説明

ブラシレス電気機械

【課題】制御回路の構成がより単純で効率の良いブラシレス電気機械を提供する。
【解決手段】第1の移動部材は永久磁石対(10pair)を少なくとも1つ含む磁石集合体(20)を備えており、第2の移動部材は電磁コイル(30)を含んでいる。制御回路は、電磁コイル(30)への電力の供給又は電磁コイル(30)からの電力の回生を制御する。永久磁石対(10pair)は、第1の極同士が互いに接する同極接触面(10c)上の磁場方向(MD)であって、永久磁石対の中央から外側に向かう磁場方向(MD)に沿って最も強い磁場を発生する。電磁コイル(30)は、磁場方向(MD)と交差する方向(CD)に電流が流れるように配置されている。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、永久磁石と電磁コイルとを利用したブラシレス電気機械に関する。
【背景技術】
【0002】
ブラシレス電気機械は、ブラシレスモータとブラシレス発電機とを包含する意味を有する用語である。ブラシレスモータとしては、例えば下記の特許文献1に記載されたものが知られている。
【0003】
【特許文献1】特開2001−298982号公報
【0004】
従来のブラシレス電気機械では、電磁コイルに印加する電流の方向や、回生される電流の方向を適宜切り替えることによって動作の制御が行われていた。しかし、電流方向の切り替えを行うための制御回路の構成が複雑であり、また、切り替えに伴って損失が発生するという問題があった。
【発明の開示】
【発明が解決しようとする課題】
【0005】
本発明は、制御回路の構成がより単純で効率の良いブラシレス電気機械を提供することを目的とする。
【課題を解決するための手段】
【0006】
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。
【0007】
[適用例1] ブラシレス電気機械であって、
N極とS極のうちから選ばれた第1の極同士が互いに接した状態で保持された永久磁石対を少なくとも1つ含む磁石集合体を備える第1の移動部材と、
電磁コイルを含み、前記第1の移動部材との相対的な位置が変更可能に構成された第2の移動部材と、
前記電磁コイルへの電力の供給又は前記電磁コイルからの電力の回生を制御する制御回路と、
を備え、
前記永久磁石対は、前記第1の極同士が互いに接する同極接触面上の磁場方向であって、前記永久磁石対の中央から外側に向かう磁場方向に沿って最も強い磁場を発生しており、
前記電磁コイルは、前記磁場方向と交差する方向に電流が流れるように配置されており、
前記制御回路は、
(i)前記電磁コイルに供給する電流の方向を変更せずに前記電磁コイルに所定の第1の電流方向の駆動電流を供給することによって、前記ブラシレス電気機械を所定の駆動方向に動作させる駆動制御と、
(ii)前記第1と第2の移動部材との間の所定の方向に沿った相対的な移動に応じて前記電磁コイルに発生する直流電力を回生する回生制御と、
の少なくとも一方を実行するように構成されている、ブラシレス電気機械。
このブラシレス電気機械によれば、電流や電圧の方向を切り換えること無く駆動制御や回生制御を行えるので、制御回路の構成がより単純で効率の良いブラシレス電気機械を得ることができる。
【0008】
[適用例2] 適用例1記載のブラシレス電気機械であって、
前記磁石集合体は、各永久磁石のN極とS極のうちで前記第1の極とは反対の第2の極に接した状態で設けられた電磁ヨーク部材を含む、ブラシレス電気機械。
この構成では、第2の極の磁場による影響を低減できるので、効率を向上させることが可能である。
【0009】
[適用例3] 適用例2記載のブラシレス電気機械であって、
前記磁石集合体は、2つ以上の前記永久磁石対と、隣接する永久磁石対の間に設けられた前記電磁ヨーク部材とを含む、ブラシレス電気機械。
この構成によれば、複数の永久磁石対を用いるので、より長い距離に渡る駆動又は回生や、より大きな駆動力又は回生電力を実現することが可能である。
【0010】
[適用例4] 適用例1ないし3のいずれかに記載のブラシレス電気機械であって、
前記第1と第2の移動部材は、前記同極接触面に対して垂直な方向に沿って相対的に移動可能に構成されている、ブラシレス電気機械。
【0011】
[適用例5] 適用例1ないし3のいずれかに記載のブラシレス電気機械であって、
前記第1と第2の移動部材は、前記同極接触面に平行な所定の方向に沿って相対的に移動可能に構成されている、ブラシレス電気機械。
【0012】
[適用例6] 適用例1ないし5のいずれかに記載のブラシレス電気機械であって、
前記制御回路は、前記駆動制御において、前記電磁コイルに前記第1の電流方向とは逆の方向に駆動電流を供給することによって、前記ブラシレス電気機械を前記駆動方向とは逆の方向に動作させる、ブラシレス電気機械。
この構成では、ブラシレスモータを任意に逆転させることが可能である。
【0013】
[適用例7] 適用例1ないし6のいずれかに記載のブラシレス電気機械であって、
前記永久磁石は、前記駆動方向と交わる方向に沿って設けられた凹部又は凸部を有する、ブラシレス電気機械。
この構成では、永久磁石の磁束密度を増大させることが可能である。
【0014】
