説明

半導体装置

【課題】バイアス切替の前後でドレイン電流の大きさが変化しない縦型トランジスタを実現する。
【解決手段】半導体装置1は、第1の下部拡散層6A、第1の上部拡散層7A、及び第1のゲート電極9Aを有する第1の縦型トランジスタ4Aと、第2の下部拡散層6B、第2の上部拡散層7B、及び第2のゲート電極9Bを有する第2の縦型トランジスタ4Bと、第1及び第2のゲート電極9A,9Bに接続されるゲート配線と、第1の下部拡散層6A及び第2の上部拡散層7Bに接続される第1の配線W1と、第1の上部拡散層7A及び第2の下部拡散層6Bに接続される第2の配線W2とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は半導体装置に関し、特に、縦型トランジスタを有する半導体装置に関する。
【背景技術】
【0002】
DRAM(Dynamic Random Access Memory)では、高密度化とともに、その構成要素であるMOSFET(Metal Oxide Semiconductor Field Effect Transistor)のゲート、ソース、ドレインを平面的にレイアウトすることが困難となりつつある。特に、最小配線ピッチが90nm以下になると、これらを立体的にレイアウトすることが必要となっている。
【0003】
ここで、立体的にレイアウトされたMOSFETとは、半導体基板の表面に形成した半導体の柱(半導体ピラー)と、その上部と下部(又は下方)に設けられた第1及び第2の拡散層と、半導体ピラーの側面を覆うゲート絶縁膜及びゲート電極とからなるトランジスタである。第1及び第2の拡散層は、一方がソース(S)、他方がドレイン(D)となる。また、DRAMのメモリセルトランジスタとして用いる場合には、ゲート電極はワード線である。このようなトランジスタでは、チャネルは半導体ピラー内に縦方向(半導体基板の法線方向)に形成される。そこで、以下ではこのようなMOSFETを縦型トランジスタと称する。
【0004】
特許文献1には、縦型トランジスタの例が開示されている。この例による縦型トランジスタは、半導体ピラーである柱状体100eと、その上部と下方に配置された上部拡散層107と下部拡散層108と、柱状体100eの側面部に配置されたゲート絶縁膜106及びゲート電極110とによって構成される。この例に沿って縦型トランジスタの動作について説明すると、縦型トランジスタのオンオフは、ゲート電極110に印加する電圧の値によって制御される。ゲート電極110にスレッショルド電圧以上の電圧を印加することで、柱状体100e内にチャネルが形成され、縦型トランジスタはオンとなる。オンの状態では、上部拡散層107と下部拡散層108の一方から他方へ電荷が移動する。これにより、縦型トランジスタのソース/ドレイン間にドレイン電流が流れることとなる。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2008−140996号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
ところで、半導体装置では、トランジスタのS/Dの切替(バイアス切替)が行われることがある。ゲート、ソース、ドレインを平面的にレイアウトしたトランジスタ(プレーナー型トランジスタ)では、バイアス切替の前後でドレイン電流の大きさが変わることは通常ないが、縦型トランジスタでは、バイアス切替の前後でドレイン電流の大きさが変化する。これは、縦型トランジスタがS/D非対称な構造を有しているためである。以下、詳しく説明する。
【0007】
Pチャンネル型MOSトランジスタを例として説明すると、トランジスタのドレイン電流の大きさは、ソース側拡散層のP型不純物濃度に依存する。これは、チャネル反転層の正孔密度が、ソース側拡散層のP型不純物濃度に依存するためである。
【0008】
縦型トランジスタにおいては、順バイアスの状態(ドレイン電流が下部拡散層から上部拡散層に向かって流れる状態)では、下部拡散層がソース側拡散層となり、ドレイン電流の大きさは下部拡散層の不純物濃度に依存する。一方、逆バイアスの状態(ドレイン電流が上部拡散層から下部拡散層に向かって流れる状態)では、上部拡散層がソース側拡散層となり、ドレイン電流は上部拡散層の不純物濃度に依存する。
【0009】
一般的なイオン注入法によって拡散層を形成する場合、その不純物濃度はイオン注入した面積に比例する。プレーナー型トランジスタでは、2つの拡散層の面積を実質的に同じにすることは容易である。したがって、拡散層間で不純物濃度の相違が生じないようにすることができる。これに対して縦型トランジスタでは、半導体ピラーの上部から下部までを同一寸法に加工することは困難であり、半導体ピラーの上部に位置している上部拡散層と下部(又は下方)に位置する下部拡散層の面積は、ほぼ必然的に異なってしまう。そのため、拡散層間で不純物濃度が相違することになる。これが、縦型トランジスタにおいて、バイアス切替の前後でドレイン電流の大きさが変化する理由である。
【0010】
トランジスタの種類や用途等によっては、縦型トランジスタで構成することが好ましい一方で、バイアス切替に伴うドレイン電流の変化が好ましくない場合があり得る。そこで、バイアス切替の前後でドレイン電流の大きさが変化しない縦型トランジスタが求められている。
【課題を解決するための手段】
【0011】
本発明による半導体装置は、それぞれ半導体基板の上面に立設された第1及び第2の半導体ピラーと、前記第1の半導体ピラーの下部又は下方に設けられた第1の下部拡散層、前記第1の半導体ピラーの上部に設けられた第1の上部拡散層、前記第1の半導体ピラーの側面部を覆う第1のゲート絶縁膜、及び前記第1のゲート絶縁膜を覆う第1のゲート電極を有する第1の縦型トランジスタと、前記第2の半導体ピラーの下部又は下方に設けられた第2の下部拡散層、前記第2の半導体ピラーの上部に設けられた第2の上部拡散層、前記第2の半導体ピラーの側面部を覆う第2のゲート絶縁膜、及び前記第2のゲート絶縁膜を覆う第2のゲート電極を有する第2の縦型トランジスタと、前記第1及び第2のゲート電極に接続されるゲート配線と、前記第1の下部拡散層及び前記第2の上部拡散層に接続される第1の配線と、前記第1の上部拡散層及び前記第2の下部拡散層に接続される第2の配線とを備えることを特徴とする。
【0012】
また、本発明の他の一側面による半導体装置は、それぞれ半導体基板の上面に立設された第1及び第2の半導体ピラーと、前記第1の半導体ピラーの下部又は下方に設けられた第1の下部拡散層、前記第1の半導体ピラーの上部に設けられた第1の上部拡散層、前記第1の半導体ピラーの側面部を覆う第1のゲート絶縁膜、及び前記第1のゲート絶縁膜を覆う第1のゲート電極を有する第1の縦型トランジスタと、前記第2の半導体ピラーの下部又は下方に設けられた第2の下部拡散層、前記第2の半導体ピラーの上部に設けられた第2の上部拡散層、前記第2の半導体ピラーの側面部を覆う第2のゲート絶縁膜、及び前記第2のゲート絶縁膜を覆う第2のゲート電極を有する第2の縦型トランジスタとを備え、前記第1及び第2の縦型トランジスタは、第1のノードと第2のノードの間に並列に接続され、前記第1のノードは、前記第1の下部拡散層及び前記第2の上部拡散層に接続され、前記第2のノードは、前記第1の上部拡散層及び前記第2の下部拡散層に接続されることを特徴とする。
