説明

光酸発生剤並びにレジスト材料及びパターン形成方法

【解決手段】高エネルギー線又は熱に感応し、一般式(1)で示されるスルホン酸を発生する光酸発生剤を含む化学増幅型レジスト材料。


(Rは芳香環あるいは炭素数5以上の脂環式炭化水素構造を有する一価の炭化水素基。R’はH又はトリフルオロメチル基。A1はエステル結合、エーテル結合、チオエーテル結合、アミド結合、カーボネート結合のいずれかを示す。nは1〜3の整数。)
【効果】本発明の光酸発生剤より生ずる酸は、スルホネートに嵩高い環式構造で酸拡散を抑制しつつ、直鎖状炭化水素基の存在によって適度な機動性も有していることから、適度な酸拡散挙動を示す。また、レジスト材料中の樹脂類との相溶性もよく、これらスルホン酸を発生する光酸発生剤はデバイス作製工程に問題なく使用でき、解像性能、LWR、露光余裕度といった問題も解決できる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、レジスト材料の光酸発生剤等として好適に用いられる新規光酸発生剤、これを用いたレジスト材料、及びパターン形成方法に関する。
【背景技術】
【0002】
近年、LSIの高集積化と高速度化に伴い、パターンルールの微細化が求められている中、次世代の微細加工技術として遠紫外線リソグラフィー及び真空紫外線リソグラフィーが有望視されている。中でもArFエキシマレーザー光を光源としたフォトリソグラフィーは、0.13μm以下の超微細加工に不可欠な技術である。
【0003】
ArFリソグラフィーは130nmノードのデバイス製作から部分的に使われ始め、90nmノードデバイスからはメインのリソグラフィー技術となった。次の45nmノードのリソグラフィー技術として、当初F2レーザーを用いた157nmリソグラフィーが有望視されたが、諸問題による開発遅延が指摘されたため、投影レンズとウエハーの間に水、エチレングリコール、グリセリン等の空気より屈折率の高い液体を挿入することによって、投影レンズの開口数(NA)を1.0以上に設計でき、高解像度を達成することができるArF液浸リソグラフィーが急浮上してきた(例えば、非特許文献1:Journal of photopolymer Science and Technology Vol.17, No.4, p587 (2004)参照)。
【0004】
ArFリソグラフィーでは、精密かつ高価な光学系材料の劣化を防ぐために、少ない露光量で十分な解像性を発揮できる感度の高いレジスト材料が求められており、実現する方策としては、その各成分として波長193nmにおいて高透明なものを選択するのが最も一般的である。例えばベース樹脂については、ポリアクリル酸及びその誘導体、ノルボルネン−無水マレイン酸交互重合体、ポリノルボルネン及び開環メタセシス重合体、開環メタセシス重合体水素添加物等が提案されており、樹脂単体の透明性を上げるという点ではある程度の成果を得ている。
【0005】
また、光酸発生剤も種々の検討がなされてきた。従来のKrFエキシマレーザー光を光源とした化学増幅型レジスト材料に用いられてきたようなアルカンあるいはアレーンスルホン酸を発生する光酸発生剤を上記のArF化学増幅型レジスト材料の成分として用いた場合には、樹脂の酸不安定基を切断するための酸強度が十分でなく、解像が全くできない、あるいは低感度でデバイス製造に適さないことがわかっている。
【0006】
このため、ArF化学増幅型レジスト材料の光酸発生剤としては、酸強度の高いパーフルオロアルカンスルホン酸を発生するものが一般的に使われている。これらのパーフルオロアルカンスルホン酸を発生する光酸発生剤は既にKrFレジスト材料として開発されてきたものであり、例えば、特許文献1:特開2000−122296号公報や特許文献2:特開平11−282168号公報には、パーフルオロヘキサンスルホン酸、パーフルオロオクタンスルホン酸、パーフルオロ−4−エチルシクロヘキサンスルホン酸、パーフルオロブタンスルホン酸を発生する光酸発生剤が記載されている。また新規な酸発生剤として、特許文献3〜5:特開2002−214774号公報、特開2003−140332号公報、米国特許第2002/197558号明細書においてパーフルオロアルキルエーテルスルホン酸が発生する酸発生剤が提案されている。
【0007】
一方でパーフルオロオクタンスルホン酸、あるいはその誘導体は、その頭文字をとりPFOSとして知られており、C−F結合に由来する安定性(非分解性)や疎水性、親油性に由来する生態濃縮性、蓄積性が問題となっている。米国環境庁(EPA)は最重要新規利用規則(Significant New Use Rule)にPFOS関連の13物質を制定し、同75物質にもフォトレジスト分野における利用は免除項目となっているものの制定を行った。更にパーフルオロアルカンスルホン酸、あるいはその誘導体の183物質にも最重要新規利用規則の適用が提案されている。
【0008】
このようなPFOSに関する問題に対処するため、各社よりフッ素の置換率を下げた部分フッ素置換アルカンスルホン酸の開発が行われている。例えば、特許文献6:特表2004−531749号公報には、α,α−ジフルオロアルケンと硫黄化合物によりα,α−ジフルオロアルカンスルホン酸塩を開発し、露光によりこのスルホン酸を発生する光酸発生剤、具体的にはジ(4−tert−ブチルフェニル)ヨードニウム=1,1−ジフルオロ−2−(1−ナフチル)エタンスルホネートを含有するレジスト材料が公開されており、更に、特許文献7:特開2004−2252号公報には、α,α,β,β−テトラフルオロ−α−ヨードアルカンと硫黄化合物によるα,α,β,β−テトラフルオロアルカンスルホン酸塩の開発とこのスルホン酸を発生する光酸発生剤及びレジスト材料が公開されている。また、特許文献3:特開2002−214774号公報には、合成方法の記載が無いものの、明細書中にはジフルオロスルホ酢酸アルキルエステル(1−(アルコキシカルボニル)−1,1−ジフルオロメタンスルホネート)、ジフルオロスルホ酢酸アミド(1−カルバモイル−1,1−ジフルオロメタンスルホンネート)などを有する光酸発生剤が開示され、更に、特許文献8:特開2005−266766号公報には、パーフルオロアルキレンジスルホニルジフルオリドから誘導されるスルホニルアミド構造を有する部分フッ素化アルカンスルホン酸を発生する化合物を含有する感光性組成物が開示されている。
【0009】
しかし、上記特許文献の物質は、共にフッ素置換率は下げられているものの、基本骨格が分解し難い炭化水素骨格であり、エステル基等の容易に分解可能な置換基を持たないため分解性に乏しく、アルカンスルホン酸の大きさを変化させるための分子設計に制限があり、更にフッ素含有の出発物質が高価である等の問題を抱えている。
【0010】
光酸発生剤の分解性や酸強度以外にも課題は多くある。例えば、近年パターンレイアウトの微細化が進み、パターン線幅の揺らぎ(ラインウィズスラフネス、LWR)が問題になってきている。例えば、LSI回路製造工程のゲート電極部の加工において、LWRが悪いとリーク電流等の問題を引き起こしトランジスタの電気特性を劣化させてしまう。LWRの原因として様々な要因が考えられている。主な原因としてベース樹脂と現像液との親和性が悪いこと、つまりベース樹脂の現像液に対する溶解性が悪いことが挙げられる。従来から用いられているカルボン酸保護基は嵩高い三級アルキル基であり、疎水性が高いために概して溶解性が悪い。特に微細な溝を形成するような高い解像性を要求される場合においては、LWRが大きいために寸法が不均一となってしまう。従来から知られているLWR低減策としては、光酸発生剤の添加量を増やすこと(非特許文献2:Journal of Photopolymer Science and Technology, Vol.19, No.3, 2006, 327−334)等が挙げられる。しかし、その際は露光量依存性、マスク忠実性、パターン矩形性といった特性が極端に悪化する場合があり、その効果は十分なレベルではない。光酸発生剤においては、単に増量するだけでなく、均一に分散していることがLWRを改善する上で重要となる。
【0011】
更に、回路線幅の縮小に伴い、レジスト材料においては、酸拡散によるコントラスト劣化の影響が一層深刻になってきた。これは、パターン寸法が酸の拡散長に近づくためであり、マスク忠実性の低下やパターン矩形性の劣化を招く。従って、光源の短波長化及び高NA化による恩恵を十分に得るためには、従来材料以上に溶解コントラストの増大、又は酸拡散の抑制が必要となる。
【0012】
特許文献9:特開2007−145797号公報には、トリフェニルスルホニウム 2−(アダマンタン−1−カルボニルオキシ)−1,1,3,3,3−ペンタフルオロプロパンスルホネ−トなどの炭素数1〜20のアルカンカルボニルオキシあるいはアレーンカルボニルオキシ−1,1,3,3,3−ペンタフルオロプロパンスルホネ−トが開示されているが、拡散性の制御及び低LWRの達成にはまだ不十分である。
【0013】
なお、特許文献10:特開2007−161707号公報や特許文献11:特開2008−69146号公報には、多環式炭化水素基を有する部分フッ素化アルカンスルホン酸を発生する光酸発生剤が開示されているが、こちらも十分なレジスト性能を発現するには至っておらず、またいずれの光酸発生剤も、不安定なジフルオロ酢酸のエステルであることから、該光酸発生剤を含んだレジスト材料において、保存安定性が懸念される。
【0014】
また、実際のデバイス作製の際にはある程度の露光量のずれがあり得るため、露光量が多少ずれた時でもほぼ同一のパターン形状を保つ露光余裕度を持つことが求められている。パターンルールのより一層の微細化が求められる中、感度、基板密着性、エッチング耐性において優れた性能を発揮することに加え、解像性の劣化を伴わなず、LWRの改善策や露光余裕度を有することが必要とされているのである。
【0015】
更に、液浸露光においては、露光後のレジストウエハー上に微少な水滴が残ることによる欠陥に起因するレジストパターン形状の不良、現像後のレジストパターンの崩壊やT−top形状化といった問題点があり、液浸リソグラフィーにおいても、現像後に良好なレジストパターンを得られるパターン形成方法が求められている。
【先行技術文献】
【特許文献】
【0016】
【特許文献1】特開2000−122296号公報
【特許文献2】特開平11−282168号公報
【特許文献3】特開2002−214774号公報
【特許文献4】特開2003−140332号公報
【特許文献5】米国特許第2002/197558号明細書
【特許文献6】特表2004−531749号公報
【特許文献7】特開2004−2252号公報
【特許文献8】特開2005−266766号公報
【特許文献9】特開2007−145797号公報
【特許文献10】特開2007−161707号公報
【特許文献11】特開2008−69146号公報
【非特許文献】
【0017】
【非特許文献1】Journal of photopolymer Science and Technology Vol.17, No.4, p587 (2004)
【非特許文献2】Journal of Photopolymer Science and Technology, Vol.19, No.3, 2006, 327−334
【発明の概要】
【発明が解決しようとする課題】
【0018】
光酸発生剤の発生酸としては、レジスト材料中の酸不安定基を切断するのに十分な酸強度があること、レジスト材料中で保存安定性が良好であること、レジスト材料中で適当な拡散があること、揮発性が少ないこと、水への溶出が少ないこと、現像後、剥離後の異物が少ないこと、リソグラフィー用途終了後は環境に負荷をかけずに良好な分解性を持つこと等が望まれるが、従来の光酸発生剤から発生した酸はこれらを満足していない。
更に、従来の光酸発生剤を用いたレジスト材料では、解像性の劣化を伴わず、LWR、露光余裕度の問題を解決できない。
【0019】
本発明は、上記従来の光酸発生剤の問題点を解決したもので、特にArF液浸露光の際の水への溶出を抑えることができ、かつ液浸露光特有の異物の生成を抑え、LWR、露光余裕度の問題を満足し、有効に使用し得るなど、レジスト材料の光酸発生剤として好適な新規光酸発生剤、これを用いたレジスト材料、並びにパターン形成方法を提供することを目的とする。
【課題を解決するための手段】
【0020】
本発明者らは鋭意検討を行った結果、下記の特定の構造を有する化合物が化学増幅型レジスト材料用の光酸発生剤として、上記課題に対して有効であることを知見し、本発明をなすに至った。
【0021】
即ち、本発明は、下記の新規光酸発生剤並びにこれを用いたレジスト材料及びパターン形成方法を提供する。
請求項1:
高エネルギー線又は熱に感応し、下記一般式(1)で示されるスルホン酸を発生する光酸発生剤を含むことを特徴とする化学増幅型レジスト材料。
【化1】


(式中、Rは芳香環あるいは炭素数5以上の脂環式炭化水素構造を有する、置換又は非置換の一価の炭化水素基を示す。R’は水素原子又はトリフルオロメチル基を示す。A1はエステル結合、エーテル結合、チオエーテル結合、アミド結合、カーボネート結合のいずれかを示す。nは1〜3の整数を示す。)
請求項2:
下記一般式(2)で示されるスルホニウム塩。
【化2】


(式中、Rは芳香環あるいは炭素数5以上の脂環式炭化水素構造を有する、置換又は非置換の一価の炭化水素基を示す。R’は水素原子又はトリフルオロメチル基を示す。A1はエステル結合、エーテル結合、チオエーテル結合、アミド結合、カーボネート結合のいずれかを示す。nは1〜3の整数を示す。R2、R3及びR4は相互に独立に置換もしくは非置換の炭素数1〜10の直鎖状又は分岐状のアルキル基、アルケニル基又はオキソアルキル基、又は置換もしくは非置換の炭素数6〜18のアリール基、アラルキル基又はアリールオキソアルキル基を示すか、あるいはR2、R3及びR4のうちのいずれか2つ以上が相互に結合して式中の硫黄原子と共に環を形成してもよい。)
請求項3:
下記一般式(3)で示されるスルホニウム塩。
【化3】


(式中、Rは芳香環あるいは炭素数5以上の脂環式炭化水素構造を有する、置換又は非置換の一価の炭化水素基を示す。R’は水素原子又はトリフルオロメチル基を示す。A1はエステル結合、エーテル結合、チオエーテル結合、アミド結合、カーボネート結合のいずれかを示す。nは1〜3の整数を示す。R8は置換もしくは非置換の炭素数1〜20の直鎖状、分岐状又は環状のアルキル基又はアルケニル基、又は置換もしくは非置換の炭素数6〜14のアリール基を示す。pは0(零)又は1、qは1〜5の整数を示す。)
請求項4:
下記一般式(4)で示されるヨードニウム塩。
【化4】


(式中、Rは芳香環あるいは炭素数5以上の脂環式炭化水素構造を有する、置換又は非置換の一価の炭化水素基を示す。R’は水素原子又はトリフルオロメチル基を示す。A1はエステル結合、エーテル結合、チオエーテル結合、アミド結合、カーボネート結合のいずれかを示す。nは1〜3の整数を示す。R8は置換もしくは非置換の炭素数1〜20の直鎖状、分岐状又は環状のアルキル基又はアルケニル基、又は置換もしくは非置換の炭素数6〜14のアリール基を示す。pは0(零)又は1、qは1〜5の整数を示す。)
請求項5:
ベース樹脂、酸発生剤、クエンチャー及び有機溶剤を含有してなるレジスト材料において、前記酸発生剤が、請求項1記載の一般式(1)で示されるスルホン酸を発生する光酸発生剤であることを特徴とするレジスト材料。
請求項6:
ベース樹脂、請求項1記載の一般式(1)で示されるスルホン酸を発生する光酸発生剤、クエンチャー及び有機溶剤を含有し、上記ベース樹脂が現像液に不溶あるいは難溶であって、酸の作用によって現像液に可溶となる化学増幅ポジ型レジスト材料。
請求項7:
ベース樹脂が、下記一般式(11)〜(15)で示される繰り返し単位のいずれか1種以上を含有することを特徴とする請求項5記載のレジスト材料。
【化5】


(式中、R11は水素原子、フッ素原子、メチル基又はトリフルオロメチル基を示す。R5及びR6はそれぞれ独立に水素原子又は水酸基を示す。Xは酸不安定基を示す。Yはラクトン構造を有する置換基を示す。Zは水素原子、炭素数1〜15のフルオロアルキル基、又は炭素数1〜15のフルオロアルコール含有置換基を示す。Nは0〜2の整数を示す。R7は水素原子、又は炭素数1〜10のアルキル基を示す。Bは単結合あるいは酸素原子により置換されていてもよい炭素数1〜10の二価の有機基を示す。aは0〜3の整数、bは1〜3の整数を示す。)
請求項8:
請求項5乃至7のいずれか1項に記載のレジスト材料を基板上に塗布する工程と、加熱処理後フォトマスクを介して高エネルギー線もしくは電子線で露光する工程と、加熱処理した後、現像液を用いて現像する工程とを含むことを特徴とするパターン形成方法。
請求項9:
請求項5乃至7のいずれか1項に記載のレジスト材料を基板上に塗布する工程と、加熱処理後フォトマスクを介して高エネルギー線もしくは電子線で露光する工程と、加熱処理した後、現像液を用いて現像する工程とを含むパターン形成工程において、前記露光を屈折率1.0以上の高屈折率液体をレジスト塗布膜と投影レンズとの間に介在させて液浸露光にて行うことを特徴とするパターン形成方法。
請求項10:
請求項5乃至7のいずれか1項に記載のレジスト材料を基板上に塗布する工程と、加熱処理後フォトマスクを介して高エネルギー線もしくは電子線で露光する工程と、加熱処理した後、現像液を用いて現像する工程とを含むパターン形成工程において、レジスト塗布膜の上に更に保護膜を塗布し、露光を屈折率1.0以上の高屈折率液体を該保護膜と投影レンズとの間に介在させて液浸露光にて行うことを特徴とするパターン形成方法。
【発明の効果】
【0022】
本発明の光酸発生剤より生ずる酸は、スルホネートに嵩高い環式構造で酸拡散を抑制しつつ、直鎖状炭化水素基の存在によって適度な機動性も有していることから、適度な酸拡散挙動を示す。また、レジスト材料中の樹脂類との相溶性もよく、これらスルホン酸を発生する光酸発生剤はデバイス作製工程での塗布、露光前焼成、露光、露光後焼成、現像の工程に問題なく使用でき、解像性能、LWR、露光余裕度といった問題も解決できる。更にはArF液浸露光の際の水への溶出も抑えることができるのみならず、ウエハー上に残る水の影響も少なく、欠陥も抑えることができる。デバイス作製後のレジスト廃液処理の際には、β位のアシルオキシ基、又はアルキルカーボネート基がアルカリ加水分解されるため、より低分子量で低蓄積性のフッ素化合物へと変換が可能であるし、燃焼による廃棄の際もフッ素置換率が低いため、燃焼性が高い。
【図面の簡単な説明】
【0023】
【図1】合成例1−31のPAG−Aの1H−NMR/DMSO−d6を示した図である。
【図2】合成例1−31のPAG−Aの19F−NMR/DMSO−d6を示した図である。
【図3】合成例1−32のPAG−Bの1H−NMR/DMSO−d6を示した図である。
【図4】合成例1−32のPAG−Bの19F−NMR/DMSO−d6を示した図である。
【図5】合成例1−33のPAG−Cの19F−NMR/DMSO−d6を示した図である。
【図6】合成例1−34のPAG中間体1の1H−NMR/DMSO−d6を示した図である。
【図7】合成例1−34のPAG中間体1の19F−NMR/DMSO−d6を示した図である。
【図8】合成例1−35のPAG−Dの1H−NMR/DMSO−d6を示した図である。
【図9】合成例1−35のPAG−Dの19F−NMR/DMSO−d6を示した図である。
【図10】合成例1−36のPAG−Eの1H−NMR/DMSO−d6を示した図である。
【図11】合成例1−36のPAG−Eの19F−NMR/DMSO−d6を示した図である。
【発明を実施するための形態】
【0024】
光酸発生剤
本発明の光酸発生剤は、スルホニウム塩、ヨードニウム塩等に代表される化合物であり、これは紫外線、遠紫外線、電子線、EUV、X線、エキシマレーザー、γ線、又はシンクロトロン放射線の高エネルギー線に感応し、下記一般式(1)で示されるスルホン酸を発生し、化学増幅型レジスト材料用の光酸発生剤として有効である。
【化6】