[適用例8] 適用例1ないし7のいずれかに記載のブラシレス電気機械であって、
前記ブラシレス電気機械は回転式モータである、ブラシレス電気機械。
【0015】
[適用例9] 適用例1ないし7のいずれかに記載のブラシレス電気機械であって、
前記ブラシレス電気機械は直進式モータである、ブラシレス電気機械。
【0016】
[適用例10] 電子機器であって、
所定の駆動方向に動作可能なブラシレスモータと、
前記ブラシレスモータによって駆動される被駆動部材と、
を備え、
前記ブラシレスモータは、
N極とS極のうちから選ばれた第1の極同士が互いに接した状態で保持された永久磁石対を少なくとも1つ含む磁石集合体を備える第1の移動部材と、
電磁コイルを含み、前記第1の移動部材との相対的な位置が変更可能に構成された第2の移動部材と、
前記電磁コイルへの電力の供給を制御する制御回路と、
を備え、
前記永久磁石対は、前記第1の極同士が互いに接する同極接触面上の磁場方向であって、前記永久磁石対の中央から外側に向かう磁場方向に沿って最も強い磁場を発生しており、
前記電磁コイルは、前記磁場方向と交差する方向に電流が流れるように配置されており、
前記制御回路は、前記電磁コイルに供給する電流の方向を変更せずに前記電磁コイルに所定の第1の電流方向の駆動電流を供給することによって、前記ブラシレスモータを所定の駆動方向に動作させる駆動制御を実行する、電子機器。
【0017】
[適用例11] 適用例10記載の電子機器であって、
前記電子機器はプロジェクタである、電子機器。
【0018】
[適用例12] 燃料電池使用機器であって、
所定の駆動方向に動作可能なブラシレスモータと、
前記ブラシレスモータによって駆動される被駆動部材と、
前記ブラシレスモータに電源を供給する燃料電池と、
を備え、
前記ブラシレスモータは、
N極とS極のうちから選ばれた第1の極同士が互いに接した状態で保持された永久磁石対を少なくとも1つ含む磁石集合体を備える第1の移動部材と、
電磁コイルを含み、前記第1の移動部材との相対的な位置が変更可能に構成された第2の移動部材と、
前記電磁コイルへの電力の供給を制御する制御回路と、
を備え、
前記永久磁石対は、前記第1の極同士が互いに接する同極接触面上の磁場方向であって、前記永久磁石対の中央から外側に向かう磁場方向に沿って最も強い磁場を発生しており、
前記電磁コイルは、前記磁場方向と交差する方向に電流が流れるように配置されており、
前記制御回路は、前記電磁コイルに供給する電流の方向を変更せずに前記電磁コイルに所定の第1の電流方向の駆動電流を供給することによって、前記ブラシレスモータを所定の駆動方向に動作させる駆動制御を実行する、燃料電池使用機器。
【0019】
[適用例13] ロボットであって、
ブラシレスモータと、
前記ブラシレスモータによって駆動される被駆動部材と、
を備え、
前記ブラシレスモータは、
N極とS極のうちから選ばれた第1の極同士が互いに接した状態で保持された永久磁石対を少なくとも1つ含む磁石集合体を備える第1の移動部材と、
電磁コイルを含み、前記第1の移動部材との相対的な位置が変更可能に構成された第2の移動部材と、
前記電磁コイルへの電力の供給を制御する制御回路と、
を備え、
前記永久磁石対は、前記第1の極同士が互いに接する同極接触面上の磁場方向であって、前記永久磁石対の中央から外側に向かう磁場方向に沿って最も強い磁場を発生しており、
前記電磁コイルは、前記磁場方向と交差する方向に電流が流れるように配置されており、
前記制御回路は、前記電磁コイルに供給する電流の方向を変更せずに前記電磁コイルに所定の第1の電流方向の駆動電流を供給することによって、前記ブラシレスモータを所定の駆動方向に動作させる駆動制御を実行する、ロボット。
【0020】
[適用例14] 適用例1記載のブラシレス電気機械を備えた移動体。
【0021】
なお、本発明は、種々の形態で実現することが可能であり、例えば、電動モータ、発電機、それらの制御方法、それらを用いたアクチュエータや電子機器等の形態で実現することができる。
【発明を実施するための最良の形態】
【0022】
次に、本発明の実施の形態を以下の順序で説明する。
A.磁石集合体の構成:
B.各種の実施例:
C.回路構成:
D.変形例:
【0023】
A.磁石集合体の構成:
図1は、本発明の各種実施例で利用される磁石集合体の概略構成を示す説明図である。図1(A)は、1つの永久磁石10を示している。この磁石10は、上下方向に磁化されている。N極から出る矢印及びS極に入る矢印は、磁力線を示している。図1(B)は、2つの磁石10で構成される永久磁石対10pairを示している。この永久磁石対10pairは、2つの磁石10が、N極同士が互いに接した状態で保持されたものである。この状態で2つの磁石10を保持すると、太い矢印で示されるように、その同極接触面10cから外部に向けた磁場方向MDに沿って、最も強い磁場が発生する。ここで、「同極接触面」とは、互いに接する同極同士の表面で規定される平面を意味している。なお、磁場方向MDは、同極接触面10c上の方向であって、永久磁石対10pairの中央から外側に向かう方向である。磁石10のサイズが小さい場合には、この磁場方向MDは、永久磁石対10pairの中央から外側に向かう放射状の方向となる。発明者の実験によれば、永久磁石対10pairの磁場方向MDの表面磁束密度は、単一の磁石10の表面磁束密度(すなわち図1(A)の上面の磁束密度)の約2倍に達することが見いだされた。そこで、本発明の各種実施例では、このような永久磁石対10pairを用いて、その磁場方向MDの強い磁場を利用して、モータや発電機を構成している。なお、N極でなく、S極同士を接するように永久磁石対10pairを構成してもよい。
