説明

有機EL表示装置およびその製造方法

【課題】本発明の目的は、有機EL素子上に該有機EL素子を駆動するためのTFTを配した有機EL表示装置およびその製造方法を提供することにある。特に、高開口率が得られ、高精細、高輝度、高安定性、高信頼性、且つ高寿命のアクティブ型有機EL表示装置およびその製造方法を提供することである。
【解決手段】基板上に少なくとも下部電極、少なくとも発光層を含む有機層、及び上部電極を順次有する有機EL素子を有する有機EL表示装置であって、前記上部電極上に少なくともゲート電極、ゲート絶縁膜、活性層、ソース電極、及びドレイン電極を有し前記有機EL素子を駆動するTFTを形成し、前記活性層が酸化物半導体を含有することを特徴とする有機EL表示装置およびその製造方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、有機EL素子上に該有機EL素子を駆動するための薄膜電界効果型トランジスタを配した有機EL表示装置、およびその製造方法に関する。特に、高開口率が得られ、高精細、高輝度、高安定性、高信頼性、且つ高寿命のアクティブ型有機EL表示装置およびその製造方法に関する。
に関する。
【背景技術】
【0002】
近年、液晶やエレクトロルミネッセンス(ElectroLuminescence:EL)技術等の進歩により、平面薄型画像表示装置(Flat Panel Display:FPD)が実用化されている。特に、電流を通じることによって励起され発光する薄膜材料を用いた有機電界発光素子(以後、「有機EL素子」と記載する場合がある)は、低電圧で高輝度の発光が得られるために、携帯電話ディスプレイ、パーソナルデジタルアシスタント(PDA)、コンピュータディスプレイ、自動車の情報ディスプレイ、TVモニター、あるいは一般照明を含む広い分野で、デバイスの薄型化、軽量化、小型化、および省電力のなどが期待されている。
これらFPDは、ガラス基板上に設けた非晶質シリコン薄膜や多結晶シリコン薄膜を活性層に用いる電界効果型薄膜トランジスタ(以後の説明で、Thin Film Transistor、もしくはTFTと記載する場合がある)のアクティブマトリクス回路により駆動されている。
【0003】
一方、これらのアクティブ型有機EL表示装置のさらなる高精細、高輝度、且つ高寿命を達成するためには、高開口率が得られるトップエミッション方式が有利であることが知られている。しかし、トップエミッション構造の有機EL素子は、有機層にITO等の透明導電膜を直接ダメージなしに形成することが困難であるために、実用上有用な高効率・高寿命な素子を作製するのは難しい状況である。
別の解決手段として、ボトムエミッション構造の有機EL素子上にTFTを重畳して形成することが開示されている(例えば、特許文献1参照)。しかしながら、用いられるTFTは有機半導体から構成されていた。有機半導体からなる有機TFTは、低温での成膜が可能であるので有機EL素子上に有機EL素子を損傷せずに形成することが可能であるが、有機TFTは駆動安定性に問題があり、また保存安定性を高めるために外気および湿度に対して厳重に封止することが必要である等、信頼性に問題があった。また、有機TFTはキャリア移動度が低い為、駆動電流を大きくするためにはTFTのサイズ(チャネル幅)が極めて大きくなる。その為、高精細、高輝度の有機EL表示装置を作製することは困難であった。
【0004】
一方、シリコン薄膜を用いるトランジスタの製造は、安定性、動作信頼性が良好であるが、その製造には比較的高温の熱工程を要し、一般的に有機EL素子上に形成する場合、有機EL素子に損傷を与えるため問題があった。
近年、低温での成膜が可能なアモルファス酸化物、例えば、In−Ga−Zn−O系アモルファス酸化物を半導体薄膜を用いるTFTの開発が活発に行われている(例えば、特許文献2、非特許文献1参照)。アモルファス酸化物半導体を用いたTFTは、室温成膜が可能であり、フイルム上に作製が可能であるので、フイルム(フレキシブル)TFTの活性層の材料として最近注目を浴びている。特に、東工大・細野らにより、a−IGZOを用いたTFTは、PEN基板上でも電界効果移動度が約10cm/Vsとガラス上のa−Si系TFTよりも高移動度が報告されて、特にフイルムTFTとして注目されるようになった(例えば、非特許文献2参照)。
【0005】
しかし、このa−IGZOを用いたTFTを例えば表示装置の駆動回路として用いる場合、1cm/Vs〜10cm/Vsという移動度では、特性は不十分であり、またOFF電流が高く、ON/OFF比が低いという問題がある。特に有機EL素子を用いた表示装置に用いるためには、さらなる移動度の向上、ON/OFF比の向上が要求される。
【特許文献1】特開2005−242028号公報
【特許文献2】特開2006−165529号公報
【非特許文献1】IDW/AD’05、845頁−846頁(6、December、2005)
【非特許文献2】NATURE、Vol.437(November 25、2004)、488頁−492頁
【発明の開示】
【発明が解決しようとする課題】
【0006】
本発明の目的は、有機EL素子上に該有機EL素子を駆動するためのTFTを配した有機EL表示装置およびその製造方法を提供することにある。特に、高開口率が得られ、高精細、高輝度、高安定性、高信頼性、且つ高寿命のアクティブ型有機EL表示装置およびその製造方法を提供することにある。
【課題を解決するための手段】
【0007】
本発明の上記課題は下記の手段によって解決された。
<1> 基板上に少なくとも下部電極、少なくとも発光層を含む有機層、及び上部電極を順次有する有機EL素子を有する有機EL表示装置であって、前記上部電極上に少なくともゲート電極、ゲート絶縁膜、活性層、ソース電極、及びドレイン電極を有し前記有機EL素子を駆動するTFTを形成し、前記活性層が酸化物半導体を含有することを特徴とする有機EL表示装置。
<2> 前記上部電極と前記トランジスタの間に保護絶縁膜を有し、前記上部電極と前記ソース電極または前記ドレイン電極とが前記保護絶縁膜に形成されたコンタクトホールを介して電気的に接続されていることを特徴とする<1>に記載の有機EL表示装置。
<3> 前記下部電極が光透過性電極であることを特徴とする<1>または<2>に記載の有機EL表示装置。
<4> 前記上部電極が光反射性電極であることを特徴とする<3>に記載の有機EL表示装置。
<5> 前記下部電極が陽極、前記上部電極が陰極であることを特徴とする<1>〜<4>のいずれかに記載の有機EL表示装置。
<6> 前記TFTの極性がN型であることを特徴とする<5>に記載の有機EL表示装置。
<7> 前記活性層の酸化物半導体がアモルファス酸化物半導体であることを特徴とする<1>〜<6>のいずれかに記載の有機EL表示装置。
<8> 前記活性層と前記ソース電極及び前記ドレイン電極の少なくとも一方との間に抵抗層を有することを特徴とする<1>〜<7>のいずれかに記載の有機EL表示装置。
<9> 前記活性層が前記ゲート絶縁膜と接し、前記抵抗層が前記ソース電極及び前記ドレイン電極の少なくとも一方と接していることを特徴とする<8>に記載の有機EL表示装置。
<10> 前記抵抗層の膜厚が前記活性層の膜厚より厚いことを特徴とする<9>に記載の有機EL表示装置。
<11> 前記抵抗層と前記活性層の間の電気伝導度が連続的に変化していることを特徴とする<8>又は<9>に記載の有機EL表示装置。
<12> 前記活性層の酸素濃度が前記抵抗層の酸素濃度より低いことを特徴とする<8>〜<11>のいずれかに記載の有機EL表示装置。
<13> 前記酸化物半導体がIn、GaおよびZnからなる群より選ばれる少なくとも1種若しくはこれらの複合酸化物を含むことを特徴とする<1>〜<12>のいずれかに記載の有機EL表示装置。
<14> 前記酸化物半導体が前記InおよびZnを含有し、前記抵抗層のZnとInの組成比(Inに対するZnの比率Zn/Inで表す)が前記活性層の組成比Zn/Inより大きいことを特徴とする<13>に記載の有機EL表示装置。
<15> 前記活性層の電気伝導度が10−4Scm−1以上10Scm−1未満であることを特徴とする<8>〜<14>のいずれかに記載の有機EL表示装置。
<16> 前記活性層の電気伝導度が10−1Scm−1以上10Scm−1未満であることを特徴とする<15>に記載の有機EL表示装置。
<17> 前記抵抗層の電気伝導度に対する前記活性層の電気伝導度の比率(前記活性層の電気伝導度/前記抵抗層の電気伝導度)が、10以上1010以下であることを特徴とする<8>〜<16>のいずれかに記載の有機EL表示装置。
<18> 前記抵抗層の電気伝導度に対する前記活性層の電気伝導度の比率(前記活性層の電気伝導度/前記抵抗層の電気伝導度)が、10以上10以下であることを特徴とする<17>に記載の有機EL表示装置。
<19> 前記基板が可撓性樹脂基板であることを特徴とする<1>〜<18>のいずれかに記載の有機EL表示装置。
<20> <1>〜<19>のいずれかに記載の有機EL表示装置の製造方法であって、基板上に有機EL素子及び該有機EL素子を駆動するTFTを順次形成することを特徴とする有機EL表示装置の製造方法。
【0008】
