それらもグラファイト以外の材料から成っていても良いし、標準の円筒形以外の図36に示すような形状でも良く、図には星形、八角形、平らな矩形、長円、四角形、犬の骨形が例として描かれている。
【0097】
更なる実施例において、カンチレバーは、ファイバーを定位置に保持するために最小限の糊を使ったファイバーで形成されるか、または、図37A、37B、および37Cの3705に示すように、より複雑な複合体として、ファイバーが最初に強く基質と結合してファイバー−基質複合材カンチレバーが形成される。これは程度がポイントで、基質とファイバー間で負荷移転がない(最低限の糊を使った自由ファイバー)状態から、作動中最大限の移転がある(剛直な複合材)の状態までの範囲を取る。
【0098】
図38A、38Bに示すように、カンチレバーは、2次元内の変位をもたらすように直角な軸3805および3810を持った状態で作ることが出来る。カンチレバーに直角に動くように設計された、図39に示した2次的な構造は、ファイバーアレイカンチレバーを取り囲み、カンチレバーが取り付けられる方形のフレームから成り、カンチレバー構造内でファイバー3915および3920が2つの相対する対角の端にファイバー3935に平行に置かれる。図40に示すように、フレーム構造体4010の対角対向端のファイバーは、光パターナブルなエポキシでフレーム4010に取り付けられ、同時に逆方向に曲がるカンチレバーヒンジ/バネとして作用し、外部の機械的刺激によってスキャナーの動きと直角に傾くフレームの動きを引き起こす。
【0099】
2次元走査は、ファイバー材料MEMSミラー構造を、ミラー振動面と直角方向に振動するか、またはその方向には共振振動を与えない他の基礎/構造に取り付けることによって得られる。これには、ロッド、面、ガルバノメトリックコイル等を含む。第2の方向の動きの周波数は、直線上を走査する主ミラーの周波数よりはずっと遅い。
【0100】
動き(駆動)もスキャナーおよび2次的な支持構造に一体化することが出来る。これには、図41に示すように、圧電性または強磁性体のファイバー4110をファイバー(4115)アレイに組み込み、カンチレバーMEMSスキャナー装置を構成することを含む。圧電素子4110は、ファイバーアレイに取り付けられた電極4210に電圧を印加することで曲げることが出来、スキャナーおよび支持構造内で全体的な変位を生ぜしめる。図43に示すように、磁気ファイバーは、カンチレバー構造の下部にある電磁石4310を介してスキャナーの共振周波数でパルス磁場を発生させて振動させることによって曲げられ、ファイバーアレイカンチレバー、および、したがってスキャナーに全体的な変位を発生する。
【0101】
あるいは、スキャナーおよび/または支持構造の一部である、電気メッキされた導電コイルのような導電コイルが作成される。図44に示すように、スキャナー装置を磁石4420によって供給されるような一定磁場内に置くことによって、当業者には知られたローレンツ力の作用を利用して、コイル内の電流を変化させることでスキャナーおよび/または支持構造に振動を起こさせることが出来る。図45に示すように、MEMS技術で知られた静電気駆動も、金属電極4510とカンチレバー間の電荷差を発生させることによってカンチレバーおよび/または支持構造を構成するグラファイトファイバーに変位を起こすために使用される。これらの駆動方法は、カンチレバーおよび/または支持構造部材の、その各々の走査弧に沿った位置を正確に確かめるため検知する目的にも使用される。
【0102】
製造工程の概略
グラファイトファイバーベースのカンチレバーMEMS光スキャナーは、半導体およびMEMS製造に用いられるような旧来のプロセス −フォトリソグラフィー、ウェット/ドライエッチング、薄膜蒸着等− を使って作られる。シリコンウェハー上のパターニングされた要素の上にファイバー材料を置く、整列させる、固定するために更なる方法が用いられる。
【0103】
1実施例において、ファイバーMEMS光スキャナーの製造は、シリコン基板4600の上で行われる。図46A、46Bに示すように、基板はSiで被覆されたシリコンウェハー4605から成り、1面が100−300nmのSi膜4610を形成するように選択的にエッチングされている。図47A、47Bに示されるように、膜は選択的に100nm厚のアルミニウム膜で覆われ、Si膜のエッジから0.5mmの所に幅50μm、長さ275μmのアルミニウムの矩形体4710を生成する。アルミニウム膜の表面は、Siで生成された平滑な面上に形成されるので滑らかである。後の工程でSiが取り除かれた時は、滑らかな露出したアルミニウムの面が残り、良好なミラーを形成する。更なる実施例において、ミラーは、薄い反射性金属箔またはダイクロイックで作られる。
【0104】
次に、50−100μmのSiの層4810が蒸着、またはウェハー全体を覆うように形成され、図48に示すように、アルミニウム矩形体4710が2層のSiによって膜内に挟み込まれる。アルミニウムの矩形体4710は、Si膜内の膜であり、カンチレバーMEMS光スキャナー構造を形成するためにファイバーが取り付けられる光反射要素を形成する。このパターニングされた基板の上に、SU8光パターナブルエポキシの層がスピンコーティングされ、リソグラフィー的にパターニングされて、図49A、49Bに見られるように、厚さ2μm、幅50μm、長さ275μmのエポキシ矩形体が、Si膜に挟まれたアルミニウム構造の上に直接生成される。1実施例において、Siの層がカーボンファイバーと反射要素を分離する。それは、色々な実施例においてミラーの剥がれを防止する。アルミニウム以外の、選択的にエッチング可能な他の材料も使用される。研磨されたシリコン、反射性金属薄膜(Au,Ti等)、またはダイクロイック膜のような他の反射材料もミラーを作るために使用される。
【0105】