【0024】
図1(C)は、3つの永久磁石対10pairを含む磁石集合体20を示している。3つの永久磁石対10pairの両端には、電磁ヨーク部材12がそれぞれ設けられている。すなわち、各永久磁石対10pairのS極に接するように、電磁ヨーク部材12がそれぞれ設けられている。電磁ヨーク部材12は、強磁性体材料で形成することが可能であり、特にパーマロイなどの高透磁率材料で形成されていることが好ましい。図1(D)は、磁石集合体20の表面磁束密度の分布を示している。このグラフから理解できるように、電磁ヨーク部材12はS極における表面磁束密度を低下させる効果を有している。この結果、磁石集合体20の周囲(図1(C)の左右位置)では、N極近傍での表面磁束密度が大きく、S極近傍での表面磁束密度が小さいという特徴的な磁場が形成される。後述する各種の実施例では、このような特徴的な磁場を発生する磁石集合体を用いている。
【0025】
なお、磁石集合体としては、少なくとも1つの永久磁石対10pairを有する任意の構成のものを使用することが可能である。また、磁石集合体は、図1(B)のように電磁ヨーク部材が無いものでも良いが、図1(C)のように、互いに接する第1の極(図1の例ではN極)とは異なる第2の極(S極)に電磁ヨーク部材12を付加したものがより好ましい。この理由は、第1の極(N極)近傍の磁場を有効に利用しつつ、第2の極(S極)近傍の磁場の影響による効率の低下を防止できるからである。
【0026】
B.各種の実施例:
図2(A)は、第1実施例としてのブラシレスリニアモータの構成を示す従断面図である。このリニアモータ100aは、磁石集合体20を含む第1の移動部材と、電磁コイル30を含む第2の移動部材とを有している。この例では、磁石集合体20は、4つの永久磁石対10pairを有している。すべてのS極には、電磁ヨーク部材12が設置されている。図2(B)は、リニアモータ100aの水平断面図である。N極近傍の磁場方向MDは、磁石集合体20の中央から外側に向けて放射状に延びている。図2(B)において、電流方向CDに沿って電磁コイル30に電流が流れると、電磁コイル30には紙面の裏から表に向かう方向に駆動力が働く。電磁コイル30が固定されている場合には、磁石集合体20が図2(B)の紙面の表から裏に向かう方向に駆動される。また、電流方向を逆転させると、これとは反対の駆動力が発生する。このように、このブラシレスリニアモータ100aでは、電磁コイル30に直流電流を流すことによって、図2(A)の駆動方向DD(上下方向)に沿って磁石集合体20を動作させることが可能である。
【0027】
なお、図2(A)にも示されているように、駆動方向DDに沿った電磁コイル30の長さは、2つ以上の同極接触面10cに渡る範囲以上の長さ(すなわち同極接触面10cのピッチ以上の長さ)に設定されていることが好ましい。この理由は、図1(D)に示すように、磁石集合体20の磁束密度分布が、同極接触面10cの位置で強く、他の位置で弱いからである。すなわち、電磁コイル30が、同極接触面10cのピッチ以上の長さを有していれば、同極接触面10c近傍の強い磁場を常に利用しつつ、大きな駆動力を発生することが可能である。一方、電磁コイル30の長さが同極接触面10cのピッチよりも短い場合には、停止位置によっては始動できない可能性が発生する。なお、これと同様の理由により、同極接触面10cのピッチは、一定であることが好ましい。
【0028】
図2(B)の例では、磁石集合体20の水平断面は矩形状であったが、磁石集合体20の水平断面形状としては、円形や三角形などの任意の形状を採用することが可能である。但し、磁石集合体20を構成する個々の永久磁石10は、磁極間の距離が大きな棒状の形状で無く、磁極間の距離(厚み)が小さい板状の形状を有していることが好ましい。この理由は、磁石集合体20を用いた電気機械では、同極接触面10cで発生する強い磁場を利用するので、磁石10の厚みが小さい方が効率が良いからである。この意味では、永久磁石10の磁化方向は、最も厚みの小さい方向と一致していることが好ましい。
【0029】
図3(A)は、第2実施例としてのブラシレスリニアモータの構成を示す従断面図であり、図3(B)はその側面図である。このリニアモータ100bは、磁石集合体20を含む第1の移動部材と、電磁コイル30を含む第2の移動部材40とを有している。電磁コイル30は、フレーム(枠部材)46で支持されており、フレーム46上には荷重部44が載置されている。荷重部44は、フレーム46とともに移動する物体であり、電磁コイル30の制御回路と電源(電池など)も含んでいる。フレーム46は、ベアリング42を介して磁石集合体20の上部に保持されている。電磁コイル30に直流電流が流れると、電磁コイル30とフレーム46と荷重部44とを含む移動部材40は、図3(A)の紙面に垂直な方向に沿って移動する。この移動方向は、図3(B)に示す駆動方向DDに相当する。