(式中、Rは芳香環あるいは炭素数5以上の脂環式炭化水素構造を有する、置換又は非置換の一価の炭化水素基を示す。R’は水素原子又はトリフルオロメチル基を示す。A1はエステル結合、エーテル結合、チオエーテル結合、アミド結合、カーボネート結合のいずれかを示す。nは1〜3の整数を示す。)
【0025】
ここで、上記一般式(1)におけるRは、芳香環あるいは炭素数5以上の脂環式炭化水素構造を有する置換又は非置換の一価の炭化水素基を示し、置換基としては、カルボニル基、水酸基、カルボン酸等の極性基などが挙げられる。本発明の光酸発生剤は、Rにバルキーな構造を持たせ、更にnを1〜3の整数とすることによって、即ちバルキーなアシル基とスルホ基の間にエチレン基、プロピレン基あるいはブチレン基を介することによって、かさ高い構造にも拘わらず適度なモビリティーを有する。故に本発明の光酸発生剤は適度な酸拡散能を有し、結果としてこの光酸発生剤を用いたレジスト材料は解像性能、露光余裕度、LWRといった諸特性を同時に改善することができ、微細加工に適している。nが0の場合はモビリティーが不足し、望みの性能が発現せず、また、nが4以上の場合は原料入手容易性、合成法の困難さ等の観点から現実的でない。合成法の詳細に関しては後述する。
【0026】
Rとして具体的には、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、4−メチルシクロヘキシル基、シクロヘキシルメチル基、ノルボルニル基、アダマンチル基、2−オキソシクロペンチル基、2−オキソシクロヘキシル基、2−オキソプロピル基、2−オキソエチル基、2−シクロペンチル−2−オキソエチル基、2−シクロヘキシル−2−オキソエチル基、2−(4−メチルシクロヘキシル)−2−オキソエチル基、4−オキサ−トリシクロ[4.2.1.03,7]ノナン−5−オン−9−イル基、2−(アダマンチル−1−カルボニルオキシ)−4−オキサ−トリシクロ[4.2.1.03,7]ノナン−5−オン−9−イル4−オキソアダマンチル基、フェニル基、ナフチル基、アントラニル基、チエニル基、4−ヒドロキシフェニル基、4−メトキシフェニル基,3−メトキシフェニル基,2−メトキシフェニル基,4−エトキシフェニル基、4−tert−ブトキシフェニル基,3−tert−ブトキシフェニル基等のアルコキシフェニル基、2−メチルフェニル基,3−メチルフェニル基,4−メチルフェニル基,4−エチルフェニル基、4−tert−ブチルフェニル基,4−n−ブチルフェニル基,2,4−ジメチルフェニル基等のアルキルフェニル基、メチルナフチル基、エチルナフチル基、メトキシナフチル基、エトキシナフチル基、ジメチルナフチル基、ジエチルナフチル基、ジメトキシナフチル基、ジエトキシナフチル基、ベンジル基、1−フェニルエチル基、2−フェニルエチル基、2−フェニル−2−オキソエチル基,2−(1−ナフチル)−2−オキソエチル基,2−(2−ナフチル)−2−オキソエチル基等の2−アリール−2−オキソエチル基等が挙げられる。
【0027】
特に好ましくはRがアダマンチル基を有するものであり、この場合、本発明の光酸発生剤を用いたレジスト材料の酸拡散抑制能は高く、解像性や露光余裕度等をより改善することができ、同時にLWRを低減することができる。
【0028】
また、Rが更にカルボニル基や水酸基、あるいはカルボン酸のような極性基を有している場合、優れた露光余裕度及びLWRを示す。これは、レジスト材料のベース樹脂中に多く含まれる極性ユニットと親和性を持ち、結果としてPAGがポリマーマトリックス中に均一に分散することに起因すると考えられる。
【0029】
1はエステル結合(−COO−)、エーテル結合(−O−)、チオエーテル結合(−S−)、アミド結合(−CONH−)、カーボネート結合(−O−COO−)のいずれかを示す。好ましくは、エステル結合あるいはエーテル結合である。
【0030】
上記一般式(1)で示されるスルホン酸として、具体的には下記のものを例示できるが、本発明の光酸発生剤より発生する酸はこれらに限定されるものではない。
【化7】

【0031】
【化8】

【0032】
本発明における大きな特徴の一つとして挙げられるのは、Rで示される構造を後述する手法により、容易に種々変更できることである。即ち構造改変の自由度が高く、アシル基の改変により諸特性の調整が容易に可能となる。従って露光条件、ポリマーの種類や組成等に合わせてその時に最適なRの構造を有する光酸発生剤を選択することができる。
【0033】
スルホニウム塩
本発明に係るスルホニウム塩は、下記一般式(2)で示されるものである。
【化9】


(式中、R、A1、n、R’は上記と同様である。R2、R3及びR4は相互に独立に置換もしくは非置換の炭素数1〜10の直鎖状又は分岐状のアルキル基、アルケニル基又はオキソアルキル基、又は置換もしくは非置換の炭素数6〜18のアリール基、アラルキル基又はアリールオキソアルキル基を示すか、あるいはR2、R3及びR4のうちのいずれか2つ以上が相互に結合して式中の硫黄原子と共に環を形成してもよい。)
【0034】
上記一般式(2)におけるR、A1、n、R’は上記と同様である。R2、R3及びR4は相互に独立に置換もしくは非置換の炭素数1〜10の直鎖状又は分岐状のアルキル基、アルケニル基又はオキソアルキル基、又は置換もしくは非置換の炭素数6〜18のアリール基、アラルキル基又はアリールオキソアルキル基を示すか、あるいはR2、R3及びR4のうちのいずれか2つ以上が相互に結合して式中の硫黄原子と共に環を形成してもよい。具体的には、アルキル基として、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロプロピルメチル基、4−メチルシクロヘキシル基、シクロヘキシルメチル基、ノルボルニル基、アダマンチル基等が挙げられる。アルケニル基としては、ビニル基、アリル基、プロペニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基等が挙げられる。オキソアルキル基としては、2−オキソシクロペンチル基、2−オキソシクロヘキシル基、2−オキソプロピル基、2−オキソエチル基、2−シクロペンチル−2−オキソエチル基、2−シクロヘキシル−2−オキソエチル基、2−(4−メチルシクロヘキシル)−2−オキソエチル基等を挙げることができる。アリール基としては、フェニル基、ナフチル基、チエニル基等や、4−ヒドロキシフェニル基、4−メトキシフェニル基、3−メトキシフェニル基、2−メトキシフェニル基、4−エトキシフェニル基、4−tert−ブトキシフェニル基、3−tert−ブトキシフェニル基等のアルコキシフェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、4−エチルフェニル基、4−tert−ブチルフェニル基、4−n−ブチルフェニル基、2,4−ジメチルフェニル基等のアルキルフェニル基、メチルナフチル基、エチルナフチル基等のアルキルナフチル基、メトキシナフチル基、エトキシナフチル基等のアルコキシナフチル基、ジメチルナフチル基、ジエチルナフチル基等のジアルキルナフチル基、ジメトキシナフチル基、ジエトキシナフチル基等のジアルコキシナフチル基等が挙げられる。アラルキル基としてはベンジル基、1−フェニルエチル基、2−フェニルエチル基等が挙げられる。アリールオキソアルキル基としては、2−フェニル−2−オキソエチル基、2−(1−ナフチル)−2−オキソエチル基、2−(2−ナフチル)−2−オキソエチル基等の2−アリール−2−オキソエチル基等が挙げられる。また、R2、R3及びR4のうちのいずれか2つ以上が相互に結合して硫黄原子を介して環状構造を形成する場合には、これらの環状構造を形成する基としては、1,4−ブチレン、3−オキサ−1,5−ペンチレン等の二価の有機基が挙げられる。更には置換基としてアクリロイルオキシ基、メタクリロイルオキシ基等の重合可能な置換基を有するアリール基が挙げられ、具体的には4−アクリロイルオキシフェニル基、4−メタクリロイルオキシフェニル基、4−アクリロイルオキシ−3,5−ジメチルフェニル基、4−メタクリロイルオキシ−3,5−ジメチルフェニル基、4−ビニルオキシフェニル基、4−ビニルフェニル基等が挙げられる。
【0035】
より具体的にスルホニウムカチオンを示すと、トリフェニルスルホニウム、4−ヒドロキシフェニルジフェニルスルホニウム、ビス(4−ヒドロキシフェニル)フェニルスルホニウム、トリス(4−ヒドロキシフェニル)スルホニウム、4−tert−ブトキシフェニルジフェニルスルホニウム、ビス(4−tert−ブトキシフェニル)フェニルスルホニウム、トリス(4−tert−ブトキシフェニル)スルホニウム、3−tert−ブトキシフェニルジフェニルスルホニウム、ビス(3−tert−ブトキシフェニル)フェニルスルホニウム、トリス(3−tert−ブトキシフェニル)スルホニウム、3,4−ジ−tert−ブトキシフェニルジフェニルスルホニウム、ビス(3,4−ジ−tert−ブトキシフェニル)フェニルスルホニウム、トリス(3,4−ジ−tert−ブトキシフェニル)スルホニウム、ジフェニル(4−チオフェノキシフェニル)スルホニウム、4−tert−ブトキシカルボニルメチルオキシフェニルジフェニルスルホニウム、トリス(4−tert−ブトキシカルボニルメチルオキシフェニル)スルホニウム、(4−tert−ブトキシフェニル)ビス(4−ジメチルアミノフェニル)スルホニウム、トリス(4−ジメチルアミノフェニル)スルホニウム、2−ナフチルジフェニルスルホニウム、(4−ヒドロキシ−3,5−ジメチルフェニル)ジフェニルスルホニウム、(4−n−ヘキシルオキシ−3,5−ジメチルフェニル)ジフェニルスルホニウム、ジメチル(2−ナフチル)スルホニウム、4−ヒドロキシフェニルジメチルスルホニウム、4−メトキシフェニルジメチルスルホニウム、トリメチルスルホニウム、2−オキソシクロヘキシルシクロヘキシルメチルスルホニウム、トリナフチルスルホニウム、トリベンジルスルホニウム、ジフェニルメチルスルホニウム、ジメチルフェニルスルホニウム、5−フェニルジベンゾチオフェニウム、10−フェニルフェノキサチイニウム、2−オキソ−2−フェニルエチルチアシクロペンタニウム、ジフェニル2−チエニルスルホニウム、4−n−ブトキシナフチル−1−チアシクロペンタニウム、2−n−ブトキシナフチル−1−チアシクロペンタニウム、4−メトキシナフチル−1−チアシクロペンタニウム、2−メトキシナフチル−1−チアシクロペンタニウム等が挙げられる。より好ましくはトリフェニルスルホニウム、4−tert−ブチルフェニルジフェニルスルホニウム、4−tert−ブトキシフェニルジフェニルスルホニウム、トリス(4−tert−ブチルフェニル)スルホニウム、4−tert−ブトキシカルボニルメチルオキシフェニルジフェニルスルホニウム等が挙げられる。更には4−メタクリロイルオキシフェニルジフェニルスルホニウム、4−アクリロイルオキシフェニルジフェニルスルホニウム、4−メタクリロイルオキシフェニルジメチルスルホニウム、4−アクリロイルオキシフェニルジメチルスルホニウム、(4−メタクリロイルオキシ−3,5−ジメチルフェニル)ジフェニルスルホニウム、(4−アクリロイルオキシ−3,5−ジメチルフェニル)ジフェニルスルホニウム等が挙げられる。これら重合可能なスルホニウムカチオンに関しては特開平4−230645号公報、特開2005−84365号公報等を参考にすることができ、これら重合可能なスルホニウム塩は後述する高分子量体の構成成分のモノマーとして用いることができる。
【0036】
更に、本発明に係るスルホニウム塩として、特に下記一般式(3)で示されるものが挙げられる。
【化10】


(式中、R、A1、n、R’は上記と同様である。R8は置換もしくは非置換の炭素数1〜20の直鎖状、分岐状又は環状のアルキル基又はアルケニル基、又は置換もしくは非置換の炭素数6〜14のアリール基を示す。pは0(零)又は1、qは1〜5の整数を示す。)
【0037】
上記一般式(3)におけるR、A1、n、R’は上記の通りである。R8−(O)p−基の置換位置は特に限定されるものではないが、フェニル基の4位あるいは3位が好ましい。より好ましくは4位である。R8としては、メチル基、エチル基、n−プロピル基、sec−プロピル基、シクロプロピル基、n−ブチル基、sec−ブチル基、イソブチル基、tert−ブチル基、n−ペンチル基、シクロペンチル基、n−ヘキシル基、シクロヘキシル基、n−オクチル基、n−デシル基、n−ドデシル基、トリフルオロメチル基、フェニル基、4−メトキシフェニル基、4−tert−ブチルフェニル基、更にp=1の場合にアクリロイル基、メタクリロイル基、ビニル基、アリル基が挙げられる。pは0(零)又は1である。qは1〜5の整数であり、好ましくは1である。
【0038】
具体的なスルホニウムカチオンとしては、4−メチルフェニルジフェニルスルホニウム、4−エチルフェニルジフェニルスルホニウム、4−tert−ブチルフェニルジフェニルスルホニウム、4−シクロヘキシルフェニルジフェニルスルホニウム、4−n−ヘキシルフェニルジフェニルスルホニウム、4−n−オクチルフェニルジフェニルスルホニウム、4−メトキシフェニルジフェニルスルホニウム、4−エトキシフェニルジフェニルスルホニウム、4−tert−ブトキシフェニルジフェニルスルホニウム、4−シクロヘキシルオキシフェニルジフェニルスルホニウム、4−n−ヘキシルオキシフェニルジフェニルスルホニウム、4−n−オクチルオキシフェニルジフェニルスルホニウム、4−ドデシルオキシフェニルジフェニルスルホニウム、4−トリフルオロメチルフェニルジフェニルスルホニウム、4−トリフルオロメチルオキシフェニルジフェニルスルホニウム、4−tert−ブトキシカルボニルメチルオキシフェニルジフェニルスルホニウム、4−メタクリロイルオキシフェニルジフェニルスルホニウム、4−アクリロイルオキシフェニルジフェニルスルホニウム、(4−n−ヘキシルオキシ−3,5−ジメチルフェニル)ジフェニルスルホニウム)、(4−メタクリロイルオキシ−3,5−ジメチルフェニル)ジフェニルスルホニウム、(4−アクリロイルオキシ−3,5−ジメチルフェニル)ジフェニルスルホニウム等が挙げられる。
【0039】
ヨードニウム塩
本発明は、ヨードニウム塩をも提供するが、本発明のヨードニウム塩は、下記一般式(4)で示されるものである。
【化11】


(式中、R、A1、n、R’、R8、p、qは上記と同様である。)
【0040】
上記一般式(4)におけるR、A1、n、R’、R8、p、qは上記の通りである。R8−(O)p−基の置換位置は特に限定されるものではないが、フェニル基の4位あるいは3位が好ましい。より好ましくは4位である。具体的なヨードニウムカチオンとしては、ビス(4−メチルフェニル)ヨードニウム、ビス(4−エチルフェニル)ヨードニウム、ビス(4−tert−ブチルフェニル)ヨードニウム、ビス(4−(1,1−ジメチルプロピル)フェニル)ヨードニウム、4−メトキシフェニルフェニルヨードニウム、4−tert−ブトキシフェニルフェニルヨードニウム、4−アクリロイルオキシフェニルフェニルヨードニウム、4−メタクリロイルオキシフェニルフェニルヨードニウム等が挙げられるが、中でもビス(4−tert−ブチルフェニル)ヨードニウムが好ましく用いられる。
【0041】
ここで、本発明の上記一般式(2)で示されるスルホニウム塩について、まずR’が水素原子である場合の合成方法について述べる。
【0042】
まず、トリフェニルスルホニウム 1,1−ジフルオロ−2−ヒドロキシエタンスルホネートを調製する。以下にその製法を示す。
2−ブロモ−2,2−ジフルオロエタノールとカルボン酸クロリドとの反応で2−ブロモ−2,2−ジフルオロエチルアルカンカルボキシレート、あるいは2−ブロモ−2,2−ジフルオロエチルアレーンカルボキシレートを得て、次いで亜二チアン酸ナトリウムなどの硫黄化合物によりブロモ基をスルフィン酸ナトリウムとし、次いで過酸化水素などの酸化剤によりスルフィン酸をスルホン酸に変換する。
【化12】


(上記式中、R9はヘテロ原子を含んでいてもよい炭素数1〜20の直鎖状、分岐状又は環状のアルキル基を示す。)
【0043】
エステル化、ハロゲン化アルカンからスルフィン酸ナトリウム化、スルホン酸化は公知であるが、後者二つの処方は特開2004−2252号公報などに詳しい。
得られたスルホン酸ナトリウムとスルホニウム塩化合物のイオン交換反応により目的のスルホニウム塩を得ることができる。イオン交換反応は特開2007−145797号公報などに詳しい。
【化13】