次に、ファイバーのアレイがさまざまな方法を使って形成される。1実施例において、グラファイトファイバーの撚り糸または束(5010)をアセトンに浸し、一本の糸を束から引き出すことによって、直径5μmの1本のファイバーが取り出される。10本の隣り合って置かれたファイバー5010のアレイを形成するために、マンドレルの周りに一本のファイバーを巻きつけることによってテープを作る。図51A、51Bにおいて、各アレイ5110が膜上のSU8矩形体の列を覆うようにファイバーアレイ5020が基板上に置かれる。図52に示すように、ファイバーアレイ5110は、エポキシまたはファイバーアレイを保持する適切な他の手段で、ウェハーのエッジ5210に糊付けされ保持される。次に、図53A,53Bに示すように、ファイバーアレイで覆われた基板上にSU8が、厚み10μmまでスピンコートされる。このSU8の層5310は、ファイバーが、封入され、かつ膜の1端で基板に固定され、膜の最上段で2μmのSU8矩形体に取り付けられるように、パターニングされる。
【0106】
次に、Si膜がCF4プラズマ内のエッチングで取り去られ、図54A、54Bに示されるような構造となる。エッチングの方法は、膜およびミラーに使用される材料によって異なる。図55に示すようなカンチレバーMEMS構造を精密に形成するために、YAGレーザーが使用される。
【0107】
製造工程の別な形態
ファイバーを流体組み立てしてカンチレバーMEMS構造にする方法も使用される。この代替の製造法は、MEMS構造を形成するために、流体ベースの自己組み立て法を使って一本のファイバーを基板上に位置合わせし固定する。この大きさにおいては支配的である表面力は、流体中で制御することが容易であるので、流体運搬は選択すべき方法である。そのような工程は、基板をパターニングして図56A、56Bにおける結合場所を形成することを含み、ファイバーを含む溶液が矢印5620で示されるように基板から溢れたときに、前述した、エネルギーに好適な指向性にしたがって、ファイバーがその場所に落ち着くという傾向を持っている。そのような結合場所は、ファイバーのそれと精密に実質的に適合する寸法および形状を持った溝を有する。毛管現象の力が個々のファイバーを56Bに示すように溝の中に定置させる。
【0108】
あるいは、図57A、57Bに示すように、ファイバーおよび、そこにファイバーが整列および集合することが要求される基板が、追加の薬品でパターニングされ、ファイバーがある方向を向いて基板上の所望の場所に“張り付く”高い可能性を生じさせ、したがってシステムの表面エネルギーを最小化する。図58A、58Bに示すように、ファイバーを待ち受ける溝または基板上の他のパターニングされた領域は、また、静電気的に荷電しても良く、これらの場所にファイバーが引きつけられ固定されることを容易にする。カンチレバー構造を形成するために、そのような方法の組み合わせを使用してファイバーを整列させ基板の適切な場所に固定しても良い。1実施例において、溝は、基板の所望の結晶方向、例えば異方性エッチングに合うように<110>面方向、または同様の溝をまたぐように<100>方向、に揃えられる。
【0109】
図59A、59Bに示すように、自己組み立て法は流体を使わないでも行われる。そのような実施例において、カンチレバーの骨格を形成するアレイ構造を決める溝5910および他の形状は、基板表面内に境界取りされるか、または基板上にエッチングされる。基板内に境界取りされる形状はファイバーの形状に合わせられる。図59Bに示すように、溝の寸法に合った正確に切断された多数のファイバー5915がこの基板上に置かれ、超音波で励起される。振動でファイバーは基板上を飛び跳ね、溝に入る。
【0110】
1実施例において、MEMS構造を作るために1組のファイバーを抽出して基板に対して揃える事前準備の方法について述べる。円筒状のマンドレル6005を、矩形のスロット6015が切られているプラスチックシート6010で覆う。商用的に入手したファイバーの撚糸(TorayT1000)から始めて、織物用の糊(接着性ポリマーコーティング)を取り除くためにファイバーをアセトンに浸す。一本のファイバーが水中で撚糸から引き出され、6110で10本が隣り合っているように、円筒状のマンドレル上に巻かれる。マンドレルは矩形のスロットが切られたプラスチックシートで覆われており、スロットの中に10本のファイバーのテープが位置する。揃い終わると、ファイバーは糊6115でプラスチックシート6010に取り付け定置させる。
【0111】
次に、図62に示すように、プラスチックシート6010がマンドレルから剥がされ、ウェハーサイズのスロットが切り抜かれているアルミニウムの把持具6205にテープ留めされる。アルミニウムの把持具は、アルミニウムのミラー要素がパターニングされたSi膜を持ったシリコンウェハー6215が載っている回転するX−Y−Zステージの上方に位置している。ウェハー上の構造にファイバーテープを位置合わせする為に顕微鏡が使用され、位置合わせされると、ウェハーが上昇しファイバーと接触する。次に、図63に示すように、ファイバーはウェハーのエッジに糊付けされ、アルミニウム把持具上のプラスチックシートから切り離される。次に、SU8光パターナブルエポキシがウェハー上にコーティングされ、ファイバーが膜の1端でウェハーに糊付けされ、膜の中央でミラー要素に糊付けされているようにパターニングされる。
【0112】
他の駆動法
更なる実施例において、先端の変位は、カンチレバーの基板への固定点に小さな動きを与えることで発生する。固定点に圧電性の曲げ要素を取り付け、圧電性の曲げ要素の共振周波数とファイバーカンチレバーのそれとを合わせる(圧電要素の長さを変えて)ことによって、ファイバー先端における最大の振幅が得られる。もし共振が合致しなければファイバーの変位はさほど大きくはない。
【0113】
1実施例において、図64A、64B、64Cに示すように、強磁性のニッケル6405がシリコン基板上に作りこまれる。次に、ファイバーカンチレバー6410をニッケルカンチレバーの上に置き、上述したようなエポキシで糊付けし、2重直列のカンチレバーを作り上げる。ニッケルカンチレバーの長さは、ファイバーカンチレバーの長さに(大体)合うように設計される。1実施例において、ニッケルカンチレバーの長さおよび厚みは、共振がファイバーカンチレバーと合致するように選択される。図64Cに示すように、ニッケルカンチレバーに垂直に交番磁場が印加され、振動を生じる。
【0114】