【0030】
図3(A)に示す電流方向CDに電流が流れた場合には、移動部材40は紙面の裏から表に向かう方向に駆動される。但し、図3(A)の構成では、電磁コイル30のコイル部分のうちで、永久磁石対10pairに近いコイル部分と、遠いコイル部分では逆方向の駆動力が発生する。しかしながら、永久磁石対10pairによる磁束密度は、永久磁石対10pairから遠くなると急激に減少するので、永久磁石対10pairから遠いコイル部分で発生する逆方向の駆動力は、実用上あまり問題とならない程度である。
【0031】
図3の例では、磁石集合体20は、1つの永久磁石対10pairと、その上端及び下端に設けられた電磁ヨーク部材12とで構成されている。この磁石集合体20は、図3(B)に示すように、駆動方向DDの寸法が最も大きな磁石である。従って、このリニアモータ100bでは、駆動方向DDに沿った長い距離に渡って移動部材40を移動させることが可能である。なお、図3(B)に示すように、永久磁石10の表面(側面)には、多数のスリット14が設けられている。
【0032】
図4(A)〜(C)は、磁石10のスリット14の配置例を示す説明図である。図4(A)の例では、スリット14が駆動方向DDに直交する方向に沿って設けられている。図4(B),(C)の例では、スリット14が、駆動方向DDと駆動方向DDに直交する方向との両方から傾いた方向に沿って設けられている。これらの例から理解できるように、スリット14は、モータの駆動方向DDに交わる方向に沿って設けられていることが好ましい。この理由は以下の通りである。一般に、厚み方向に磁化された無限大の板状磁石では、磁束密度が0になることが知られている。十分に大きな板状磁石でも同様の現象が生じうる。そこで、永久磁石の表面(電磁コイルと対向する表面)にスリット14を設けるようにすれば磁束密度を増加させることができ、この結果、駆動力を増大させることが可能である。このようなスリット14は、他の実施例においても設けることが好ましい。
【0033】
なお、図4に示した変形例では、永久磁石にスリットを設けていたが、スリットの位置で永久磁石が分離されていてもよい。この場合には、小さな複数の永久磁石が隙間を空けて配列される状態となることが理解できる。この場合の隙間と、図4におけるスリットは、いずれも永久磁石に設けられた「凹部」に該当するものと理解することができる。なお、凹部の代わりに凸部を永久磁石に設けるようにしても、ほぼ同様な効果を達成することができる。駆動方向と交わる方向に沿って設けられた凹部又は凸部を有する永久磁石は、様々な方法で作成することが可能である。例えば、最終的な磁石形状と同じ形状を有する未着磁の強磁性体部材を準備し、この強磁性体部材を着磁装置で着磁することによって、上記のような永久磁石を作成することができる。
【0034】
なお、前述した第1実施例では、図2(B)に示すように同極接触面10cに沿った電流方向CDに電流が流れるのに対して、第2実施例では、図3(A)に示すように同極接触面10cとは垂直な電流方向CDに電流が流れる。但し、いずれの場合にも、電流方向CDは、同極接触面10c上の磁場方向MDと直交する方向である点で共通している。このように、同極接触面10c上の磁場方向MDと直交する方向に沿って電流を流すようにすれば、効率良く駆動力を発生することが可能である。但し、電流方向CDは、同極接触面10c上の磁場方向MDと直交する方向で無くてもよく、同極接触面10c上の磁場方向MDと交差する任意の方向に取ることが可能である。
【0035】
図5(A)は、第3実施例としてのブラシレス回転式モータの構成を示す従断面図であり、図5(B)はそのB−B断面図である。この回転式モータ100cは、磁石集合体20を含むロータ(第1の移動部材)と、電磁コイル30を含むステータ(第2の移動部材)とを有している。電磁コイル30は、ケーシング130の内周に固定されている。ロータの上部軸110と下部軸120は、それぞれ軸受け112,122で保持されている。
磁石集合体20の下端部は、固定ネジ124で下部軸120と連結されている。一方、磁石集合体20の上端部に連結された上部軸110の回りには、バネ114が設けられており、このバネ114によって磁石集合体20の上端がケーシング130の内面から押力を受けている。但し、このような連結構造は単なる一例であり、他の種々の連結構造を採用することが可能である。
【0036】
第3実施例の磁石集合体20は、図3(A)に示した第2実施例と同様に、1つの永久磁石対とその両端に設けられた電磁ヨーク部材のみを含む構成を有している。但し、第3実施例の磁石集合体20は、図5(A),(B)から理解できるように、円盤状の形状を有している。
【0037】
図5(A)に示す電流方向CDに電流が流れた場合には、ロータ(磁石集合体20)は図5(B)の時計方向に駆動される。また、電流を逆方向に流せば、逆方向に駆動することも可能である。このように、第3実施例の回転式モータでは、電磁コイル30に直流電流を流すことによって、所定の回転方向にロータを回転させることが可能である。
【0038】