酸化物半導体を用いたTFTは、室温成膜が可能であり、有機EL素子上に有機EL素子に損傷を与えることなく配することができる。酸化物半導体を用いたTFTは、有機TFTより移動度が高く、有機EL素子に流せる電流を増やせることができ、高輝度な表示装置を提供できるだけではなく、有機TFTより駆動安定性、封止膜を必要としない等の保存安定性が優れているという特徴がある。特に、In−Ga−Zn−O系酸化物を活性層に用いることにより、電界効果移動度10cm/Vs、ON/OFF比10超の性能を持つTFTを作製することができる。さらに、酸化物半導体層が少なくとも活性層と該活性層より電気伝導度の低い抵抗層とを有し、該活性層が前記ゲート絶縁膜と接し、該活性層と前記ソース電極及び前記ドレイン電極の少なくとも一方との間に該抵抗層が電気的に接続している構成とすることにより、優れたOFF特性と、高移動度を両立するTFTを形成することが可能となった。特に、少なくとも前記抵抗層と前記活性層を層状に有し、前記活性層が前記ゲート絶縁膜と接し、前記抵抗層が前記ソース電極及び前記ドレイン電極の少なくとも一方と接する構成が有効な手段として見出された。
【発明の効果】
【0009】
本発明によると、有機EL素子上に該有機EL素子を駆動するためのTFTを有し、高開口率が得られ、高精細、高輝度、高安定性、高信頼性、且つ高寿命のアクティブ型有機EL表示装置およびその製造方法を提供することができる。
【発明を実施するための最良の形態】
【0010】
1.有機EL表示装置
本発明の有機EL表示装置は、基板上に少なくとも下部電極、少なくとも発光層を含む有機層、及び上部電極を順次有する有機EL素子、および前記上部電極上に少なくともゲート電極、ゲート絶縁膜、酸化物半導体を含有する活性層、ソース電極、及びドレイン電極を有し前記有機EL素子を駆動するTFTを有する。TFTが有機EL素子の背面に配置されているので、有機EL素子の発光を取り出す開口部を大きく取ることができる。好ましくは、TFTと有機EL素子の間に保護絶縁膜を有し、前記有機EL素子の上部電極とTFTの前記ソース電極または前記ドレイン電極とが前記保護絶縁膜に形成されたコンタクトホールを介して電気的に接続されている。好ましくは、前記下部電極が光透過性電極であり、前記上部電極が光反射性電極である。
【0011】
以下に、図面により本発明の有機EL表示装置を詳細に説明する。
図1は本発明の有機EL表示装置の1例の構成を示す概略断面図である。
基板100の上に、順に下部電極30、少なくとも発光層を含む有機層32、及び上部電極34を有する有機EL素子部、保護絶縁膜106、および少なくともソース電極105a、ドレイン電極105b、活性層104、ゲート絶縁膜103、およびゲート電極102を有するTFT部を有する。装置全体は絶縁膜36により被覆される。ソース電極105aとドレイン電極105bの一方と上部電極34は、保護絶縁膜に設けられたコンタクトホール108によって電気的に接続されている。この構成においては、基板および下部電極が透明であり、上部電極が光反射性であって、発光で発生した光は基板を通して外部に取り出される。
図2は本発明の別の態様の有機EL表示装置の構成を示す概略断面図である。
図1とはTFTの構造が異なっていて、保護絶縁膜116の上にゲート電極112、ゲート絶縁膜113、ソース電極115a、ドレイン電極115b、および活性層114を有する。ソース電極115aとドレイン電極115bの一方と上部電極44は、保護絶縁膜116とゲート絶縁膜113を貫通して設けられたコンタクトホール118によって電気的に接続されている。
図3は本発明のさらに別の態様の有機EL表示装置の構成を示す概略断面図である。
図2と同様に図1とはTFTの構造が異なっていて、保護絶縁膜126の上にゲート電極122、ゲート絶縁膜123、活性層124、ソース電極125aおよびドレイン電極125bを有する。ソース電極125aおよびドレイン電極125bの一方と上部電極54は、保護絶縁膜126とゲート絶縁膜123を貫通して設けられたコンタクトホール128によって電気的に接続されている。
【0012】
いずれの構造においても、TFTは有機EL素子の光取りだし面とは反対面側の背面に設けられている。後述の用に本発明に用いられるTFTはON/OFF特性に優れかつ高電流を供給できるので、有機EL素子の高密度配置に対しても十分対応可能な小型化が可能であり、有機EL素子の開口部を広く設けることが可能である。
従って、高信頼、高精細、高輝度、且つ高寿命な有機EL表示装置が提供される。
【0013】
2.TFT
本発明に用いられるTFTは、少なくとも、ゲート電極、ゲート絶縁膜、活性層、ソース電極及びドレイン電極を順次有し、ゲート電極に電圧を印加して、活性層に流れる電流を制御し、ソース電極とドレイン電極間の電流をスイッチングする機能を有するアクテイブ素子である。本発明に用いられるTFTの活性層には、酸化物半導体を用いる。酸化物半導体は、低温成膜可能であり、有機EL素子にダメージが少なく形成することができる。また、ペンタセン等の有機半導体に比べ、移動度が優れているだけではなく、駆動安定性、保存安定性という点でも優れている。特に、TFTの活性層には、アモルファス酸化物半導体が、TFT特性の均一性、特性安定性の観点からより好ましい。TFT構造として、スタガ構造及び逆スタガ構造のいずれをも形成することができる。
【0014】
好ましくは、前記TFTの極性がN型である。
有機EL素子は通常、下部電極にITOを用いた透明陽極、上部電極にAlを用いた光反射性陰極とする構成となる。駆動TFTのソースまたはドレイン電極は、有機EL素子の上部電極つまり陰極と接続することがプロセス上または構造上好ましい。例えば、画素回路を単純な2トランジスタ−1キャパシテイ(2Tr−1C)構成とした場合、TFTのドレイン電極を有機EL素子の陰極と接続し、有機EL素子の陽極をグランドとし、N型TFTを用いると駆動特性において、特に優れた性能が得られる。それは、駆動TFTのゲート電圧が有機EL素子の駆動電圧の影響を受けないので、安定した駆動が可能となるからである。従って、従来、安定化のために4Trなどの補償回路を設ける必要がなくなり、TFT部のダウンサイジングが可能となり、より高精細、高輝度、且つ高寿命な有機EL表示装置の設計が容易になる。
【0015】
好ましくは、本発明に於ける活性層は酸化物半導体を含有し低温成膜が可能である。本発明に於ける酸化物半導体はアモルファス酸化物半導体が好ましい。
本発明におけるTFTは、好ましくは少なくとも活性層と該活性層より電気伝導度の低い抵抗層とを有し、該活性層が前記ゲート絶縁膜と接し、該活性層と前記ソース電極及び前記ドレイン電極の少なくとも一方との間に該抵抗層が電気的に接続している。本発明に於ける抵抗層も酸化物半導体を含有するのが好ましい。以後の説明で、活性層と抵抗層を含めて半導体層と呼ぶことがある。
さらに好ましくは、少なくとも前記抵抗層と前記活性層を層状に有し、前記活性層が前記ゲート絶縁膜と接し、前記抵抗層が前記ソース電極及び前記ドレイン電極の少なくとも一方と接する。
また、動作安定性の観点から、前記抵抗層の膜厚が前記活性層の膜厚より厚いことが好ましい。
【0016】
また、別の態様として、前記抵抗層と前記活性層の間の電気伝導度が連続的に変化している態様も好ましい。該構成においては前記抵抗層と前記活性層と間に明確な境界を有する訳でない。前記抵抗層と前記活性層を併せた半導体層の総厚みの前記ゲート絶縁膜に近接する10%の領域を活性層、また、該半導体層の厚みの前記ソース電極及び前記ドレイン電極に近接する10%の領域を抵抗層と定義される。
好ましくは、前記活性層の酸素濃度が前記抵抗層の酸素濃度より低い。
【0017】
好ましくは、前記酸化物半導体がIn、GaおよびZnからなる群より選ばれる少なくとも1種若しくはこれらの複合酸化物を含む。より好ましくは、前記酸化物半導体が前記InおよびZnを含有し、前記抵抗層のZnとInの組成比(Inに対するZnの比率Zn/Inで表す)が前記活性層の組成比Zn/Inより大きい。好ましくは、抵抗層のZn/In比が活性層のZn/In比より3%以上大きく、さらに好ましくは、10%以上大きい。
【0018】
好ましくは、前記活性層の電気伝導度が10−4Scm−1以上10Scm−1未満である。より好ましくは10−1Scm−1以上10Scm−1未満である。前記抵抗層の電気伝導度は、好ましくは10−2Scm−1以下、より好ましくは10−9Scm−1以上10−3Scm−1未満であり、前記活性層の電気伝導度より小さい。
前記活性層の電気伝導度が10−4Scm−1を下まわると電界効果移動度としては高移動度が得られず、10Scm−1以上ではOFF電流が増加し、良好なON/OFF比が得られないので、好ましくない。
【0019】
好ましくは、前記抵抗層の電気伝導度に対する前記活性層の電気伝導度の比率(前記活性層の電気伝導度/前記抵抗層の電気伝導度)が10以上1010以下であり、より好ましくは、10以上10以下である。
また、動作安定性の観点から、抵抗層の膜厚が活性層の膜厚より厚いことが好ましい。
より好ましくは、抵抗層の膜厚/活性層の膜厚の比が1を超え100以下、さらに好ましくは1を超え10以下である。好ましくは、前記基板が可撓性樹脂基板である。
【0020】
次に、図面を用いて、詳細に本発明におけるより好ましいTFTの構造を説明する。