振動は、ファイバーカンチレバーの先端変位でニッケルカンチレバーの変位の数倍増幅される。基礎部における同様の駆動法は、ファイバーカンチレバーの基礎部にローレンツコイルを配置することや、ファイバーカンチレバーの基礎部に静電気力を掛けることを含む。駆動方法の組み合わせも使用可能である。例えば、振動を開始するために圧電ベースの機構を使い、共振時の振動を維持するために静電気または弱いパルス磁場のようなより小さな力の駆動を使用する。共振時にはカンチレバーの振動を維持するのに必要なエネルギーは最小なので、カンチレバーの共振変位を開始するときは強力または大変位のアクチュエーターを使用し、その共振変位はカンチレバーの各振動サイクル上により小さな力または変位を加えることによって維持することが出来る。
【0115】
結論
ファイバー状の微小複合材料がマイクロファイバーから形成される。ファイバー状の微小複合材料は、新しい等級のMEMSの基礎材料として用いられる。単純なファイバー材料および微小薄片に加えて、ファイバー状の中空/中実の編み紐を、動きや復元力が、ねじれ、板材の曲がり、引っ張られた糸、または膜材の動きを含む変位から生じる構造に使用することが出来る。いくつかの実施例において、これらの材料は、高い作動周波数、大きな振幅の変位または回転、繰り返し応力下での高い信頼性を同時に可能にする。
【0116】
1実施例において、カーボン/グラファイトファイバー、カーボンナノチューブ、ファイバー状の1層または多層のグラフェンシート、または同様の構造を持った他の材料のような、高強度のミクロンあるいはさらに小さな寸法のファイバーを用いてファイバー状の要素が形成される。使用されるファイバーの種類は大きく異なる。いくつかの例は、カーボンファイバー(およびそれらの終わりから2番目のカーボンナノチューブ)に加えて、グラスファイバー、ケブラーファイバー、金属ファイバー(磁気または導電性等)等を含むが、これに限定されない。
【0117】
微小複合材料を使って形成される1つのMEMS装置は、光スキャナーである。光スキャナーは、10kHzに達し、結果的にはそれを超える高周波数で共振するのに充分堅固なミラーを有しており、40度に達する角度変位でミラー要素を駆動するようにするために、曲げまたは捩れにおいて大きな弾性変形を起こすためには充分頑丈である。ファイバーの特性、ファイバーの体積率、ファイバーの方向、レジン材料、およびファイバー/レジン間の介在特性は、スキャナーの特性を変更するために調整される。スキャナーは、その剛性と弾性を、1つの材料の剛性および強度と他の材料の弾性を組み合わせることによって最適化される。
【0118】
ファイバー状のMEMS材料技術は、CMOSのプロセスとも互換性があり、関連するウェハーに対して、能動的な制御と検出回路を持った全システムの開発を可能にする。ファイバーベースの材料をMEMSに使用することの予測される商業的な優位性は、遠くに、また広くに達する。
【0119】
高速/大変位MEMSの最大の商業市場の1つは、今日想い描くものとしては、光学映像および遠隔通信領域、特にはスキャナーおよび光スイッチである。ラスタースキャンディスプレーは、現状の性能限界が解決されるので非常に微小化される可能性があり、MEMSスキャナーの本質的なサイズおよび大量生産性は、これらのシステムのコストおよび電力消費を劇的に減少させる。ファイバー状の微小複合材料MEMSスキャナーは、ビデオディスプレー応用、遠隔通信ネットワークの光交差接続、空間光変調器、レーザープリンターおよび光学データ記録ヘッド、バーコードスキャナー等に使用できる。高性能のスキャナーには他の無数の広い、特定の応用が存在し、例えば、内視鏡および共焦点顕微鏡、またはレーザープリンターに使用する空間光変調器、バーコードスキャナーおよび光学記録ヘッドである。小型、軽量、低消費電力、および低コストのMEMSスキャナーは、同じ優位点を微小ディスプレー市場に遷移する。
【0120】
MEMSは、基質材料を使わずにファイバーから作ることが出来る。装置は、ファイバーが基板のエッジのみに取り付けられている場合でも構築できる(例えば、カンチレバー、ブリッジ)。動きは、弱く結合させた複数のファイバー間の結合を調整することによって制御できる(例えば、基礎部、先端、その間)。駆動機構は、基礎部への加重(磁気、圧電、静電気)または先端への加重(磁気)を含む。ファイバーベースのMEMS装置は、そのサイズが小さいこと、単一要素に対する要求、および電力効率のためにポータブル装置において有効である。最も単純な光スキャナー組み立て品は、基板上に並べられたグラファイトファイバーのセットにミラー(または、他の反射要素、あるいはホログラム)を取り付けることによって形成される。これらの構造は、多くの旧来の半導体および微小電気機械システム(MEMS)の製造技術を使って形成することが出来る。
【0121】
1実施例において、シリコン基板上にファイバー複合材MEMSカンチレバー装置を製造するために、単層のグラファイトファイバーが使用される。MEMSにファイバーを加えるに際して、異なった製造工程で作られた構造要素(標準のシリコンプロセス技術による基板およびファイバー製造プロセスによるファイバー)が組み合わされて各要素の特異な特性を備えた複雑な複合材MEMS構造が創成され、今までに無い性能が得られる。微小な動く構造を形成するファイバー状材料の開発と使用は、MEMSのための材料技術において大きな進歩を表わしている。1実施例において、カンチレバー構造は、1端が基板に固定され、第2の端が自由に動ける整列したファイバーを含む。ある構造体がカンチレバーファイバーの自由端に取り付けられ、またはその上に作られる(上述したように、製造者の工程内では、カンチレバーの“自由端”はそれが取り付けられている構造が基板から自由になるまでは実際には自由に動けない)。取り付けられた構造体を動かすために所望の方法でカンチレバーに力が掛けられる。
【0122】
1実施例において、取り付けられる構造体はミラーである。ミラーは、ファイバーMEMSカンチレバー構造の自由端上に製造される。入射光束内にある構造体を振動させることにより光束が偏向され走査される。走査長および速度はファイバーの変位および周波数に依存する。使用されるファイバーは、その両方を制御するように仕立てられる。
【0123】
あらゆる種類のファイバーが使用可能であり、所定の装置に使用される特定のファイバーがその装置の性能要求に適合するように選択される。スキャナーおよび他のカンチレバー装置は、一本または複数のファイバーのどちらかで作られる。カーボン/グラファイトファイバーは、広角度変位をもたらし、有効な長さ/断面で高い共振周波数を持ち、また、優れた疲労寿命を有するように変形可能である。このように、カーボン/グラファイトファイバーは、シリコンおよび他の旧来のMEMS材料に基づいた旧来のMEMSスキャナーの能力をはるかに超えた走査角度、速度、および疲労寿命を持った走査MEMSに使用するために特に適している。
