説明

位置合わせ性に優れたはんだペーストを用いた基板と被搭載物の接合方法

【課題】はんだペーストを用いて基板に対して被搭載物を同じ位置および方向となるように接合する方法、特にAu−Sn合金はんだペーストを用いて基板に対して素子を同じ位置および方向となるように接合する方法を提供する。
【解決手段】メタライズ層を有する基板のメタライズ層とメタライズ層を有する被搭載物のメタライズ層との間にはんだペースト3を搭載または塗布したのち非酸化性雰囲気中でリフロー処理して基板と被搭載物を接合するはんだペーストを用いた基板と被搭載物の接合方法において、前記基板のメタライズ層を図1(a)のように面積が被搭載物4のメタライズ層の面積よりも小さいメタライズ層本体部分6と前記メタライズ層本体部分6の周囲から突出したはんだ誘引部7とからなる平面形状を有するようにすると、被搭載物が図1(b)の如くはんだ誘引部7の方向に揃ってはんだ付けされる。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、はんだペーストを用いて基板に対して被搭載物を同じ位置および方向となるように接合する方法に関するものであり、特にAu−Sn合金はんだペーストを用いて基板に対して素子を同じ位置および方向となるように接合する方法に関するものである。
【背景技術】
【0002】
一般に、LED(発光ダイオード)素子、GaAs光素子、GaAs高周波素子、熱伝素子などの半導体素子と基板との接合などにAu−Sn合金はんだペーストなどが使用されるようになってきた。このAu−Sn合金はんだペーストは、Sn:15〜25質量%(好ましくはSn:20質量%)を含有し、残りがAuおよび不可避不純物からなる組成を有するAu−Sn共晶合金ガスアトマイズ粉末とロジン、活性剤、溶剤および増粘剤からなる市販のフラックスとを混合して作られることが知られている。
【0003】
このAu−Sn合金はんだペーストを使用して素子と基板を接合するとAu−Sn合金はんだ接合層がAu−Snはんだ合金であるので熱伝導性が良く接合信頼性も高いこと、ペーストであるので複数の接合部に一括供給でき、さらに一括熱処理できること、リフロー時にフラックスがAu−Snはんだ合金表面を覆っているために酸化膜が少なく、そのため、接合時の溶融Au−Snはんだ合金の流動性が大きく、濡れが良くなって素子全面を接合することができること、さらに接合時に過剰な荷重をかける必要がないことなどのメリットがあるとされている。
【0004】
このAu−Sn合金はんだペーストを用いて基板と素子を接合するには、まず、図5(a)の断面側面図に示されるように、基板1の表面に形成されたメタライズ層2の上にAu−Sn合金はんだペースト3を搭載または塗布し、このAu−Sn合金はんだペースト3の上に素子4を素子4のメタライズ層2´がAu−Sn合金はんだペースト3に接するように搭載し、この状態で加熱してリフロー処理を施したのち冷却すると、図5(b)の断面側面図に示されるように、Au−Sn合金はんだ接合層5を介して基板1と素子4が接合する(特許文献1など参照)。この時、基板1の表面に形成されるメタライズ層2の面積は、素子4のメタライズ層2´の面積と同じかまたは素子4のメタライズ層2´の面積よりも大きくとることが普通である。
【特許文献1】特開2007−61857
【発明の開示】
【発明が解決しようとする課題】
【0005】
図4は、図5(a)の上方向から見た平面図である。図4および図5(a)示されるように、基板1のメタライズ層2の上にAu−Sn合金はんだペースト3を搭載または塗布し、このAu−Sn合金はんだペースト3の上に素子4を基板1のメタライズ層2の中心部に同軸でかつ同一方向となるように搭載し、この状態で加熱してリフロー処理を施すと、リフロー処理時に溶融したAu−Sn合金はんだは基板1におけるメタライズ層2の全面に広がってAu−Sn合金はんだ接合層5を形成すると同時に一時的に素子4が溶融したAu−Sn合金はんだの上に浮んだ状態になり、このとき素子4が回転し、冷却後は、図5(b)の上方向から見た平面図である図3に示されるように、素子4はメタライズ層2の上のAu−Sn合金はんだ接合層5の上に、基板1のメタライズ層2に対して基板1のメタライズ層2中心部よりずれて傾いた状態ではんだ接合されることが多い。特に工業的に素子4を基板にはんだ接合するには、広い基板の上に多数の整列したメタライズ層を形成し、この多数のメタライズ層の上にそれぞれAu−Sn合金はんだペーストを搭載または塗布し、このAu−Sn合金はんだペーストの上に素子を規則正しく搭載した状態で加熱炉に装入し、多数個の素子を1回のリフロー処理により素子を基板にはんだ接合するが、リフロー処理時に素子が回転して、整列した基板のメタライズ層に対して中心部よりランダムな方向にずれて傾いて素子がはんだ接合され、出荷するための製品としては好ましくない。また、今後のパッケージサイズの更なる微小化の際に、素子同士の距離が近づくと、素子同士の接触が生じることも懸念される。