【0013】
また、本発明のさらに他の一側面による半導体装置は、それぞれ半導体基板の上面に立設された第1及び第2の半導体ピラーと、前記第1の半導体ピラーの下部又は下方に設けられた第1の下部拡散層、前記第1の半導体ピラーの上部に設けられた第 1の上部拡散層、前記第1の半導体ピラーの側面部を覆う第1のゲート絶縁膜、及び前記第1のゲート絶縁膜を覆う第1のゲート電極を有する第1の縦型トランジスタと、前記第2の半導体ピラーの下部又は下方に設けられた第2の下部拡散層、前記第2の半導体ピラーの上部に設けられた第2の上部拡散層、前記第2の半導体ピラーの側面部を覆う第2のゲート絶縁膜、及び前記第2のゲート絶縁膜を覆う第2のゲート電極を有する第2の縦型トランジスタとを備え、前記第1及び第2の縦型トランジスタは、第1のノードと第2のノードの間に直列に接続され、前記第1のノードは、前記第1の下部拡散層又は前記第1の上部拡散層に接続され、前記第2のノードは、前記第1のノードが前記第1の下部拡散層に接続される場合には前記第2の下部拡散層に接続され、前記第1のノードが前記第1の上部拡散層に接続される場合には前記第2の上部拡散層に接続されることを特徴とする。
【発明の効果】
【0014】
本発明によれば、バイアス切替に伴う一方の縦型トランジスタのドレイン電流の変化が、他方の縦型トランジスタのドレイン電流の変化によって打ち消される。したがって、バイアス切替の前後でドレイン電流の大きさが変化しない縦型トランジスタを実現できる。
【図面の簡単な説明】
【0015】
【図1】本発明の好ましい第1の実施の形態による半導体装置の上面図である。
【図2】図1に示したA−A線に対応する半導体装置の略断面図である。
【図3】図1に示したB−B線に対応する半導体装置の略断面図である。
【図4】図1に示したC−C線に対応する半導体装置の略断面図である。
【図5】(a)(b)ともに、本発明の好ましい第1の実施の形態による半導体装置の回路図である。
【図6】本発明の好ましい第2の実施の形態による半導体装置の上面図である。
【図7】図6に示したF−F線に対応する半導体装置の略断面図である。
【図8】図6に示したG−G線に対応する半導体装置の略断面図である。
【図9】本発明の好ましい第3の実施の形態による半導体装置の上面図である。
【図10】図6に示したJ−J線に対応する半導体装置の略断面図である。
【図11】(a)(b)ともに、本発明の好ましい第3の実施の形態による半導体装置の回路図である。
【図12】本発明の好ましい第3の実施の形態の第1の変形例による半導体装置の上面図である。
【図13】本発明の好ましい第3の実施の形態の第2の変形例による半導体装置の上面図である。
【図14】本発明の好ましい第3の実施の形態の第3の変形例による半導体装置の上面図である。
【発明を実施するための形態】
【0016】
以下、添付図面を参照しながら、本発明の好ましい実施の形態について詳細に説明する。
【0017】
図1〜図4は、本発明の好ましい第1の実施の形態による半導体装置1の構造を示す図である。図1は半導体装置1の上面図であるが、後述するワード線WLについては、透過的に内部構造を示している。また、他の内部構造の一部についても、破線で平面的な位置を示している。図2〜図4はそれぞれ、図1に示したA−A線、B−B線、C−C線に対応する半導体装置1の略断面図である。
【0018】
なお、以下の説明では、半導体装置1はDRAMであり、後述する第1及び第2の縦型トランジスタ4A,4Bはメモリセルトランジスタ又はワードドライバとして用いられるトランジスタであるとして説明する。しかし、本発明の適用範囲がこれらに限られるものではない。
【0019】
図1〜図4に示すように、半導体装置1は、シリコン基板(半導体基板)2を備えており、その表面には素子分離領域(Shallow Trench Isolation)3が設けられている。素子分離領域3はシリコン基板2の表面に埋設されたシリコン酸化膜によって構成されており、これにより、シリコン基板2の表面には、活性領域AR1,AR2が図示したx方向(ワード線方向)に隣接して区画されている。
【0020】
活性領域AR1,AR2にはそれぞれ、図2に示すように、第1及び第2の縦型トランジスタ4A,4Bが設けられる。これら第1及び第2の縦型トランジスタ4A,4Bは、互いに同一の特性を呈するように形成される。つまり、第1の縦型トランジスタ4Aと第2の縦型トランジスタ4Bとでは、不純物の濃度及び種類、ゲート幅、ゲート長などの諸特性が等しくなっている。また、第1の縦型トランジスタ4Aは、図1に示す直線D及び図2に示す直線Eを含む平面を対称面として、第2の縦型トランジスタ4Bと面対称な構造を有している。なお、各図において符号末尾に付した「A」は第1の縦型トランジスタ4Aにかかる構成要素であることを示し、符号末尾に付した「B」は第2の縦型トランジスタ4Bにかかる構成要素であることを示している。
【0021】
第1の縦型トランジスタ4Aは、活性領域AR1の内側に設けられた第1のシリコンピラー(半導体ピラー)5Aと、この第1のシリコンピラー5Aの下方に設けられた第1の下部拡散層6Aと、上部に設けられた第1の上部拡散層7Aと、側面部を覆う第1のゲート絶縁膜8Aと、第1のゲート絶縁膜8Aを覆う第1のゲート電極9Aとを有して構成される。
【0022】
同様に、第2の縦型トランジスタ4Bは、活性領域AR2の内側に設けられた第2のシリコンピラー(半導体ピラー)5Bと、この第2のシリコンピラー5Bの下方に設けられた第1の下部拡散層6Bと、上部に設けられた第1の上部拡散層7Bと、側面部を覆う第1のゲート絶縁膜8Bと、第1のゲート絶縁膜8Bを覆う第1のゲート電極9Bとを有して構成される。
【0023】
以下、第1の縦型トランジスタ4Aの形成方法について、詳しく説明する。なお、以下では第1の縦型トランジスタ4Aに着目して説明するが、第2の縦型トランジスタ4Bについても同様である。
【0024】
まず、第1のシリコンピラー5Aは、次のようにして形成される。すなわち、まず初めに、素子分離領域3が埋設されたシリコン基板2の表面にシリコン酸化膜とシリコン窒化膜からなる積層膜を形成する。そして、これらをハードマスクとして用いるドライエッチングを行うことで、第1のシリコンピラー5Aの形成領域のみを残して、活性領域AR1内のシリコン基板2を掘り下げる。以上の工程により、活性領域AR1内に第1のシリコンピラー5Aが形成される。なお、図2等に示すシリコン酸化膜10は、ハードマスクの一部としてのシリコン酸化膜が除去されずに残っているものである。