1)構造
図4は、本発明のTFTであって、逆スタガ構造の一例を示す模式図である。基板1がプラスチックフィルムなどの可撓性基板の場合、基板1の一方の面に絶縁層6を配し、その上にゲート電極2、ゲート絶縁膜3、活性層4−1、抵抗層4−2を積層して有し、その表面にソース電極5−1とドレイン電極5−2が設置される。活性層4−1はゲート絶縁膜3に接し、抵抗層4−2はソース電極5−1およびドレイン電極5−2に接する。ゲート電極に電圧が印加されていない状態での活性層4−1の電気伝導度が抵抗層4−2の電気伝導度より大きくなるように、活性層4−1および抵抗層4−2の組成が決定される。ここで、活性層には、特開2006−165529号公報に開示されている酸化物半導体、例えばIn−Ga−Zn−O系の酸化物半導体を用いる。これらの酸化物半導体は、電子キャリア濃度が高いほど、電子移動度が高くなることが知られている。つまり、電気伝導度が大きいほど、電子移動度が高い。
本発明における構造によれば、TFTがゲート電極に電圧が印加されたONの状態では、チャネルとなる活性層が大きい電気伝導度を有しているため、トランジスタの電界効果移動度は高くなり、高ON電流が得られる。OFFの状態では抵抗層の電気伝導度が小さい為に、抵抗層の抵抗が高いことから、OFF電流が低く保たれるために、ON/OFF比特性が極めて改良される。
【0021】
図には示してはいないが、本発明の趣旨は、半導体層のゲート絶縁膜近傍における電気伝導度が、半導体層のソース電極及びドレイン電極近傍における電気伝導度より大きくなるように半導体層を設けることにあり、その状態が得られる限りその達成手段は図1に示すような複数の半導体層を設けることだけに留まるものではない。連続的に電気伝導度が変化しても良い。
【0022】
図5は、本発明のTFTであって、トップゲート構造の一例を示す模式図である。基板1がプラスチックフィルムなどの可撓性基板の場合、基板11の一方の面に絶縁層16を配し、絶縁層上にソース電極5−11とドレイン電極5−12が設置され、抵抗層4−12、活性層4−11を積層した後、ゲート絶縁膜13、ゲート電極12を配する。逆スタガ型構成におけると同様に、活性層4−11(高電気伝導度層)はゲート絶縁膜13に接し、抵抗層4−12(低電気伝導度層)はソース電極5−11およびドレイン電極5−12に接する。ゲート電極に電圧が印加されていない状態での活性層4−11の電気伝導度が抵抗層4−12の電気伝導度より大きくなるように、活性層4−11および抵抗層4−12の組成が決定される。
【0023】
2)電気伝導度
本発明における活性層および抵抗層の電気伝導度について説明する。
電気伝導度とは、物質の電気伝導のしやすさを表す物性値であり、物質のキャリア濃度n、キャリア移動度μ、eを電荷素量とすると物質の電気伝導度σは以下の式で表される。
σ=neμ
活性層又は抵抗層がn型半導体である時はキャリアは電子であり、キャリア濃度とは電子キャリア濃度を、キャリア移動度とは電子移動度を示す。同様に活性層又は抵抗層がp型半導体ではキャリアは正孔であり、キャリア濃度とは、正孔キャリア濃度を、キャリア移動度とは正孔移動度を示す。尚、物質のキャリア濃度とキャリア移動度とは、ホール測定により求めることができる。
<電気伝導度の求め方>
厚みが分かっている膜のシート抵抗を測定することにより、膜の電気伝導度を求めることができる。半導体の電気伝導度は温度より変化するが、本文記載の電気伝導度は、室温(20℃)での電気伝導度を示す。
【0024】
3)ゲート絶縁膜
ゲート絶縁膜としては、SiO、SiN、SiON、Al、Y、Ta、HfO等の絶縁体、又はそれらの化合物を少なくとも二つ以上含む混晶化合物が用いられる。また、ポリイミドのような高分子絶縁体もゲート絶縁膜として用いることができる。
【0025】
ゲート絶縁膜の膜厚としては10nm〜10μmが好ましい。ゲート絶縁膜はリーク電流を減らす、電圧耐性を上げる為に、ある程度膜厚を厚くする必要がある。しかし、ゲート絶縁膜の膜厚を厚くすると、TFTの駆動電圧の上昇を招く結果となる。その為、ゲート絶縁膜の膜厚は無機絶縁体だと50nm〜1000nm、高分子絶縁体だと0.5μm〜5μmで用いられることが、より好ましい。特に、HfOのような高誘電率絶縁体をゲート絶縁膜に用いると、膜厚を厚くしても、低電圧でのTFT駆動が可能であるので、特に好ましい。
【0026】
4)活性層、抵抗層
本発明に用いられる活性層および抵抗層を構成する半導体層には、酸化物半導体を用いることが好ましい。特にアモルファス酸化物半導体がさらに好ましい。酸化物半導体、特にアモルファス酸化物半導体は、低温で成膜可能である為に、プラスティックのような可撓性のある樹脂基板に作製が可能である。低温で作製可能な良好なアモルファス酸化物半導体としては、特開2006−165529号公報に開示されているような、Inを含む酸化物、InとZnを含む酸化物、In、Ga及びZnを含有する酸化物であり、組成構造としては、InGaO(ZnO)(mは6未満の自然数)のものが好ましいことが知られている。これらは、キャリアが電子のn型半導体である。もちろん、ZnO・Rh、CuGaO、SrCuのようなp型酸化物半導体を半導体層に用いても良い。
【0027】
具体的に本発明に係るアモルファス酸化物半導体は、In−Ga−Zn−Oを含み構成され、結晶状態における組成がInGaO(ZnO)(mは6未満の自然数)で表されるアモルファス酸化物半導体が好ましい。特に、InGaZnOがより好ましい。この組成のアモルファス酸化物半導体の特徴としては、電気伝導度が増加するにつれ、電子移動度が増加する傾向を示す。また、電気伝導度を制御するには、成膜中の酸素分圧より制御が可能であることが特開2006−165529号公報に開示されている。
【0028】
<活性層及び抵抗層の電気伝導度>
本発明における活性層は、ゲート絶縁膜に近接し、ソース電極及びドレイン電極に近接する抵抗層より高い電気伝導度を有することを特徴とする。
より好ましくは、前記活性層の電気伝導度の前記抵抗層の電気伝導度に対する比率(活性層の電気伝導度/抵抗層の電気伝導度)は、好ましくは、10以上1010以下であり、より好ましくは、10以上10以下である。好ましくは、前記活性層の電気伝導度が10−4Scm−1以上10Scm−1未満である。より好ましくは10−1Scm−1以上10Scm−1未満である。前記抵抗層の電気伝導度は、好ましくは10−1Scm−1以下、より好ましくは10−9Scm−1以上10−4Scm−1以下である。
【0029】
<活性層と抵抗層の膜厚>
抵抗層の膜厚が活性層の膜厚より厚いことが好ましい。より好ましくは、抵抗層の膜厚/活性層の膜厚比が1を越え100以下、さらに好ましくは1を越え10以下である。
活性層の膜厚は、1nm以上100nm以下が好ましく、より好ましくは2.5nm以上30nm以下である。抵抗層の膜厚は、5nm以上500nm以下が好ましく、より好ましくは10nm以上100nm以下である。
【0030】
上記の構成の活性層と抵抗層からなる半導体層を用いることにより、移動度が10cm/(V・秒)以上の高い移動度のTFTトランジスタで、ON/OFF比が10以上のトランジスタ特性を実現できる。
【0031】
<電気伝導度の調整手段>
本発明における半導体層の電気伝導度は、上述のように該半導体層のソース電極及びドレイン電極近傍(抵抗層)よりゲート絶縁膜近傍(活性層)においてより大きくなるように調整される。
電気伝導度の調整手段としては、半導体層が酸化物半導体である場合は下記の手段を挙げることが出来る。
(1)酸素欠陥による調整
酸化物半導体において、酸素欠陥ができると、キャリア電子が発生し、電気伝導度が大きくなることが知られている。よって、酸素欠陥量を調整することにより、酸化物半導体の電気伝導度を制御することが可能である。酸素欠陥量を制御する具体的な方法としては、成膜中の酸素分圧、成膜後の後処理時の酸素濃度と処理時間等がある。ここでいう後処理とは、具体的に100℃以上の熱処理、酸素プラズマ、UVオゾン処理がある。これらの方法の中でも、生産性の観点から成膜中の酸素分圧を制御する方法が好ましい。成膜中の酸素分圧を調整することにより、酸化物半導体の電気伝導度の制御ができることは、特開2006−165529号公報に開示されており、本手法を利用することができる。
(2)組成比による調整
酸化物半導体の金属組成比を変えることにより、電気伝導度が変化することが知られている。例えば、InGaZn1−XMgにおいて、Mgの比率が増えていくと、電気伝導度が小さくなることが、特開2006−165529に開示されている。また、(In1−X(ZnO)の酸化物系において、Zn/In比が10%以上では、Zn比率が増加するにつれ、電気伝導度が小さくなることが報告されている(「透明導電膜の新展開II」シーエムシー出版、P.34−35)。これら組成比を変える具体的な方法としては、例えば、スパッタによる成膜方法においては、組成比が異なるターゲットを用いる。
または、多元のターゲットにより、共スパッタし、そのスパッタレートを個別に調整することにより、膜の組成比を変えることが可能である。
(3)不純物による調整