【課題を解決するための手段】
【0006】
そこで、本発明者らは、基板のメタライズ層に対して常に同じ位置でかつ一定の方向を向くようにはんだ付けすることができるAu−Sn合金はんだペーストを用いた基板と素子の接合方法を開発すべく研究を行った。その結果、
(イ)図1(a)の平面図に示されるように、基板表面に形成されるメタライズ層を、メタライズ層本体部分6とこのメタライズ層本体部分6の周囲から突出したはんだ誘引部7を有する平面形状とし、このメタライズ層本体部分6の上にAu−Sn合金はんだペースト3を搭載し、このAu−Sn合金はんだペースト3の上に前記メタライズ層本体部分6の面積よりも大きな面積を有する素子4を任意の方向に搭載しリフロー処理すると、溶融はんだの表面張力が作用して図1(b)の平面図に示されるように、リフロー処理中に素子4の最長対角線(素子が正方形または長方形の場合は通常の対角線であり、楕円形の場合は長径などである)と前記はんだ誘引部7の突出方向とが一致するように回転してはんだ付けされ、同一形状の素子は一定の方向に向いてはんだ付けされる、
(ロ)前記Au−Sn合金はんだペーストに換えて、Pb:35〜60質量%を含有し、残部:Snおよび不可避不純物であるPb−Snはんだ合金粉末にフラックスを混合したPb−Sn合金はんだペースト、Pb:90〜95質量%を含有し、残部:Snおよび不可避不純物であるPb−Snはんだ合金粉末にフラックスを混合したPb−Sn合金はんだペースト、またはSn:40〜100質量%を含有し、残部:Ag、Au、Cu、Bi、Sb、In及びZnからなる群より選ばれた1種又は2種以上の金属および不可避不純物であるPbフリーはんだ合金粉末にフラックスを混合したPbフリーはんだペーストであっても同じ作用を奏する、
(ハ)前記(イ)に示される現象は、基板と素子に限定されるものではなく、基板に対する一般の被搭載物に対しても生じる、などの研究結果が得られたのである。
【0007】
この発明は、かかる研究結果に基づいて成されたものであって、
(1)メタライズ層を形成した基板におけるメタライズ層とメタライズ層を形成した被搭載物におけるメタライズ層との間にはんだペーストを搭載または塗布したのち非酸化性雰囲気中でリフロー処理して基板と被搭載物を接合するはんだペーストを用いた基板と被搭載物の接合方法において、
前記基板の表面に形成されるメタライズ層は、面積が被搭載物のメタライズ層の面積よりも小さいメタライズ層本体部分と前記メタライズ層本体部分の周囲から突出したはんだ誘引部とからなる平面形状を有する位置合わせ性に優れたはんだペーストを用いた基板と被搭載物の接合方法、
(2)前記はんだペーストは、Sn:20〜25質量%を含有し、残部:Auおよび不可避不純物であるAu−Snはんだ合金粉末にフラックスを混合したAu−Sn合金はんだペーストである前記(1)記載の位置合わせ性に優れたはんだペーストを用いた基板と被搭載物の接合方法、
(3)前記はんだペーストは、Pb:35〜60質量%を含有し、残部:Snおよび不可避不純物であるPb−Snはんだ合金粉末にフラックスを混合したPb−Sn合金はんだペーストである前記(1)記載の位置合わせ性に優れたはんだペーストを用いた基板と被搭載物の接合方法、
(4)前記はんだペーストは、Pb:90〜95質量%を含有し、残部:Snおよび不可避不純物であるPb−Snはんだ合金粉末にフラックスを混合したPb−Sn合金はんだペーストである前記(1)記載の位置合わせ性に優れたはんだペーストを用いた基板と被搭載物の接合方法、
(5)前記はんだペーストは、Sn:40〜100質量%を含有し、残部:Ag、Au、Cu、Bi、Sb、In及びZnからなる群より選ばれた1種又は2種以上の金属および不可避不純物であるPbフリーはんだ合金粉末にフラックスを混合したPbフリーはんだペーストである前記(1)記載の位置合わせ性に優れたはんだペーストを用いた基板と被搭載物の接合方法、