【0124】
スキャナーのようなファイバー複合材料MEMSは、標準のMEMSおよび半導体製造プロセスを用いて製造出来る。これには、フォトリソグラフィーおよびエッチング、スピンコーティングおよびレーザー切断を含む。フォトリソグラフィーは、ファイバーと組み合わせる前に基板を事前にパターニングし、光スキャナー用のミラーを含む別体の要素を形成するために使用される。ファイバーを位置決めし、または整列させるガイド、および他の構造が、ファイバーと組み合わせる前にフォトリソグラフィーおよびエッチングを用いて形成される。単純な整列方法が、ファイバーをシリコン基板上のカンチレバー構造体に配置し組み合わせる能力をもたらす。基板上にファイバーを取り付け、または載せるために、スピンコーティング、制御蒸着および他の方法が使用可能である。例えばある要素(ミラーのような)を自由にするなど、構造を更に変更するために、ファイバーを組み込んだ後にフォトリソグラフィーおよびエッチングを使用することができる。レーザーは、基板およびファイバー両方をプロセスするために使用されてきた。
【0125】
グラファイトファイバーで作られたカンチレバースキャナー構造は、曲がりまたはたわみにおけるグラファイトファイバーの優れた機械的特性(特に、高い強度と剛性、同様に繰り返し応力下でも疲労しないという振る舞い)、およびシリコン装置製造の広範な知識内容の両方をてこ入れする。グラファイトファイバーベースのMEMS光スキャナーは、往復振動(走査)回数1011以上に渡って、30kHzを超える周波数で±80度の先端変位を生じ、したがって、非常に大きな角度に渡って、しかも非常に高速に殆ど無制限に光を走査させることが出来る。
【0126】
MEMS装置/構造の構造的骨格材または強化材のように、整列した/向きを揃えられたファイバーには多くの応用がある。MEMSにおける個々の構造体を形成するためのファイバーの直径は、nm単位からum単位までの範囲である。使用される直径のいくつかは5umから1nmである。それ以上または以下の直径も使用される。ファイバーの長さは1mmから300mmよりも大きい範囲である。より短いまたは長いファイバーも使用される。MEMSを形成するために、微小構造を有する予めパターニングされた基板に、1本のファイバーまたは特定の方向を向いたファイバーを追加することも行われる。基板上のMEMS構造に追加される揃ったファイバーは、強度強化のため、またはある所望の特性を授け、強化するために使用される。
【0127】
さらなる実施例において、ファイバーは基板に、また、互いに結合される。MEMS構造を形成するために、顕微鏡的尺度のグラファイトファイバー、ケブラー、また、生物学的、化学的、電気的に機能するファイバー等が使用される。そのようなファイバーは、MEMS、および特にはファイバーMEMS構造に駆動能力および検出能力を授けるために使用される。所望の適合する特性を有するMEMS構造を形成するために、複数ファイバーは、異なった種類のファイバーと一緒にされる。
【0128】
さらに他の実施例において、MEMSは、基板および、基板に作用的に結合している、ファイバーで作った微小構造を有する。1実施例においては、ファイバー構造は微小なカンチレバービームであり、1本のファイバーまたは並行に隣り合って並べられたファイバーのアレイで形成される。ファイバーは、MEMS構造内またはその上に位置合わせされる。さらなる実施例において、ファイバーは、カーボンファイバー、グラファイトファイバー、またはカーボンナノチューブである。1実施例において、ファイバーは10nmから10umの範囲の直径を有する。
【0129】
共振しない要素を意図的に作りこむことで、カンチレバーの複雑な動きが得られる。カンチレバーは、純粋な曲げ以外のモードで振動するように作ることが出来る。ファイバーの長さを変えること、先端に錘を不均等に置くこと、別個の機械的特性を持った材料を組み込むことのすべてが、カンチレバー内で異なった種類の動きを起こすために使用することが出来る。このことは、MEMSの他の応用において有用である。さらにこれは、1個のカンチレバーを高周波数(>30kHz)で曲げ振動させ、直角方向に非常にゆっくりの走査(60−120Hz)を行うことによって映像への応用にも便利である。純粋な曲げ以外のカンチレバーの動きは、上述したいくつかの条件によって起こる。
【0130】
1実施例において、ファイバーの長さは不均一で、例えばカンチレバーの片側のファイバーがカンチレバーの他方の側のファイバーよりも長い。長いほうのファイバーのより遅い共振が、各振動サイクル中に、より長いファイバーの方に傾きを起こさせる。このことは、カンチレバーを光スキャナーとして使用した場合に、効果として真っ直ぐな走査線を生じる代わりに対角的な走査線を生じる。振動中のカンチレバーの傾き効果が徐々に生じるようにファイバーの長さが変えられる。すなわち、カンチレバーは、最初の振動後にある量だけ傾き、その後の各振動の後に同じ量だけ傾く。そのようなスキャナーは、異なった速さで2方向に走査するように作られ、映像用として有用である。1本のファイバーの場合は、2つの直交方向に異なった周波数で励起されたときは、ファイバー先端の円形の振動経路が得られる。そのような単線ファイバー構造の応用には、繊毛アクチュエーターおよびナノミクサーが含まれる。
【0131】
MEMSカンチレバーは、その先端にミラーを持つことが出来る。1実施例において、MEMS装置はファイバー束から単線を抽出し、適切な基板上に抽出したファイバーを特定の方向に揃えて結合することによって形成される。ファイバーは、互いに、および/または基板上の他の構造に選択的に結合される。次に、ファイバーは、選択的にパターニングされ、MEMS装置を形成するために開放される。
【0132】