(上記式中、R2〜R4、R9は上記と同意である。X-は対アニオンであり、I-、Br-、Cl-等のハライド、硫酸アニオン、メチル硫酸アニオン等の硫酸又はアルキル硫酸アニオン、アセテート、ベンゾエート等のカルボン酸アニオン、メタルスルホネート、プロパンスルホネート等のアルカンスルホネート、ベンゼンスルホネート、p−トルエンスルホネート等のアレーンスルホネート、ヒドロキシドなどが挙げられるが、これらに限定されるものではない。)
【0044】
更には、上記のように導入されたR9CO−で示されるアシル基をエステル加水分解あるいは加溶剤分解することにより、トリフェニルスルホニウム 1,1−ジフルオロ−2−ヒドロキシエタンスルホネートを合成することができる。下記に工程の概略を示す。
【化14】


(上記式中、R2〜R4、R9は上記と同意であり、Meはメチル基を示す。)
【0045】
この処方により、先のアニオン合成時の条件(亜二チアン酸ナトリウムなどの硫黄化合物によりブロモ基をスルフィン酸ナトリウムとし、次いで過酸化水素などの酸化剤によりスルフィン酸をスルホン酸に変換する。)に対しR9が不安定な置換基である場合も、1,1−ジフルオロ−2−ヒドロキシエタンスルホネートより導入することができる。
また、一般式(3)で示されるスルホニウム塩、一般式(4)で示されるヨードニウム塩も同様に合成することができる。
【0046】
原料のスルホニウム塩やヨードニウム塩は、The Chemistry of sulfonium group Part 1 John−Wiley & Sons (1981)、Advanced Photochemistry, vol.17 John−Wiley & Sons (1992)、J.Org.Chem.,1988.53.5571−5573あるいは特開平8−311018号公報、特開平9−15848号公報、特開2001−122850号公報、特開平7−25846号公報、特開2001−181221号公報、特開2002−193887号公報、特開2002−193925号公報等を参考に合成することができる。また、重合可能な置換基としてアクリロイルオキシ基あるいはメタクリロイルオキシ基を有するオニウムカチオンは、特開平4−230645号公報、特開2005−84365号公報等記載の方法で、既存のヒドロキシフェニルジフェニルスルホニウムハライドを塩基性条件下でアクリロイルクロリドあるいはメタクリロイルクロリドと反応させることで合成できる。
【0047】
以上のように合成されるトリフェニルスルホニウム 1,1−ジフルオロ−2−ヒドロキシエタンスルホネートを、下記一般式(5)で示されるカルボン酸ハライドと塩基性条件下にて反応させることにより、本発明の上記一般式(2)で示される光酸発生剤を合成することができる。
R−A1−(CH2n−COCX1 (5)
(式中、R、A1、nは上記と同様である。X1はハロゲン原子を示す。)
【0048】
別法として、トリフェニルスルホニウム 1,1−ジフルオロ−2−ヒドロキシエタンスルホネートを塩基性条件下でクロロアルキルカルボン酸ハライドと反応させることにより、2−(ハロアルキルカルボニルオキシ)−1,1−ジフルオロ−2−ヒドロキシエタンスルホネ−トを調製し、これを下記一般式(6)で示される化合物と反応させることにより、本発明の上記一般式(2)で示される光酸発生剤のうち、A1がエステル結合あるいはエーテル結合である化合物を合成することもできる。
R−(CO)mOM (6)
(式中、Rは上記と同様である。Mはリチウム、ナトリウム又はカリウムを示す。mは0又は1を示す。)
【0049】
次に、本発明の上記一般式(2)で示されるスルホニウム塩について、R’がトリフルオロメチル基である場合の合成方法について述べる。
【0050】
トリフェニルスルホニウム 1,1−ジフルオロ−2−ヒドロキシエタンスルホネートの代わりにトリフェニルスルホニウム 1,1,3,3,3−ペンタフルオロ−2−ヒドロキシプロパンスルホネートを合成し、その後はR’が水素原子である場合と同様の手法を用いることで、本発明の上記一般式(2)において、R’がトリフルオロメチル基である光酸発生剤を合成することができる。
【0051】
なお、トリフェニルスルホニウム 1,1,3,3,3−ペンタフルオロ−2−ヒドロキシプロパンスルホネートの合成については、特開2007−145804号公報を参照することができる。
【0052】
本発明の上記一般式(1)で示される光酸発生剤の合成法は、前述の通りであるが、あくまでも製法の一つであり、本発明において何ら限定されるものではない。
【0053】
本発明は、第1には、高エネルギー線照射により上記一般式(1)で示されるスルホン酸を発生する化学増幅型レジスト材料用の光酸発生剤を提供する。第2には、化学増幅型レジスト材料用の光酸発生剤として有用なスルホニウム塩、ヨードニウム塩を提供し、第3には、高エネルギー線照射により上記一般式(1)で示されるスルホン酸を発生する化学増幅型レジスト材料用の光酸発生剤及び酸の作用でアルカリ現像液への溶解性が変化する樹脂を含有するレジスト材料を提供するものであり、これらレジスト材料はポジ型又はネガ型として用いることができる。解像性などの点から、中でもポジ型レジスト材料がより好ましく用いられる。
【0054】
この場合、ポジ型レジスト材料としては、上記一般式(1)で示されるスルホン酸を発生する光酸発生剤に加え、
(A)酸の作用によりアルカリ現像液に対する溶解性が変化するベース樹脂、
(B)有機溶剤
必要により、更に
(C)本発明に係る光酸発生剤以外の酸発生剤、
(D)クエンチャー、
(E)界面活性剤
を含有するものが好ましい。
【0055】
また、ネガ型レジスト材料としては、上記一般式(1)で示されるスルホン酸を発生する光酸発生剤に加え、
(A’)アルカリ現像液に可溶なベース樹脂、
(B)有機溶剤、
必要により、更に
(C)本発明に係る光酸発生剤以外の酸発生剤、
(D)クエンチャー、
(E)界面活性剤
(F)酸によって架橋する架橋剤
を含有するものが好ましい。
【0056】
以下、各成分につき詳細に説明する。
まず、本発明に係る光酸発生剤は、上記(A)成分又は(A’)成分100質量部に対し0.1〜80質量部、特に1〜40質量部の割合で配合することが好ましい。配合量が多すぎる場合には、解像性の劣化や、現像/レジスト剥離時に異物の問題が起きる可能性がある。
【0057】
(A)成分の酸の作用でアルカリ現像液に対する溶解性が変化する樹脂としては、特に制限されないが、化学増幅ポジ型レジスト材料の場合は、下記一般式(11)〜(15)で示される繰り返し単位のいずれか1種以上を含有することができる。
【0058】
【化15】


(式中、R11は水素原子、フッ素原子、メチル基又はトリフルオロメチル基を示す。R5及びR6はそれぞれ独立に水素原子又は水酸基を示す。Xは酸不安定基を示す。Yはラクトン構造を有する置換基を示す。Zは水素原子、炭素数1〜15のフルオロアルキル基、又は炭素数1〜15のフルオロアルコール含有置換基を示す。Nは0〜2の整数を示す。R7は水素原子、又は炭素数1〜10のアルキル基を示す。Bは単結合あるいは酸素原子により置換されていてもよい炭素数1〜10の二価のアルキレン基等の有機基を示す。aは0〜3の整数、bは1〜3の整数を示す。)
【0059】
上記一般式(11)で示される繰り返し単位を含有する重合体は、酸の作用で分解してカルボン酸を発生し、アルカリ可溶性となる重合体を与える。Xは酸不安定基を示す。
酸不安定基Xとしては、種々用いることができるが、具体的には下記一般式(L1)〜(L4)及び(L2−2)で示される基、炭素数4〜20、好ましくは4〜15の三級アルキル基、各アルキル基がそれぞれ炭素数1〜6のトリアルキルシリル基、炭素数4〜20のオキソアルキル基等を挙げることができる。
【0060】
【化16】

【0061】
ここで、破線は結合手を示す(以下、同様)。
また、式(L1)において、RL01、RL02は水素原子又は炭素数1〜18、好ましくは1〜10の直鎖状、分岐状又は環状のアルキル基を示し、具体的にはメチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、シクロペンチル基、シクロヘキシル基、2−エチルヘキシル基、n−オクチル基、ノルボルニル基、トリシクロデカニル基、テトラシクロドデカニル基、アダマンチル基等が例示できる。RL03は炭素数1〜18、好ましくは1〜10の酸素原子等のヘテロ原子を有してもよい一価の炭化水素基を示し、直鎖状、分岐状又は環状のアルキル基、これらの水素原子の一部が水酸基、アルコキシ基、オキソ基、アミノ基、アルキルアミノ基等に置換されたものを挙げることができ、具体的には下記の置換アルキル基等が例示できる。
【0062】
【化17】

【0063】
L01とRL02、RL01とRL03、RL02とRL03とは互いに結合してこれらが結合する炭素原子や酸素原子と共に環を形成してもよく、環を形成する場合には環の形成に関与するRL01、RL02、RL03はそれぞれ炭素数1〜18、好ましくは1〜10の直鎖状又は分岐状のアルキレン基を示す。
【0064】
式(L2)において、RL04は炭素数4〜20、好ましくは4〜15の三級アルキル基、各アルキル基がそれぞれ炭素数1〜6のトリアルキルシリル基、炭素数4〜20のオキソアルキル基又は上記一般式(L1)で示される基を示し、三級アルキル基としては、具体的にはtert−ブチル基、tert−アミル基、1,1−ジエチルプロピル基、2−シクロペンチルプロパン−2−イル基、2−シクロヘキシルプロパン−2−イル基、2−(ビシクロ[2.2.1]ヘプタン−2−イル)プロパン−2−イル基、2−(アダマンタン−1−イル)プロパン−2−イル基、1−エチルシクロペンチル基、1−ブチルシクロペンチル基、1−エチルシクロヘキシル基、1−ブチルシクロヘキシル基、1−エチル−2−シクロペンテニル基、1−エチル−2−シクロヘキセニル基、2−メチル−2−アダマンチル基、2−エチル−2−アダマンチル基等が例示でき、トリアルキルシリル基としては、具体的にはトリメチルシリル基、トリエチルシリル基、ジメチル−tert−ブチルシリル基等が例示でき、オキソアルキル基としては、具体的には3−オキソシクロヘキシル基、4−メチル−2−オキソオキサン−4−イル基、5−メチル−2−オキソオキソラン−5−イル基等が例示できる。yは0〜6の整数である。
【0065】
式(L2−2)において、
【化18】

は下記の基であり、RL04は上記と同意である。
【化19】


(式中、破線は結合手を示す。Wは酸素原子あるいはCH2を示し、M’は1〜3の整数である。)
【0066】
式(L3)において、RL05は炭素数1〜8の置換されていてもよい直鎖状、分岐状又は環状のアルキル基又は炭素数6〜20の置換されていてもよいアリール基を示し、置換されていてもよいアルキル基としては、具体的にはメチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、tert−アミル基、n−ペンチル基、n−ヘキシル基、シクロペンチル基、シクロヘキシル基等の直鎖状、分岐状又は環状のアルキル基、これらの水素原子の一部が水酸基、アルコキシ基、カルボキシ基、アルコキシカルボニル基、オキソ基、アミノ基、アルキルアミノ基、シアノ基、メルカプト基、アルキルチオ基、スルホ基等に置換されたもの等が例示でき、置換されていてもよいアリール基としては、具体的にはフェニル基、メチルフェニル基、ナフチル基、アンスリル基、フェナンスリル基、ピレニル基等が例示できる。m’は0又は1、n’は0、1、2、3のいずれかであり、2m’+n’=2又は3を満足する数である。
【0067】
式(L4)において、RL06は炭素数1〜8の置換されていてもよい直鎖状、分岐状又は環状のアルキル基又は炭素数6〜20の置換されていてもよいアリール基を示し、具体的にはRL05と同様のもの等が例示できる。RL07〜RL16はそれぞれ独立に水素原子又は炭素数1〜15の一価の炭化水素基を示し、具体的にはメチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、tert−アミル基、n−ペンチル基、n−ヘキシル基、n−オクチル基、n−ノニル基、n−デシル基、シクロペンチル基、シクロヘキシル基、シクロペンチルメチル基、シクロペンチルエチル基、シクロペンチルブチル基、シクロヘキシルメチル基、シクロヘキシルエチル基、シクロヘキシルブチル基等の直鎖状、分岐状又は環状のアルキル基、これらの水素原子の一部が水酸基、アルコキシ基、カルボキシ基、アルコキシカルボニル基、オキソ基、アミノ基、アルキルアミノ基、シアノ基、メルカプト基、アルキルチオ基、スルホ基等に置換されたもの等が例示できる。RL07〜RL16はそれらの2個が互いに結合してそれらが結合する炭素原子と共に環を形成していてもよく(例えば、RL07とRL08、RL07とRL09、RL08とRL10、RL09とRL10、RL11とRL12、RL13とRL14等)、その場合にはその結合に関与するものは炭素数1〜15の二価の炭化水素基を示し、具体的には上記一価の炭化水素基で例示したものから水素原子を1個除いたもの等が例示できる。また、RL07〜RL16は隣接する炭素に結合するもの同士で何も介さずに結合し、二重結合を形成してもよい(例えば、RL07とRL09、RL09とRL15、RL13とRL15等)。
【0068】
上記式(L1)で示される酸不安定基のうち直鎖状又は分岐状のものとしては、具体的には下記の基が例示できる。
【化20】

【0069】
上記式(L1)で示される酸不安定基のうち環状のものとしては、具体的にはテトラヒドロフラン−2−イル基、2−メチルテトラヒドロフラン−2−イル基、テトラヒドロピラン−2−イル基、2−メチルテトラヒドロピラン−2−イル基等が例示できる。
【0070】
上記式(L2)の酸不安定基としては、具体的にはtert−ブトキシカルボニル基、tert−ブトキシカルボニルメチル基、tert−アミロキシカルボニル基、tert−アミロキシカルボニルメチル基、1,1−ジエチルプロピルオキシカルボニル基、1,1−ジエチルプロピルオキシカルボニルメチル基、1−エチルシクロペンチルオキシカルボニル基、1−エチルシクロペンチルオキシカルボニルメチル基、1−エチル−2−シクロペンテニルオキシカルボニル基、1−エチル−2−シクロペンテニルオキシカルボニルメチル基、1−エトキシエトキシカルボニルメチル基、2−テトラヒドロピラニルオキシカルボニルメチル基、2−テトラヒドロフラニルオキシカルボニルメチル基等が例示できる。
【0071】
上記式(L2−2)の酸不安定基としては、具体的には、
9−(tert−ブチルオキシカルボニル)−5−オキソ−4−オキサトリシクロ[4.2.1.03,7]ノナン−2−イル基、
9−(tert−アミルオキシカルボニル)−5−オキソ−4−オキサトリシクロ[4.2.1.03,7]ノナン−2−イル基、
9−(2−(アダマンタン−1−イル)プロパン−2−イルオキシカルボニル)−5−オキソ−4−オキサトリシクロ[4.2.1.03,7]ノナン−2−イル基、
9−(1−エチルシクロペンチルオキシカルボニル)−5−オキソ−4−オキサトリシクロ[4.2.1.03,7]ノナン−2−イル基、
9−(1−ブチルシクロペンチルオキシカルボニル)−5−オキソ−4−オキサトリシクロ[4.2.1.03,7]ノナン−2−イル基、
9−(1−エチルシクロヘキシルオキシカルボニル)−5−オキソ−4−オキサトリシクロ[4.2.1.03,7]ノナン−2−イル基、
9−(1−ブチルシクロヘキシルオキシカルボニル)−5−オキソ−4−オキサトリシクロ[4.2.1.03,7]ノナン−2−イル基、
9−(2−メチル−2−アダマンチルオキシカルボニル)−5−オキソ−4−オキサトリシクロ[4.2.1.03,7]ノナン−2−イル基、
9−(2−エチル−2−アダマンチルオキシカルボニル)−5−オキソ−4−オキサトリシクロ[4.2.1.03,7]ノナン−2−イル基、
9−(4−エチルテトラシクロ[6.2.1.13,6.02,7]ドデカン−4−イルオキシカルボニル)−5−オキソ−4−オキサトリシクロ[4.2.1.03,7]ノナン−2−イル基、
2−(9−(tert−ブチルオキシカルボニル)−5−オキソ−4−オキサトリシクロ[4.2.1.03,7]ノナン−2−イルオキシ)−2−オキソエチル基、
2−(9−(tert−アミルオキシカルボニル)−5−オキソ−4−オキサトリシクロ[4.2.1.03,7]ノナン−2−イルオキシ)−2−オキソエチル基、
2−(9−(2−(アダマンタン−1−イル)プロパン−2−イルオキシカルボニル)−5−オキソ−4−オキサトリシクロ[4.2.1.03,7]ノナン−2−イルオキシ)−2−オキソエチル基、
2−(9−(1−エチルシクロペンチルオキシカルボニル)−5−オキソ−4−オキサトリシクロ[4.2.1.03,7]ノナン−2−イルオキシ)−2−オキソエチル基、
2−(9−(1−ブチルシクロペンチルオキシカルボニル)−5−オキソ−4−オキサトリシクロ[4.2.1.03,7]ノナン−2−イルオキシ)−2−オキソエチル基、
2−(9−(1−エチルシクロヘキシルオキシカルボニル)−5−オキソ−4−オキサトリシクロ[4.2.1.03,7]ノナン−2−イルオキシ)−2−オキソエチル基、
2−(9−(1−ブチルシクロヘキシルオキシカルボニル)−5−オキソ−4−オキサトリシクロ[4.2.1.03,7]ノナン−2−イルオキシ)−2−オキソエチル基、
2−(9−(2−メチル−2−アダマンチルオキシカルボニル)−5−オキソ−4−オキサトリシクロ[4.2.1.03,7]ノナン−2−イルオキシ)−2−オキソエチル基、
2−(9−(2−エチル−2−アダマンチルオキシカルボニル)−5−オキソ−4−オキサトリシクロ[4.2.1.03,7]ノナン−2−イルオキシ)−2−オキソエチル基、
2−(9−(4−エチルテトラシクロ[6.2.1.13,6.02,7]ドデカン−4−イルオキシカルボニル)−5−オキソ−4−オキサトリシクロ[4.2.1.03,7]ノナン−2−イルオキシ)−2−オキソエチル基、
4−(9−(tert−ブチルオキシカルボニル)−5−オキソ−4−オキサトリシクロ[4.2.1.03,7]ノナン−2−イルオキシ)−4−オキソブチル基、
4−(9−(tert−アミルオキシカルボニル)−5−オキソ−4−オキサトリシクロ[4.2.1.03,7]ノナン−2−イルオキシ)−4−オキソブチル基、
4−(9−(2−(アダマンタン−1−イル)プロパン−2−イルオキシカルボニル)−5−オキソ−4−オキサトリシクロ[4.2.1.03,7]ノナン−2−イルオキシ)−4−オキソブチル基、
4−(9−(1−エチルシクロペンチルオキシカルボニル)−5−オキソ−4−オキサトリシクロ[4.2.1.03,7]ノナン−2−イルオキシ)−4−オキソブチル基、
4−(9−(1−ブチルシクロペンチルオキシカルボニル)−5−オキソ−4−オキサトリシクロ[4.2.1.03,7]ノナン−2−イルオキシ)−4−オキソブチル基、
4−(9−(1−エチルシクロヘキシルオキシカルボニル)−5−オキソ−4−オキサトリシクロ[4.2.1.03,7]ノナン−2−イルオキシ)−4−オキソブチル基、
4−(9−(1−ブチルシクロヘキシルオキシカルボニル)−5−オキソ−4−オキサトリシクロ[4.2.1.03,7]ノナン−2−イルオキシ)−4−オキソブチル基、
4−(9−(2−メチル−2−アダマンチルオキシカルボニル)−5−オキソ−4−オキサトリシクロ[4.2.1.03,7]ノナン−2−イルオキシ)−4−オキソブチル基、
4−(9−(2−エチル−2−アダマンチルオキシカルボニル)−5−オキソ−4−オキサトリシクロ[4.2.1.03,7]ノナン−2−イルオキシ)−4−オキソブチル基、
4−(9−(4−エチルテトラシクロ[6.2.1.13,6.02,7]ドデカン−4−イルオキシカルボニル)−5−オキソ−4−オキサトリシクロ[4.2.1.03,7]ノナン−2−イルオキシ)−4−オキソブチル基
等が例示できる。
【0072】
上記式(L3)の酸不安定基としては、具体的には1−メチルシクロペンチル、1−エチルシクロペンチル、1−n−プロピルシクロペンチル、1−イソプロピルシクロペンチル、1−n−ブチルシクロペンチル、1−sec−ブチルシクロペンチル、1−シクロヘキシルシクロペンチル、1−(4−メトキシ−n−ブチル)シクロペンチル、1−メチルシクロヘキシル、1−エチルシクロヘキシル、3−メチル−1−シクロペンテン−3−イル、3−エチル−1−シクロペンテン−3−イル、3−メチル−1−シクロヘキセン−3−イル、3−エチル−1−シクロヘキセン−3−イル等が例示できる。
【0073】
上記式(L4)の酸不安定基としては、下記式(L4−1)〜(L4−4)で示される基が特に好ましい。
【化21】