(6)前記被搭載物は素子である前記(1)、(2)、(3)、(4)または(5)記載の位置合わせ性に優れたはんだペーストを用いた基板と被搭載物の接合方法、に特徴を有するものである。
【0008】
基体に形成されるメタライズ層本体部分6の形状は、特に限定されるものではなく、図2(a)に示されるように、円形でも良く、その他任意の平面形状を有していても良い。またメタライズ層本体部分6の周囲から突出したはんだ誘引部7はメタライズ層本体部分6の周囲の任意の位置から突出していれば良く、例えば、図2(b)に示されるように、正方形のメタライズ層本体部分6の角から突出していても良い。この発明は、メタライズ層本体部分と前記メタライズ層本体部分の周囲から突出したはんだ誘引部とからなる平面形状を有するメタライズ層を含むものである。したがって、この発明は、
(7)メタライズ層本体部分と前記メタライズ層本体部分の周囲から突出したはんだ誘引部とからなる平面形状を有する基板表面に形成されるメタライズ層、に特徴を有するものである。
【0009】
前記メタライズ層は、素子を接合するための電極膜として使用することが出来る。したがって、この発明は、
(8)基板に形成されるメタライズ層は、電極膜である前記(7)記載の基板表面に形成されるメタライズ層、に特徴を有するものである。
【発明の効果】
【0010】
この発明の基板と被搭載物の接合方法によると、すべての被搭載物を所望の位置および方向に合わせてはんだ接合することができる。
【発明を実施するための最良の形態】
【0011】
実施例1
Sn:20質量%を含有し、残部がAuからなる成分組成を有し平均粒径D50:11.1μm、最大粒径:20.1μmを有するAu−Sn合金はんだ粉末を用意し、このAu−Sn合金はんだ粉末に市販のRMAフラックスを、RMAフラックス:8.0質量%、残部がAu−Sn合金はんだ粉末の配合組成となるように配合し、混合してペースト粘度:85Pa・sを有するAu−Sn合金はんだペーストを作製し、このAu−Sn合金はんだペーストをシリンジに充填してディスペンサー装置(武蔵エンジニアリング製、型番:ML−606GX)に装着した。
【0012】
さらに、50個のLED素子を用意し、これらLED素子の片面全面に厚さ:3μm、縦:400μm、横:400μmの寸法を有するAuメッキを施した。
さらに、アルミナ製基板を用意し、このアルミナ製基板の表面に、縦:200μm、横:200μmの寸法を有し、厚さ:10μmを有するCu層、厚さ:5μmを有するNi層および厚さ:0.1μmを有するAu層からなる複合メタライズ層を形成したメタライズ層本体部分、並びに同じ複合メタライズ層を形成した幅:100μm、長さ:90μmの寸法を有するはんだ誘引部からなるメタライズ層を400μm間隔で50個所一列に形成した。
【0013】
これらメタライズ層本体部分およびはんだ誘引部からなる50個所のメタライズ層におけるメタライズ層本体部中心位置に、先に用意したディスペンサー装置により0.03mgの量のAu−Sn合金はんだペーストを塗布し、このAu−Sn合金はんだペーストの上に先に用意した50個のLED素子をマウンターを用いて搭載し、窒素雰囲気中、温度:300℃、30秒間保持する条件のリフロー処理を施し、その後、冷却し、一列に配列した50個のLED素子位置を3次元測定機(Nikon製 NEXIV VMR−3020)を用いて、素子中心位置を測定した。ここではX軸方向に一列に50個接合したLED素子の中心位置のy軸方向のブレを平均y軸位置に対する標準偏差として算出した。その結果、素子中心位置:y軸ぶれ±4.2μmであり、素子の位置精度が非常に高いことがわかった。
【0014】
実施例2
Pb:37質量%を含有し、残部がSnからなる成分組成を有し平均粒径D50:11.4μm、最大粒径:14.5μmを有するPb−Sn合金はんだ粉末を用意し、このPb−Sn合金はんだ粉末に市販のRMAフラックスを、RMAフラックス:11.0質量%、残部がPb−Sn合金はんだ粉末の配合組成となるように配合し、混合してペースト粘度:120Pa・sを有するPb−Sn合金はんだペーストを作製し、このPb−Sn合金はんだペーストをシリンジに充填してディスペンサー装置(武蔵エンジニアリング製、型番:ML−606GX)に装着した。