図6(A)〜(C)は、第3実施例に適した電磁コイルの断面構造を示す説明図である。図6(A)では、コイル30のコア部材として、強磁性体部材32が設けられている。図6(B)では、コイル30のコア部材として、非磁性体部材34が設けられている。図6(C)では、コイル30のコア部材として、永久磁石36と強磁性体部材32とが設けられている。なお、コア材としての永久磁石36の磁化方向は、磁石集合体20の同極接触面の磁場方向と同一(磁力線が同じ方向を向く)ものであることが好ましい。図6(A)〜(C)には、コイル30の部分として、磁石集合体20により近いコイル部分30iとより遠いコイル部分30oとが示されている。図6(A)及び(C)の構成では磁石集合体20により近いコイル部分30iでは、磁石集合体20の磁場によって駆動力が有効に発生し、一方、磁石集合体20により遠いコイル部分30oでは、磁石集合体20の磁場がコア部材によって遮蔽されるので駆動力がほとんど発生しない。この理由から、図6(A)及び(C)の構成は、図6(B)の構成よりも好ましい。
【0039】
図7は、第4実施例としてのブラシレス回転式モータの構成を示す従断面図である。この回転式モータ100dは、磁石集合体20として、2つの永久磁石対10pairを有するものを利用した点が第3実施例と異なっている。このように、2つ以上の永久磁石対10pairを有する磁石集合体20を回転式モータとして利用すれば、より大きな駆動力を発生させることが可能である。
【0040】
図8(A)は、第5実施例としてのブラシレス回転式モータの構成を示す従断面図であり、図8(B)はその磁石集合体20eのみを示す縦断面図である。この回転式モータ100eでは、図8(B)に示すように、磁石集合体20eの永久磁石に、中心軸用の空間の他に環状空間22が設けられている。この環状空間22の中にステータの電磁コイル30が挿入される。また、磁石集合体20eは全体として略円筒状の形状を有しており、その外周の全体が電磁ヨーク部材12で被覆されている。磁石集合体20eと電磁コイル30とをこのように構成すれば、図8(A)に示すように、電磁コイル30のコア部材を挟んだ両側のコイル部分では逆向きの磁場が存在するので、電磁コイル30の両側のコイル部分から同一方向の駆動力を発生させることが可能である。
【0041】
図9(A)〜(C)は、第5実施例に適した電磁コイルの断面構造を示す説明図である。図9(A)、(B)は、前述した図6(A),(B)の構成と同じである。図9(C)では、コイル30のコア部材として、強磁性体部材32の両側に永久磁石36がそれぞれ設けられている。なお、コア材としての永久磁石36の磁化方向は、図6(C)の例と同様に、磁石集合体20eの同極接触面上の磁場方向と同一(磁力線が同じ方向を向く)ものであることが好ましい。
【0042】
図10は、第6実施例としてのブラシレス回転式モータの構成を示す従断面図である。この回転式モータ100fは、図8に示した第5実施例の回転式モータ100eを逆向きに2組配置して、上方と下方にそれぞれ独立に回転する軸120を設けた構成を有している。なお、ケーシングは2つのモータ100eで共用している。この回転式モータ100fでは、2つの軸120を利用して2つの被駆動部材を独立に駆動することが可能である。
【0043】
以上の各種の実施例から理解できるように、本発明の各種実施例によるブラシレス電気機械は、1つ以上の永久磁石対を含む磁石集合体を備える第1の部材(「第1の移動部材」とも呼ぶ)と、電磁コイルを備える第2の部材(「第2の移動部材」とも呼ぶ)と、を備え、第1と第2の移動部材とが相対的に移動できるように構成された種々のブラシレス電気機械として実現可能である。
【0044】
C.回路構成:
図11は、実施例におけるブラシレス電気機械の制御回路の構成を示すブロック図である。この制御回路は、CPUシステム300と、駆動信号生成部200と、駆動ドライバ部210と、回生制御部220と、蓄電器230と、蓄電制御部240とを備えている。駆動信号生成部200は、駆動ドライバ部210に供給する駆動信号を生成する。
【0045】
図12は、駆動ドライバ部210の構成を示す回路図である。この駆動ドライバ部210は、H型ブリッジ回路を構成している。駆動信号生成部200からは、第1の駆動信号DRVA1と、第2の駆動信号DRVA2のうちの一方が駆動ドライバ部210に供給される。図11に示す電流IA1,IA2は、これらの駆動信号DRVA1,DRVA2に応じて流れる電流(「駆動電流」とも呼ぶ)の方向を示している。例えば、第1の駆動信号DRVA1に応じて電流IA1が流れる場合にはモータが所定の第1の駆動方向に動作し、第2の駆動信号DRVA2に応じて電流IA2が流れる場合にはモータが第1の駆動方向とは逆の第2の駆動方向に動作する。この第1の駆動方向は、例えば図2(A)の上方向であり、第2の駆動方向は下方向である。あるいは、図5のような回転式モータの場合には、第1の駆動方向は例えば右回りであり、第2の駆動方向は左回りである。駆動信号DRVA1,DRVA2としては、例えば、一定のオン信号や、周期的なパルス信号等を使用することが可能である。
【0046】
なお、駆動信号生成部200は、2つの駆動信号DRVA1,DRVA2のうちの一方のみしか生成しないように構成することも可能である。この場合には、モータは一方向にしか駆動できないが、例えばファンモータのような実装例ではこれでも十分である。