酸化物半導体に、Li,Na,Mn,Ni,Pd,Cu,Cd,C,N,P等の元素を不純物として添加することにより、電子キャリア濃度を減少させること、つまり電気伝導度を小さくすることが可能であることが、特開2006−165529号公報に開示されている。不純物を添加する方法としては、酸化物半導体と不純物元素とを共蒸着により行う、成膜された酸化物半導体膜に不純物元素のイオンをイオンドープ法により行う等がある。
(4)酸化物半導体材料による調整
上記(1)〜(3)においては、同一酸化物半導体系での電気伝導度の調整方法を述べたが、もちろん酸化物半導体材料を変えることにより、電気伝導度を変えることができる。例えば、一般的にSnO系酸化物半導体は、In系酸化物半導体に比べて電気伝導度が小さいことが知られている。このように酸化物半導体材料を変えることにより、電気伝導度の調整が可能である。特に電気伝導度の小さい酸化物材料としては、Al、Ga、ZrO、Y、Ta、MgO、又はHfO等の酸化物絶縁体材料が知られており、これらを用いることも可能である。
電気伝導度を調整する手段としては、上記(1)〜(4)の方法を単独に用いても良いし、組み合わせても良い。
【0032】
<活性層の形成方法>
活性層の成膜方法は、酸化物半導体の多結晶焼結体をターゲットとして、気相成膜法を用いるのが良い。気相成膜法の中でも、スパッタリング法、パルスレーザー蒸着法(PLD法)が適している。さらに、量産性の観点から、スパッタリング法が好ましい。
【0033】
例えば、RFマグネトロンスパッタリング蒸着法により、真空度及び酸素流量を制御して成膜される。酸素流量が多いほど電気伝導度を小さくすることができる。
【0034】
成膜した膜は、周知のX線回折法によりアモルファス膜であることが確認できる。
また、膜厚は触針式表面形状測定により求めることができる。組成比は、RBS(ラザフォード後方散乱)分析法により求めることができる。
【0035】
5)ゲート電極
本発明におけるゲート電極としては、例えば、Al、Mo、Cr、Ta、Ti、Au、Ag等の金属、Al−Nd、APC等の合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の金属酸化物導電膜、ポリアニリン、ポリチオフェン、ポリピロ−ルなどの有機導電性化合物、またはこれらの混合物を好適に挙げられる。
ゲート電極の厚みは、10nm以上1000nm以下とすることが好ましい。
【0036】
電極の成膜法は特に限定されることはなく、印刷方式、コ−ティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレ−ティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式、などの中から前記材料との適性を考慮して適宜選択した方法に従って前記基板上に形成することができる。例えば、ITOを選択する場合には、直流あるいは高周波スパッタリング法、真空蒸着法、イオンプレ−ティング法等に従って行うことができる。またゲート電極の材料として有機導電性化合物を選択する場合には湿式製膜法に従って行うことができる。
【0037】
6)ソース電極及びドレイン電極
本発明におけるソース電極及びドレイン電極材料として、例えば、Al、Mo、Cr、Ta、Ti、Au、Ag等の金属、Al−Nd、APC等の合金、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の金属酸化物導電膜、ポリアニリン、ポリチオフェン、ポリピロ−ルなどの有機導電性化合物、またはこれらの混合物を好適に挙げられる。
ソース電極及びドレイン電極の厚みは、10nm以上1000nm以下とすることが好ましい。
【0038】
電極の製膜法は特に限定されることはなく、印刷方式、コ−ティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレ−ティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式、などの中から前記材料との適性を考慮して適宜選択した方法に従って前記基板上に形成することができる。例えば、ITOを選択する場合には、直流あるいは高周波スパッタリング法、真空蒸着法、イオンプレ−ティング法等に従って行うことができる。またソース電極及びドレイン電極の材料として有機導電性化合物を選択する場合には湿式製膜法に従って行うことができる。
【0039】
7)絶縁膜
必要によって、TFT上に絶縁膜を設けても良い。絶縁膜は、半導体層(活性層および抵抗層)を大気による劣化から保護する目的や、TFT上に作製される電子デバイスとを絶縁する目的がある。
【0040】
絶縁膜材料の具体例としては、MgO、SiO、SiO、Al、GeO、NiO、CaO、BaO、Fe、Y、又はTiO等の金属酸化物、SiN、SiN等の金属窒化物、MgF、LiF、AlF、又はCaF等の金属フッ化物、ポリエチレン、ポリプロピレン、ポリメチルメタクリレート、ポリイミド、ポリウレア、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリジクロロジフルオロエチレン、クロロトリフルオロエチレンとジクロロジフルオロエチレンとの共重合体、テトラフルオロエチレンと少なくとも1種のコモノマーとを含むモノマー混合物を共重合させて得られる共重合体、共重合主鎖に環状構造を有する含フッ素共重合体、吸水率1%以上の吸水性物質、吸水率0.1%以下の防湿性物質等が挙げられる。
【0041】
絶縁膜の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、MBE(分子線エピタキシ)法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法(高周波励起イオンプレーティング法)、プラズマCVD法、レーザーCVD法、熱CVD法、ガスソースCVD法、コーティング法、印刷法、又は転写法を適用できる。
【0042】
8)後処理
必要によって、TFTの後処理として、熱処理を行っても良い。熱処理としては、温度100℃以上で、大気下または窒素雰囲気下で行う。熱処理を行う工程としては、半導体層を成膜後でも良いし、TFT作製工程の最後に行っても良い。熱処理を行うことにより、TFTの特性の面内バラつきが抑制される、駆動安定性が向上する等の効果がある。
【0043】
3.有機EL素子
【0044】
以下、本発明の有機EL素子について詳細に説明する。
本発明の発光素子は基板上に陰極と陽極を有し、両電極の間に有機発光層(以下、単に「発光層」と称する場合がある。)を含む有機化合物層を有する。発光素子の性質上、陽極及び陰極のうち少なくとも一方の電極は、透明であることが好ましい。
【0045】
本発明における有機化合物層の積層の形態としては、陽極側から、正孔輸送層、発光層、電子輸送層の順に積層されている態様が好ましい。更に、正孔輸送層と陽極との間に正孔注入層、及び/又は発光層と電子輸送層との間に、電子輸送性中間層を有する。また、発光層と正孔輸送層との間に正孔輸送性中間層を、同様に陰極と電子輸送層との間に電子注入層を設けても良い。
尚、各層は複数の二次層に分かれていてもよい。
【0046】
有機化合物層を構成する各層は、蒸着法やスパッタ法等の乾式製膜法、転写法、印刷法、塗布法、インクジェット法、およびスプレー法等いずれによっても好適に形成することができる。
【0047】
次に、本発明の発光素子を構成する要素について、詳細に説明する。
【0048】
(基板)
本発明で使用する基板としては、有機化合物層から発せられる光を散乱又は減衰させない基板であることが好ましい。その具体例としては、ジルコニア安定化イットリウム(YSZ)、ガラス等の無機材料、ポリエチレンテレフタレート、ポリブチレンフタレート、ポリエチレンナフタレート等のポリエステル、ポリスチレン、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、ポリイミド、ポリシクロオレフィン、ノルボルネン樹脂、およびポリ(クロロトリフルオロエチレン)等の有機材料が挙げられる。
例えば、基板としてガラスを用いる場合、その材質については、ガラスからの溶出イオンを少なくするため、無アルカリガラスを用いることが好ましい。また、ソーダライムガラスを用いる場合には、シリカなどのバリアコートを施したものを使用することが好ましい。有機材料の場合には、耐熱性、寸法安定性、耐溶剤性、電気絶縁性、及び加工性に優れていることが好ましい。
【0049】
基板の形状、構造、大きさ等については、特に制限はなく、発光素子の用途、目的等に応じて適宜選択することができる。一般的には、基板の形状としては、板状であることが好ましい。基板の構造としては、単層構造であってもよいし、積層構造であってもよく、また、単一部材で形成されていてもよいし、2以上の部材で形成されていてもよい。
【0050】
基板は、無色透明であっても、有色透明であってもよいが、有機発光層から発せられる光を散乱又は減衰等させることがない点で、無色透明であることが好ましい。
【0051】
基板には、その表面又は裏面に透湿防止層(ガスバリア層)を設けることができる。
透湿防止層(ガスバリア層)の材料としては、窒化珪素、酸化珪素などの無機物が好適に用いられる。透湿防止層(ガスバリア層)は、例えば、高周波スパッタリング法などにより形成することができる。