【0025】
第1のシリコンピラー5Aの平面寸法及び高さは、第1の縦型トランジスタ4Aに必要とされる特性に応じて適宜設定すればよい。特に限定されるものではないが、平面寸法は70nm×70nm程度とすることが好ましい。また、高さは、平面寸法を70nm×70nm程度とする場合、約150nmとすることが好ましい。シリコン酸化膜10の膜厚は、約5nmとすればよい。
【0026】
第1の下部拡散層6Aは、第1のシリコンピラー5Aを形成した後、活性領域AR1の表面(底面)に不純物を注入することによって形成される。具体的には、第1のシリコンピラー5Aを形成した後、まず初めに、その側面をシリコン窒化膜(不図示)で覆う。次に、活性領域AR1の底面を熱酸化し、図2等に示すシリコン酸化膜11を形成する。そして、シリコン酸化膜11を介して、シリコン基板2中の不純物とは反対の導電型を有する不純物をイオン注入する。以上の工程により、第1の下部拡散層6Aが形成される。第1のシリコンピラー5A側面に形成したシリコン窒化膜は、第1の下部拡散層6Aを形成した後、ウェットエッチングにより除去する。
【0027】
以上のような形成方法を採用する場合、第1の下部拡散層6Aは、図2に示すように、第1のシリコンピラー5Aの下方(ピラー周辺領域)に形成されることになる。しかし、第1の下部拡散層6Aの形成領域はこれに限定されるものではなく、例えば第1のシリコンピラー5Aの下部(ピラー内部)に第1の下部拡散層6Aを形成することとしてもよい。
【0028】
第1のゲート絶縁膜8Aは、上記ウェットエッチングの完了後、第1のシリコンピラー5Aの側面を熱酸化することで形成される。ゲート絶縁膜8Aの膜厚は約5nmとすることが好ましい。
【0029】
第1のゲート電極9Aは、シリコン基板2の全面に約30nmの膜厚を有するポリシリコン膜(導電膜)をCVD(Chemical Vapor Deposition)法により形成した後、異方性ドライエッチングによってポリシリコン膜をエッチバックすることにより、形成される。このとき、図2等に示すように、素子分離領域3の側面にも同様の導電膜が形成されるが、この導電膜は特段の機能を有しない。第1のゲート電極9Aの材料としては、ポリシリコン膜の他に、例えばタングステンなどの金属材料を用いることも可能である。
【0030】
第1の上部拡散層7Aは、第1のシリコンピラー5Aの上部に不純物を注入することによって形成される。ここでいう「上部」とは、上述の方法により形成された第1のシリコンピラー5Aの上面にエピタキシャル成長させたシリコンエピタキシャル層(後述)を意味している。
【0031】
以下、第1の上部拡散層7Aの形成方法について、詳しく説明する。第1のゲート電極9Aを上述の方法により形成したら、まず初めにHDP(High Density Plasma)法によってシリコン基板2の全面にシリコン酸化膜12を成膜し、その表面をCMP(Chemical Mechanical Polishing)法により研磨して平坦化する。このとき、上述したハードマスクがストッパとしての役割を果たすようにすることで、シリコン酸化膜12の上面をハードマスクの上面と揃えることが可能になる。これにより、ピラー間の領域がシリコン酸化膜12で埋められた状態となる。
【0032】
次に、シリコン基板2の全面に、CVD法により約5nmのシリコン酸化膜(マスク酸化膜)(不図示)を形成する。そして、第1のシリコンピラー5A上に残るハードマスクが露出するように、マスク酸化膜をパターニングする。その後、ドライエッチング又はウェットエッチングにより、露出した部分のシリコン窒化膜を除去する。こうして第1のシリコンピラー5Aの上方にスルーホールが形成され、その底面にはシリコン酸化膜10が露出することとなる。
【0033】
次に、底面に露出したシリコン酸化膜10を介して、シリコン基板2中の不純物と逆の導電型を有する低濃度の不純物を浅くイオン注入する。これにより、第1のシリコンピラー5Aの上端部にLDD(Lightly Doped Drain)領域13が形成される。
【0034】
次に、スルーホールの内壁面に、筒状のサイドウォール絶縁膜14を形成する。サイドウォール絶縁膜14は、シリコン基板2の全面にシリコン窒化膜を形成した後、これをエッチバックすることにより形成する。特に限定されるものではないが、サイドウォール絶縁膜14の膜厚は約10nmとすることが好ましい。サイドウォール絶縁膜14は、第1の上部拡散層7Aと第1のゲート電極9Aの絶縁を確保するために設けられる。
【0035】
なお、ここまでの処理により、図2等に示すように、素子分離領域3の上面にも同様のスルーホール及びサイドウォール絶縁膜が形成される場合があるが、これらは特段の機能を有しない。
【0036】
サイドウォール絶縁膜14を形成したら、希フッ酸により、第1のシリコンピラー5A上面のシリコン酸化膜10を除去し、その後、スルーホール内にシリコンを選択的エピタキシャル成長させる。そして、形成されたシリコンエピタキシャル層に、シリコン基板2中の不純物と逆の導電型を有する高濃度の不純物をイオン注入する。こうしてイオン注入されたシリコンエピタキシャル層が、第1の上部拡散層7Aとなる。第1の上部拡散層7Aの直径は、サイドウォール絶縁膜14の厚み分だけ、第1のシリコンピラー5Aより小さくなっている。
【0037】
以上、第1の縦型トランジスタ4Aの形成方法について詳細に説明した。
【0038】
第1及び第2の縦型トランジスタ4A,4Bを含むシリコン基板2の全面は層間絶縁膜15で覆われ、さらに層間絶縁膜15の上面には層間絶縁膜16が形成される。層間絶縁膜15,16はともにシリコン酸化膜とすればよい。層間絶縁膜15,16には、後述する各種のコンタクトプラグが設けられる。これらのコンタクトプラグは、層間絶縁膜15等を貫通するスルーホールを設け、その内部にポリシリコンなどの導電物質を埋め込むことによって形成される。
【0039】
層間絶縁膜15の上面(層間絶縁膜15と層間絶縁膜16の間)には、図4に示すように、x方向に延伸するワード線WL(ゲート配線)が形成される。第1のゲート電極9Aは、図1,図3,図4に示すように、層間絶縁膜15を貫通するゲートコンタクトプラグ21Aを介して、ワード線WLと電気的に接続される。同様に、第2のゲート電極9Bも、層間絶縁膜15を貫通するゲートコンタクトプラグ21Bを介して、ワード線WLと電気的に接続される。したがって、第1及び第2のゲート電極9A,9Bは、ワード線WLを介して短絡している。
【0040】
ここで、図1に示すように、ゲートコンタクトプラグ21A,21Bはそれぞれ、対応するシリコンピラーと平面視で重複しない位置に形成される。また、ワード線WLは、ゲートコンタクトプラグ21A,21Bの幅を利用して、対応するシリコンピラーから平面視でさらに離れた位置、より具体的には、対応するゲート電極と平面視で重複しない位置に形成される。このようにしているのは、後述する第3及び第4のコンタクトプラグ23A,23Bと、ワード線WL及びゲートコンタクトプラグ21A,21Bとの絶縁を確保するためである。