【0074】
前記一般式(L4−1)〜(L4−4)中、破線は結合位置及び結合方向を示す。RL41はそれぞれ独立に炭素数1〜10の直鎖状、分岐状又は環状のアルキル基等の一価炭化水素基を示し、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、tert−アミル基、n−ペンチル基、n−ヘキシル基、シクロペンチル基、シクロヘキシル基等を例示できる。
前記一般式(L4−1)〜(L4−4)は、エナンチオ異性体(enantiomer)やジアステレオ異性体(diastereomer)が存在し得るが、前記一般式(L4−1)〜(L4−4)は、これらの立体異性体の全てを代表して表す。これらの立体異性体は単独で用いてもよいし、混合物として用いてもよい。
【0075】
例えば、前記一般式(L4−3)は下記一般式(L4−3−1)、(L4−3−2)で示される基から選ばれる1種又は2種の混合物を代表して表すものとする。
【化22】

【0076】
また、上記一般式(L4−4)は下記一般式(L4−4−1)〜(L4−4−4)で示される基から選ばれる1種又は2種以上の混合物を代表して表すものとする。
【化23】

【0077】
上記一般式(L4−1)〜(L4−4)、(L4−3−1)、(L4−3−2)及び(L4−4−1)〜(L4−4−4)は、それらのエナンチオ異性体及びエナンチオ異性体混合物をも代表して示すものとする。
なお、(L4−1)〜(L4−4)、(L4−3−1)、(L4−3−2)及び(L4−4−1)〜(L4−4−4)の結合方向がそれぞれビシクロ[2.2.1]ヘプタン環に対してexo側であることによって、酸触媒脱離反応における高反応性が実現される(特開2000−336121号公報参照)。これらビシクロ[2.2.1]ヘプタン骨格を有する3級exo−アルキル基を置換基とする単量体の製造において、下記一般式(L4−1−endo)〜(L4−4−endo)で示されるendo−アルキル基で置換された単量体を含む場合があるが、良好な反応性の実現のためにはexo比率が50モル%以上であることが好ましく、exo比率が80モル%以上であることが更に好ましい。
【化24】

【0078】
上記式(L4)の酸不安定基としては、具体的には下記の基が例示できる。
【化25】

【0079】
また、炭素数4〜20の三級アルキル基、各アルキル基がそれぞれ炭素数1〜6のトリアルキルシリル基、炭素数4〜20のオキソアルキル基としては、具体的にはRL04で挙げたものと同様のもの等が例示できる。
【0080】
前記一般式(11)で表される繰り返し単位として具体的には下記のものを例示できるが、これらに限定されない。(メタ)アクリル酸エステルのみを示しているが上記式(L−2)又は(L−2−2)で示される二価の連結基を介したものを用いてもよい。
【0081】
【化26】

【0082】
【化27】

【0083】
【化28】

【0084】
【化29】

【0085】
【化30】

【0086】
【化31】

【0087】
前記一般式(12)で表される繰り返し単位として具体的には以下のものである。
【化32】

【0088】
前記一般式(13)で表される繰り返し単位として具体的には以下のものである。なお、酸不安定基を有する繰り返し単位も存在する。具体的には上記酸不安定基として説明した式(L2−2)と重複するが、ラクトン単位として使用してもよいし、酸不安定基を有する単位として用いてもよい。
【化33】

【0089】
【化34】

【0090】
【化35】

【0091】
また、下記一般式(5L−1)のものも好適に用いることができる。
【化36】

【0092】
ここで、上記一般式(5L−1)中のR11は、水素原子、フッ素原子、メチル基又はトリフルオロメチル基を示す。より好ましくはメチル基である。R5'は水素原子又はCO25''を示す。R5''は水素原子、ハロゲン原子又は酸素原子を有していてもよい炭素数1〜15の直鎖状、分岐状又は環状の一価炭化水素基を示す。W’はCH2、O又はSを示す。M’は1〜3の整数である。
【0093】
5''として具体的には、水素原子、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、イソブチル基、tert−ブチル基、シクロペンチル基、シクロヘキシル基、1−メチルシクロペンチル基、1−エチルシクロペンチル基、1−メチルシクロヘキシル基、1−エチルシクロヘキシル基、2−エチルヘキシル基、n−オクチル基、2−メチルビシクロ[2.2.1]ヘプタン−2−イル基、2−エチルビシクロ[2.2.1]ヘプタン−2−イル基、2−メチルアダマンタン−2−イル基、2−エチルアダマンタン−2−イル基、8−メチルトリシクロ[5.2.1.02,6]デカン−8−イル基、8−エチルトリシクロ[5.2.1.02,6]デカン−8−イル基、4−メチルテトラシクロ[6.2.1.13,6.02,7]ドデカン−4−イル基、4−エチルテトラシクロ[6.2.1.13,6.02,7]ドデカン−4−イル基、メトキシメチル基、エトキシメチル基、メトキシエチル基、エトキシエチル基、メトキシエトキシエチル基、及び下記の基等が例示できる。
【0094】
【化37】


(ここで、破線は結合手を示す。)
【0095】
この中でR5''として好ましくはメチル基、1−メチルシクロペンチル基、1−エチルシクロペンチル基、1−メチルシクロヘキシル基、1−エチルシクロヘキシル基、2−メチルアダマンタン−2−イル基、2−エチルアダマンタン−2−イル基、8−メチルトリシクロ[5.2.1.02,6]デカン−8−イル基、8−エチルトリシクロ[5.2.1.02,6]デカン−8−イル基、4−エチルテトラシクロ[6.2.1.13,6.02,7]ドデカン−4−イル基等が挙げられる。W’として好ましくはCH2が挙げられる。
【0096】
上記一般式(5L−1)で示される繰り返し単位を構成するためのモノマーとして、具体的には下記のものを例示できる。
【0097】
【化38】


(式中、R11は上記と同様である。)
【0098】
【化39】


(式中、R11は上記と同様である。)
【0099】
【化40】


(式中、R11は上記と同様である。)
【0100】
なお、上記一般式(5L−1)で示される繰り返し単位を構成するためのモノマー類でM’=1の化合物に関しては特開2008−031298号公報に詳しい。また、M’=2の化合物に関してはM’=1の化合物における原料のクロロアセチルクロリドを3−クロロプロピニルクロリドに、M’=3の化合物に関してはM’=1の化合物における原料のクロロアセチルクロリドをクロロ酪酸クロリドにすることで同様に合成ができる。
【0101】
前記一般式(14)で表される繰り返し単位として具体的には以下のものである。
【化41】

【0102】
【化42】

【0103】
前記一般式(15)で表される繰り返し単位として具体的には以下のものである。
【化43】

【0104】
本発明に係る高分子化合物は、上記以外の炭素−炭素二重結合を含有する単量体から得られる繰り返し単位、例えば、メタクリル酸メチル、クロトン酸メチル、マレイン酸ジメチル、イタコン酸ジメチル等の置換アクリル酸エステル類、マレイン酸、フマル酸、イタコン酸等の不飽和カルボン酸、ノルボルネン、ノルボルネン誘導体、テトラシクロ[6.2.1.13,6.02,7]ドデセン誘導体などの環状オレフィン類、無水イタコン酸等の不飽和酸無水物、その他の単量体から得られる繰り返し単位を含んでいてもよい。
【0105】
なお、本発明に係る上記高分子化合物は、ArFあるいはEUVリソグラフィー露光のリソグラフィー用途として好ましいが、KrFリソグラフィー、電子線リソグラフィーなどにも適用可能である。
【0106】
本発明のレジスト材料をKrF、電子線リソグラフィー用途として使用する場合、好ましいベース樹脂としては、下記一般式(21)〜(25)で表される繰り返し単位のいずれか1種以上を含有することができ、更に上述した一般式(11)〜(15)で示される繰り返し単位のいずれか1種以上を含有していてもよい。
【化44】


(式中、R11、Xは上記と同様である。Gは酸素原子又はカルボニルオキシ基(−C(=O)O−)を示す。)
【0107】
上記一般式(21)で示される繰り返し単位を含有する重合体は、酸の作用で分解してフェノール性水酸基及び/又はカルボン酸を発生し、アルカリ可溶性となる重合体を与える。酸不安定基Xとしては、種々用いることができるが、具体的には上述した一般式(L1)〜(L4)で示される基、炭素数4〜20、好ましくは4〜15の三級アルキル基、各アルキル基がそれぞれ炭素数1〜6のトリアルキルシリル基、炭素数4〜20のオキソアルキル基等を挙げることができる。
【0108】
前記一般式(21)で表される繰り返し単位として具体的には下記のものを例示できるが、これらに限定されない。
【化45】