熱可塑性基板を用いる場合には、更に必要に応じて、ハードコート層、アンダーコート層などを設けてもよい。
【0052】
(陽極)
陽極は、通常、有機化合物層に正孔を供給する電極としての機能を有していればよく、その形状、構造、大きさ等については特に制限はなく、発光素子の用途、目的に応じて、公知の電極材料の中から適宜選択することができる。前述のごとく、陽極は、通常透明陽極として設けられる。
【0053】
陽極の材料としては、例えば、金属、合金、金属酸化物、導電性化合物、又はこれらの混合物が好適に挙げられる。陽極材料の具体例としては、アンチモンやフッ素等をドープした酸化錫(ATO、FTO)、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の導電性金属酸化物、金、銀、クロム、ニッケル等の金属、さらにこれらの金属と導電性金属酸化物との混合物又は積層物、ヨウ化銅、硫化銅などの無機導電性物質、ポリアニリン、ポリチオフェン、ポリピロールなどの有機導電性材料、及びこれらとITOとの積層物などが挙げられる。この中で好ましいのは、導電性金属酸化物であり、特に、生産性、高導電性、透明性等の点からはITOが好ましい。
【0054】
陽極は、例えば、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式などの中から、陽極を構成する材料との適性を考慮して適宜選択した方法に従って、前記基板上に形成することができる。例えば、陽極の材料として、ITOを選択する場合には、陽極の形成は、直流又は高周波スパッタ法、真空蒸着法、イオンプレーティング法等に従って行うことができる。
【0055】
本発明の有機電界発光素子において、陽極の形成位置としては特に制限はなく、発光素子の用途、目的に応じて適宜選択することができる。が、前記基板上に形成されるのが好ましい。この場合、陽極は、基板における一方の表面の全部に形成されていてもよく、その一部に形成されていてもよい。
【0056】
なお、陽極を形成する際のパターニングとしては、フォトリソグラフィーなどによる化学的エッチングによって行ってもよいし、レーザーなどによる物理的エッチングによって行ってもよく、また、マスクを重ねて真空蒸着やスパッタ等をして行ってもよいし、リフトオフ法や印刷法によって行ってもよい。
【0057】
陽極の厚みとしては、陽極を構成する材料により適宜選択することができ、一概に規定することはできないが、通常、10nm〜50μm程度であり、50nm〜20μmが好ましい。
【0058】
陽極の抵抗値としては、10Ω/□以下が好ましく、10Ω/□以下がより好ましい。陽極が透明である場合は、無色透明であっても、有色透明であってもよい。透明陽極側から発光を取り出すためには、その透過率としては、60%以上が好ましく、70%以上がより好ましい。
【0059】
なお、透明陽極については、沢田豊監修「透明電極膜の新展開」シーエムシー刊(1999)に詳述があり、ここに記載される事項を本発明に適用することができる。耐熱性の低いプラスティック基材を用いる場合は、ITO又はIZOを使用し、150℃以下の低温で成膜した透明陽極が好ましい。
【0060】
(陰極)
陰極は、通常、有機化合物層に電子を注入する電極としての機能を有していればよく、その形状、構造、大きさ等については特に制限はなく、発光素子の用途、目的に応じて、公知の電極材料の中から適宜選択することができる。
【0061】
陰極を構成する材料としては、例えば、金属、合金、金属酸化物、電気伝導性化合物、これらの混合物などが挙げられる。具体例としてはアルカリ金属(たとえば、LI、Na、K、Cs等)、アルカリ土類金属(たとえばMg、Ca等)、金、銀、鉛、アルミニウム、ナトリウム−カリウム合金、リチウム−アルミニウム合金、マグネシウム−銀合金、インジウム、およびイッテルビウム等の希土類金属などが挙げられる。これらは、1種単独で使用してもよいが、安定性と電子注入性とを両立させる観点からは、2種以上を好適に併用することができる。
【0062】
これらの中でも、陰極を構成する材料としては、電子注入性の点で、アルカリ金属やアルカリ土類金属が好ましく、保存安定性に優れる点で、アルミニウムを主体とする材料が好ましい。
アルミニウムを主体とする材料とは、アルミニウム単独、アルミニウムと0.01質量%〜10質量%のアルカリ金属又はアルカリ土類金属との合金若しくはこれらの混合物(例えば、リチウム−アルミニウム合金、マグネシウム−アルミニウム合金など)をいう。
【0063】
なお、陰極の材料については、特開平2−15595号公報、特開平5−121172号公報に詳述されており、これらの広報に記載の材料は、本発明においても適用することができる。
【0064】
陰極の形成方法については、特に制限はなく、公知の方法に従って行うことができる。例えば、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式などの中から、前記した陰極を構成する材料との適性を考慮して適宜選択した方法に従って形成することができる。例えば、陰極の材料として、金属等を選択する場合には、その1種又は2種以上を同時又は順次にスパッタ法等に従って行うことができる。
【0065】
陰極を形成するに際してのパターニングは、フォトリソグラフィーなどによる化学的エッチングによって行ってもよいし、レーザーなどによる物理的エッチングによって行ってもよく、マスクを重ねて真空蒸着やスパッタ等をして行ってもよいし、リフトオフ法や印刷法によって行ってもよい。
【0066】
本発明において、陰極形成位置は特に制限はなく、有機化合物層上の全部に形成されていてもよく、その一部に形成されていてもよい。
また、陰極と前記有機化合物層との間に、アルカリ金属又はアルカリ土類金属のフッ化物、酸化物等による誘電体層を0.1nm〜5nmの厚みで挿入してもよい。この誘電体層は、一種の電子注入層と見ることもできる。誘電体層は、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法等により形成することができる。
【0067】
陰極の厚みは、陰極を構成する材料により適宜選択することができ、一概に規定することはできないが、通常10nm〜5μm程度であり、50nm〜1μmが好ましい。
また、陰極は、透明であってもよいし、不透明であってもよい。なお、透明な陰極は、陰極の材料を1nm〜10nmの厚さに薄く成膜し、更にITOやIZO等の透明な導電性材料を積層することにより形成することができる。
【0068】
(有機化合物層)
本発明における有機化合物層について説明する。
本発明の有機EL素子は、発光層を含む少なくとも一層の有機化合物層を有しており、発光層以外の他の有機化合物層としては、前述したごとく、正孔輸送層、電子輸送層、正孔ブロック層、電子ブロック層、正孔注入層、電子注入層等の各層が挙げられる。
【0069】
本発明の有機EL素子において、有機化合物層を構成する各層は、蒸着法やスパッタ法等の乾式製膜法、湿式塗布方式、転写法、印刷法、インクジェット方式等いずれによっても好適に形成することができる。
【0070】
(発光層)
有機発光層は、電界印加時に、陽極、正孔注入層、又は正孔輸送層から正孔を受け取り、陰極、電子注入層、又は電子輸送層から電子を受け取り、正孔と電子の再結合の場を提供して発光させる機能を有する層である。
本発明における発光層は、発光材料のみで構成されていても良く、ホスト材料と発光性ドーパントの混合層とした構成でも良い。発光性ドーパントは蛍光発光材料でも燐光発光材料であっても良く、2種以上であっても良い。ホスト材料は電荷輸送材料であることが好ましい。ホスト材料は1種であっても2種以上であっても良く、例えば、電子輸送性のホスト材料とホール輸送性のホスト材料を混合した構成が挙げられる。さらに、発光層中に電荷輸送性を有さず、発光しない材料を含んでいても良い。
また、発光層は1層であっても2層以上であってもよく、それぞれの層が異なる発光色で発光してもよい。
【0071】
本発明における発光性ドーパントとしては、燐光性発光材料、蛍光性発光材料等いずれもドーパントとして用いることができる。
【0072】
本発明における発光層は、色純度を向上させるためや発光波長領域を広げるために2種類以上の発光性ドーパントを含有することができる。本発明における発光性ドーパントは、更に前記ホスト化合物との間で、1.2eV>△Ip>0.2eV、及び/又は1.2eV>△Ea>0.2eVの関係を満たすドーパントであることが駆動耐久性の観点で好ましい。
【0073】
《燐光発光性ドーパント》
前記燐光性の発光性ドーパントとしては、一般に、遷移金属原子又はランタノイド原子を含む錯体を挙げることができる。
例えば、該遷移金属原子としては、特に限定されないが、好ましくは、ルテニウム、ロジウム、パラジウム、タングステン、レニウム、オスミウム、イリジウム、金、銀、銅、及び白金が挙げられ、より好ましくは、レニウム、イリジウム、及び白金であり、更に好ましくはイリジウム、白金である。