【0041】
層間絶縁膜16の上面には、図2に示すように、第1及び第2の配線W1,W2が形成される。第1及び第2の配線W1,W2は、互いに接しないようレイアウトされる。また、第1及び第2の配線W1,W2の高さと幅は、互いに同一であることが好ましい。特に限定されるものではないが、第1及び第2の配線W1,W2の高さを50nm程度とし、幅を70nm程度とすることが好ましい。
【0042】
第1の下部拡散層6Aは、シリコン酸化膜11,12及び層間絶縁膜15,16を貫通する第1のコンタクトプラグ22Aを介して、第1の配線W1と電気的に接続される。第2の下部拡散層6Bは、シリコン酸化膜11,12及び層間絶縁膜15,16を貫通する第2のコンタクトプラグ22Bを介して、第2の配線W2と電気的に接続される。第1の上部拡散層7Aは、層間絶縁膜15,16を貫通する第3のコンタクトプラグ23Aを介して、第2の配線W2と電気的に接続される。第2の上部拡散層7Bは、層間絶縁膜15,16を貫通する第4のコンタクトプラグ23Bを介して、第1の配線W1と電気的に接続される。
【0043】
図1には、第1及び第2の配線W1,W2の平面的な配置を示している。同図に示すように、第1の配線W1は、第1の下部拡散層6A及び第2の上部拡散層7Bに共通な第1の部分配線P1と、それぞれ該第1の部分配線P1の端部から第1及び第4のコンタクトプラグ22A,23Bに向かって延設された第2及び第3の部分配線P2,P3とから構成されている。一方、第2の配線W2は、第1の上部拡散層7A及び第2の下部拡散層6Bに共通な第4の部分配線P4と、それぞれ該第4の部分配線P4の端部から第3及び第2のコンタクトプラグ23A,22Bに向かって延設された第5及び第6の部分配線P5,P6とから構成されている。
【0044】
第2及び第3の部分配線P2,P3並びに第5及び第6の部分配線P5,P6には、それぞれ直角にカーブする角部が設けられている。以下、第2の部分配線P2のうち第1の部分配線P1との接続点から角部までの配線長をL、角部から第1のコンタクトプラグ22Aとの接続点までの配線長をLとする。同様に、第3の部分配線P3のうち第1の部分配線P1との接続点から角部までの配線長をL、角部から第4のコンタクトプラグ23Bとの接続点までの配線長をLとし、第5の部分配線P5のうち第4の部分配線P4との接続点から角部までの配線長をL、角部から第3のコンタクトプラグ23Aとの接続点までの配線長をLとし、第6の部分配線P6のうち第4の部分配線P4との接続点から角部までの配線長をL、角部から第2のコンタクトプラグ22Bとの接続点までの配線長をLとする。各部分配線は、少なくとも、第2の部分配線P2の配線長L+Lと、第6の部分配線P6の配線長L+Lとが等しくなり、かつ、第3の部分配線P3の配線長L+Lと、第5の部分配線P5の配線長L+Lとが等しくなるよう、レイアウトされる。より好ましくは、L=L=L=LかつL=L=L=Lとなるように、各部分配線をレイアウトしてもよい。
【0045】
図5(a)(b)は、本実施の形態による半導体装置1の回路図である。図5(a)と図5(b)とでは、回路自体は同じであり、電圧と電流のみが異なっている。図5(a)は、後述する第1のモードでの電圧と電流を示し、図5(b)は、後述する第2のモードでの電圧と電流を示している。
【0046】
図5(a)(b)に示すように、半導体装置1はバイアス切替部20(バイアス切替手段)並びに第1及び第2の回路21,22を備えて構成される。同図に示すように、第1の部分配線P1と第2及び第3の部分配線P2,P3の接続点を第1のノードN1、第4の部分配線P4と第5及び第6の部分配線P5,P6の接続点を第2のノードN2とすると、第1の部分配線P1は、第1のノードN1と第1の回路21の間を結ぶ配線であり、第4の部分配線P4は、第2のノードN2と第2の回路22の間を結ぶ配線である。また、第1及び第2の縦型トランジスタ4A,4Bは、第1のノードN1と第2のノードN2の間に並列に接続される。
【0047】
なお、図5(a)(b)では、第1及び第2の縦型トランジスタ4A,4BをPチャンネル型MOSトランジスタとしているが、本実施の形態は、第1及び第2の縦型トランジスタ4A,4Bが他の種類のトランジスタ、例えばNチャンネル型MOSトランジスタやMIS(Metal-Insulator Semiconductor)トランジスタである場合にも適用可能である。以下の説明では、第1及び第2の縦型トランジスタ4A,4BがPチャンネル型MOSトランジスタであるとして説明する。
【0048】
第1及び第2の回路21,22は、第1のモードと第2のモードのいずれかにより動作する。
【0049】
第1のモードでは、図5(a)に示すように、第1の回路21の出力電圧(第1のノードN1に印加される電圧)を相対的に高い電圧Vとし、第2の回路22の出力電圧(第2のノードN2に印加される電圧)を相対的に低い電圧Vとする。この場合、ワード線WLに第1及び第2の縦型トランジスタ4A,4Bをオンさせる電圧が印加されると、第1の縦型トランジスタ4Aでは第1の下部拡散層6Aから第1の上部拡散層7Aに向かって上向きのドレイン電流i4AUが流れ、第2の縦型トランジスタ4Bでは第2の上部拡散層7Bから第2の下部拡散層6Bに向かって下向きのドレイン電流i4BSが流れる。したがって、第1の回路21から出力される電流(第2の回路22に入力する電流)をiとすると、i=i4AU+i4BSとなる。
【0050】
第2のモードでは、図5(b)に示すように、第1の回路21の出力電圧を相対的に低い上記電圧Vとし、第2の回路22の出力電圧を相対的に高い上記電圧Vとする。この場合、ワード線WLに第1及び第2の縦型トランジスタ4A,4Bをオンさせる電圧が印加されると、第1の縦型トランジスタ4Aでは第1の上部拡散層7Aから第1の下部拡散層6Aに向かって下向きのドレイン電流i4ASが流れ、第2の縦型トランジスタ4Bでは第2の下部拡散層6Bから第2の上部拡散層7Bに向かって上向きのドレイン電流i4BUが流れる。したがって、第2の回路22から出力される電流(第1の回路21に入力する電流)をiとすると、i=i4AS+i4BUとなる。
【0051】
上述したように、第1及び第2の縦型トランジスタ4A,4Bは、互いに同一の特性を呈するように形成されている。したがって、第1の縦型トランジスタ4Aにおける上向きのドレイン電流i4AUと、第2の縦型トランジスタ4Bにおける上向きのドレイン電流i4BUとは、互いに等しい値となる。同様に、第1の縦型トランジスタ4Aにおける下向きのドレイン電流i4ASと、第2の縦型トランジスタ4Bにおける下向きのドレイン電流i4BSとは、互いに等しい値となる。したがって、半導体装置1では、電流iと電流iとが互いに等しくなる。