【0109】
上記一般式(24)で示されるヒドロキシビニルナフタレンの置換位置は任意であるが、6−ヒドロキシ−2−ビニルナフタレン、4−ヒドロキシ−1−ビニルナフタレンなどが挙げられ、中でも6−ヒドロキシ−2−ビニルナフタレンが好ましく用いられる。
【0110】
更に、上記一般式(21)〜(25)で示される繰り返し単位のいずれか1種に加えて上記一般式(11)〜(15)で示される繰り返し単位の中で、特に上記一般式(11)で示される繰り返し単位を含有するものを好ましく用いることができる。
【0111】
上記一般式(21)〜(25)で表される繰り返し単位のいずれか1種以上を含有する高分子化合物には、上記以外の炭素−炭素二重結合を含有する単量体から得られる繰り返し単位、例えば、メタクリル酸メチル、クロトン酸メチル、マレイン酸ジメチル、イタコン酸ジメチル等の置換アクリル酸エステル類、マレイン酸、フマル酸、イタコン酸等の不飽和カルボン酸、ノルボルネン、ノルボルネン誘導体、テトラシクロ[6.2.1.13,6.02,7]ドデセン誘導体、ノルボルナジエン類などの環状オレフィン類、無水イタコン酸等の不飽和酸無水物、スチレン、アセナフチレン、ビニルナフタレン、その他の単量体から得られる繰り返し単位を含んでいてもよい。
【0112】
なお、本発明の高分子化合物の重量平均分子量は、1,000〜500,000、好ましくは3,000〜100,000である。この範囲を外れると、エッチング耐性が極端に低下したり、露光前後の溶解速度差が確保できなくなって解像性が低下したりすることがある。分子量の測定方法はポリスチレン換算でのゲルパーミエーションクロマトグラフィー(GPC)が挙げられる。
【0113】
本発明の高分子化合物において、各単量体から得られる各繰り返し単位の好ましい含有割合は、例えば以下に示す範囲(モル%)とすることができるが、これに限定されるものではない。
(I)上記式(11)〜(15)、及び/又は(21)〜(25)で示される構成単位の1種又は2種以上を0モル%を超え100モル%以下、好ましくは70〜100モル%、より好ましくは80〜100モル%含有し、必要に応じ、(II)その他の単量体に基づく構成単位の1種又は2種以上を0〜100モル%未満、好ましくは0〜30モル%、より好ましくは0〜20モル%含有することができる。
【0114】
なお、本発明のポジ型の化学増幅型レジスト材料のベース樹脂として用いる高分子化合物は、上記式(11)又は式(21)の繰り返し単位を有するものが必須である。更に好ましくは式(11)かつ式(12)かつ式(13)、又は式(21)かつ式(22)の繰り返し単位を有し、更に式(23)又は式(25)の繰り返し単位を有する高分子化合物である。
【0115】
本発明の高分子化合物の製造は、重合性二重結合を含有する化合物を第2以降の単量体に用いた共重合反応により行う。
本発明の高分子化合物を製造する共重合反応は種々例示することができるが、好ましくはラジカル重合、アニオン重合又は配位重合である。
【0116】
ラジカル重合反応の反応条件は、(ア)溶剤としてベンゼン等の炭化水素類、テトラヒドロフラン等のエーテル類、エタノール等のアルコール類、又はメチルイソブチルケトン等のケトン類を用い、(イ)重合開始剤として2,2’−アゾビスイソブチロニトリル等のアゾ化合物、又は過酸化ベンゾイル、過酸化ラウロイル等の過酸化物を用い、(ウ)反応温度を0〜100℃程度に保ち、(エ)反応時間を0.5〜48時間程度とするのが好ましいが、この範囲を外れる場合を排除するものではない。
【0117】
アニオン重合反応の反応条件は、(ア)溶剤としてベンゼン等の炭化水素類、テトラヒドロフラン等のエーテル類、又は液体アンモニアを用い、(イ)重合開始剤としてナトリウム、カリウム等の金属、n−ブチルリチウム、sec−ブチルリチウム等のアルキル金属、ケチル、又はグリニャール反応剤を用い、(ウ)反応温度を−78〜0℃程度に保ち、(エ)反応時間を0.5〜48時間程度とし、(オ)停止剤としてメタノール等のプロトン供与性化合物、ヨウ化メチル等のハロゲン化物、その他求電子性物質を用いるのが好ましいが、この範囲を外れる場合を排除するものではない。
【0118】
配位重合の反応条件は、(ア)溶剤としてn−ヘプタン、トルエン等の炭化水素類を用い、(イ)触媒としてチタン等の遷移金属とアルキルアルミニウムからなるチーグラー−ナッタ触媒、クロム及びニッケル化合物を金属酸化物に担持したフィリップス触媒、タングステン及びレニウム混合触媒に代表されるオレフィン−メタセシス混合触媒等を用い、(ウ)反応温度を0〜100℃程度に保ち、(エ)反応時間を0.5〜48時間程度とするのが好ましいが、この範囲を外れる場合を排除するものではない。
【0119】
また、上記重合方法により製造した高分子化合物の酸不安定基の一部あるいは全部を脱保護し、後述するネガ型材料に用いることができる。更には酸不安定基を脱保護した高分子化合物に再び酸不安定基を導入し、重合時に導入した酸不安定基とは異なる置換基を導入することもできる。
【0120】
例えば4−エトキシエトキシスチレン及びその他の重合性化合物をラジカル重合により高分子化合物とし、次いで酢酸、ピリジニウムトシレートなどによりエトキシエトキシ基を外し、ポリヒドロキシスチレンとのコポリマーとすることができる。これはネガ型レジスト材料のベース樹脂として用いることができる。また、上記コポリマーのヒドロキシスチレン単位をジtert−ブチルジカーボネート、クロロ酢酸tert−ブチル、種々ビニルエーテルなどと反応させることにより重合時の酸不安定基(エトキシエトキシ基)とは異なる酸不安定基を導入することができる。
【0121】
また、上述した高分子化合物(なお、これらの高分子化合物を以下では本発明に係る高分子化合物と称する場合がある)以外に、必要に応じて他の、酸の作用によりアルカリ現像液に対する溶解速度が増加する樹脂を加えてもよい。例としては、i)ポリ(メタ)アクリル酸誘導体、ii)ノルボルネン誘導体−無水マレイン酸の共重合体、iii)開環メタセシス重合体の水素添加物、iv)ビニルエーテル−無水マレイン酸−(メタ)アクリル酸誘導体の共重合体、v)ポリヒドロキシスチレン誘導体などを挙げることができるが、これに限定されない。
【0122】
i)のポリ(メタ)アクリル酸誘導体は上記一般式(11)〜(15)などの組み合わせによる高分子化合物であり、v)のポリヒドロキシスチレン誘導体は上記一般式(21)〜(25)の組み合わせ、及び(11)〜(15)、(21)〜(25)の組み合わせによる高分子化合物である。これら高分子化合物の酸不安定基にかかわる単位、例えば上記一般式(11)及び/又は(21)の1種又は2種以上の単量体単位の含有割合は0モル%を超え80モル%以下である。好ましくは1〜50モル%、より好ましくは10〜40モル%である。これら高分子化合物の酸不安定基以外にかかわる単位、例えば上記一般式(12)〜(15)及び/又は(22)〜(25)の1種又は2種以上の単量体単位は0モル%以上100モル%未満であるが、含有する場合は20モル%以上100モル%未満が好ましく、より好ましくは50〜99モル%、特に好ましくは60〜90モル%である。
【0123】
このうち、開環メタセシス重合体の水素添加物の合成法は特開2003−66612号公報の実施例に具体的な記載がある。
【0124】
本発明に係る高分子化合物と別の高分子化合物との配合比率は、100:0〜10:90、特に100:0〜20:80の質量比の範囲内にあることが好ましい。本発明に係る高分子化合物の配合比がこれより少ないと、レジスト材料として好ましい性能が得られないことがある。上記の配合比率を適宜変えることにより、レジスト材料の性能を調整することができる。
なお、上記高分子化合物は1種に限らず2種以上を添加することができる。複数種の高分子化合物を用いることにより、レジスト材料の性能を調整することができる。
【0125】
本発明で使用される(B)成分の有機溶剤としては、ベース樹脂、酸発生剤、その他の添加剤等が溶解可能な有機溶剤であればいずれでもよい。有機溶剤の具体例としては、特開2008−111103号公報の段落[0144]〜[0145]に記載されている。有機溶剤の使用量は、目標膜厚などに応じて設定すべきものであるが、おおむねベース樹脂100質量部に対して200〜15,000質量部、特に400〜8,000質量部が好適である。
【0126】
本発明の光酸発生剤の他に、必要に応じて(C)成分として本発明の光酸発生剤以外の酸発生剤を合わせて添加してもかまわない。(C)成分の光酸発生剤は、高エネルギー線照射により酸を発生する化合物であればいずれでもかまわない。好適な光酸発生剤としては、スルホニウム塩、ヨードニウム塩、スルホニルジアゾメタン、N−スルホニルオキシイミド、オキシム−O−スルホネート型酸発生剤等がある。これらは単独あるいは2種以上混合して用いることができる。これらは特開2008−133448号公報、特開2007−145797号公報、特開2008−106045号公報、特開2009−7323号公報、特開2008−80474号公報などに詳しい。
【0127】
なお、光酸発生剤を2種以上混合して用い、一方の光酸発生剤がいわゆる弱酸を発生するオニウム塩である場合、酸拡散制御の機能を持たせることもできる。即ち、前述のフッ素置換されたスルホン酸のような強酸を発生するオニウム塩と、フッ素置換されていないスルホン酸や、カルボン酸のような弱酸を発生するオニウム塩を混合して用いた場合、高エネルギー線照射により光酸発生剤から生じた強酸が未反応の弱酸アニオンを有するオニウム塩と衝突すると塩交換により弱酸を放出し強酸アニオンを有するオニウム塩を生じる。この過程で強酸がより触媒能の低い弱酸に交換されるため見かけ上、酸が失活して酸拡散の制御を行うことができる。
ここで強酸を発生する光酸発生剤がオニウム塩である場合には上記のように高エネルギー線照射により生じた強酸が弱酸に交換することはできるが、高エネルギー線照射により生じた弱酸は未反応の強酸を発生するオニウム塩と衝突して塩交換を行うことはできない。これらはオニウムカチオンがより強酸のアニオンとイオン対を形成し易いという現象に起因する。
【0128】
本発明の化学増幅型レジスト材料における(C)成分として添加する光酸発生剤の添加量は、本発明の効果を妨げない範囲であればいずれでもよいが、レジスト材料中のベース樹脂100質量部に対し0.1〜80質量部、特に0.1〜40質量部が好適である。(C)成分の光酸発生剤の割合が多すぎる場合には、解像性の劣化や、現像/レジスト剥離時の異物の問題が起きる可能性がある。上記(C)成分の光酸発生剤は、単独でも2種以上混合して用いることもできる。更に、露光波長における透過率が低い光酸発生剤を用い、その添加量でレジスト膜中の透過率を制御することもできる。
【0129】
また、本発明のレジスト材料に、酸により分解し酸を発生する化合物(酸増殖化合物)を添加してもよい。これらの化合物については、J. Photopolym. Sci. and Tech., 8. 43−44, 45−46 (1995)、J. Photopolym. Sci. and Tech., 9. 29−30 (1996)において記載されている。
【0130】
酸増殖化合物の例としては、tert−ブチル−2−メチル−2−トシロキシメチルアセトアセテート、2−フェニル−2−(2−トシロキシエチル)−1,3−ジオキソラン等が挙げられるが、これらに限定されるものではない。公知の光酸発生剤の中で安定性、特に熱安定性に劣る化合物は酸増殖化合物的な性質を示す場合が多い。
【0131】
本発明のレジスト材料における酸増殖化合物の添加量としては、レジスト材料中のベース樹脂100質量部に対し20質量部以下、特に10質量部以下が好ましい。添加量が多すぎる場合は拡散の制御が難しく、解像性の劣化、パターン形状の劣化が起こる場合がある。
【0132】
更に、本発明のレジスト材料には、(D)成分のクエンチャーを1種又は2種以上配合することができる。
クエンチャーとは、本技術分野において広く一般的に用いられる用語であり、酸発生剤より発生する酸などがレジスト膜中に拡散する際の拡散速度を抑制することができる化合物を言う。クエンチャーの配合により、レジスト感度の調整が容易となることに加え、レジスト膜中での酸の拡散速度が抑制されて解像度が向上し、露光後の感度変化を抑制したり、基板や環境依存性を少なくし、露光余裕度やパターンプロファイル等を向上することができる。
【0133】
このようなクエンチャーとしては、第一級、第二級、第三級の脂肪族アミン類、混成アミン類、芳香族アミン類、複素環アミン類、カルボキシ基を有する含窒素化合物、スルホニル基を有する含窒素化合物、水酸基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物、アミド類、イミド類、カーバメート類、アンモニウム塩類等が好適に用いられる。
【0134】
クエンチャーの具体例としては、特開2008−111103号公報の段落[0146]〜[0163]に記載されている。
【0135】
特に好ましく用いられるクエンチャーは第三級アミンであり、具体的にはトリ−n−ブチルアミン、トリ−n−ペンチルアミン、トリ−n−ヘキシルアミン、トリ−n−オクチルアミン、N,N−ジメチルアニリン、トリス(2−メトキシエトキシエチル)アミン、トリエタノールアミン、トリイソプロパノールアミン、トリス(2−メトキシメトキシエチル)アミン、トリス{2−(2−メトキシエトキシ)エチル}アミン、トリス{2−(2−メトキシエトキシメトキシ)エチル}アミン、トリス{2−(1−メトキシエトキシ)エチル}アミン、トリス{2−(1−エトキシエトキシ)エチル}アミン、トリス{2−(1−エトキシプロポキシ)エチル}アミン、トリス[2−{2−(2−ヒドロキシエトキシ)エトキシ}エチル]アミン、4,7,13,16,21,24−ヘキサオキサ−1,10−ジアザビシクロ[8.8.8]ヘキサコサン、4,7,13,18−テトラオキサ−1,10−ジアザビシクロ[8.5.5]エイコサン、1,4,10,13−テトラオキサ−7,16−ジアザビシクロオクタデカン、1−アザ−12−クラウン−4、1−アザ−15−クラウン−5、1−アザ−18−クラウン−6、トリス(2−ホルミルオキシエチル)アミン、トリス(2−アセトキシエチル)アミン、トリス(2−プロピオニルオキシエチル)アミン、トリス(2−ブチリルオキシエチル)アミン、トリス(2−イソブチリルオキシエチル)アミン、トリス(2−バレリルオキシエチル)アミン、トリス(2−ピバロイルオキシエチル)アミン、N,N−ビス(2−アセトキシエチル)2−(アセトキシアセトキシ)エチルアミン、トリス(2−メトキシカルボニルオキシエチル)アミン、トリス(2−tert−ブトキシカルボニルオキシエチル)アミン、トリス[2−(2−オキソプロポキシ)エチル]アミン、トリス[2−(メトキシカルボニルメチル)オキシエチル]アミン、トリス[2−(tert−ブトキシカルボニルメチルオキシ)エチル]アミン、トリス[2−(シクロヘキシルオキシカルボニルメチルオキシ)エチル]アミン、トリス(2−メトキシカルボニルエチル)アミン、トリス(2−エトキシカルボニルエチル)アミン、トリス(2−ベンゾイルオキシエチル)アミン、トリス[2−(4−メトキシベンゾイルオキシ)エチル]アミン、N,N−ビス(2−ヒドロキシエチル)2−(メトキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(メトキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(エトキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(エトキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(2−メトキシエトキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(2−メトキシエトキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(2−ヒドロキシエトキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(2−アセトキシエトキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−[(メトキシカルボニル)メトキシカルボニル]エチルアミン、N,N−ビス(2−アセトキシエチル)2−[(メトキシカルボニル)メトキシカルボニル]エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(2−オキソプロポキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(2−オキソプロポキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(テトラヒドロフルフリルオキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(テトラヒドロフルフリルオキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−[(2−オキソテトラヒドロフラン−3−イル)オキシカルボニル]エチルアミン、N,N−ビス(2−アセトキシエチル)2−[(2−オキソテトラヒドロフラン−3−イル)オキシカルボニル]エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(4−ヒドロキシブトキシカルボニル)エチルアミン、N,N−ビス(2−ホルミルオキシエチル)2−(4−ホルミルオキシブトキシカルボニル)エチルアミン、N,N−ビス(2−ホルミルオキシエチル)2−(2−ホルミルオキシエトキシカルボニル)エチルアミン、N,N−ビス(2−メトキシエチル)2−(メトキシカルボニル)エチルアミン、N−(2−ヒドロキシエチル)ビス[2−(メトキシカルボニル)エチル]アミン、N−(2−アセトキシエチル)ビス[2−(メトキシカルボニル)エチル]アミン、N−(2−ヒドロキシエチル)ビス[2−(エトキシカルボニル)エチル]アミン、N−(2−アセトキシエチル)ビス[2−(エトキシカルボニル)エチル]アミン、N−(3−ヒドロキシ−1−プロピル)ビス[2−(メトキシカルボニル)エチル]アミン、N−(3−アセトキシ−1−プロピル)ビス[2−(メトキシカルボニル)エチル]アミン、N−(2−メトキシエチル)ビス[2−(メトキシカルボニル)エチル]アミン、N−ブチルビス[2−(メトキシカルボニル)エチル]アミン、N−ブチルビス[2−(2−メトキシエトキシカルボニル)エチル]アミン、N−メチルビス(2−アセトキシエチル)アミン、N−エチルビス(2−アセトキシエチル)アミン、N−メチルビス(2−ピバロイルオキシエチル)アミン、N−エチルビス[2−(メトキシカルボニルオキシ)エチル]アミン、N−エチルビス[2−(tert−ブトキシカルボニルオキシ)エチル]アミン、トリス(メトキシカルボニルメチル)アミン、トリス(エトキシカルボニルメチル)アミン、N−ブチルビス(メトキシカルボニルメチル)アミン、N−ヘキシルビス(メトキシカルボニルメチル)アミン、β−(ジエチルアミノ)−δ−バレロラクトンが例示される。
【0136】
更に、1−[2−(メトキシメトキシ)エチル]ピロリジン、1−[2−(メトキシメトキシ)エチル]ピペリジン、4−[2−(メトキシメトキシ)エチル]モルホリン、1−[2−(メトキシメトキシ)エチル]イミダゾール、1−[2−(メトキシメトキシ)エチル]ベンズイミダゾール、1−[2−(メトキシメトキシ)エチル]−2−フェニルベンズイミダゾール、1−[2−[(2−メトキシエトキシ)メトキシ]エチル]ピロリジン、1−[2−[(2−メトキシエトキシ)メトキシ]エチル]ピペリジン、4−[2−[(2−メトキシエトキシ)メトキシ]エチル]モルホリン、1−[2−[(2−メトキシエトキシ)メトキシ]エチル]イミダゾール、1−[2−[(2−メトキシエトキシ)メトキシ]エチル]ベンズイミダゾール、1−[2−[(2−メトキシエトキシ)メトキシ]エチル]−2−フェニルベンズイミダゾール、1−[2−[2−(2−メトキシエトキシ)エトキシ]エチル]ピロリジン、1−[2−[2−(2−メトキシエトキシ)エトキシ]エチル]ピペリジン、4−[2−[2−(2−メトキシエトキシ)エトキシ]エチル]モルホリン、1−[2−[2−(2−メトキシエトキシ)エトキシ]エチル]イミダゾール、1−[2−[2−(2−メトキシエトキシ)エトキシ]エチル]ベンズイミダゾール、1−[2−[2−(2−メトキシエトキシ)エトキシ]エチル]−2−フェニルベンズイミダゾール、1−[2−[2−(2−ブトキシエトキシ)エトキシ]エチル]ピロリジン、1−[2−[2−(2−ブトキシエトキシ)エトキシ]エチル]ピペリジン、4−[2−[2−(2−ブトキシエトキシ)エトキシ]エチル]モルホリン、1−[2−[2−(2−ブトキシエトキシ)エトキシ]エチル]イミダゾール、1−[2−[2−(2−ブトキシエトキシ)エトキシ]エチル]ベンズイミダゾール、1−[2−[2−(2−ブトキシエトキシ)エトキシ]エチル]−2−フェニルベンズイミダゾール、1−[2−[2−[2−(2−メトキシエトキシ)エトキシ]エトキシ]エチル]ピロリジン、1−[2−[2−[2−(2−メトキシエトキシ)エトキシ]エトキシ]エチル]ピペリジン、4−[2−[2−[2−(2−メトキシエトキシ)エトキシ]エトキシ]エチル]モルホリン、1−[2−[2−[2−(2−メトキシエトキシ)エトキシ]エトキシ]エチル]イミダゾール、1−[2−[2−[2−(2−メトキシエトキシ)エトキシ]エトキシ]エチル]ベンズイミダゾール、1−[2−[2−[2−(2−メトキシエトキシ)エトキシ]エトキシ]エチル]−2−フェニルベンズイミダゾール、4−[2−{2−[2−(2−ブトキシエトキシ)エトキシ]エトキシ}エチル]モルホリン、酢酸2−(1−ピロリジニル)エチル、酢酸2−ピペリジノエチル、酢酸2−モルホリノエチル、酢酸2−(1−イミダゾリル)エチル、酢酸2−(1−ベンズイミダゾリル)エチル、酢酸2−(2−フェニル−1−ベンズイミダゾリル)エチル、モルホリノ酢酸2−メトキシエチル、2−メトキシ酢酸2−(1−ピロリジニル)エチル、2−メトキシ酢酸2−ピペリジノエチル、2−メトキシ酢酸2−モルホリノエチル、2−メトキシ酢酸2−(1−イミダゾリル)エチル、2−メトキシ酢酸2−(1−ベンズイミダゾリル)エチル、2−メトキシ酢酸2−(2−フェニル−1−ベンズイミダゾリル)エチル、2−(2−メトキシエトキシ)酢酸2−(1−ピロリジニル)エチル、2−(2−メトキシエトキシ)酢酸2−ピペリジノエチル、2−(2−メトキシエトキシ)酢酸2−モルホリノエチル、2−(2−メトキシエトキシ)酢酸2−(1−イミダゾリル)エチル、2−(2−メトキシエトキシ)酢酸2−(1−ベンズイミダゾリル)エチル、2−(2−メトキシエトキシ)酢酸2−(2−フェニル−1−ベンズイミダゾリル)エチル、2−[2−(2−メトキシエトキシ)エトキシ]酢酸2−(1−ピロリジニル)エチル、2−[2−(2−メトキシエトキシ)エトキシ]酢酸2−ピペリジノエチル、2−[2−(2−メトキシエトキシ)エトキシ]酢酸2−モルホリノエチル、2−[2−(2−メトキシエトキシ)エトキシ]酢酸2−(1−イミダゾリル)エチル、2−[2−(2−メトキシエトキシ)エトキシ]酢酸2−(1−ベンズイミダゾリル)エチル、2−[2−(2−メトキシエトキシ)エトキシ]酢酸2−(2−フェニル−1−ベンズイミダゾリル)エチル、酪酸2−モルホリノエチル、ヘキサン酸2−モルホリノエチル、オクタン酸2−モルホリノエチル、デカン酸2−モルホリノエチル、ラウリン酸2−モルホリノエチル、ミリスチン酸2−モルホリノエチル、パルミチン酸2−モルホリノエチル、ステアリン酸2−モルホリノエチル、ベヘン酸2−モルホリノエチル、コール酸2−モルホリノエチル、トリス(O−アセチル)コール酸2−モルホリノエチル、トリス(O−ホルミル)コール酸2−モルホリノエチル、デヒドロコール酸2−モルホリノエチル、シクロペンタンカルボン酸2−モルホリノエチル、シクロヘキサンカルボン酸2−モルホリノエチル、7−オキサノルボルナン−2−カルボン酸2−(1−ピロリジニル)エチル、7−オキサノルボルナン−2−カルボン酸2−ピペリジノエチル、7−オキサノルボルナン−2−カルボン酸2−モルホリノエチル、7−オキサノルボルナン−2−カルボン酸2−(1−イミダゾリル)エチル、7−オキサノルボルナン−2−カルボン酸2−(1−ベンズイミダゾリル)エチル、7−オキサノルボルナン−2−カルボン酸2−(2−フェニル−1−ベンズイミダゾリル)エチル、アダマンタンカルボン酸2−モルホリノエチル、ギ酸2−(1−ピロリジニル)エチル、プロピオン酸2−ピペリジノエチル、アセトキシ酢酸2−モルホリノエチル、メトキシ酢酸2−(1−ピロリジニル)エチル、安息香酸2−(1−ピロリジニル)エチル、安息香酸2−ピペリジノエチル、安息香酸2−モルホリノエチル、安息香酸2−(1−イミダゾリル)エチル、安息香酸2−(1−ベンズイミダゾリル)エチル、安息香酸2−(2−フェニル−1−ベンズイミダゾリル)エチル、4−メトキシ安息香酸2−(1−ピロリジニル)エチル、4−メトキシ安息香酸2−ピペリジノエチル、4−メトキシ安息香酸2−モルホリノエチル、4−メトキシ安息香酸2−(1−イミダゾリル)エチル、4−メトキシ安息香酸2−(1−ベンズイミダゾリル)エチル、4−メトキシ安息香酸2−(2−フェニル−1−ベンズイミダゾリル)エチル、4−フェニル安息香酸2−(1−ピロリジニル)エチル、4−フェニル安息香酸2−ピペリジノエチル、4−フェニル安息香酸2−モルホリノエチル、4−フェニル安息香酸2−(1−イミダゾリル)エチル、4−フェニル安息香酸2−(1−ベンズイミダゾリル)エチル、4−フェニル安息香酸2−(2−フェニル−1−ベンズイミダゾリル)エチル、1−ナフタレンカルボン酸2−(1−ピロリジニル)エチル、1−ナフタレンカルボン酸2−ピペリジノエチル、1−ナフタレンカルボン酸2−モルホリノエチル、1−ナフタレンカルボン酸2−(1−イミダゾリル)エチル、1−ナフタレンカルボン酸2−(1−ベンズイミダゾリル)エチル、1−ナフタレンカルボン酸2−(2−フェニル−1−ベンズイミダゾリル)エチル、2−ナフタレンカルボン酸2−(1−ピロリジニル)エチル、2−ナフタレンカルボン酸2−ピペリジノエチル、2−ナフタレンカルボン酸2−モルホリノエチル、2−ナフタレンカルボン酸2−(1−イミダゾリル)エチル、2−ナフタレンカルボン酸2−(1−ベンズイミダゾリル)エチル、2−ナフタレンカルボン酸2−(2−フェニル−1−ベンズイミダゾリル)エチル、4−[2−(メトキシカルボニルオキシ)エチル]モルホリン、1−[2−(t−ブトキシカルボニルオキシ)エチル]ピペリジン、4−[2−(2−メトキシエトキシカルボニルオキシ)エチル]モルホリン、3−(1−ピロリジニル)プロピオン酸メチル、3−ピペリジノプロピオン酸メチル、3−モルホリノプロピオン酸メチル、3−(チオモルホリノ)プロピオン酸メチル、2−メチル−3−(1−ピロリジニル)プロピオン酸メチル、3−モルホリノプロピオン酸エチル、3−ピペリジノプロピオン酸メトキシカルボニルメチル、3−(1−ピロリジニル)プロピオン酸2−ヒドロキシエチル、3−モルホリノプロピオン酸2−アセトキシエチル、3−(1−ピロリジニル)プロピオン酸2−オキソテトラヒドロフラン−3−イル、3−モルホリノプロピオン酸テトラヒドロフルフリル、3−ピペリジノプロピオン酸グリシジル、3−モルホリノプロピオン酸2−メトキシエチル、3−(1−ピロリジニル)プロピオン酸2−(2−メトキシエトキシ)エチル、3−モルホリノプロピオン酸ブチル、3−ピペリジノプロピオン酸シクロヘキシル、α−(1−ピロリジニル)メチル−γ−ブチロラクトン、β−ピペリジノ−γ−ブチロラクトン、β−モルホリノ−δ−バレロラクトン、1−ピロリジニル酢酸メチル、ピペリジノ酢酸メチル、モルホリノ酢酸メチル、チオモルホリノ酢酸メチル、1−ピロリジニル酢酸エチルなどが例示される。
【0137】
なお、クエンチャーの配合量は、全ベース樹脂100質量部に対して0.01〜20質量部、特に0.1〜10質量部が好適である。配合量が0.01質量部より少ないと配合効果がなく、20質量部を超えると感度が低下しすぎる場合がある。
【0138】
本発明のレジスト材料には、上記成分以外に任意成分として塗布性を向上させるために慣用されている界面活性剤(E)を添加することができる。なお、任意成分の添加量は、本発明の効果を妨げない範囲で通常量とすることができる。
【0139】
界面活性剤の具体例としては、特開2008−111103号公報の段落[0165]〜[0166]に記載されている。また、下記構造式(surf−1)の部分フッ素化オキセタン開環重合物系の界面活性剤も好ましく用いられる。
【0140】
【化46】