ランタノイド原子としては、例えばランタン、セリウム、プラセオジム、ネオジム、サマリウム、ユーロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、およびルテシウムが挙げられる。これらのランタノイド原子の中でも、ネオジム、ユーロピウム、及びガドリニウムが好ましい。
【0074】
錯体の配位子としては、例えば、G.Wilkinson等著,Comprehensive Coordination Chemistry,Pergamon Press社1987年発行、H.Yersin著,「Photochemistry and
Photophysics of Coordination Compounds」
Springer−Verlag社1987年発行、山本明夫著「有機金属化学−基礎と応用−」裳華房社1982年発行等に記載の配位子などが挙げられる。
【0075】
具体的な配位子としては、好ましくは、ハロゲン配位子(好ましくは塩素配位子)、芳香族炭素環配位子(例えば、好ましくは炭素数5〜30、より好ましくは炭素数6〜30、さらに好ましくは炭素数6〜20であり、特に好ましくは炭素数6〜12であり、シクロペンタジエニルアニオン、ベンゼンアニオン、またはナフチルアニオンなど)、含窒素ヘテロ環配位子(例えば、好ましくは炭素数5〜30、より好ましくは炭素数6〜30、さらに好ましくは炭素数6〜20であり、特に好ましくは炭素数6〜12であり、フェニルピリジン、ベンゾキノリン、キノリノール、ビピリジル、またはフェナントロリンなど)、ジケトン配位子(例えば、アセチルアセトンなど)、カルボン酸配位子(例えば、好ましくは炭素数2〜30、より好ましくは炭素数2〜20、さらに好ましくは炭素数2〜16であり、酢酸配位子など)、アルコラト配位子(例えば、好ましくは炭素数1〜30、より好ましくは炭素数1〜20、さらに好ましくは炭素数6〜20であり、フェノラト配位子など)、シリルオキシ配位子(例えば、好ましくは炭素数3〜40、より好ましくは炭素数3〜30、さらに好ましくは炭素数3〜20であり、例えば、トリメチルシリルオキシ配位子、ジメチル−tert−ブチルシリルオキシ配位子、トリフェニルシリルオキシ配位子など)、一酸化炭素配位子、イソニトリル配位子、シアノ配位子、リン配位子(好ましくは炭素数3〜40、より好ましくは炭素数3〜30、さらに好ましくは炭素数3〜20、特に好ましくは炭素数6〜20であり、例えば、トリフェニルフォスフィン配位子など)、チオラト配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、さらに好ましくは炭素数6〜20、例えば、フェニルチオラト配位子など)、フォスフィンオキシド配位子(好ましくは炭素数3〜30、より好ましくは炭素数8〜30、さらに好ましくは炭素数18〜30、例えば、トリフェニルフォスフィンオキシド配位子など)であり、より好ましくは、含窒素ヘテロ環配位子である。
【0076】
上記錯体は、化合物中に遷移金属原子を一つ有してもよいし、また、2つ以上有するいわゆる複核錯体であってもよい。異種の金属原子を同時に含有していてもよい。
【0077】
これらの中でも、発光性ドーパントの具体例としては、例えば、US6303238B1、US6097147、WO00/57676、WO00/70655、WO01/08230、WO01/39234A2、WO01/41512A1、WO02/02714A2、WO02/15645A1、WO02/44189A1、WO05/19373A2、特開2001−247859、特開2002−302671、特開2002−117978、特開2003−133074、特開2002−235076、特開2003−123982、特開2002−170684、EP1211257、特開2002−226495、特開2002−234894、特開2001−247859、特開2001−298470、特開2002−173674、特開2002−203678、特開2002−203679、特開2004−357791、特開2006−256999、特開2007−19462、特開2007−84635、特開2007−96259等の特許文献に記載の燐光発光化合物などが挙げられ、中でも、更に好ましい発光性ドーパントとしては、Ir錯体、Pt錯体、Cu錯体、Re錯体、W錯体、Rh錯体、Ru錯体、Pd錯体、Os錯体、Eu錯体、Tb錯体、Gd錯体、Dy錯体、およびCe錯体が挙げられる。特に好ましくは、Ir錯体、Pt錯体、またはRe錯体であり、中でも金属−炭素結合、金属−窒素結合、金属−酸素結合、金属−硫黄結合の少なくとも一つの配位様式を含むIr錯体、Pt錯体、またはRe錯体が好ましい。更に、発光効率、駆動耐久性、色度等の観点で、3座以上の多座配位子を含むIr錯体、Pt錯体、またはRe錯体が特に好ましい。
【0078】
《蛍光発光性ドーパント》
前記蛍光性の発光性ドーパントとしては、一般には、ベンゾオキサゾール、ベンゾイミダゾール、ベンゾチアゾール、スチリルベンゼン、ポリフェニル、ジフェニルブタジエン、テトラフェニルブタジエン、ナフタルイミド、クマリン、ピラン、ペリノン、オキサジアゾール、アルダジン、ピラリジン、シクロペンタジエン、ビススチリルアントラセン、キナクリドン、ピロロピリジン、チアジアゾロピリジン、シクロペンタジエン、スチリルアミン、芳香族ジメチリディン化合物、縮合多環芳香族化合物(アントラセン、フェナントロリン、ピレン、ペリレン、ルブレン、またはペンタセンなど)、8−キノリノールの金属錯体、ピロメテン錯体や希土類錯体に代表される各種金属錯体、ポリチオフェン、ポリフェニレン、ポリフェニレンビニレン等のポリマー化合物、有機シラン、およびこれらの誘導体などを挙げることができる。
【0079】
これらの中でも、発光性ドーパントの具体例としては例えば下記のものが挙げられるが、これらに限定されるものではない。
【0080】
【化1】

【0081】
【化2】

【0082】
【化3】

【0083】
【化4】

【0084】
【化5】

【0085】
【化6】

【0086】
発光層中の発光性ドーパントは、発光層中に一般的に発光層を形成する全化合物質量に対して、0.1質量%〜50質量%含有されるが、耐久性、外部量子効率の観点から1質量%〜50質量%含有されることが好ましく、2質量%〜40質量%含有されることがより好ましい。
【0087】
発光層の厚さは、特に限定されるものではないが、通常、2nm〜500nmであるのが好ましく、中でも、外部量子効率の観点で、3nm〜200nmであるのがより好ましく、5nm〜100nmであるのが更に好ましい。
【0088】
<ホスト材料>
本発明に用いられるホスト材料としては、正孔輸送性に優れる正孔輸送性ホスト材料(正孔輸送性ホストと記載する場合がある)及び電子輸送性に優れる電子輸送性ホスト化合物(電子輸送性ホストと記載する場合がある)を用いることができる。
【0089】
《正孔輸送性ホスト》
本発明に用いられる正孔輸送性ホストとしては、具体的には、例えば、以下の材料を挙げることができる。
ピロール、インドール、カルバゾール、アザインドール、アザカルバゾール、トリアゾール、オキサゾール、オキサジアゾール、ピラゾール、イミダゾール、チオフェン、ポリアリールアルカン、ピラゾリン、ピラゾロン、フェニレンジアミン、アリールアミン、アミノ置換カルコン、スチリルアントラセン、フルオレノン、ヒドラゾン、スチルベン、シラザン、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリディン系化合物、ポルフィリン系化合物、ポリシラン系化合物、ポリ(N−ビニルカルバゾール)、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン等の導電性高分子オリゴマー、有機シラン、カーボン膜、及び、それらの誘導体等が挙げられる。
好ましくは、インドール誘導体、カルバゾール誘導体、芳香族第三級アミン化合物、チオフェン誘導体であり、より好ましくは、分子内にカルバゾール基を有するものが好ましい。特に、t−ブチル置換カルバゾール基を有する化合物が好ましい。
【0090】
《電子輸送性ホスト》
本発明に用いられる発光層内の電子輸送性ホストとしては、耐久性向上、駆動電圧低下の観点から、電子親和力Eaが2.5eV以上3.5eV以下であることが好ましく、2.6eV以上3.4eV以下であることがより好ましく、2.8eV以上3.3eV以下であることが更に好ましい。また、耐久性向上、駆動電圧低下の観点から、イオン化ポテンシャルIpが5.7eV以上7.5eV以下であることが好ましく、5.8eV以上7.0eV以下であることがより好ましく、5.9eV以上6.5eV以下であることが更に好ましい。
【0091】
このような電子輸送性ホストとしては、具体的には、例えば、以下の材料を挙げることができる。
ピリジン、ピリミジン、トリアジン、イミダゾール、ピラゾール、トリアゾ−ル、オキサゾ−ル、オキサジアゾ−ル、フルオレノン、アントラキノジメタン、アントロン、ジフェニルキノン、チオピランジオキシド、カルボジイミド、フルオレニリデンメタン、ジスチリルピラジン、フッ素置換芳香族化合物、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン、およびそれらの誘導体(他の環と縮合環を形成してもよい)、8−キノリノ−ル誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾ−ルやベンゾチアゾ−ルを配位子とする金属錯体に代表される各種金属錯体等を挙げることができる。