【0052】
バイアス切替部20は第1及び第2の回路21,22と接続されており、第1のモードと第2のモードとを切り替える機能を有している。半導体装置1では、電流iと電流iとが上述したように互いに等しくなっていることから、バイアス切替部20によるモード切替(バイアス切替)の前後で、第1の回路21と第2の回路22の間に流れる電流の大きさは変化しない。
【0053】
以上説明したように、本実施の形態による半導体装置1によれば、バイアス切替の前後で、第1の回路21と第2の回路22の間に流れる電流の大きさが変化しない。そして、第1及び第2の縦型トランジスタ4A,4Bは、外部から見れば1つのトランジスタとして機能するものであり、電流i,iは、この「1つのトランジスタ」のドレイン電流として機能する。したがって、バイアス切替の前後でドレイン電流の大きさが変化しない縦型トランジスタを提供することが可能になっている。
【0054】
また、第2及び第3の部分配線P2,P3の配線長を互いに等しくするとともに、第5及び第6の部分配線P5,P6の配線長を互いに等しくしていることから、第1の縦型トランジスタ4Aを通るルートと第2の縦型トランジスタ4Bを通るルートとで、第1の回路21から第2の回路22に至る配線の配線抵抗が等しくなっている。したがって、配線抵抗による電流損失量がバイアス切替の前後で等しくなるので、バイアス切替の前後におけるドレイン電流の違いをさらに小さくすることが可能になっている。
【0055】
図6〜図8は、本発明の好ましい第2の実施の形態による半導体装置1の構造を示す図である。図6は半導体装置1の上面図であるが、図1と同様、ワード線WLについては、透過的に内部構造を示している。また、他の内部構造の一部についても、破線で平面的な位置を示している。図7及び図8はそれぞれ、図6に示したF−F線、G−G線に対応する半導体装置1の略断面図である。図6〜図8では、第1の実施の形態による半導体装置1と同一の要素について、同一の符号を付している。
【0056】
本実施の形態による半導体装置1は、第1及び第2のシリコンピラー5A,5Bのy方向(平面内でワード線方向に垂直な方向)の位置を互いにずらしている点で、第1の実施の形態による半導体装置1と相違している。ただし、活性領域AR1,AR2の配置は、第1の実施の形態による半導体装置1と同じである。また、これに伴い、各コンタクトプラグの位置、第1及び第2の配線W1,W2並びにワード線WLのレイアウトも、第1の実施の形態による半導体装置1と相違している。以下、相違点を中心に説明する。
【0057】
第1のシリコンピラー5Aは、図6に示すように、活性領域AR1内のy方向一方側(図面上側)寄りかつx方向中央の位置に形成される。第1のシリコンピラー5Aの真上に形成される第3のコンタクトプラグ23Aの位置についても、同様に、活性領域AR1内のy方向一方側寄りかつx方向中央となる。第1のコンタクトプラグ22Aは、活性領域AR1内のy方向他方側(図面下側)寄りかつx方向中央の位置に形成される。ゲートコンタクトプラグ21Aは、第1のコンタクトプラグ22Aと第3のコンタクトプラグ23Aのy方向の中間であって、かつ第1のシリコンピラー5Aと平面視で重複しない位置に形成される。
【0058】
第2のシリコンピラー5Bは、図6に示すように、活性領域AR2内のy方向他方側寄りかつx方向中央の位置に形成される。第2のシリコンピラー5Bの真上に形成される第4のコンタクトプラグ23Bの位置についても、同様に、活性領域AR2内のy方向他方側寄りかつx方向中央となる。第2のコンタクトプラグ22Bは、活性領域AR2内のy方向一方側寄りかつx方向中央の位置に形成される。ゲートコンタクトプラグ21Bは、第2のコンタクトプラグ22Bと第4のコンタクトプラグ23Bのy方向の中間であって、かつ第2のシリコンピラー5Bと平面視で重複しない位置に形成される。
【0059】
第1及び第4のコンタクトプラグ22A,23Bは、y方向の位置が互いに同じとなるように配置される。同様に、第2及び第3のコンタクトプラグ22B,23Aも、y方向の位置が互いに同じとなるように配置される。また、ゲートコンタクトプラグ21A,21Bも、y方向の位置が互いに同じとなるように配置される。
【0060】
第1の配線W1は、一端で第1のコンタクトプラグ22Aと接触し、そこからx方向一方側(図面右側)に向けて延伸する直線状の配線である。第1の配線W1の他端は、図5に示した第1の回路21に接続する。第1及び第4のコンタクトプラグ22A,23Bのy方向の位置が互いに同じであることから、第1の配線W1は、第4のコンタクトプラグ23Bとも接触する。第1の配線W1のうち、第1のコンタクトプラグ22Aと第4のコンタクトプラグ23Bの間に延設される部分は上述した第2の部分配線P2に相当し、その他の部分は第1の部分配線P1に相当する。第3の部分配線P3に相当する部分は、本実施の形態による第1の配線W1には存在しない。
【0061】
第2の配線W2は、一端で第2のコンタクトプラグ22Bと接触し、そこからx方向他方側(図面左側)に向けて延伸する直線状の配線である。第2の配線W2の他端は、図5に示した第2の回路22に接続する。第2及び第3のコンタクトプラグ22B,23Aのy方向の位置が互いに同じであることから、第2の配線W2は、第3のコンタクトプラグ23Aとも接触する。第2の配線W2のうち、第2のコンタクトプラグ22Bと第3のコンタクトプラグ23Aの間に延設される部分は上述した第6の部分配線P6に相当し、その他の部分は第4の部分配線P4に相当する。第5の部分配線P5に相当する部分は、本実施の形態による第2の配線W2には存在しない。
【0062】
ワード線WLは、平面視で第1の配線W1と第2の配線W2の間の位置に配置される。なお、図6ではワード線WLと第1及び第2の配線W1,W2とが接触しているようにも見えるが、図7及び図8から明らかなように、これらはz方向(シリコン基板2表面の法線方向)に互いにずらして配置されているので、実際には接触していない。
【0063】
以上説明した構成により、本実施の形態による半導体装置1の回路図は、図5に示した第1の実施の形態による半導体装置1のものと同様となる。したがって、本実施の形態による半導体装置1によっても、第1の実施の形態による半導体装置1と同様、バイアス切替の前後で、第1の回路21と第2の回路22の間に流れる電流の大きさが変化しなくなる。したがって、バイアス切替の前後でドレイン電流の大きさが変化しない縦型トランジスタを提供することが可能になっている。
【0064】
また、第2及び第6の部分配線P2,P6の配線長が互いに等しく、かつ第3及び第5の部分配線P3,P5の配線長がともにゼロであるので、第1の縦型トランジスタ4Aを通るルートと第2の縦型トランジスタ4Bを通るルートとで、第1の回路21から第2の回路22に至る配線の配線抵抗が等しくなっている。したがって、配線抵抗による電流損失量がバイアス切替の前後で等しくなるので、バイアス切替の前後におけるドレイン電流の違いをさらに小さくすることが可能になっている。