ここで、R、Rf、A’’、B’’、C’’、m’’、n’’は、上述の界面活性剤以外の記載に拘わらず、上記式(surf−1)のみに適用される。Rは2〜4価の炭素数2〜5の脂肪族基を示し、具体的には2価のものとしてエチレン、1,4−ブチレン、1,2−プロピレン、2,2−ジメチル−1,3−プロピレン、1,5−ペンチレンが挙げられ、3又は4価のものとしては、下記のものが挙げられる。
【化47】


(式中、破線は結合手を示し、それぞれグリセロール、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトールから派生した部分構造である。)
これらの中で好ましく用いられるのは、1,4−ブチレン又は2,2−ジメチル−1,3−プロピレンである。
【0141】
Rfはトリフルオロメチル基又はペンタフルオロエチル基を示し、好ましくはトリフルオロメチル基である。m’’は0〜3の整数、n’’は1〜4の整数であり、m’’とn’’の和はRの価数を示し2〜4の整数である。A’’は1、B’’は2〜25の整数、C’’は0〜10の整数を示す。好ましくはB’’は4〜20の整数を示し、C’’は0又は1である。また、上記構造の各構成単位はその並びを規定したものではなくブロック的でもランダム的に結合してもよい。部分フッ素化オキセタン開環重合物系の界面活性剤の製造に関しては米国特許第5,650,483号明細書などに詳しい。
【0142】
上記界面活性剤の中でもFC−4430,サーフロンS−381,サーフィノールE1004,KH−20,KH−30、及び上記構造式(surf−1)にて示したオキセタン開環重合物が好適である。これらは単独あるいは2種以上の組み合わせで用いることができる。
【0143】
本発明の化学増幅型レジスト材料中の界面活性剤の添加量としては、レジスト材料中のベース樹脂100質量部に対し2質量部以下、好ましくは1質量部以下であり、配合する場合は0.01質量部以上とすることが好ましい。
【0144】
本発明のレジスト材料には、水を用いた液浸露光において特にはレジスト保護膜を用いない場合、スピンコート後のレジスト表面に配向することによって水のしみ込みやリーチングを低減させる機能を有する界面活性剤を添加することができる。この界面活性剤は高分子型の界面活性剤であり、水に溶解せずアルカリ現像液に溶解する性質であり、特に撥水性が高く滑水性を向上させるものが好ましい。
【0145】
上記高分子型の界面活性剤の添加量は、レジスト材料のベース樹脂100質量部に対して0.001〜20質量部、好ましくは0.01〜10質量部の範囲である。これらは特開2007−297590号公報に詳しい。
【0146】
本発明の高分子化合物を化学増幅ネガ型レジスト材料に用いる場合には、酸架橋剤により架橋構造可能な置換基を有する繰り返し単位を有することが必要である。より具体的にはアクリル酸、メタクリル酸、ヒドロキシスチレン(置換位置は任意である)、ヒドロキシビニルナフタレン(置換位置は任意である)に由来する繰り返し単位などが挙げられるが、これに限定されるものではない。
【0147】
また、上記高分子化合物以外にもアルカリ可溶性樹脂を添加してもよい。
例えば、ポリ(p−ヒドロキシスチレン)、ポリ(m−ヒドロキシスチレン)、ポリ(4−ヒドロキシ−2−メチルスチレン)、ポリ(4−ヒドロキシ−3−メチルスチレン)、ポリ(α−メチル−p−ヒドロキシスチレン)、部分水素加(p−ヒドロキシスチレン)コポリマー、(p−ヒドロキシスチレン−α−メチル−p−ヒドロキシスチレン)コポリマー、(p−ヒドロキシスチレン−α−メチルスチレン)コポリマー、(p−ヒドロキシスチレン−スチレン)コポリマー、(p−ヒドロキシスチレン−m−ヒドロキシスチレン)コポリマー、(p−ヒドロキシスチレン−スチレン)コポリマー、(p−ヒドロキシスチレン−アクリル酸)コポリマー、(p−ヒドロキシスチレン−メタクリル酸)コポリマー、(p−ヒドロキシスチレン−メチルアクリレート)コポリマー、(p−ヒドロキシスチレン−アクリル酸−メチルメタクリレート)コポリマー、(p−ヒドロキシスチレン−メチルアクリレート)コポリマー、(p−ヒドロキシスチレン−メタクリル酸−メチルメタクリレート)コポリマー、ポリメタクリル酸、ポリアクリル酸、(アクリル酸−メチルアクリレート)コポリマー、(メタクリル酸−メチルメタクリレート)コポリマー、(アクリル酸−マレイミド)コポリマー、(メタクリル酸−マレイミド)コポリマー、(p−ヒドロキシスチレン−アクリル酸−マレイミド)コポリマー、(p−ヒドロキシスチレン−メタクリル酸−マレイミド)コポリマー等が挙げられるがこれらの組み合わせに限定されるものではない。
【0148】
本発明の高分子化合物とそれ以外のアルカリ可溶性樹脂との配合比率は、100:0〜10:90、特に100:0〜20:80の質量比の範囲内にあることが好ましい。本発明の高分子化合物の配合比がこれより少ないと、レジスト材料として好ましい性能が得られないことがある。上記の配合比率を適宜変えることにより、レジスト材料の性能を調整することができる。
【0149】
なお、上記アルカリ可溶性樹脂は1種に限らず2種以上を添加することができる。複数種の高分子化合物を用いることにより、レジスト材料の性能を調整することができる。
【0150】
また、(F)成分の酸の作用により架橋構造を形成する酸架橋剤としては、分子内に2個以上のヒドロキシメチル基、アルコキシメチル基、エポキシ基又はビニルエーテル基を有する化合物が挙げられ、置換グリコウリル誘導体、尿素誘導体、ヘキサ(メトキシメチル)メラミン等が本発明の化学増幅ネガ型レジスト材料の酸架橋剤として好適に用いられる。例えばN,N,N’,N’−テトラメトキシメチル尿素とヘキサメトキシメチルメラミン、テトラヒドロキシメチル置換グリコールウリル類及びテトラメトキシメチルグリコールウリルのようなテトラアルコキシメチル置換グリコールウリル類、置換及び未置換ビス−ヒドロキシメチルフェノール類、ビスフェノールA等のフェノール性化合物とエピクロロヒドリン等の縮合物が挙げられる。特に好適な架橋剤は、1,3,5,7−テトラメトキシメチルグリコールウリルなどの1,3,5,7−テトラアルコキシメチルグリコールウリル又は1,3,5,7−テトラヒドロキシメチルグリコールウリル、2,6−ジヒドロキシメチルp−クレゾール、2,6−ジヒドロキシメチルフェノール、2,2’,6,6’−テトラヒドロキシメチル−ビスフェノールA及び1,4−ビス−[2−(2−ヒドロキシプロピル)]−ベンゼン、N,N,N’,N’−テトラメトキシメチル尿素とヘキサメトキシメチルメラミン等が挙げられる。
【0151】
本発明の化学増幅型レジスト材料中の(F)成分の酸架橋剤の添加量は任意であるが、レジスト材料中のベース樹脂100質量部に対し1〜20質量部、特に5〜15質量部が好適である。これら架橋剤は単独でも2種以上を併用してもよい。
【0152】
本発明のレジスト材料の基本的構成成分は、上記の高分子化合物(ベース樹脂)、酸発生剤、有機溶剤及びクエンチャーであるが、上記成分以外に任意成分として必要に応じて界面活性剤、架橋剤、更に溶解阻止剤、酸性化合物、安定剤、色素などの他の成分を添加してもよい。なお、これら任意成分の添加量は、本発明の効果を妨げない範囲で通常量とすることができる。
【0153】
本発明のレジスト材料を使用してパターンを形成するには、公知のリソグラフィー技術を採用して行うことができ、例えば、集積回路製造用の基板(Si,SiO2,SiN,SiON,TiN,WSi,BPSG,SOG,有機反射防止膜等)、あるいはマスク回路製造用の基板(Cr,CrO,CrON,MoSi等)にスピンコーティング等の手法で膜厚が0.05〜2.0μmとなるように塗布し、これをホットプレート上で60〜150℃、1〜20分間、好ましくは80〜140℃、1〜10分間プリベークする。次いで目的のパターンを形成するためのマスクを上記のレジスト膜上にかざし、遠紫外線、エキシマレーザー、X線等の高エネルギー線又は電子線を照射する。あるいは、パターン形成のためのマスクを介さずに電子線を直接描画する。露光量は、光露光であれば1〜200mJ/cm2、好ましくは10〜100mJ/cm2程度、また電子線露光であれば、0.1〜20μC/cm2程度、好ましくは3〜10μC/cm2程度となるように露光することが好ましい。露光は通常の露光法の他、場合によってはマスクとレジスト膜の間を液浸するImmersion法を用いることも可能である。その場合には水に不溶な保護膜を用いることも可能である。次いで、ホットプレート上で、60〜150℃、1〜20分間、好ましくは80〜140℃、1〜10分間ポストエクスポージャーベーク(PEB)する。更に、0.1〜5質量%、好ましくは2〜3質量%のテトラメチルアンモニウムヒドロキシド(TMAH)等のアルカリ水溶液の現像液を用い、0.1〜3分間、好ましくは0.5〜2分間、浸漬(dip)法、パドル(puddle)法、スプレー(spray)法等の常法により現像して、基板上に目的のパターンが形成される。なお、本発明のレジスト材料は、特に高エネルギー線の中でも250〜190nmの遠紫外線又はエキシマレーザー、X線及び電子線による微細パターニングに最適である。また、上記範囲が上限又は下限から外れる場合は、目的のパターンを得ることができない場合がある。
【0154】
上述した水に不溶な保護膜はレジスト膜からの溶出物を防ぎ、膜表面の滑水性を上げるために用いられ、大きく分けて2種類ある。1種類はレジスト膜を溶解しない有機溶剤によってアルカリ現像前に剥離が必要な有機溶剤剥離型ともう1種はアルカリ現像液に可溶でレジスト膜可溶部の除去と共に保護膜を除去するアルカリ可溶型である。
後者は特に水に不溶でアルカリ現像液に溶解する1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール残基を有する高分子化合物をベースとし、炭素数4以上のアルコール系溶剤、炭素数8〜12のエーテル系溶剤、及びこれらの混合溶媒に溶解させた材料が好ましい。
上述した水に不溶でアルカリ現像液に可溶な界面活性剤を炭素数4以上のアルコール系溶剤、炭素数8〜12のエーテル系溶剤、又はこれらの混合溶媒に溶解させた材料とすることもできる。
また、パターン形成方法の手段として、フォトレジスト膜形成後に、純水リンス(ポストソーク)を行うことによって膜表面からの酸発生剤などの抽出、あるいはパーティクルの洗い流しを行ってもよいし、露光後に膜上に残った水を取り除くためのリンス(ポストソーク)を行ってもよい。
【0155】
フォトマスクブランクス上で上述のレジストパターン形成を実施し、フォトマスクを製造する場合、特にクロム系材料を最表面の材料として持つフォトマスクブランクスの加工に用いると、レジストパターンが基板依存性の影響を受けにくいため、本発明のパターン形成方法を有利に適用できる。また、モリブデン−珪素化合物をはじめとする珪素に酸素や窒素を含有する材料の上でレジストパターンの形成を行った場合にも、高解像性、経時安定性が得られるため、信頼性の高いフォトマスクの製造を行うことができる。
【0156】
上述のレジストパターンをエッチングマスクとしたフォトマスクブランクスの加工は公知のいずれの方法を用いてもよいが、最表面がクロム系化合物の場合には酸素を含有する塩素系ドライエッチングを用い、最表面が遷移金属−珪素化合物の場合にはフッ素系ドライエッチングを用いることが一般的である。
【実施例】
【0157】
以下、合成例及び実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
【0158】
[合成例1−1]トリフェニルスルホニウムクロリドの合成
ジフェニルスルホキシド40g(0.2モル)をジクロロメタン400gに溶解させ、氷冷下撹拌した。トリメチルシリルクロリド65g(0.6モル)を、20℃を超えない温度で滴下し、更にこの温度で30分間熟成を行った。次いで、金属マグネシウム14.6g(0.6モル)とクロロベンゼン67.5g(0.6モル)、テトラヒドロフラン(THF)168gから別途調製したGrignard試薬を、20℃を超えない温度で滴下した。反応の熟成を1時間行った後、20℃を超えない温度で水50gを加えて反応を停止し、更に水150gと12規定塩酸10gとジエチルエーテル200gを加えた。
水層を分取し、ジエチルエーテル100gで洗浄し、トリフェニルスルホニウムクロリド水溶液を得た。これは、これ以上の単離操作をせず水溶液のまま次の反応に用いた。
【0159】
[合成例1−2]4−tert−ブチルフェニルジフェニルスルホニウム臭化物の合成
合成例1−1のクロロベンゼンの代わりに4−tert−ブチルブロモベンゼンを用い、抽出の際に水の量を増やす以外は合成例1−1と同様にして目的物を得た。
【0160】
[合成例1−3]4−tert−ブトキシフェニルジフェニルスルホニウム塩化物の合成
合成例1−1のクロロベンゼンの代わりに4−tert−ブトキシクロロベンゼンを、溶剤にトリエチルアミンを5質量%含むジクロロメタン溶剤を用い、抽出の際に水の量を増やす以外は合成例1−1と同様にして目的物を得た。
【0161】
[合成例1−4]トリス(4−メチルフェニル)スルホニウム塩化物の合成
合成例1−1のジフェニルスルホキシドの代わりにビス(4−メチルフェニル)スルホキシドを用い、クロロベンゼンの代わりに4−クロロトルエンを用い、抽出の際に水の量を増やす以外は合成例1−1と同様にして目的物を得た。
【0162】
[合成例1−5]トリス(4−tert−ブチルフェニル)スルホニウム臭化物の合成
合成例1−1のジフェニルスルホキシドの代わりにビス(4−tert−ブチルフェニル)スルホキシドを、クロロベンゼンの代わりに4−tert−ブチルブロモベンゼンを用い、抽出の際に水の量を増やす以外は合成例1−1と同様にして目的物を得た。
【0163】
[合成例1−6]ビス(4−tert−ブチルフェニル)ヨードニウムハイドロジェンスルフェートの合成
tert−ブチルベンゼン84g(0.5モル)、ヨウ素酸カリウム53g(0.25モル)、無水酢酸50gの混合物を氷冷下撹拌し、無水酢酸35gと濃硫酸95gの混合物を、30℃を超えない温度で滴下した。次いで室温で3時間熟成を行い、再度氷冷して水250gを滴下し、反応を停止した。この反応液を、ジクロロメタン400gを用いて抽出し、有機層に亜硫酸水素ナトリウム6gを加えて脱色した。更にこの有機層を水250gで洗浄することを3回繰り返した。洗浄した有機層を減圧濃縮することで、目的の粗生成物を得た。これ以上の精製はせずこのまま次の反応に用いた。
【0164】
[合成例1−7]ジメチルフェニルスルホニウム硫酸塩の合成
チオアニソール6.2g(0.05モル)とジメチル硫酸6.9g(0.055モル)を室温で12時間撹拌した。反応液に水100gとジエチルエーテル50mlを加えて水層を分取し、目的のジメチルフェニルスルホニウム硫酸塩水溶液を得た。
【0165】
[合成例1−8]フェナシルテトラヒドロチオフェニウムブロミドの合成
フェナシルブロミド88.2g(0.44モル)、テトラヒドロチオフェン39.1g(0.44モル)をニトロメタン220gに溶解し、室温で4時間撹拌を行った。反応液に水800gとジエチルエーテル400gを加え、分離した水層を分取し、目的のフェナシルテトラヒドロチオフェニウムブロミド水溶液を得た。
【0166】
[合成例1−9]2−(ピバロイルオキシ)−1,1−ジフルオロエタンスルホン酸ナトリウムの合成
ピバル酸クロリドと2−ブロモ−2,2−ジフルオロエタノールをTHF中で混合、氷冷した。トリエチルアミンを加え、通常の分液操作と溶剤留去を行い、ピバル酸=2−ブロモ−2,2−ジフルオロエチルを得た。次いで亜二チアン酸ナトリウムによりスルフィン酸ナトリウム化、過酸化水素による酸化を行い、目的の2−(ピバロイルオキシ)−1,1−ジフルオロエタンスルホン酸ナトリウムを得た。
カルボン酸エステルの合成は公知であり、またアルキルハライドからのスルフィン酸、スルホン酸の合成は公知である。後者は例えば特開2004−2252号公報などに記載されている。
【0167】
[合成例1−10]トリフェニルスルホニウム−2−(ピバロイルオキシ)−1,1−ジフルオロエタンスルホネートの合成
2−(ピバロイルオキシ)−1,1−ジフルオロエタンスルホン酸ナトリウム(純度63%)159g(0.37モル)とトリフェニルスルホニウム=ヨージド132g(0.34モル)をジクロロメタン700gと水400gに溶解させた。分離した有機層を水200gで3回洗浄し、有機層を濃縮した。残渣にジエチルエーテルを加えて再結晶を行い、目的物を白色結晶として得た。収量164g(収率95%)
【0168】
[合成例1−11]4−tert−ブチルフェニルジフェニルスルホニウム−2−(ピバロイルオキシ)−1,1−ジフルオロエタンスルホネートの合成
2−(ピバロイルオキシ)−1,1−ジフルオロエタンスルホン酸ナトリウム(純度70%)20g(0.052モル)と4−tert−ブチルフェニルジフェニルスルホニウム=ブロミド水溶液217g(0.052モル)をジクロロメタン150gに溶解させた。分離した有機層を水50gで3回洗浄し、有機層を濃縮した。残渣にジエチルエーテルを加えて再結晶を行い、目的物を白色結晶として得た。収量26g(収率79%)
【0169】
[合成例1−12]トリフェニルスルホニウム−1,1−ジフルオロ−2−ヒドロキシエタンスルホネートの合成[PAG1]
トリフェニルスルホニウム−2−(ピバロイルオキシ)−1,1−ジフルオロエタンスルホネート243.5g(0.48モル)をメタノール760gに溶解し、氷冷した。水酸化ナトリウム水溶液〔水酸化ナトリウム40gを水120gに溶解したもの〕を、5℃を超えない温度で滴下した。室温で8時間熟成を行い、10℃を超えない温度で希塩酸(12規定塩酸99.8gと水200g)を加えて反応を停止し、メタノールを減圧除去した。ジクロロメタン1,000gを加え、飽和食塩水30gで3回有機層を洗浄した後、有機層を濃縮し、残渣にジイソプロピルエーテル1Lを加えて結晶化させた。その結晶を濾過、乾燥することで目的物を得た。収量187g(純度78%、換算収率78%)
得られた目的物(PAG1)の構造を下記に示す。
【0170】
【化48】