1実施例において、基板は、所望のMEMS構造を創成するために事前にパターニングされる。事前のパターニングは、基板上に整列パターンまたは溝を事前形成することによって行われる。ファイバーMEMS構造の駆動は、電気機械的機能を持ったファイバー、および/または構造的骨格ファイバーと結合する基質を用いて達成される。振動は、ファイバー装置の基板への取り付け地点でのさまざまな手段(圧電、磁気、静電気等)によって起こされ、ファイバーMEMS構造の自由端における大きな変位振幅および力を生じさせるために利用される。
【図面の簡単な説明】
【0133】
【図1】図1は、1実施例による、基板に支持された基質内に封入された一本のマイクロファイバーの断面図である。
【図2】図2は、1実施例の、基板に支持された基質内に封入された並行に並べられたマイクロファイバーの集合の断面図である。
【図3】図3は、1実施例による、複数の種々のマイクロファイバー断面の斜視図である。
【図4】図4は、1実施例による、基板に支持された基質内に封入された並行に並べられた多層マイクロファイバーの集合の断面図である。
【図5】図5は、1実施例による、2方向性マイクロファイバー層の斜視外観図である。
【図6】図6は、1実施例による、中に編み紐を有するマイクロファイバーの編まれたファイバーの斜視図である。
【図7】図7は、1実施例による、基板に支持された複数マイクロファイバーのカンチレバーの斜視図である。
【図8】図8は、1実施例による、基板に支持された単一マイクロファイバーのカンチレバーの斜視図である。
【図9】図9は、1実施例による、基板に支持された他の複数のマイクロファイバーのカンチレバーの斜視図である。
【図10A】図10Aは、1実施例による、カンチレバーMEMS装置を形成するプロセスを示す断面図である。
【図10B】図10Bは、1実施例による、カンチレバーMEMS装置を形成するプロセスを示す断面図である。
【図10C】図10Cは、1実施例による、カンチレバーMEMS装置を形成するプロセスを示す断面図である。
【図10D】図10Dは、1実施例による、カンチレバーMEMS装置を形成するプロセスを示す断面図である。
【図10E】図10Eは、1実施例による、カンチレバーMEMS装置を形成するプロセスを示す断面図である。
【図10F】図10Fは、1実施例による、カンチレバーMEMS装置を形成するプロセスを示す断面図である。
【図10G】図10Gは、1実施例による、カンチレバーMEMS装置を形成するプロセスを示す断面図である。
【図10H】図10Hは、1実施例による、カンチレバーMEMS装置を形成するプロセスを示す断面図である。
【図10I】図10Iは、1実施例による、カンチレバーMEMS装置を形成するプロセスを示す断面図である。
【図10J】図10Jは、1実施例による、カンチレバーMEMS装置を形成するプロセスを示す断面図である。
【図10K】図10Kは、1実施例による、カンチレバーMEMS装置を形成するプロセスを示す断面図である。
【図11】図11は、1実施例による、中実のマイクロファイバー編み紐の斜視図である。
【図12】図12は、1実施例による、中空のマイクロファイバー編み紐の斜視図である。
【図13】図13は、1実施例による、低い角度で編んだ、中実のマイクロファイバーの編み紐の斜視図である。
【図14】図14は、1実施例による、入れ子状のフレームと、直交する対のファイバー編み紐で支持されるミラーを有するスキャナーの外観図である。
【図15】図15は、1実施例による、圧電コアを有する編み紐の断面図である。
【図16】図16は、1実施例による、図14のスキャナーを形成する工程中のファイバー編み紐を揃えるための、基板中の溝の事前エッチングを示す。
【図17A】図17Aは、1実施例による、適切な基板上に設置され、または位置合わせされた一本のファイバーを示す。
【図17B】図17Bは、1実施例による、適切な基板上に設置され、または位置合わせされた一本のファイバーを示す。
【図18A】図18Aは、1実施例による、一本のファイバーによって形成された単純なカンチレバー構造を示す。
【図18B】図18Bは、1実施例による、一本のファイバーによって形成された単純なカンチレバー構造を示す。
【図19A】図19Aは、1実施例による、実質的に平行に互いに隣り合って揃えられた、機材に支持された複数のファイバーを示す。
【図19B】図19Bは、1実施例による、実質的に平行に互いに隣り合って揃えられた、機材に支持された複数のファイバーを示す。
【図20】図20は、1実施例による、その長さ方向および共通の基板に沿った任意の箇所で結束されたファイバーを示す。
【図21】図21は、1実施例による、実質的に平行に互いに隣り合って揃えられた複数のファイバーを用いたMEMSカンチレバーの形態を示す。
【図22】図22は、1実施例による、シリコンカンチレバーのファイバーの補強を示す。
【図23A】図23Aは、1実施例による、形成されるであろうファイバーのさまざまな断面を示す。
【図23B】図23Bは、1実施例による、形成されるであろうファイバーのさまざまな断面を示す。
【図23C】図23Cは、1実施例による、形成されるであろうファイバーのさまざまな断面を示す。
【図23D】図23Dは、1実施例による、形成されるであろうファイバーのさまざまな断面を示す。
【図23E】図23Eは、1実施例による、形成されるであろうファイバーのさまざまな断面を示す。
【図24A】図24Aは、1実施例による、MEMS構造の組み立て方法を示す。
【図24B】図24Bは、1実施例による、MEMS構造の組み立て方法を示す。
【図24C】図24Cは、1実施例による、MEMS構造の組み立て方法を示す。
【図24D】図24Dは、1実施例による、MEMS構造の組み立て方法を示す。
【図24E】図24Eは、1実施例による、MEMS構造の組み立て方法を示す。
【図24F】図24Fは、1実施例による、MEMS構造の組み立て方法を示す。
【図24G】図24Gは、1実施例による、MEMS構造の組み立て方法を示す。
【図24H】図24Hは、1実施例による、MEMS構造の組み立て方法を示す。
【図24I】図24Iは、1実施例による、MEMS構造の組み立て方法を示す。
【図24J】図24Jは、1実施例による、MEMS構造の組み立て方法を示す。
【図25A】図25Aは、1実施例による、光スキャナー用ファイバーアレイを示す。
【図25B】図25Bは、1実施例による、光スキャナー用ファイバーアレイを示す。
【図26A】図26Aは、1実施例による、光スキャナー用ファイバーアレイを示す。