【0065】
図9及び図10は、本発明の好ましい第3の実施の形態による半導体装置1の構造を示す図である。図9は半導体装置1の上面図であるが、図1と同様、ワード線WLについては、透過的に内部構造を示している。また、他の内部構造の一部についても、破線で平面的な位置を示している。図10は、図9に示したJ−J線に対応する半導体装置1の略断面図である。図9及び図10では、第1の実施の形態による半導体装置1と同一の要素について、同一の符号を付している。
【0066】
本実施の形態による半導体装置1は、第1及び第2の縦型トランジスタ4A,4Bを第1のノードN1と第2のノードN2の間に直列に接続する点で、第1の実施の形態による半導体装置1と相違している。第1及び第2の縦型トランジスタ4A,4Bの構造は、第1の実施の形態による半導体装置1と同じである。以下、相違点を中心に説明する。
【0067】
本実施の形態では、層間絶縁膜16の上面に、図9及び図10に示すように、第1乃至第3の配線W1〜W3が形成される。第1乃至第3の配線W1〜W3は、互いに接しないようレイアウトされる。また、第1乃至第3の配線W1〜W3の高さと幅は、互いに同一であることが好ましい。特に限定されるものではないが、第1乃至第3の配線W1〜W3の高さを50nm程度とし、幅を70nm程度とすることが好ましい。
【0068】
第1の配線W1は、一端で第1のコンタクトプラグ22Aと接触し、そこからx方向他方側(図面左側)に向けて延伸する直線状の配線である。また、第2の配線W2は、一端で第2のコンタクトプラグ22Bと接触し、そこからx方向一方側(図面右側)に向けて延伸する直線状の配線である。第3の配線W3は、一端で第3のコンタクトプラグ23Aと接触し、他端で第4のコンタクトプラグ23Bと接触する直線状の配線である。
【0069】
図11(a)(b)は、本実施の形態による半導体装置1の回路図である。図11(a)と図11(b)とでは、回路自体は同じであり、電圧と電流のみが異なっている。図11(a)は、上述した第1のモードでの電圧と電流を示し、図11(b)は、上述した第2のモードでの電圧と電流を示している。
【0070】
図11(a)(b)に示すように、本実施の形態では、第1及び第2の回路21,22の出力端を、それぞれ第1及び第2のノードN1,N2としている。第1及び第2の縦型トランジスタ4A,4Bは、第1乃至第3の配線W1〜W3を介して、第1のノードN1と第2のノードN2の間に直列に接続される。
【0071】
なお、図11(a)(b)でも図5(a)(b)と同様に、第1及び第2の縦型トランジスタ4A,4BをPチャンネル型MOSトランジスタとしているが、本実施の形態も、第1の実施の形態と同様、第1及び第2の縦型トランジスタ4A,4Bが他の種類のトランジスタ、例えばNチャンネル型MOSトランジスタやMIS(Metal-Insulator Semiconductor)トランジスタである場合にも適用可能である。以下の説明では、第1及び第2の縦型トランジスタ4A,4BがPチャンネル型MOSトランジスタであるとして説明する。
【0072】
第1の回路21の出力電圧(第1のノードN1に印加される電圧)を相対的に高い上記電圧Vとし、第2の回路22の出力電圧(第2のノードN2に印加される電圧)を相対的に低い上記電圧Vとする第1のモードでは、ワード線WLに第1及び第2の縦型トランジスタ4A,4Bをオンさせる電圧が印加されると、第1のノードN1から第2のノードN2に向かって電流iが流れる。この電流iは、第1の縦型トランジスタ4Aでは第1の下部拡散層6Aから第1の上部拡散層7Aに向かって上向きに流れ、第2の縦型トランジスタ4Bでは第2の上部拡散層7Bから第2の下部拡散層6Bに向かって下向きに流れる。
【0073】
ドレイン電流が上向きに流れる場合の第1の縦型トランジスタ4Aのオン抵抗をR4AUとし、ドレイン電流が下向きに流れる場合の第2の縦型トランジスタ4Bのオン抵抗をそれぞれR4BSとすると、電流iは、(V−V)/(R4AU+R4BS)に等しい値となる。ただし、ここでは配線抵抗は無視している。
【0074】
第1の回路21の出力電圧を相対的に低い上記電圧Vとし、第2の回路22の出力電圧を相対的に高い上記電圧Vとする第2のモードでは、ワード線WLに第1及び第2の縦型トランジスタ4A,4Bをオンさせる電圧が印加されると、第2のノードN2から第1のノードN1に向かって電流iが流れる。この電流iは、第2の縦型トランジスタ4Bでは第2の下部拡散層6Bから第2の上部拡散層7Bに向かって上向きに流れ、第1の縦型トランジスタ4Aでは第1の上部拡散層7Aから第1の下部拡散層6Aに向かって上向きに流れる。
【0075】
ドレイン電流が下向きに流れる場合の第1の縦型トランジスタ4Aのオン抵抗をR4ASとし、ドレイン電流が上向きに流れる場合の第2の縦型トランジスタ4Bのオン抵抗をそれぞれR4BUとすると、電流iは、(V−V)/(R4AS+R4BU)に等しい値となる。ここでも配線抵抗は無視している。
【0076】
上述したように、第1及び第2の縦型トランジスタ4A,4Bは、互いに同一の特性を呈するように形成されている。したがって、オン抵抗R4AUはオン抵抗R4BUに等しく、、オン抵抗R4ASはオン抵抗R4BSに等しいので、上記各式より、電流iと電流iとは互いに等しくなる。
【0077】
以上説明したように、本実施の形態による半導体装置1によっても、バイアス切替の前後で、第1の回路21と第2の回路22の間に流れる電流の大きさは変化しない。したがって、バイアス切替の前後でドレイン電流の大きさが変化しない縦型トランジスタを提供することが可能になっている。
【0078】
図12は、本発明の好ましい第3の実施の形態の第1の変形例による半導体装置1の上面図である。図12でも、図9と同様、ワード線WLについては、透過的に内部構造を示している。また、他の内部構造の一部についても、破線で平面的な位置を示している。
【0079】
本変形例は、第1乃至第3の配線W1〜W3のレイアウトを変更したものである。具体的には、図12に示すように、第1の配線W1を、一端で第3のコンタクトプラグ23Aと接触し、そこからy方向一方側(図面上側)に向けて延伸する直線状の配線としている。また、第2の配線W2を、一端で第4のコンタクトプラグ23Bと接触し、そこからy方向一方側に向けて延伸する直線状の配線としている。さらに、第3の配線W3を、一端で第1のコンタクトプラグ22Aと接触し、他端で第2のコンタクトプラグ22Bと接触する配線としている。第3の配線W3は、第3の配線W3と第1及び第2の配線W1,W2とが接触しないよう、y方向他方側(図面下側)に迂回させている。
【0080】