【0171】
[合成例1−13]トリフェニルスルホニウム−1,1−ジフルオロ−2−ヒドロキシエタンスルホネートの合成[PAG1]
トリフェニルスルホニウム−2−(ピバロイルオキシ)−1,1−ジフルオロエタンスルホネート50.9g(0.1モル)をメタノール200gに溶解し、氷冷した。28質量%ナトリウムメトキシド・メタノール溶液2.0gを加えて、室温で24時間熟成を行い、10℃を超えない温度で12規定塩酸1.0gを加えて反応を停止し、メタノールを減圧除去した。ジクロロメタン250gを加え、無機塩を濾過後、濾液を濃縮し、残渣にジイソプロピルエーテル150gを加えて結晶化させた。その結晶を濾過、乾燥することで目的物を得た。収量42g(純度99%、換算収率99%)
【0172】
[合成例1−14〜1−20]
合成例1−2〜1−8で調製したスルホニウム塩あるいはヨードニウム塩を用いる以外は合成例1−10及び合成例1−12と同様にして目的物を合成した。これらのオニウム塩(PAG2〜PAG8)を下記に示す。
【0173】
【化49】

【0174】
[合成例1−21]2−ベンゾイルオキシ−1,1,3,3,3−ペンタフルオロプロパン−1−スルホン酸ナトリウムの合成
常法により合成した1,1,3,3,3−ペンタフルオロ−2−プロパン−2−イル ベンゾエート10.0gを水72gに分散させ、亜硫酸水素ナトリウム12.0gを加えて100℃で14時間反応を行った。反応液を放冷後、トルエンを加えて分液操作を行い、分取した水層に飽和塩化ナトリウム水溶液を加えて析出した白色結晶を濾別した。この結晶を少量の飽和塩化ナトリウム水溶液で洗浄後、減圧乾燥を行うことで目的の2−ベンゾイルオキシ−1,1,3,3,3−ペンタフルオロプロパン−1−スルホン酸ナトリウムを得た[白色結晶5.85g(収率43%)]。
【0175】
[合成例1−22]トリフェニルスルホニウム−2−ベンゾイルオキシ−1,1,3,3,3−ペンタフルオロプロパン−1−スルホネートの合成
合成例1−1のトリフェニルスルホニウムクロリド水溶液0.011モル相当の水溶液と合成例1−9で合成した2−ベンゾイルオキシ−1,1,3,3,3−ペンタフルオロプロパン−1−スルホン酸ナトリウム3.6g(0.01モル)をジクロロメタン50g中で撹拌した。有機層を分取し、水50gで3回有機層を洗浄した。有機層を濃縮し、残渣にジエチルエーテル25gを加えて結晶化させた。結晶を濾過、乾燥することで目的物を得た[白色結晶4.5g(収率75%)]。
【0176】
[合成例1−23]トリフェニルスルホニウム−2−ヒドロキシ−1,1,3,3,3−ペンタフルオロプロパン−1−スルホネートの合成[PAG9]
合成例1−10のトリフェニルスルホニウム−2−ベンゾイルオキシ−1,1,3,3,3−ペンタフルオロプロパン−1−スルホネート34.4gをメタノール72gに溶解させ、氷冷下撹拌した。そこへ5%水酸化ナトリウム水溶液54.0gを10℃を超えない温度で滴下した。この温度で4時間熟成した後、10℃を超えない温度で12規定塩酸6.8gを加えて反応停止し、メタノールを減圧除去した。ジクロロメタン270gを加え、水40gで3回有機層を洗浄した後、有機層を濃縮し、残渣にジエチルエーテル60gを加えて結晶化させた。その結晶を濾過、乾燥することで目的物を得た[白色結晶24.3g(収率85%)]。目的物(PAG9)の構造を下記に示す。
【0177】
【化50】

【0178】
[合成例1−24〜1−30]
合成例1−2〜1−8で調製したスルホニウム塩あるいはヨードニウム塩を用いる以外は合成例1−22及び合成例1−23と同様にして目的物を合成した。これらのオニウム塩(PAG10〜PAG16)を下記に示す。
【0179】
【化51】

【0180】
[合成例1−31]トリフェニルスルホニウム 2−(アダマンタン−1−カルボニルオキシ)酢酸=1−(ジフルオロスルホメチル)−2,2,2−トリフルオロエチルの合成[PAG−A]
1−アダマンタンカルボン酸とクロロ酢酸t−ブチルエステルにより、2−(アダマンタン−1−カルボニルオキシ)酢酸t−ブチルエステルを調製し、酸による脱保護とオキザリルクロリドにより2−(アダマンタン−1−カルボニルオキシ)酢酸クロリドを合成した。
合成例1−23のトリフェニルスルホニウム−2−ヒドロキシ−1,1,3,3,3−ペンタフルオロプロパン−1−スルホネート9.8g(0.02モル)、トリエチルアミン2.2g(0.022モル)、N,N−ジメチルアミノピリジン0.24g(0.002モル)をジクロロメタン40gに溶解し氷冷した。上述した2−(アダマンタン−1−カルボニルオキシ)酢酸クロリド5.6g(0.022モル)を、5℃を超えない温度で添加し、室温で1時間撹拌した。12規定塩酸3gと水10gから調製した希塩酸水溶液を加えた後に、メチルイソブチルケトン80gと水20gを加えて有機層を分取し、次いでこの有機層を水50gで2回洗浄し、溶剤を減圧留去した。残渣にジイソプロピルエーテルを加えて結晶化を行い、目的物を得た[白色結晶12.0g(収率84%)]。融点110〜111℃。目的物の構造を下記に示す。
【0181】
【化52】

【0182】
得られた目的物のスペクトルデータを下記に示す。核磁気共鳴スペクトル(1H−NMR,19F−NMR/DMSO−d6)の結果を図1及び図2に示す。なお、1H−NMRにおいて微量の残溶剤(ジイソプロピルエーテル、水)が観測されている。
赤外吸収スペクトル(IR(KBr);cm-1
2933、2908、2854、1787、1735、1476、1448、1373、1324、1266、1249、1216、1177、1105、1094、1071、995、938、835、751、684、642、578、552、535、505
飛行時間型質量分析(TOFMS;MALDI)
POSITIVE M+263((C653+相当)
NEGATIVE M-449((C11152‐CH2CO2)CH(CF3)CF2SO3-相当)
【0183】
PAG9、即ちトリフェニルスルホニウム−2−ヒドロキシ−1,1,3,3,3−ペンタフルオロプロパン−1−スルホネートの代わりに、PAG11〜PAG16のいずれかを用い、それ以外は合成例1−31と同様の操作を行うことで、PAG−Aのカチオン種が4−tert−ブトキシフェニルジフェニルスルホニウム、トリス(4−メチルフェニル)スルホニウム、トリス(4−tert−ブチルフェニル)スルホニウム、ビス(4−tert−ブチルフェニル)ヨードニウム、ジメチルフェニルスルホニウム、フェナシルテトラヒドロチオフェニウムのいずれかにかわった化合物を合成することができる。
【0184】
[合成例1−32]トリフェニルスルホニウム 2−(4−オキソ−アダマンタン−1−カルボニルオキシ)酢酸=1−(ジフルオロスルホメチル)−2,2,2−トリフルオロエチルの合成[PAG−B]
4−オキソ−1−アダマンタンカルボン酸とクロロ酢酸t−ブチルエステルにより、2−(4−オキソ−アダマンタン−1−カルボニルオキシ)酢酸t−ブチルエステルを調製し、酸による脱保護とオキザリルクロリドにより2−(4−オキソ−アダマンタン−1−カルボニルオキシ)酢酸クロリドを合成した。
この酸クロライド3.1g(0.01モル)とトリフェニルスルホニウム−2−ヒドロキシ−1,1,3,3,3−ペンタフルオロプロパン−1−スルホネート4.9g(0.01モル)、塩化メチレン20gの混合溶液に、トリエチルアミン1.1g(0.01モル)、4−ジメチルアミノピリジン0.24g(0.002モル)、塩化メチレン5.0gの混合溶液を滴下し、室温で3時間撹拌した。その後、5%塩酸11gを加えて反応を停止した。反応液の有機層を分取し、次いでこの有機層を水20gで洗浄し、ジクロロメタンを減圧留去した。残渣にメチルイソブチルケトン30g、希アンモニア水15gを加え、有機層を分取し、次いでこの有機層を水20gで洗浄し、メチルイソブチルケトンを減圧留去した。得られた残渣をジイソプロピルエーテルで洗浄し、その後減圧乾燥を行うことで目的物を得た[無色オイル6.8g(収率94%)]。目的物の構造を下記に示す。
【0185】
【化53】

【0186】
得られた目的物のスペクトルデータを下記に示す。核磁気共鳴スペクトル(1H−NMR,19F−NMR/DMSO−d6)の結果を図3及び図4に示す。なお、1H−NMRにおいて微量の残溶剤(塩化メチレン、ジイソプロピルエーテル、水)が観測されている。
赤外吸収スペクトル(IR(KBr);cm-1
2936、2862、1788、1738、1721、1476、1447、1373、1251、1217、1176、1102、1070、995、750、685、642。
飛行時間型質量分析(TOFMS;MALDI)
POSITIVE M+263((C653+相当)
NEGATIVE M-463((C11133‐CH2CO2)CH(CF3)CF2SO3-相当)
【0187】
PAG9、即ちトリフェニルスルホニウム−2−ヒドロキシ−1,1,3,3,3−ペンタフルオロプロパン−1−スルホネートの代わりに、PAG10〜16のいずれかを用い、それ以外は合成例1−32と同様の操作を行うことで、PAG−Bのカチオン種が4−tert−ブチルフェニルジフェニルスルホニウム、4−tert−ブトキシフェニルジフェニルスルホニウム、トリス(4−メチルフェニル)スルホニウム、トリス(4−tert−ブチルフェニル)スルホニウム、ビス(4−tert−ブチルフェニル)ヨードニウム、ジメチルフェニルスルホニウム、フェナシルテトラヒドロチオフェニウムのいずれかにかわった化合物を合成することができる。
【0188】
[合成例1−33]トリフェニルスルホニウム 2−(4−オキソ−アダマンタン−1−カルボニルオキシ)酢酸=1,1−ジフルオロスルホエチルの合成[PAG−C]
合成例1−32と同様にして2−(4−オキソ−アダマンタン−1−カルボニルオキシ)酢酸クロリドを合成した。
この酸クロライド3.1g(0.01モル)とトリフェニルスルホニウム−1,1−ジフルオロ−2−ヒドロキシエタンスルホネート4.3g(0.01モル)、塩化メチレン20gの混合溶液に、トリエチルアミン1.1g(0.01モル)、4−ジメチルアミノピリジン0.24g(0.002モル)、塩化メチレン5.0gの混合溶液を滴下し、室温で6時間撹拌した。その後、5%塩酸11gを加えて反応を停止した。反応液の有機層を分取し、次いでこの有機層を水20g、更に希アンモニア水で洗浄し、ジクロロメタンを減圧留去した。残渣にメチルイソブチルケトン30gを加え、残存している水をメチルイソブチルケトンと共に共沸除去した。得られた残渣をジイソプロピルエーテルで洗浄し、その後減圧乾燥を行うことで目的物を得た[無色オイル5.1g(収率77%)]。目的物の構造を下記に示す。
【0189】
【化54】

【0190】
得られた目的物のスペクトルデータを下記に示す。核磁気共鳴スペクトル(19F−NMR/DMSO−d6)の結果を図5に示す。
飛行時間型質量分析(TOFMS;MALDI)
POSITIVE M+263((C653+相当)
NEGATIVE M-395((C11133‐CH2CO2)CH2CF2SO3-相当)
【0191】
PAG1、即ちトリフェニルスルホニウム−2−ヒドロキシ−1,1−ジフルオロエタンスルホネートの代わりに、PAG2〜PAG8のいずれかを用い、それ以外は合成例1−33と同様の操作を行うことで、PAG−Cのカチオン種が4−tert−ブチルフェニルジフェニルスルホニウム、4−tert−ブトキシフェニルジフェニルスルホニウム、トリス(4−メチルフェニル)スルホニウム、トリス(4−tert−ブチルフェニル)スルホニウム、ビス(4−tert−ブチルフェニル)ヨードニウム、ジメチルフェニルスルホニウム、フェナシルテトラヒドロチオフェニウムのいずれかにかわった化合物を合成することができる。
【0192】
[合成例1−34]トリフェニルスルホニウム 2−(4−クロロブチリルオキシ)−1,1−ジフルオロスルホエタンスルホネートの合成[PAG中間体1]
トリフェニルスルホニウム 1,1−ジフルオロ2−ヒドロキシエタンスルホネート6.34g(0.015モル)、クロロ酪酸クロリド1.9g(0.013モル)、アセトニトリル32gの混合溶液に、ピリジン1.42g(0.018モル)を滴下し、室温で4時間撹拌した。その後、12規定塩酸3gと水30gから調製した希塩酸水溶液を加えて反応溶液を濃縮した。濃縮後ジクロロメタン30gを加え有機層を分取し、次いでこの有機層を水20gで洗浄し、ジクロロメタンを減圧留去した。残渣にメチルイソブチルケトン20gを加え、メチルイソブチルケトンを減圧留去した。得られた残渣にエーテルを加えることでデカンテーションを行い、真空乾燥して目的物を得た[褐色オイル6.52g(収率87%)]。目的物の構造を下記に示す。
【0193】
【化55】

【0194】
得られた目的物のスペクトルデータを下記に示す。核磁気共鳴スペクトル(1H−NMR,19F−NMR/DMSO−d6)の結果を図6及び図7に示す。なお、1H−NMRにおいて微量の水が観測されている。
赤外吸収スペクトル(IR(KBr);cm-1
3436、3062、1745、1477、1448、1255、1178、1132、1105、997、946、750、684、642、551、524、503
飛行時間型質量分析(TOFMS;MALDI)
POSITIVE M+263((C653+相当)
NEGATIVE M-265(CH2(OCO−C36Cl)CF2SO3-相当)
【0195】
[合成例1−35]トリフェニルスルホニウム 2−(アダマンタン−1−カルボニルオキシ)ブタン酸=1,1−ジフルオロスルホエチルの合成[PAG−D]
合成例1−34で得られたトリフェニルスルホニウム 2−(2−クロロブチルオキシ)−1,1−ジフルオロスルホエタンスルホネート9.7g(0.02モル)、アダマンタン−1−カルボン酸ナトリウム4.5g(0.02モル)、ヨウ化ナトリウム0.6g(0.004モル)、ジメチルホルムアミド60gを加え、90℃で15時間加熱撹拌した。反応液を室温に戻した後、水150gとジクロロメタン300gを加えて有機層を分取し、水洗を行い、次いで希塩酸で洗浄した後、再び水洗を行った。洗浄後の有機層を減圧留去し、残渣にメチルイソブチルケトン30gを加え、残存している水をメチルイソブチルケトンと共に共沸除去した。得られた残渣をジイソプロピルエーテルで洗浄し、その後減圧乾燥を行うことで目的物を得た[褐色オイル11.9g(収率96%)]。目的物の構造を下記に示す。
【0196】
【化56】