【図26B】図26Bは、1実施例による、光スキャナー用ファイバーアレイを示す。
【図27A】図27Aは、1実施例による、光スキャナー用カンチレバーを形成するファイバーアレイを示す。
【図27B】図27Bは、1実施例による、光スキャナー用カンチレバーを形成するファイバーアレイを示す。
【図28】図28は、1実施例による、ファイバーベースのカンチレバーの動きを示す。
【図29】図29は、1実施例による、光スキャナー用のファイバーベースのカンチレバーのアレイを示す。
【図30】図30は、1実施例による、光スキャナーで反射する光を示す。
【図31A】図31Aは、1実施例による、光スキャナー用の異なった長さのカンチレバーを示す。
【図31B】図31Bは、1実施例による、光スキャナー用の異なった長さのカンチレバーを示す。
【図31C】図31Cは、1実施例による、光スキャナー用の異なった長さのカンチレバーを示す。
【図31D】図31Dは、1実施例による、光スキャナー用の異なった長さのカンチレバーを示す。
【図32A】図32Aは、1実施例による、異なったチップ質量を有するカンチレバーを示す。
【図32B】図32Bは、1実施例による、異なったチップ質量を有するカンチレバーを示す。
【図32C】図32Cは、1実施例による、異なったチップ質量を有するカンチレバーを示す。
【図33】図33は、1実施例による、2重カンチレバー光スキャナーである。
【図34】図34は、1実施例による、2重カンチレバー光スキャナーの動きを示す図である。
【図35】図35は、1実施例による、種々のファイバー本数を有する複数ファイバーベースのカンチレバーを示す図である。
【図36】図36は、1実施例による、さまざまなファイバー断面を示す。
【図37A】図37Aは、1実施例による、封入された複合ファイバーカンチレバーのいろいろな外観を示す。
【図37B】図37Bは、1実施例による、封入された複合ファイバーカンチレバーのいろいろな外観を示す。
【図37C】図37Cは、1実施例による、封入された複合ファイバーカンチレバーのいろいろな外観を示す。
【図38A】図38Aは、1実施例による、2方向カンチレバーチップの動きを示す。
【図38B】図38Bは、1実施例による、2方向カンチレバーチップの動きを示す。
【図39】図39は、1実施例による、直交軸を有して2次元の変位を与えるカンチレバーを示す。
【図40】図40は、1実施例による、フレームの対角端にカンチレバー取り付け材を有するフレームの動きを示す。
【図41】図41は、1実施例による、ファイバーアレイ内に埋め込まれた作動ファイバーを有するカンチレバーを示す。
【図42】図42は、1実施例による、図14のカンチレバーの動きを示す。
【図43】図43は、1実施例による、電磁石によって駆動されるカンチレバーの動きを示す。
【図44】図44は、1実施例による、パルス磁場によって駆動されるカンチレバーの動きを示す。
【図45】図45は、1実施例による、カンチレバーの静電気変位を示す。
【図46A】図46Aは、1実施例による、ミラーの最初の形成を示す。
【図46B】図46Bは、1実施例による、ミラーの最初の形成を示す。
【図47A】図47Aは、1実施例による、ミラーの反射面の形成を示す。
【図47B】図47Bは、1実施例による、ミラーの反射面の形成を示す。
【図48】図48は、1実施例による、ミラーのさらなる形成を示す。
【図49A】図49Aは、1実施例による、ミラーの形成における更なるステップを示す。
【図49B】図49Bは、1実施例による、ミラーの形成における更なるステップを示す。
【図50A】図50Aは、1実施例による、ファイバーアレイの形成を示す。
【図50B】図50Bは、1実施例による、ファイバーアレイの形成を示す。
【図50C】図50Cは、1実施例による、ファイバーアレイの形成を示す。
【図51A】図51Aは、1実施例による、ファイバーアレイをウェハー上に移設するステップを示す。
【図51B】図51Bは、1実施例による、ファイバーアレイをウェハー上に移設するステップを示す。
【図52】図52は、1実施例による、ファイバーアレイを有するウェハーを示す。
【図53A】図53Aは、1実施例による、基板に封入され、固定されたファイバーを示す。
【図53B】図53Bは、1実施例による、基板に封入され、固定されたファイバーを示す。
【図54A】図54Aは、1実施例による、ミラーおよびカンチレバー構造を取り出すためのエッチングを示す。
【図54B】図54Bは、1実施例による、ミラーおよびカンチレバー構造を取り出すためのエッチングを示す。
【図55】図55は、1実施例による、レーザーカッティングによって取り出されるミラーおよびカンチレバーを示す。
【図56A】図56Aは、1実施例による、基板上へのファイバーの整列を示す。
【図56B】図56Bは、1実施例による、基板上へのファイバーの整列を示す。
【図57A】図57Aは、1実施例による、基板上への別なファイバー整列方法を示す。
【図57B】図57Bは、1実施例による、基板上への別なファイバー整列方法を示す。
【図58A】図58Aは、1実施例による、基板上へのさらに別なファイバー整列方法を示す。
【図58B】図58Bは、1実施例による、基板上へのさらに別なファイバー整列方法を示す。
【図59A】図59Aは、1実施例による、基板上へのさらに別なファイバー整列方法を示す。
【図59B】図59Bは、1実施例による、基板上へのさらに別なファイバー整列方法を示す。
【図60A】図60Aは、1実施例による、ファイバーアレイの形成におけるステップを示す。
【図60B】図60Bは、1実施例による、ファイバーアレイの形成におけるステップを示す。
【図61A】図61Aは、1実施例による、ファイバーアレイの形成における更なるステップを示す。
【図61B】図61Bは、1実施例による、ファイバーアレイの形成における更なるステップを示す。
【図62】図62は、1実施例による、ファイバーアレイを基板上に移設する方法を示す。
【図63】図63は、1実施例による、ファイバーアレイを基板に取り付ける方法を示す。
【図64A】図64Aは、1実施例による、別の2重カンチレバー構造を示す。
【図64B】図64Bは、1実施例による、別の2重カンチレバー構造を示す。
【図64C】図64Cは、1実施例による、別の2重カンチレバー構造を示す。