このディスペンサー装置により0.02mgの量のPb−Sn合金はんだペーストを実施例1で作製したメタライズ層本体部分およびはんだ誘引部からなる50個所のメタライズ層の上に塗布し、このPb−Sn合金はんだペーストの上に先に用意した50個のLED素子を搭載し、窒素雰囲気中、温度:220℃、30秒間保持する条件のリフロー処理を施し、その後、冷却し、50個のLED素子位置を3次元測定機(Nikon製 NEXIV VMR−3020)を用いて、素子中心位置を測定した。ここではX軸方向に一列に50個接合したLED素子の中心位置のy軸方向のブレを平均y軸位置に対する標準偏差として算出した。その結果、素子中心位置:y軸ぶれ±5.8μmであり、素子の位置精度が非常に高いことがわかった。
【0015】
実施例3
Pb:95質量%を含有し、残部がSnからなる成分組成を有し平均粒径D50:11.7μm、最大粒径:14.8μmを有するPb−Sn合金はんだ粉末を用意し、このPb−Sn合金はんだ粉末に市販のRAフラックスを、RAフラックス:10.0質量%、残部がPb−Sn合金はんだ粉末の配合組成となるように配合し、混合してペースト粘度:80Pa・sを有するPb−Sn合金はんだペーストを作製し、このPb−Sn合金はんだペーストをシリンジに充填してディスペンサー装置(武蔵エンジニアリング製、型番:ML−606GX)に装着した。
このディスペンサー装置により0.03mgの量のPb−Sn合金はんだペーストを実施例1で作製したメタライズ層本体部分およびはんだ誘引部からなる50個所のメタライズ層の上に塗布し、このPb−Sn合金はんだペーストの上に先に用意した50個のLED素子を搭載し、窒素雰囲気中、温度:330℃、30秒間保持する条件のリフロー処理を施し、その後、冷却し、50個のLED素子位置を3次元測定機(Nikon製 NEXIV VMR−3020)を用いて、素子中心位置を測定した。ここではX軸方向に一列に50個接合したLED素子の中心位置のy軸方向のブレを平均y軸位置に対する標準偏差として算出した。その結果、素子中心位置:y軸ぶれ±6.7μmであり、素子の位置精度が非常に高いことがわかった。
【0016】
実施例4
Sn:96.5質量%、Ag:3.0質量%を含有し、残部がCuからなる成分組成を有し平均粒径D50:10.8μm、最大粒径:14.1μmを有するPbフリーはんだ粉末を用意し、このPbフリーはんだ粉末に市販のRMAフラックスを、RMAフラックス:12.5質量%、残部がPbフリーはんだ粉末の配合組成となるように配合し、混合してペースト粘度:72Pa・sを有するPbフリーはんだペーストを作製し、このPbフリーはんだペーストをシリンジに充填してディスペンサー装置(武蔵エンジニアリング製、型番:ML−606GX)に装着した。
このディスペンサー装置により0.02mgの量のPbフリーはんだペーストを実施例1で作製したメタライズ層本体部分およびはんだ誘引部からなる50個所のメタライズ層の上に塗布し、このPbフリーはんだペーストの上に先に用意した50個のLED素子を搭載し、窒素雰囲気中、温度:240℃、30秒間保持する条件のリフロー処理を施し、その後、冷却し、50個のLED素子位置を3次元測定機(Nikon製 NEXIV VMR−3020)を用いて、素子中心位置を測定した。ここではX軸方向に一列に50個接合したLED素子の中心位置のy軸方向のブレを平均y軸位置に対する標準偏差として算出した。その結果、素子中心位置:y軸ぶれ±5.1μmであり、素子の位置精度が非常に高いことがわかった。
【0017】
従来例1
Sn:20質量%を含有し、残部がAuからなる成分組成を有し平均粒径D50:11.1μm、最大粒径:20.1μmを有するAu−Sn合金はんだ粉末を用意し、このAu−Sn合金はんだ粉末に市販のRMAフラックスを、RMAフラックス:8.0質量%、残部がAu−Sn合金はんだ粉末の配合組成となるように配合し、混合してペースト粘度:85Pa・sを有するAu−Sn合金はんだペーストを作製し、このAu−Sn合金はんだペーストをシリンジに充填してディスペンサー装置(武蔵エンジニアリング製、型番:ML−606GX)に装着した。
さらに、50個のLED素子を用意し、これらLED素子の片面全面に厚さ:3μm、縦:400μm、横:400μmの寸法を有するAuメッキを施した。
さらに、アルミナ製基板を用意し、このアルミナ製基板の表面に、縦:500μm、横:500μmの寸法を有し、厚さ:10μmを有するCu層、厚さ:5μmを有するNi層および厚さ:0.1μmを有するAu層からなる複合メタライズ層を形成したメタライズ層を400μm間隔で50個所一列に形成した。
【0018】