【0047】
図13は、回生制御部220の内部構成を示す回路図である。回生制御部220は、電磁コイル30に対して駆動ドライバ部と並列に接続されている。回生制御部220は、ダイオードで構成される整流回路222と、スイッチングトランジスタ224とを備えている。蓄電制御部240によってスイッチングトランジスタ224がオン状態になると、電磁コイル30で発生した電力を回生して蓄電器230を充電することが可能である。また、蓄電器230から電磁コイル30に電流を供給することも可能である。なお、制御部から、回生制御部220と蓄電器230と蓄電制御部240を省略してもよく、或いは、駆動信号生成部200と駆動ドライバ部210を省略してもよい。
【0048】
このように、上述した各実施例のブラシレスモータでは、永久磁石対10pairを構成することによって強い磁場を発生させ、この磁場と電磁コイルとの電磁相互作用で駆動力を発生させるようにしたので、電磁コイルに一定方向の電流を流すことによって、モータに所定の駆動方向の力を発生させることができる。すなわち、本実施例のブラシレスモータでは、制御回路によって駆動電圧や駆動電流の切り替えを行うことなく、ブラシレスモータを動作させることが可能である。また、ブラシレス電気機械をブラシレス発電機として構成した場合には、所定の方向に沿った発電機の動作を直流電力に変換することが可能である。
【0049】
D.変形例:
なお、この発明は上記の実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
【0050】
D1.変形例1:
上記実施例では、電磁コイルに直流の駆動電圧を印加するものとしていたが、駆動電圧としてパルス状の電圧を電磁コイルに印加しても良い。すなわち、駆動電圧の極性を変更することなく所定の極性の電圧を電磁コイルに与えることによって、所定の駆動方向にモータを動作させることができる。また、駆動電流の観点からは、駆動電流の方向を変更することなく所定の方向の駆動電流を電磁コイルに与えることによって、所定の駆動方向にモータを動作させることができることが理解できる。但し、パルス状の電圧や電流で無く、継続的に一定の直流電圧や直流電流をコイルに与えるようにすれば、制御回路の構成がより容易になるという利点がある。
【0051】
D2.変形例2:
上記実施例では、ブラシレス電気機械の機械的構成や回路構成の具体例を説明したが、本発明のブラシレス電気機械の機械的構成や回路構成としては、これら以外の任意の構成を採用することが可能である。
【0052】
D3.変形例3:
本発明は、ファンモータ、時計(針駆動)、ドラム式洗濯機(単一回転)、ジェットコースタ、振動モータなどの種々の装置のモータに適用可能である。本発明をファンモータに適用した場合には、上述した種々の効果(低消費電力、低振動、低騒音、低回転ムラ、低発熱、高寿命)が特に顕著である。このようなファンモータは、例えば、デジタル表示装置や、車載機器、燃料電池式パソコン、燃料電池式デジタルカメラ、燃料電池式ビデオカメラ、燃料電池式携帯電話などの燃料電池使用機器、プロジェクタ等の各種装置のファンモータとして使用することができる。本発明のモータは、さらに、各種の家電機器や電子機器のモータとしても利用可能である。例えば、光記憶装置や、磁気記憶装置、ポリゴンミラー駆動装置等において、本発明によるモータをスピンドルモータとして使用することが可能である。また、本発明によるモータは、移動体やロボット用のモータとしても利用可能である。
【0053】
図14は、本発明の実施例によるモータを利用したプロジェクタを示す説明図である。このプロジェクタ600は、赤、緑、青の3色の色光を発光する3つの光源610R、610G、610Bと、これらの3色の色光をそれぞれ変調する3つの液晶ライトバルブ640R、640G、640Bと、変調された3色の色光を合成するクロスダイクロイックプリズム650と、合成された3色の色光をスクリーンSCに投写する投写レンズ系660と、プロジェクタ内部を冷却するための冷却ファン670と、プロジェクタ600の全体を制御する制御部680と、を備えている。冷却ファン670を駆動するモータとしては、上述した各種のブラシレスモータを利用することができる。
【0054】
図15(A)〜(C)は、本発明の実施例によるモータを利用した燃料電池式携帯電話を示す説明図である。図15(A)は携帯電話700の外観を示しており、図15(B)は、内部構成の例を示している。携帯電話700は、携帯電話700の動作を制御するMPU710と、ファン720と、燃料電池730とを備えている。燃料電池730は、MPU710やファン720に電源を供給する。ファン720は、燃料電池730への空気供給のために携帯電話700の外から内部へ送風するため、或いは、燃料電池730で生成される水分を携帯電話700の内部から外に排出するためのものである。なお、ファン720を図15(C)のようにMPU710の上に配置して、MPU710を冷却するようにしてもよい。ファン720を駆動するモータとしては、上述した各種のブラシレスモータを利用することができる。
【0055】