本変形例のレイアウトによれば、各モードで各縦型トランジスタに流れるドレイン電流の向きが、第3の実施の形態によるものと比べると逆になるが、第3の実施の形態と同様、バイアス切替の前後でドレイン電流の大きさが変化しない縦型トランジスタを提供することが可能になる。また、第1及び第2の配線W1,W2を、同一方向(y方向一方側)に取り出すことが可能になる。
【0081】
図13は、本発明の好ましい第3の実施の形態の第2の変形例による半導体装置1の上面図である。図13でも、図9と同様、ワード線WLについては、透過的に内部構造を示している。また、他の内部構造の一部についても、破線で平面的な位置を示している。
【0082】
本変形例では、第1及び第2の縦型トランジスタ4A,4Bをともに、図6(第2の実施の形態)に示した第1の縦型トランジスタ4Aと同様の向きで、対応する活性領域内に配置している。つまり、第1の縦型トランジスタ4Aについては、活性領域AR1内のy方向一方側(図面上側)寄りかつx方向中央の位置に第1のシリコンピラー5Aが形成される。第1のシリコンピラー5Aの真上に形成される第3のコンタクトプラグ23Aの位置についても、同様に、活性領域AR1内のy方向一方側寄りかつx方向中央となる。第1のコンタクトプラグ22Aは、活性領域AR1内のy方向他方側(図面下側)寄りかつx方向中央の位置に形成される。ゲートコンタクトプラグ21Aは、第1のコンタクトプラグ22Aと第3のコンタクトプラグ23Aのy方向の中間であって、かつ第1のシリコンピラー5Aと平面視で重複しない位置に形成される。
【0083】
第2の縦型トランジスタ4Bについても同様であり、活性領域AR2内のy方向一方側(図面上側)寄りかつx方向中央の位置に第2のシリコンピラー5Bが形成される。第2のシリコンピラー5Bの真上に形成される第4のコンタクトプラグ23Bの位置についても、同様に、活性領域AR2内のy方向一方側寄りかつx方向中央となる。第2のコンタクトプラグ22Bは、活性領域AR2内のy方向他方側(図面下側)寄りかつx方向中央の位置に形成される。ゲートコンタクトプラグ21Bは、第2のコンタクトプラグ22Bと第4のコンタクトプラグ23Bのy方向の中間であって、かつ第2のシリコンピラー5Bと平面視で重複しない位置に形成される。
【0084】
第1及び第2のコンタクトプラグ22A,22Bは、y方向の位置が互いに同じとなるように配置される。同様に、第3及び第4のコンタクトプラグ23A,23Bも、y方向の位置が互いに同じとなるように配置される。また、ゲートコンタクトプラグ21A,21Bも、y方向の位置が互いに同じとなるように配置される。
【0085】
本変形例における第1乃至第3の配線W1〜W3の形状及び各コンタクトプラグとの接続は、第3の実施の形態(図9)によるものと同様である。すなわち、第1の配線W1は、一端で第1のコンタクトプラグ22Aと接触し、そこからx方向他方側(図面左側)に向けて延伸する直線状の配線である。また、第2の配線W2は、一端で第2のコンタクトプラグ22Bと接触し、そこからx方向一方側(図面右側)に向けて延伸する直線状の配線である。第3の配線W3は、一端で第3のコンタクトプラグ23Aと接触し、他端で第4のコンタクトプラグ23Bと接触する直線状の配線である。
【0086】
ワード線WLは、図6(第2の実施の形態)に示したワード線WLと同様、平面視で第1の配線W1と第2の配線W2の間の位置に配置される。
【0087】
以上説明した構成により、本変形例による半導体装置1の回路図は、図11に示した第3の実施の形態による半導体装置1のものと同様となる。したがって、第3の実施の形態と同様、バイアス切替の前後でドレイン電流の大きさが変化しない縦型トランジスタを提供することが可能になる。
【0088】
図14は、本発明の好ましい第3の実施の形態の第3の変形例による半導体装置1の上面図である。図14でも、図9と同様、ワード線WLについては、透過的に内部構造を示している。また、他の内部構造の一部についても、破線で平面的な位置を示している。
【0089】
本変形例は、第1乃至第3の配線W1〜W3と各コンタクトプラグとの接続の点で、第2の変形例と相違する。具体的には、第1の配線W1は、一端で第3のコンタクトプラグ23Aと接触し、そこからx方向他方側(図面左側)に向けて延伸する直線状の配線である。また、第2の配線W2は、一端で第4のコンタクトプラグ23Bと接触し、そこからx方向一方側(図面右側)に向けて延伸する直線状の配線である。第3の配線W3は、一端で第1のコンタクトプラグ22Aと接触し、他端で第2のコンタクトプラグ22Bと接触する直線状の配線である。
【0090】
以上の構成により、本変形例による半導体装置1における各縦型トランジスタと各配線の電気的な接続関係は、第1の変形例による半導体装置1のものと同様となる。したがって、第1の変形例と同様、バイアス切替の前後でドレイン電流の大きさが変化しない縦型トランジスタを提供することが可能になる。また、第1の変形例に比べて第3の配線W3を短くすることができるので、配線エリアを縮小することが可能になっている。
【0091】
以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
【符号の説明】
【0092】
1 半導体装置
2 シリコン基板
3 素子分離領域
4A 第1の縦型トランジスタ
4B 第2の縦型トランジスタ
5A 第1のシリコンピラー
5B 第2のシリコンピラー
6A 第1の下部拡散層
6B 第2の下部拡散層
7A 第1の上部拡散層
7B 第2の上部拡散層
8A 第1のゲート絶縁膜
8B 第2のゲート絶縁膜
9A 第1のゲート電極
9B 第2のゲート電極
10〜12 シリコン酸化膜
13 LDD領域
14 サイドウォール絶縁膜
15,16 層間絶縁膜
20 バイアス切替部
21 第1の回路
22 第2の回路
21A,21B ゲートコンタクトプラグ
22A 第1のコンタクトプラグ
22B 第2のコンタクトプラグ
23A 第3のコンタクトプラグ
23B 第4のコンタクトプラグ
AR1,AR2 活性領域
N1 第1のノード
N2 第2のノード
P1〜P6 第1〜第6の部分配線
W1〜W3 第1〜第3の配線
WL ワード線

【特許請求の範囲】
【請求項1】
それぞれ半導体基板の上面に立設された第1及び第2の半導体ピラーと、
前記第1の半導体ピラーの下部又は下方に設けられた第1の下部拡散層、
前記第1の半導体ピラーの上部に設けられた第1の上部拡散層、
前記第1の半導体ピラーの側面部を覆う第1のゲート絶縁膜、及び
前記第1のゲート絶縁膜を覆う第1のゲート電極を有する第1の縦型トランジスタと、
前記第2の半導体ピラーの下部又は下方に設けられた第2の下部拡散層、
前記第2の半導体ピラーの上部に設けられた第2の上部拡散層、
前記第2の半導体ピラーの側面部を覆う第2のゲート絶縁膜、及び
前記第2のゲート絶縁膜を覆う第2のゲート電極を有する第2の縦型トランジスタと、