これらメタライズ層からなる50個所のメタライズ層の中心位置に、先に用意したディスペンサー装置により0.03mgの量のAu−Sn合金はんだペーストを塗布し、このAu−Sn合金はんだペーストの上に先に用意した50個のLED素子をマウンターを用いて搭載し、窒素雰囲気中、温度:300℃、30秒間保持する条件のリフロー処理を施し、その後、冷却し、一列に配列した50個のLED素子位置を3次元測定機(Nikon製 NEXIV VMR−3020)を用いて、素子中心位置を測定した。ここではX軸方向に一列に50個接合したLED素子の中心位置のy軸方向のブレを平均y軸位置に対する標準偏差として算出した。その結果、素子中心位置:y軸ぶれ±38.2μmであり、素子の位置精度が低いことがわかった。
【図面の簡単な説明】
【0019】
【図1】この発明の方法により基板と素子を接合した結果を説明するための平面図である。
【図2】この発明の基板表面に形成されるメタライズ層の形状を示す平面図である。
【図3】図5(b)の断面側面図における上方向から見た平面図である。
【図4】図5(a)の断面側面図における上方向から見た平面図である。
【図5】従来の方法により基板と素子を接合する工程を説明するための断面側面図である。
【符号の説明】
【0020】
1:基板、
2:メタライズ層
2´:メタライズ層
3:Au−Sn合金はんだペースト、
4:素子、被搭載物
5:Au−Sn合金はんだ接合層、
6:メタライズ層本体部分、
7:はんだ誘引部

【特許請求の範囲】
【請求項1】
メタライズ層を形成した基板におけるメタライズ層とメタライズ層を形成した被搭載物におけるメタライズ層との間にはんだペーストを搭載または塗布したのち非酸化性雰囲気中でリフロー処理して基板と被搭載物を接合するはんだペーストを用いた基板と被搭載物の接合方法において、
前記基板の表面に形成されるメタライズ層は、面積が被搭載物のメタライズ層の面積よりも小さいメタライズ層本体部分と前記メタライズ層本体部分の周囲から突出したはんだ誘引部とからなる平面形状を有することを特徴とする位置合わせ性に優れたはんだペーストを用いた基板と被搭載物の接合方法。
【請求項2】
前記はんだペーストは、Sn:20〜25質量%を含有し、残部:Auおよび不可避不純物であるAu−Snはんだ合金粉末にフラックスを混合したAu−Sn合金はんだペーストである請求項1記載の位置合わせ性に優れたはんだペーストを用いた基板と被搭載物の接合方法。
【請求項3】
前記はんだペーストは、Pb:35〜60質量%を含有し、残部:Snおよび不可避不純物であるPb−Snはんだ合金粉末にフラックスを混合したPb−Sn合金はんだペーストである請求項1記載の位置合わせ性に優れたはんだペーストを用いた基板と被搭載物の接合方法。
【請求項4】
前記はんだペーストは、Pb:90〜95質量%を含有し、残部:Snおよび不可避不純物であるPb−Snはんだ合金粉末にフラックスを混合したPb−Sn合金はんだペーストである請求項1記載の位置合わせ性に優れたはんだペーストを用いた基板と被搭載物の接合方法。
【請求項5】
前記はんだペーストは、Sn:40〜100質量%を含有し、残部:Ag、Au、Cu、Bi、Sb、In及びZnからなる群より選ばれた1種又は2種以上の金属および不可避不純物であるPbフリーはんだ合金粉末にフラックスを混合したPbフリーはんだペーストである請求項1記載の位置合わせ性に優れたはんだペーストを用いた基板と被搭載物の接合方法。
【請求項6】
前記被搭載物は素子であることを特徴とする請求項1、2、3、4または5記載の位置合わせ性に優れたはんだペーストを用いた基板と被搭載物の接合方法。
【請求項7】
メタライズ層本体部分と前記メタライズ層本体部分の周囲から突出したはんだ誘引部とからなる平面形状を有することを特徴とする基板表面に形成されるメタライズ層。
【請求項8】
基板に形成されるメタライズ層は、電極膜であることを特徴とする請求項7記載の基板表面に形成されるメタライズ層。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2009−302229(P2009−302229A)
【公開日】平成21年12月24日(2009.12.24)
【国際特許分類】
【出願番号】特願2008−154003(P2008−154003)
【出願日】平成20年6月12日(2008.6.12)
【出願人】(000006264)三菱マテリアル株式会社 (4,417)
【Fターム(参考)】