【0197】
得られた目的物のスペクトルデータを下記に示す。核磁気共鳴スペクトル(1H−NMR,19F−NMR/DMSO−d6)の結果を図8及び図9に示す。なお、1H−NMRにおいて微量の残溶剤(塩化メチレン、水)が観測されている。
赤外吸収スペクトル(IR(KBr);cm-1
2904、2851、1743、1715、1476、1446、1323、1232、1182、1159、1129、1102、1073、994、946、747、682、636
飛行時間型質量分析(TOFMS;MALDI)
POSITIVE M+263((C653+相当)
NEGATIVE M-409((C14212‐CO2)CH2CF2SO3-相当)
【0198】
PAG1、即ちトリフェニルスルホニウム−2−ヒドロキシ−1,1−ジフルオロエタンスルホネートの代わりに、PAG2〜PAG8のいずれかを用い、それ以外は合成例1−34、1−35と同様の操作を行うことで、PAG−Dのカチオン種が4−tert−ブチルフェニルジフェニルスルホニウム、4−tert−ブトキシフェニルジフェニルスルホニウム、トリス(4−メチルフェニル)スルホニウム、トリス(4−tert−ブチルフェニル)スルホニウム、ビス(4−tert−ブチルフェニル)ヨードニウム、ジメチルフェニルスルホニウム、フェナシルテトラヒドロチオフェニウムのいずれかにかわった化合物を合成することができる。
【0199】
[合成例1−36]4−tert−ブチルフェニルジフェニルスルホニウム 2−(アダマンタン−1−カルボニルオキシ)酢酸=1−(ジフルオロスルホメチル)−2,2,2−トリフルオロエチルの合成[PAG−E]
1−アダマンタンカルボン酸とクロロ酢酸t−ブチルエステルにより、2−(アダマンタン−1−カルボニルオキシ)酢酸t−ブチルエステルを調製し、酸による脱保護とオキザリルクロリドにより2−(アダマンタン−1−カルボニルオキシ)酢酸クロリドを合成した。
合成例1−24の4−tert−ブチルフェニルジフェニルスルホニウム 2−ヒドロキシ−1,1,3,3,3−ペンタフルオロプロパン−1−スルホネート10.9g(0.02モル)、トリエチルアミン2.2g(0.022モル)、N,N−ジメチルアミノピリジン0.24g(0.002モル)をジクロロメタン40gに溶解し氷冷した。上述した2−(アダマンタン−1−カルボニルオキシ)酢酸クロリド5.6g(0.022モル)を、5℃を超えない温度で添加し、室温で1時間撹拌した。12規定塩酸3gと水10gから調製した希塩酸水溶液を加えた後に、メチルイソブチルケトン80gと水20gを加えて有機層を分取し、次いでこの有機層を水50gで2回洗浄し、溶剤を減圧留去した。残渣をジイソプロピルエーテルで洗浄し、目的物を得た[無色オイル11.9g(収率78%)]。目的物の構造を下記に示す。
【0200】
【化57】

【0201】
得られた目的物のスペクトルデータを下記に示す。核磁気共鳴スペクトル(1H−NMR,19F−NMR/DMSO−d6)の結果を図10及び図11に示す。なお、1H−NMRにおいて微量の残溶剤(ジイソプロピルエーテル、水)が観測されている。
赤外吸収スペクトル(IR(KBr);cm-1
2965、2906、2853、1799、1788、1735、1477、1446、1368、1246、1216、1174、1104、1092、1070、993、834、749、684、640
飛行時間型質量分析(TOFMS;MALDI)
POSITIVE M+319((C49)C64(C652+相当)
NEGATIVE M-449((C11152‐CH2CO2)CH(CF3)CF2SO3-相当)
【0202】
本発明のレジスト材料に用いる高分子化合物を以下に示す処方で合成した。
[合成例2−1]ポリマー1(P−01)の合成
窒素雰囲気下、メタクリル酸=3−ヒドロキシ−1−アダマンチル7.1gとメタクリル酸3−エチル−3−exo−テトラシクロ[4.4.0.12,5.17,10]ドデシル11.0gとメタクリル酸=4,8−ジオキサトリシクロ[4.2.1.03,7]ノナン−5−オン−2−イル6.7gと2,2’−アゾビス(イソ酪酸)ジメチル0.9gをメチルエチルケトン72.8gに溶解させ、溶液を調製した。その溶液を窒素雰囲気下80℃で撹拌したメチルエチルケトン20.7gに4時間かけて滴下した。滴下終了後80℃を保ったまま2時間撹拌し、室温まで冷却した後、重合液を400gのヘキサンに滴下した。析出した固形物を濾別し、メチルエチルケトン45gとヘキサン195gの混合溶媒で二回洗浄した後、50℃で20時間真空乾燥して、下記ポリマー1(P−01)で示される白色粉末固体状の高分子化合物が得られた。収量は23.6g、収率は95%であった。なお、Mwはポリスチレン換算でのGPCを用いて測定した重量平均分子量を表す。
【0203】
【化58】

【0204】
[合成例2−2〜24]ポリマー2〜24(P−02〜P−24)の合成
各単量体の種類、配合比を変えた以外は、実施例2−1と同様の手順により、下記表1に示した樹脂を製造した。表1中、各単位の構造を表2〜5に示す。なお、表1において、導入比はモル比を示す。
【0205】
[合成例2−25〜28]ポリマー25〜28(P−25〜P−28)の合成
上述した処方により得られたポリマー21〜24をメタノール、THF混合溶剤に溶解し、シュウ酸を加えて40℃で脱保護反応を行った。ピリジンにて中和処理した後に通常の再沈精製を行うことによりヒドロキシスチレン単位を有する高分子化合物を得た。
【0206】
[合成例2−29〜31]ポリマー29〜31(P−29〜P−31)の合成
ポリマー26に酸性条件下でエチルビニルエーテルあるいは塩基性条件下で1−クロロ−1−メトキシ−2−メチルプロパンを反応させて目的のポリマー29を得た。同様の手法でポリマー26よりポリマー31を、ポリマー25よりポリマー30を得た。
【0207】
合成例2−25〜31のポリヒドロキシスチレン誘導体の脱保護と保護に関しては特開2004−115630号公報、特開2005−8766号公報などに詳しい。
【0208】
【表1】

【0209】
【表2】

【0210】
【表3】

【0211】
【表4】

【0212】
【表5】

【0213】
[実施例1−1〜20及び比較例1−1〜4]
レジスト材料の調製
上記で製造したポリマーをベース樹脂として用い、本発明の光酸発生剤、クエンチャー、及び溶剤を下記表6に示す組成で添加し、混合溶解後にそれらをテフロン(登録商標)製フィルター(孔径0.2μm)で濾過し、レジスト材料(R−01〜20)及び比較例用のレジスト材料(R−21〜24)を得た。なお、溶剤はすべて、界面活性剤として後述のオムノバ社製界面活性剤(界面活性剤−1)を0.01質量%含むものを用いた。
【0214】
なお、表6において、溶剤及びクエンチャー、比較例で用いた光酸発生剤、酸架橋剤は下記の通りである。
PGMEA :プロピレングリコールモノメチルエーテルアセテート
CyHO :シクロヘキサノン
EL :乳酸エチル
Base−1:ラウリン酸2−モルホリノエチル
Base−2:トリス[2−(メトキシメトキシ)エチル]アミン
PAG−α :トリフェニルスルホニウム パーフルオロ−1−ブタンスルホネート
PAG−β :トリフェニルスルホニウム 2−(アダマンタン−1−カルボニルオキシ
)−1,1,3,3,3−ペンタフルオロプロパン−1−スルホネート(
特開2007−145797号公報記載化合物)
TMGU :1,3,4,6−テトラメトキシメチルグリコールウリル
界面活性剤−1:3−メチル−3−(2,2,2−トリフルオロエトキシメチル)オキセ
タン・テトラヒドロフラン・2,2−ジメチル−1,3−プロパンジオー
ル共重合物(オムノバ社製)
【0215】
【表6】

【0216】
[実施例2−1〜16、比較例2−1〜3]
解像性、露光余裕度及びラインウィズスラフネス(LWR)の評価:ArF露光
シリコン基板上に反射防止膜溶液(日産化学工業(株)製、ARC−29A)を塗布し、200℃で60秒間ベークして作製した反射防止膜(78nm膜厚)基板上に、本発明のレジスト材料(R−01〜16)及び比較例用のレジスト材料(R−21〜23)をスピンコーティングし、ホットプレートを用いて60秒間ベークし、100nm膜厚のレジスト膜を作製した。これをArFエキシマレーザースキャナー((株)ニコン製、NSR−S307E、NA=0.85、4/5輪帯照明、6%ハーフトーン位相シフトマスク)を用いて露光し、60秒間ベーク(PEB:post exposure bake)を施し、2.38質量%のテトラメチルアンモニウムヒドロキシドの水溶液で60秒間現像を行った。
【0217】
レジスト材料の評価は、80nmのグループのラインアンドスペースを1:1で解像する露光量を最適露光量(Eop、mJ/cm2)として、この露光量における分離しているラインアンドスペースの最小線幅(nm)を評価レジストの解像度とした。露光余裕度の評価は、上記最適露光量を変化させた際にパターンサイズが80nm±10%を許容する露光量幅を求め、この値を最適露光量で割って百分率表示した。値が大きいほど露光量変化による性能変化が小さく、露光余裕度が良好である。また、(株)日立ハイテクノロジーズ製測長SEM(S−9380)を用いて、80nmラインアンドスペースのラインウィズスラフネス(LWR)を測定した。結果を表7に示す。
【0218】
【表7】

【0219】
表7の結果より、本発明のレジスト材料が解像性、露光余裕度に優れ、ラインウィズスラフネスが小さく、精密な微細加工に適していることが確認された。
【0220】
[実施例3−1〜4、比較例3−1]
解像性の評価:EB露光
本発明のレジスト材料(R−17〜20)、及び比較用のレジスト材料(R−24)を、ACT−M(東京エレクトロン(株)製)152mm角の最表面が酸化窒素クロム膜であるマスクブランク上にスピンコーティングし、ホットプレート上で、100℃で600秒間プリベークして、80nmのレジスト膜を作製した。得られたレジスト膜の膜厚測定は、光学式測定器ナノスペック(ナノメトリックス社製)を用いて行った。測定はブランク外周から10mm内側までの外縁部分を除くブランク基板の面内81ヶ所で行い、膜厚平均値と膜厚範囲を算出した。
【0221】
更に、電子線露光装置((株)ニューフレアテクノロジー製、EBM−5000plus、加速電圧50keV)を用いて露光し、100℃で600秒間ベーク(PEB:post exposure bake)を施し、2.38質量%のテトラメチルアンモニウムヒドロキシドの水溶液で現像を行うと、ポジ型のパターンを得ることができた。
【0222】
得られたレジストパターンを次のように評価した。作製したパターン付きウエハーを上空SEM(走査型電子顕微鏡)で観察し、100nmの1:1のラインアンドスペースを1:1で解像する露光量を最適露光量(μC/cm2)とし、100nmのラインアンドスペースを1:1で解像する露光量における最小寸法を解像度とした。また、解像したレジストパターンの形状は、走査型電子顕微鏡を用いてレジスト断面を観察し、矩形か否かを目視にて判定した。真空中のPED(Post Exposure Delay)を評価するには、電子線露光装置により露光した後、24時間真空に引かれた装置内に放置し、その後にPEB及び現像を行った。得られた100nmのラインアンドスペースのEopにおける線幅を、露光後すぐにベークした時の線幅と比較し、その差を[nm]表示した。評価結果を表8に示す。
【0223】
【表8】

【0224】
表8中の結果から、本発明のレジスト材料が、EB露光においても、解像性能、真空中のPEDに優れることが確認された。従って、ポリヒドロキシスチレン誘導体を用いたEUVリソグラフィー、KrFリソグラフィーなどでも同様に機能することが期待できる。

【特許請求の範囲】
【請求項1】
高エネルギー線又は熱に感応し、下記一般式(1)で示されるスルホン酸を発生する光酸発生剤を含むことを特徴とする化学増幅型レジスト材料。
【化1】


(式中、Rは芳香環あるいは炭素数5以上の脂環式炭化水素構造を有する、置換又は非置換の一価の炭化水素基を示す。R’は水素原子又はトリフルオロメチル基を示す。A1はエステル結合、エーテル結合、チオエーテル結合、アミド結合、カーボネート結合のいずれかを示す。nは1〜3の整数を示す。)
【請求項2】
下記一般式(2)で示されるスルホニウム塩。
【化2】


(式中、Rは芳香環あるいは炭素数5以上の脂環式炭化水素構造を有する、置換又は非置換の一価の炭化水素基を示す。R’は水素原子又はトリフルオロメチル基を示す。A1はエステル結合、エーテル結合、チオエーテル結合、アミド結合、カーボネート結合のいずれかを示す。nは1〜3の整数を示す。R2、R3及びR4は相互に独立に置換もしくは非置換の炭素数1〜10の直鎖状又は分岐状のアルキル基、アルケニル基又はオキソアルキル基、又は置換もしくは非置換の炭素数6〜18のアリール基、アラルキル基又はアリールオキソアルキル基を示すか、あるいはR2、R3及びR4のうちのいずれか2つ以上が相互に結合して式中の硫黄原子と共に環を形成してもよい。)
【請求項3】
下記一般式(3)で示されるスルホニウム塩。
【化3】


(式中、Rは芳香環あるいは炭素数5以上の脂環式炭化水素構造を有する、置換又は非置換の一価の炭化水素基を示す。R’は水素原子又はトリフルオロメチル基を示す。A1はエステル結合、エーテル結合、チオエーテル結合、アミド結合、カーボネート結合のいずれかを示す。nは1〜3の整数を示す。R8は置換もしくは非置換の炭素数1〜20の直鎖状、分岐状又は環状のアルキル基又はアルケニル基、又は置換もしくは非置換の炭素数6〜14のアリール基を示す。pは0(零)又は1、qは1〜5の整数を示す。)
【請求項4】
下記一般式(4)で示されるヨードニウム塩。
【化4】


(式中、Rは芳香環あるいは炭素数5以上の脂環式炭化水素構造を有する、置換又は非置換の一価の炭化水素基を示す。R’は水素原子又はトリフルオロメチル基を示す。A1はエステル結合、エーテル結合、チオエーテル結合、アミド結合、カーボネート結合のいずれかを示す。nは1〜3の整数を示す。R8は置換もしくは非置換の炭素数1〜20の直鎖状、分岐状又は環状のアルキル基又はアルケニル基、又は置換もしくは非置換の炭素数6〜14のアリール基を示す。pは0(零)又は1、qは1〜5の整数を示す。)
【請求項5】
ベース樹脂、酸発生剤、クエンチャー及び有機溶剤を含有してなるレジスト材料において、前記酸発生剤が、請求項1記載の一般式(1)で示されるスルホン酸を発生する光酸発生剤であることを特徴とするレジスト材料。
【請求項6】
ベース樹脂、請求項1記載の一般式(1)で示されるスルホン酸を発生する光酸発生剤、クエンチャー及び有機溶剤を含有し、上記ベース樹脂が現像液に不溶あるいは難溶であって、酸の作用によって現像液に可溶となる化学増幅ポジ型レジスト材料。
【請求項7】
ベース樹脂が、下記一般式(11)〜(15)で示される繰り返し単位のいずれか1種以上を含有することを特徴とする請求項5記載のレジスト材料。
【化5】


(式中、R11は水素原子、フッ素原子、メチル基又はトリフルオロメチル基を示す。R5及びR6はそれぞれ独立に水素原子又は水酸基を示す。Xは酸不安定基を示す。Yはラクトン構造を有する置換基を示す。Zは水素原子、炭素数1〜15のフルオロアルキル基、又は炭素数1〜15のフルオロアルコール含有置換基を示す。Nは0〜2の整数を示す。R7は水素原子、又は炭素数1〜10のアルキル基を示す。Bは単結合あるいは酸素原子により置換されていてもよい炭素数1〜10の二価の有機基を示す。aは0〜3の整数、bは1〜3の整数を示す。)
【請求項8】
請求項5乃至7のいずれか1項に記載のレジスト材料を基板上に塗布する工程と、加熱処理後フォトマスクを介して高エネルギー線もしくは電子線で露光する工程と、加熱処理した後、現像液を用いて現像する工程とを含むことを特徴とするパターン形成方法。
【請求項9】
請求項5乃至7のいずれか1項に記載のレジスト材料を基板上に塗布する工程と、加熱処理後フォトマスクを介して高エネルギー線もしくは電子線で露光する工程と、加熱処理した後、現像液を用いて現像する工程とを含むパターン形成工程において、前記露光を屈折率1.0以上の高屈折率液体をレジスト塗布膜と投影レンズとの間に介在させて液浸露光にて行うことを特徴とするパターン形成方法。
【請求項10】
請求項5乃至7のいずれか1項に記載のレジスト材料を基板上に塗布する工程と、加熱処理後フォトマスクを介して高エネルギー線もしくは電子線で露光する工程と、加熱処理した後、現像液を用いて現像する工程とを含むパターン形成工程において、レジスト塗布膜の上に更に保護膜を塗布し、露光を屈折率1.0以上の高屈折率液体を該保護膜と投影レンズとの間に介在させて液浸露光にて行うことを特徴とするパターン形成方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2011−13479(P2011−13479A)
【公開日】平成23年1月20日(2011.1.20)
【国際特許分類】
【出願番号】特願2009−157856(P2009−157856)
【出願日】平成21年7月2日(2009.7.2)
【出願人】(000002060)信越化学工業株式会社 (3,361)
【Fターム(参考)】