図16は、本発明の実施例によるモータ/発電機を利用した移動体の一例としての電動自転車(電動アシスト自転車)を示す説明図である。この自転車800は、前輪にモータ810が設けられており、サドルの下方のフレームに制御回路820と充電池830とが設けられている。モータ810は、充電池830からの電力を利用して前輪を駆動することによって、走行をアシストする。また、ブレーキ時にはモータ810で回生された電力が充電池830に充電される。制御回路820は、モータの駆動と回生とを制御する回路である。このモータ810としては、上述した各種のブラシレスモータを利用することが可能である。
【0056】
図17は、本発明の実施例によるモータを利用したロボットの一例を示す説明図である。このロボット900は、第1と第2のアーム910,920と、モータ930とを有している。このモータ930は、被駆動部材としての第2のアーム920を水平回転させる際に使用される。このモータ930としては、上述した各種のブラシレスモータを利用することが可能である。
【図面の簡単な説明】
【0057】
【図1】本発明の各種実施例で利用される磁石集合体の概略構成を示す説明図である。
【図2】第1実施例としてのリニアモータの構成を示す断面図である。
【図3】第2実施例としてのリニアモータの構成を示す説明図である。
【図4】磁石のスリットの配置例を示す説明図である。
【図5】第3実施例としての回転式モータの構成を示す断面図である。
【図6】第3実施例に適した電磁コイルの断面構造を示す説明図である。
【図7】第4実施例としての回転式モータの構成を示す断面図である。
【図8】第5実施例としての回転式モータの構成を示す断面図である。
【図9】第5実施例に適した電磁コイルの断面構造を示す説明図である。
【図10】第6実施例としての回転式モータの構成を示す断面図である。
【図11】ブラシレス電気機械の制御回路の構成を示すブロック図である。
【図12】駆動ドライバ部の構成を示す回路図である。
【図13】回生制御部の内部構成を示す回路図である。
【図14】本発明の実施例によるモータを利用したプロジェクタを示す説明図である。
【図15】本発明の実施例によるモータを利用した燃料電池式携帯電話を示す説明図である。
【図16】本発明の実施例によるモータ/発電機を利用した移動体の一例としての電動自転車(電動アシスト自転車)を示す説明図である。
【図17】本発明の実施例によるモータを利用したロボットの一例を示す説明図である。
【符号の説明】
【0058】
10…永久磁石
10c…同極接触面
10pair…永久磁石対
12…電磁ヨーク部材
14…スリット
20…磁石集合体
22…環状空間
30…電磁コイル
32…強磁性体部材
34…非磁性体部材
36…永久磁石
40…移動部材
42…ベアリング
44…荷重部
46…フレーム
100a…リニアモータ
100b…リニアモータ
100c…回転式モータ
100d…回転式モータ
100e…回転式モータ
100f…回転式モータ
110…上部軸
114…バネ
120…軸
124…固定ネジ
130…ケーシング
200…駆動信号生成部
210…駆動ドライバ部
220…回生制御部
222…整流回路
224…スイッチングトランジスタ
230…蓄電器
240…蓄電制御部
300…CPUシステム
600…プロジェクタ
610R,610G,610B…光源
640R,640G,640B…液晶ライトバルブ
650…クロスダイクロイックプリズム
660…投写レンズ系
670…冷却ファン
680…制御部
700…携帯電話
710…MPU
720…ファン
730…燃料電池
800…電動自転車(電動アシスト自転車)
810…モータ
820…制御回路
830…充電池
900…ロボット
910…アーム
920…アーム
930…モータ

【特許請求の範囲】
【請求項1】
ブラシレス電気機械であって、
N極とS極のうちから選ばれた第1の極同士が互いに接した状態で保持された永久磁石対を少なくとも1つ含む磁石集合体を備える第1の移動部材と、
電磁コイルを含み、前記第1の移動部材との相対的な位置が変更可能に構成された第2の移動部材と、
前記電磁コイルへの電力の供給又は前記電磁コイルからの電力の回生を制御する制御回路と、
を備え、
前記永久磁石対は、前記第1の極同士が互いに接する同極接触面上の磁場方向であって、前記永久磁石対の中央から外側に向かう磁場方向に沿って最も強い磁場を発生しており、
前記電磁コイルは、前記磁場方向と交差する方向に電流が流れるように配置されており、
前記制御回路は、
(i)前記電磁コイルに供給する電流の方向を変更せずに前記電磁コイルに所定の第1の電流方向の駆動電流を供給することによって、前記ブラシレス電気機械を所定の駆動方向に動作させる駆動制御と、
(ii)前記第1と第2の移動部材との間の所定の方向に沿った相対的な移動に応じて前記電磁コイルに発生する直流電力を回生する回生制御と、
の少なくとも一方を実行するように構成されている、ブラシレス電気機械。
【請求項2】
請求項1記載のブラシレス電気機械であって、
前記磁石集合体は、各永久磁石のN極とS極のうちで前記第1の極とは反対の第2の極に接した状態で設けられた電磁ヨーク部材を含む、ブラシレス電気機械。
【請求項3】
請求項2記載のブラシレス電気機械であって、
前記磁石集合体は、2つ以上の前記永久磁石対と、隣接する永久磁石対の間に設けられた前記電磁ヨーク部材とを含む、ブラシレス電気機械。