【特許請求の範囲】
【請求項1】
基板と、
ファイバーのアレイであって、該ファイバーのアレイの把持された端で前記基板によって支持されている前記ファイバーのアレイと、
前記ファイバーのアレイの自由な第2の端に結合されたミラーと、を有する微小電気機械装置スキャナー。
【請求項2】
前記ファイバーのアレイは、互いに隣り合って互いにほぼ平行に並べられた複数のファイバーを含むことを特徴とする、請求項1に記載の微小電気機械装置スキャナー。
【請求項3】
前記ファイバーのアレイは前記基板の上面側で支持され、前記ミラーは前記基板の底面側に向いた反射面を有することを特徴とする、請求項1に記載の微小電気機械装置スキャナー。
【請求項4】
前記ミラーは、反射膜(アルミニウム、チタン、金、ダイクロックのようなセラミック膜)で形成されていることを特徴とする、請求項3に記載の微小電気機械装置スキャナー。
【請求項5】
前記ミラーは、支持のための裏材を有していることを特徴とする、請求項4に記載の微小電気機械装置スキャナー。
【請求項6】
前記裏材は、Siからなることを特徴とする、請求項5に記載の微小電気機械装置スキャナー。
【請求項7】
前記ファイバーのアレイの前記把持されている場所と前記自由端との間の部分が露出していることを特徴とする、請求項1に記載の微小電気機械装置スキャナー。
【請求項8】
前記基板がカンチレバーの自由端に結合されていることを特徴とする、請求項1に記載の微小電気機械装置スキャナー。
【請求項9】
前記ファイバーのアレイは、第2のカンチレバーを介して前記基板によって支持されている第1のカンチレバーを形成することを特徴とする、請求項1に記載の微小電気機械装置スキャナー。
【請求項10】
前記第2のカンチレバーは、強磁性体材料で形成されていることを特徴とする、請求項1に記載の微小電気機械装置スキャナー。
【請求項11】
前記ファイバーのアレイの前記自由端を振動させる手段をさらに含む、請求項10に記載の微小電気機械装置スキャナー。
【請求項12】
前記ファイバーのアレイの前記自由端を振動させる前記手段は、選択された刺激に反応する選択されたファイバーを前記アレイの中に含むことを特徴とする、請求項10に記載の微小電気機械装置スキャナー。
【請求項13】
前記選択されたファイバーは、磁気的に反応するファイバー、圧電的に反応するファイバー、静電気的に反応するファイバー、電気熱的に反応するファイバー、および電気ひずみ的に反応するファイバーからなるグループの中から選択されることを特徴とする、請求項12に記載の微小電気機械装置スキャナー。
【請求項14】
基板と、
カーボンファイバーのアレイであって、該ファイバーのアレイの把持された端で前記基板によって支持されるカーボンファイバーのアレイと、
前記カーボンファイバーのアレイの自由な第2の端に結合されているミラーとを含み、
前記カーボンファイバーのアレイの少なくとも1部が露出していることを特徴とするスキャナー。
【請求項15】
前記ミラーは、実質的に平らで、研磨されていない反射面を有することを特徴とする、請求項14に記載のスキャナー。
【請求項16】
前記カーボンファイバーは、約10nmから10umの間の範囲の直径を有することを特徴とする、請求項14に記載のスキャナー。
【請求項17】
前記カーボンファイバーのアレイによって、前記ミラーが30kHzを超える周波数でプラスまたはマイナス80度よりも大きな角度に渡って動かされることを特徴とする、請求項14に記載のスキャナー。
【請求項18】
前記カーボンファイバーのアレイは前記基板の上面側で支持され、前記ミラーは前記基板の底面側を向いた反射面を有することを特徴とする、請求項14に記載のスキャナー。
【請求項19】
前記ミラーの前記反射面は、実質的に平らな面を有する、選択的にエッチング可能な蒸着物質上に蒸着されたアルミニウムから形成されていることを特徴とする、請求項18に記載のスキャナー。
【請求項20】
前記選択的にエッチング可能な蒸着物質がSiであることを特徴とする、請求項19に記載のスキャナー。
【請求項21】
前記ファイバーは、前記基板によって溝の中に支持されていることを特徴とする、請求項14に記載のスキャナー。
【請求項22】
基板と、
カンチレバーであって、前記基板の上面側の該カンチレバーが把持されている端で前記基板によって支持されている1本以上のファイバーで形成されている前記カンチレバーと、
前記カンチレバーの自由な第2の端に結合されているミラーとを含み、
前記ミラーは前記基板の片側に反射面を有し、前記ミラーは前記基板の前記片側から光が到達可能であることを特徴とするスキャナー。
【請求項23】
前記ミラーがアルミニウムで形成されていることを特徴とする、請求項22に記載の微小電気機械装置スキャナー。
【請求項24】
前記ミラーは、支持のための裏材を含むことを特徴とする、請求項23に記載の微小電気機械装置スキャナー。
【請求項25】
前記裏材がSiからなることを特徴とする、請求項24に記載のスキャナー。
【請求項26】
前記ファイバーが2つの別々の軸の周りの動きをもたらす、請求項22に記載の光スキャナー。
【請求項27】
MEMS装置を形成する方法であって、
基板上で特定の方向にファイバーを揃えることと、
前記ファイバーを前記基板および他の構造体に結合することと、
前記ファイバー構造体を選択的にパターニングし、開放してMEMS装置を形成することと、を備えることを特徴とする方法。
【請求項28】
前記ファイバーを選択的に互いに結合することを更に含む、請求項27に記載の方法。
【請求項29】
前記ファイバーは、ファイバー束から抽出されることを特徴とする、請求項27に記載の方法。
【請求項30】
前記基板は、所望のファイバーMEMS構造を創成するために予めパターニングされることを特徴とする、請求項27に記載の方法。
【請求項31】
前記ファイバーを整列させるために、前記基板上に整列パターンまたは溝を予め形成することを更に含む、請求項27に記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10A】
image rotate