【0092】
電子輸送性ホストとして好ましくは、金属錯体、アゾール誘導体(ベンズイミダゾール誘導体、イミダゾピリジン誘導体等)、アジン誘導体(ピリジン誘導体、ピリミジン誘導体、トリアジン誘導体等)であり、中でも、本発明においては耐久性の点から金属錯体化合物が好ましい。金属錯体化合物(A)は金属に配位する少なくとも1つの窒素原子または酸素原子または硫黄原子を有する配位子をもつ金属錯体がより好ましい。
金属錯体中の金属イオンは特に限定されないが、好ましくはベリリウムイオン、マグネシウムイオン、アルミニウムイオン、ガリウムイオン、亜鉛イオン、インジウムイオン、錫イオン、白金イオン、またはパラジウムイオンであり、より好ましくはベリリウムイオン、アルミニウムイオン、ガリウムイオン、亜鉛イオン、白金イオン、またはパラジウムイオンであり、更に好ましくはアルミニウムイオン、亜鉛イオン、またはパラジウムイオンである。
【0093】
前記金属錯体中に含まれる配位子としては種々の公知の配位子が有るが、例えば、「Photochemistry and Photophysics of Coordination Compounds」、Springer−Verlag社、H.Yersin著、1987年発行、「有機金属化学−基礎と応用−」、裳華房社、山本明夫著、1982年発行等に記載の配位子が挙げられる。
【0094】
前記配位子として、好ましくは含窒素ヘテロ環配位子(好ましくは炭素数1〜30、より好ましくは炭素数2〜20、特に好ましくは炭素数3〜15であり、単座配位子であっても2座以上の配位子であっても良い。好ましくは2座以上6座以下の配位子である。また、2座以上6座以下の配位子と単座の混合配位子も好ましい。
配位子としては、例えばアジン配位子(例えば、ピリジン配位子、ビピリジル配位子、ターピリジン配位子などが挙げられる。)、ヒドロキシフェニルアゾール配位子(例えば、ヒドロキシフェニルベンズイミダゾール配位子、ヒドロキシフェニルベンズオキサゾール配位子、ヒドロキシフェニルイミダゾール配位子、ヒドロキシフェニルイミダゾピリジン配位子などが挙げられる。)、アルコキシ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜10であり、例えばメトキシ、エトキシ、ブトキシ、2−エチルヘキシロキシなどが挙げられる。)、アリールオキシ配位子(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、1−ナフチルオキシ、2−ナフチルオキシ、2,4,6−トリメチルフェニルオキシ、4−ビフェニルオキシなどが挙げられる。)、
【0095】
ヘテロアリールオキシ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルオキシ、ピラジルオキシ、ピリミジルオキシ、およびキノリルオキシなどが挙げられる。)、アルキルチオ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ配位子(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、ヘテロアリールチオ配位子(好ましくは炭素数1〜30、より好ましくは炭素数1〜20、特に好ましくは炭素数1〜12であり、例えばピリジルチオ、2−ベンズイミゾリルチオ、2−ベンズオキサゾリルチオ、および2−ベンズチアゾリルチオなどが挙げられる。)、シロキシ配位子(好ましくは炭素数1〜30、より好ましくは炭素数3〜25、特に好ましくは炭素数6〜20であり、例えば、トリフェニルシロキシ基、トリエトキシシロキシ基、およびトリイソプロピルシロキシ基などが挙げられる。)、芳香族炭化水素アニオン配位子(好ましくは炭素数6〜30、より好ましくは炭素数6〜25、特に好ましくは炭素数6〜20であり、例えばフェニルアニオン、ナフチルアニオン、およびアントラニルアニオンなどが挙げられる。)、芳香族ヘテロ環アニオン配位子(好ましくは炭素数1〜30、より好ましくは炭素数2〜25、特に好ましくは炭素数2〜20であり、例えばピロールアニオン、ピラゾールアニオン、ピラゾールアニオン、トリアゾールアニオン、オキサゾールアニオン、ベンゾオキサゾールアニオン、チアゾールアニオン、ベンゾチアゾールアニオン、チオフェンアニオン、およびベンゾチオフェンアニオンなどが挙げられる。)、インドレニンアニオン配位子などが挙げられ、好ましくは含窒素ヘテロ環配位子、アリールオキシ配位子、ヘテロアリールオキシ基、またはシロキシ配位子であり、更に好ましくは含窒素ヘテロ環配位子、アリールオキシ配位子、シロキシ配位子、芳香族炭化水素アニオン配位子、または芳香族ヘテロ環アニオン配位子である。
【0096】
金属錯体電子輸送性ホストの例としては、例えば特開2002−235076号公報、特開2004−214179号公報、特開2004−221062号公報、特開2004−221065号公報、特開2004−221068号公報、特開2004−327313号公報等に記載の化合物が挙げられる。
【0097】
本発明における発光層において、前記ホスト材料の三重項最低励起準位(T1)が、前記燐光発光材料のT1より高いことが色純度、発光効率、駆動耐久性の点で好ましい。
【0098】
また、本発明におけるホスト化合物の含有量は、特に限定されるものではないが、発光効率、駆動電圧の観点から、発光層を形成する全化合物質量に対して15質量%以上95質量%以下であることが好ましい。
【0099】
(正孔注入層、正孔輸送層)
正孔注入層、正孔輸送層は、陽極又は陽極側から正孔を受け取り陰極側に輸送する機能を有する層である。これらの層に用いる正孔注入材料、正孔輸送材料は、低分子化合物であっても高分子化合物であってもよい。
具体的には、ピロール誘導体、カルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリディン系化合物、フタロシアニン系化合物、ポルフィリン系化合物、チオフェン誘導体、有機シラン誘導体、カーボン、等を含有する層であることが好ましい。
【0100】
本発明の有機EL素子の正孔注入層あるいは正孔輸送層には、電子受容性ドーパントを含有させることができる。正孔注入層、あるいは正孔輸送層に導入する電子受容性ドーパントとしては、電子受容性で有機化合物を酸化する性質を有すれば、無機化合物でも有機化合物でも使用できる。
【0101】
具体的には、無機化合物は塩化第二鉄や塩化アルミニウム、塩化ガリウム、塩化インジウム、五塩化アンチモンなどのハロゲン化金属、五酸化バナジウム、および三酸化モリブデンなどの金属酸化物などが挙げられる。
【0102】
有機化合物の場合は、置換基としてニトロ基、ハロゲン、シアノ基、トリフルオロメチル基などを有する化合物、キノン系化合物、酸無水物系化合物、フラーレンなどを好適に用いることができる。この他にも、特開平6−212153、特開平11−111463、特開平11−251067、特開2000−196140、特開2000−286054、特開2000−315580、特開2001−102175、特開2001−160493、特開2002−252085、特開2002−56985、特開2003−157981、特開2003−217862、特開2003−229278、特開2004−342614、特開2005−72012、特開2005−166637、特開2005−209643等公報に記載の化合物を好適に用いることが出来る。
【0103】
このうちヘキサシアノブタジエン、ヘキサシアノベンゼン、テトラシアノエチレン、テトラシアノキノジメタン、テトラフルオロテトラシアノキノジメタン、p−フルオラニル、p−クロラニル、p−ブロマニル、p−ベンゾキノン、2,6−ジクロロベンゾキノン、2,5−ジクロロベンゾキノン、1,2,4,5−テトラシアノベンゼン、1,4−ジシアノテトラフルオロベンゼン、2,3−ジクロロ−5,6−ジシアノベンゾキノン、p−ジニトロベンゼン、m−ジニトロベンゼン、o−ジニトロベンゼン、1,4−ナフトキノン、2,3−ジクロロナフトキノン、1,3−ジニトロナフタレン、1,5−ジニトロナフタレン、9,10−アントラキノン、1,3,6,8−テトラニトロカルバゾール、2,4,7−トリニトロ−9−フルオレノン、2,3,5,6−テトラシアノピリジン、またはフラーレンC60が好ましく、ヘキサシアノブタジエン、ヘキサシアノベンゼン、テトラシアノエチレン、テトラシアノキノジメタン、テトラフルオロテトラシアノキノジメタン、p−フルオラニル、p−クロラニル、p−ブロマニル、2,6−ジクロロベンゾキノン、2,5−ジクロロベンゾキノン、2,3−ジクロロナフトキノン、1,2,4,5−テトラシアノベンゼン、2,3−ジクロロ−5,6−ジシアノベンゾキノン、または2,3,5,6−テトラシアノピリジンがより好ましく、テトラフルオロテトラシアノキノジメタンが特に好ましい。
【0104】
これらの電子受容性ドーパントは、単独で用いてもよいし、2種以上を用いてもよい。電子受容性ドーパントの使用量は、材料の種類によって異なるが、正孔輸送層材料に対して0.01質量%〜50質量%であることが好ましく、0.05質量%〜20質量%であることが更に好ましく、0.1質量%〜10質量%であることが特に好ましい。