【請求項4】
請求項1ないし3のいずれかに記載のブラシレス電気機械であって、
前記第1と第2の移動部材は、前記同極接触面に対して垂直な方向に沿って相対的に移動可能に構成されている、ブラシレス電気機械。
【請求項5】
請求項1ないし3のいずれかに記載のブラシレス電気機械であって、
前記第1と第2の移動部材は、前記同極接触面に平行な所定の方向に沿って相対的に移動可能に構成されている、ブラシレス電気機械。
【請求項6】
請求項1ないし5のいずれかに記載のブラシレス電気機械であって、
前記制御回路は、前記駆動制御において、前記電磁コイルに前記第1の電流方向とは逆の方向に駆動電流を供給することによって、前記ブラシレス電気機械を前記駆動方向とは逆の方向に動作させる、ブラシレス電気機械。
【請求項7】
請求項1ないし6のいずれかに記載のブラシレス電気機械であって、
前記永久磁石は、前記駆動方向と交わる方向に沿って設けられた凹部又は凸部を有する、ブラシレス電気機械。
【請求項8】
請求項1ないし7のいずれかに記載のブラシレス電気機械であって、
前記ブラシレス電気機械は回転式モータである、ブラシレス電気機械。
【請求項9】
請求項1ないし7のいずれかに記載のブラシレス電気機械であって、
前記ブラシレス電気機械は直進式モータである、ブラシレス電気機械。
【請求項10】
電子機器であって、
所定の駆動方向に動作可能なブラシレスモータと、
前記ブラシレスモータによって駆動される被駆動部材と、
を備え、
前記ブラシレスモータは、
N極とS極のうちから選ばれた第1の極同士が互いに接した状態で保持された永久磁石対を少なくとも1つ含む磁石集合体を備える第1の移動部材と、
電磁コイルを含み、前記第1の移動部材との相対的な位置が変更可能に構成された第2の移動部材と、
前記電磁コイルへの電力の供給を制御する制御回路と、
を備え、
前記永久磁石対は、前記第1の極同士が互いに接する同極接触面上の磁場方向であって、前記永久磁石対の中央から外側に向かう磁場方向に沿って最も強い磁場を発生しており、
前記電磁コイルは、前記磁場方向と交差する方向に電流が流れるように配置されており、
前記制御回路は、前記電磁コイルに供給する電流の方向を変更せずに前記電磁コイルに所定の第1の電流方向の駆動電流を供給することによって、前記ブラシレスモータを所定の駆動方向に動作させる駆動制御を実行する、電子機器。
【請求項11】
請求項10記載の電子機器であって、
前記電子機器はプロジェクタである、電子機器。
【請求項12】
燃料電池使用機器であって、
所定の駆動方向に動作可能なブラシレスモータと、
前記ブラシレスモータによって駆動される被駆動部材と、
前記ブラシレスモータに電源を供給する燃料電池と、
を備え、
前記ブラシレスモータは、
N極とS極のうちから選ばれた第1の極同士が互いに接した状態で保持された永久磁石対を少なくとも1つ含む磁石集合体を備える第1の移動部材と、
電磁コイルを含み、前記第1の移動部材との相対的な位置が変更可能に構成された第2の移動部材と、
前記電磁コイルへの電力の供給を制御する制御回路と、
を備え、
前記永久磁石対は、前記第1の極同士が互いに接する同極接触面上の磁場方向であって、前記永久磁石対の中央から外側に向かう磁場方向に沿って最も強い磁場を発生しており、
前記電磁コイルは、前記磁場方向と交差する方向に電流が流れるように配置されており、
前記制御回路は、前記電磁コイルに供給する電流の方向を変更せずに前記電磁コイルに所定の第1の電流方向の駆動電流を供給することによって、前記ブラシレスモータを所定の駆動方向に動作させる駆動制御を実行する、燃料電池使用機器。
【請求項13】
ロボットであって、
ブラシレスモータと、
前記ブラシレスモータによって駆動される被駆動部材と、
を備え、
前記ブラシレスモータは、
N極とS極のうちから選ばれた第1の極同士が互いに接した状態で保持された永久磁石対を少なくとも1つ含む磁石集合体を備える第1の移動部材と、
電磁コイルを含み、前記第1の移動部材との相対的な位置が変更可能に構成された第2の移動部材と、
前記電磁コイルへの電力の供給を制御する制御回路と、
を備え、
前記永久磁石対は、前記第1の極同士が互いに接する同極接触面上の磁場方向であって、前記永久磁石対の中央から外側に向かう磁場方向に沿って最も強い磁場を発生しており、
前記電磁コイルは、前記磁場方向と交差する方向に電流が流れるように配置されており、
前記制御回路は、前記電磁コイルに供給する電流の方向を変更せずに前記電磁コイルに所定の第1の電流方向の駆動電流を供給することによって、前記ブラシレスモータを所定の駆動方向に動作させる駆動制御を実行する、ロボット。
【請求項14】
請求項1記載のブラシレス電気機械を備えた移動体。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate


【公開番号】特開2009−71946(P2009−71946A)
【公開日】平成21年4月2日(2009.4.2)
【国際特許分類】
【出願番号】特願2007−236326(P2007−236326)
【出願日】平成19年9月12日(2007.9.12)
【出願人】(000002369)セイコーエプソン株式会社 (51,324)
【Fターム(参考)】