前記第1及び第2のゲート電極に接続されるゲート配線と、
前記第1の下部拡散層及び前記第2の上部拡散層に接続される第1の配線と、
前記第1の上部拡散層及び前記第2の下部拡散層に接続される第2の配線と
を備えることを特徴とする半導体装置。
【請求項2】
前記第1及び第2の縦型トランジスタは互いに同一の特性を呈するよう形成される
ことを特徴とする請求項1に記載の半導体装置。
【請求項3】
前記第1の縦型トランジスタは、所定の平面を軸として、前記第2の縦型トランジスタと面対称な構造を有する
ことを特徴とする請求項1又は2に記載の半導体装置。
【請求項4】
前記第1及び第2の縦型トランジスタは隣接して配置される
ことを特徴とする請求項1乃至3のいずれか一項に記載の半導体装置。
【請求項5】
前記第1及び第2の縦型トランジスタを覆う層間絶縁膜と、
前記層間絶縁膜を貫通して設けられ、それぞれ前記第1及び第2の下部拡散層と電気的に接続する第1及び第2のコンタクトプラグと、
前記層間絶縁膜を貫通して設けられ、それぞれ前記第1及び第2の上部拡散層と電気的に接続する第3及び第4のコンタクトプラグとを備え、
前記第1及び第2の配線は前記層間絶縁膜の上面に形成され、
前記第1の配線は、前記第1のコンタクトプラグを介して前記第1の下部拡散層に接続されるとともに、前記第4のコンタクトプラグを介して前記第2の上部拡散層に接続され、
前記第2の配線は、前記第3のコンタクトプラグを介して前記第1の上部拡散層に接続されるとともに、前記第2のコンタクトプラグを介して前記第2の下部拡散層に接続される
ことを特徴とする請求項1乃至4のいずれか一項に記載の半導体装置。
【請求項6】
前記第1の配線は、前記第1の下部拡散層及び前記第2の上部拡散層に共通な第1の部分配線と、それぞれ該第1の部分配線の端部から前記第1及び第4のコンタクトプラグに向かって延設された第2及び第3の部分配線とからなり、
前記第2の配線は、前記第1の上部拡散層及び前記第2の下部拡散層に共通な第4の部分配線と、それぞれ該第4の部分配線の端部から前記第3及び第2のコンタクトプラグに向かって延設された第5及び第6の部分配線とからなる
ことを特徴とする請求項5に記載の半導体装置。
【請求項7】
前記第2の部分配線の配線長と前記第6の部分配線の配線長とが等しく、
前記第3の部分配線の配線長と前記第5の部分配線の配線長とが等しい
ことを特徴とする請求項6に記載の半導体装置。
【請求項8】
前記第1の配線に印加される電圧が前記第2の配線に印加される電圧より高くなる第1のモードと、前記第2の配線に印加される電圧が前記第1の配線に印加される電圧より高くなる第2のモードとを切り替えるバイアス切替手段
を備えることを特徴とする請求項1乃至7のいずれか一項に記載の半導体装置。
【請求項9】
それぞれ半導体基板の上面に立設された第1及び第2の半導体ピラーと、
前記第1の半導体ピラーの下部又は下方に設けられた第1の下部拡散層、
前記第1の半導体ピラーの上部に設けられた第 1の上部拡散層、
前記第1の半導体ピラーの側面部を覆う第1のゲート絶縁膜、及び
前記第1のゲート絶縁膜を覆う第1のゲート電極を有する第1の縦型トランジスタと、
前記第2の半導体ピラーの下部又は下方に設けられた第2の下部拡散層、
前記第2の半導体ピラーの上部に設けられた第2の上部拡散層、
前記第2の半導体ピラーの側面部を覆う第2のゲート絶縁膜、及び
前記第2のゲート絶縁膜を覆う第2のゲート電極を有する第2の縦型トランジスタとを備え、
前記第1及び第2の縦型トランジスタは、第1のノードと第2のノードの間に並列に接続され、
前記第1のノードは、前記第1の下部拡散層及び前記第2の上部拡散層に接続され、
前記第2のノードは、前記第1の上部拡散層及び前記第2の下部拡散層に接続される
ことを特徴とする半導体装置。
【請求項10】
前記第1及び第2の縦型トランジスタは互いに同一の特性を呈するよう形成される
ことを特徴とする請求項9に記載の半導体装置。
【請求項11】
前記第1のノードから前記第1の下部拡散層に至る配線の長さと、前記第2のノードから前記第2の下部拡散層に至る配線の長さとは互いに等しく、
前記第1のノードから前記第2の上部拡散層に至る配線の長さと、前記第2のノードから前記第1の上部拡散層に至る配線の長さとは互いに等しい
ことを特徴とする請求項9又は10に記載の半導体装置。
【請求項12】
前記第1のノードに印加される電圧が前記第2のノードに印加される電圧より高くなる第1のモードと、前記第2のノードに印加される電圧が前記第1のノードに印加される電圧より高くなる第2のモードとを切り替えるバイアス切替手段
を備えることを特徴とする請求項9乃至11のいずれか一項に記載の半導体装置。
【請求項13】
それぞれ半導体基板の上面に立設された第1及び第2の半導体ピラーと、
前記第1の半導体ピラーの下部又は下方に設けられた第1の下部拡散層、
前記第1の半導体ピラーの上部に設けられた第 1の上部拡散層、
前記第1の半導体ピラーの側面部を覆う第1のゲート絶縁膜、及び
前記第1のゲート絶縁膜を覆う第1のゲート電極を有する第1の縦型トランジスタと、
前記第2の半導体ピラーの下部又は下方に設けられた第2の下部拡散層、
前記第2の半導体ピラーの上部に設けられた第2の上部拡散層、
前記第2の半導体ピラーの側面部を覆う第2のゲート絶縁膜、及び
前記第2のゲート絶縁膜を覆う第2のゲート電極を有する第2の縦型トランジスタとを備え、
前記第1及び第2の縦型トランジスタは、第1のノードと第2のノードの間に直列に接続され、
前記第1のノードは、前記第1の下部拡散層又は前記第1の上部拡散層に接続され、
前記第2のノードは、前記第1のノードが前記第1の下部拡散層に接続される場合には前記第2の下部拡散層に接続され、前記第1のノードが前記第1の上部拡散層に接続される場合には前記第2の上部拡散層に接続される
ことを特徴とする半導体装置。
【請求項14】
前記第1及び第2の縦型トランジスタは互いに同一の特性を呈するよう形成される
ことを特徴とする請求項13に記載の半導体装置。
【請求項15】
前記第1のノードに印加される電圧が前記第2のノードに印加される電圧より高くなる第1のモードと、前記第2のノードに印加される電圧が前記第1のノードに印加される電圧より高くなる第2のモードとを切り替えるバイアス切替手段
を備えることを特徴とする請求項13又は14に記載の半導体装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate


【公開番号】特開2012−79992(P2012−79992A)
【公開日】平成24年4月19日(2012.4.19)
【国際特許分類】
【出願番号】特願2010−225461(P2010−225461)
【出願日】平成22年10月5日(2010.10.5)
【出願人】(500174247)エルピーダメモリ株式会社 (2,599)
【Fターム(参考)】