【図10B】
image rotate

【図10C】
image rotate

【図10D】
image rotate

【図10E】
image rotate

【図10F】
image rotate

【図10G】
image rotate

【図10H】
image rotate

【図10I】
image rotate

【図10J】
image rotate

【図10K】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17A】
image rotate

【図17B】
image rotate

【図18A】
image rotate

【図18B】
image rotate

【図19A】
image rotate

【図19B】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23A】
image rotate

【図23B】
image rotate

【図23C】
image rotate

【図23D】
image rotate

【図23E】
image rotate

【図24A】
image rotate

【図24B】
image rotate

【図24C】
image rotate

【図24D】
image rotate

【図24E】
image rotate

【図24F】
image rotate

【図24G】
image rotate

【図24H】
image rotate

【図24I】
image rotate

【図24J】
image rotate

【図25A】
image rotate

【図25B】
image rotate

【図26A】
image rotate

【図26B】
image rotate

【図27A】
image rotate

【図27B】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31A】
image rotate

【図31B】
image rotate

【図31C】
image rotate

【図31D】
image rotate

【図32A】
image rotate

【図32B】
image rotate

【図32C】
image rotate

【図33】
image rotate

【図34】
image rotate

【図35】
image rotate

【図36】
image rotate

【図37A】
image rotate

【図37B】
image rotate

【図37C】
image rotate

【図38A】
image rotate

【図38B】
image rotate

【図39】
image rotate

【図40】
image rotate

【図41】
image rotate

【図42】
image rotate

【図43】
image rotate

【図44】
image rotate

【図45】
image rotate

【図46A】
image rotate

【図46B】
image rotate

【図47A】
image rotate

【図47B】
image rotate

【図48】
image rotate

【図49A】
image rotate

【図49B】
image rotate

【図50A】
image rotate

【図50B】
image rotate

【図51A】
image rotate

【図51B】
image rotate

【図52】
image rotate

【図53A】
image rotate

【図53B】
image rotate

【図54A】
image rotate

【図54B】
image rotate

【図55】
image rotate

【図56A】
image rotate

【図56B】
image rotate

【図57A】
image rotate

【図57B】
image rotate

【図58A】
image rotate

【図58B】
image rotate

【図59A】
image rotate

【図59B】
image rotate

【図60A】
image rotate

【図60B】
image rotate

【図61A】
image rotate

【図61B】
image rotate

【図62】
image rotate

【図63】
image rotate

【図64A】
image rotate

【図64B】
image rotate

【図64C】
image rotate


【公表番号】特表2008−504574(P2008−504574A)
【公表日】平成20年2月14日(2008.2.14)
【国際特許分類】
【出願番号】特願2007−518324(P2007−518324)
【出願日】平成17年6月24日(2005.6.24)
【国際出願番号】PCT/US2005/022534
【国際公開番号】WO2006/002388
【国際公開日】平成18年1月5日(2006.1.5)
【出願人】(500056220)コーネル リサーチ ファンデーション インク. (7)
【Fターム(参考)】