【0105】
正孔注入層、正孔輸送層の厚さは、駆動電圧を下げるという観点から、各々500nm以下であることが好ましい。
正孔輸送層の厚さとしては、1nm〜500nmであるのが好ましく、5nm〜200nmであるのがより好ましく、10nm〜100nmであるのが更に好ましい。また、正孔注入層の厚さとしては、0.1nm〜200nmであるのが好ましく、0.5nm〜100nmであるのがより好ましく、1nm〜100nmであるのが更に好ましい。
正孔注入層、正孔輸送層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
【0106】
(電子注入層、電子輸送層)
電子注入層、電子輸送層は、陰極又は陰極側から電子を受け取り陽極側に輸送する機能を有する層である。これらの層に用いる電子注入材料、電子輸送材料は低分子化合物であっても高分子化合物であってもよい。
具体的には、ピリジン誘導体、キノリン誘導体、ピリミジン誘導体、ピラジン誘導体、フタラジン誘導体、フェナントロリン誘導体、トリアジン誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、フルオレノン誘導体、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド誘導体、フルオレニリデンメタン誘導体、ジスチリルピラジン誘導体、ナフタレン、ペリレン等の芳香環テトラカルボン酸無水物、フタロシアニン誘導体、8−キノリノール誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾールを配位子とする金属錯体に代表される各種金属錯体、シロールに代表される有機シラン誘導体、等を含有する層であることが好ましい。
【0107】
本発明の有機EL素子の電子注入層あるいは電子輸送層には、電子供与性ドーパントを含有させることができる。電子注入層、あるいは電子輸送層に導入される電子供与性ドーパントとしては、電子供与性で有機化合物を還元する性質を有していればよく、Liなどのアルカリ金属、Mgなどのアルカリ土類金属、希土類金属を含む遷移金属や還元性有機化合物などが好適に用いられる。金属としては、特に仕事関数が4.2eV以下の金属が好適に使用でき、具体的には、Li、Na、K、Be、Mg、Ca、Sr、Ba、Y、Cs、La、Sm、Gd、およびYbなどが挙げられる。また、還元性有機化合物としては、例えば、含窒素化合物、含硫黄化合物、含リン化合物などが挙げられる。
この他にも、特開平6−212153、特開2000−196140、特開2003−68468、特開2003−229278、特開2004−342614等公報に記載の材料を用いることが出来る。
【0108】
これらの電子供与性ドーパントは、単独で用いてもよいし、2種以上を用いてもよい。電子供与性ドーパントの使用量は、材料の種類によって異なるが、電子輸送層材料に対して0.1質量%〜99質量%であることが好ましく、1.0質量%〜80質量%であることが更に好ましく、2.0質量%〜70質量%であることが特に好ましい。
【0109】
電子注入層、電子輸送層の厚さは、駆動電圧を下げるという観点から、各々500nm以下であることが好ましい。
電子輸送層の厚さとしては、1nm〜500nmであるのが好ましく、5nm〜200nmであるのがより好ましく、10nm〜100nmであるのが更に好ましい。また、電子注入層の厚さとしては、0.1nm〜200nmであるのが好ましく、0.2nm〜100nmであるのがより好ましく、0.5nm〜50nmであるのが更に好ましい。
電子注入層、電子輸送層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
【0110】
(正孔ブロック層)
正孔ブロック層は、陽極側から発光層に輸送された正孔が、陰極側に通りぬけることを防止する機能を有する層である。本発明において、発光層と陰極側で隣接する有機化合物層として、正孔ブロック層を設けることができる。
正孔ブロック層を構成する化合物の例としては、BAlq等のアルミニウム錯体、トリアゾール誘導体、BCP等のフェナントロリン誘導体、等が挙げられる。
正孔ブロック層の厚さとしては、1nm〜500nmであるのが好ましく、5nm〜200nmであるのがより好ましく、10nm〜100nmであるのが更に好ましい。
正孔ブロック層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
【0111】
(電子ブロック層)
電子ブロック層は、陰極側から発光層に輸送された電子が、陽極側に通りぬけることを防止する機能を有する層である。本発明において、発光層と陽極側で隣接する有機化合物層として、電子ブロック層を設けることができる。電子ブロック層を構成する化合物の例としては、例えば前述の正孔輸送材料として挙げたものが適用できる。
電子ブロック層の厚さとしては、1nm〜500nmであるのが好ましく、5nm〜200nmであるのがより好ましく、10nm〜100nmであるのが更に好ましい。
正孔ブロック層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
【0112】
(駆動)
本発明の有機電界発光素子は、陽極と陰極との間に直流(必要に応じて交流成分を含んでもよい)電圧(通常2ボルト〜15ボルト)、又は直流電流を印加することにより、発光を得ることができる。
本発明の有機電界発光素子の駆動方法については、特開平2−148687号、同6−301355号、同5−29080号、同7−134558号、同8−234685号、同8−241047号の各公報、特許第2784615号、米国特許5828429号、同6023308号の各明細書等に記載の駆動方法を適用することができる。
【0113】
本発明の発光素子は、種々の公知の工夫により、光取り出し効率を向上させることができる。例えば、基板表面形状を加工する(例えば微細な凹凸パターンを形成する)、基板・ITO層・有機層の屈折率を制御する、基板・ITO層・有機層の膜厚を制御すること等により、光の取り出し効率を向上させ、外部量子効率を向上させることが可能である。
【0114】
本発明の発光素子は、陽極側から発光を取り出す、いわゆる、トップエミッション方式であっても良い。
【0115】
本発明の有機EL素子は、発光効率を向上させるため、複数の発光層の間に電荷発生層が設けた構成をとることができる。
前記電荷発生層は、電界印加時に電荷(正孔及び電子)を発生する機能を有すると共に、発生した電荷を電荷発生層と隣接する層に注入させる機能を有する層である。
【0116】
前記電荷発生層を形成する材料は、上記の機能を有する材料であれば何でもよく、単一化合物で形成されていても、複数の化合物で形成されていてもよい。
具体的には、導電性を有するものであっても、ドープされた有機層のように半導電性を有するものであっても、また、電気絶縁性を有するものであってもよく、特開平11−329748号公報、特開2003−272860号公報、特開2004−39617号公報に記載の材料が挙げられる。
更に具体的には、ITO、IZO(インジウム亜鉛酸化物)などの透明導電材料、C60等のフラーレン類、オリゴチオフェン等の導電性有機物、金属フタロシアニン類、無金属フタロシアニン類、金属ポルフィリン類、無金属ポルフィリン類等などの導電性有機物、Ca、Ag、Al、Mg:Ag合金、Al:Li合金、Mg:Li合金などの金属材料、正孔伝導性材料、電子伝導性材料、及びそれらを混合させたものを用いてもよい。
前記正孔伝導性材料は、例えば2−TNATA、NPDなどの正孔輸送有機材料にF4−TCNQ、TCNQ、FeClなどの電子求引性を有する酸化剤をドープさせたものや、P型導電性高分子、P型半導体などが挙げられ、前記電子伝導性材料は電子輸送有機材料に4.0eV未満の仕事関数を有する金属もしくは金属化合物をドープしたものや、N型導電性高分子、N型半導体が挙げられる。N型半導体としては、N型Si、N型CdS、N型ZnSなどが挙げられ、P型半導体としては、P型Si、P型CdTe、P型CuOなどが挙げられる。
また、前記電荷発生層として、Vなどの電気絶縁性材料を用いることもできる。
【0117】
前記電荷発生層は、単層でも複数積層させたものでもよい。複数積層させた構造としては、透明伝導材料や金属材料などの導電性を有する材料と正孔伝導性材料、または、電子伝導性材料を積層させた構造、上記の正孔伝導性材料と電子伝導性材料を積層させた構造の層などが挙げられる。
【0118】
前記電荷発生層は、一般に、可視光の透過率が50%以上になるよう、膜厚・材料を選択することが好ましい。また膜厚は、特に限定されるものではないが、0.5nm〜200nmが好ましく、1nm〜100nmがより好ましく、3nm〜50nmがさらに好ましく、5nm〜30nmが特に好ましい。
電荷発生層の形成方法は、特に限定されるものではなく、前述した有機化合物層の形成方法を用いることができる。
【0119】
電荷発生層は前記二層以上の発光層間に形成するが、電荷発生層の陽極側および陰極側には、隣接する層に電荷を注入する機能を有する材料を含んでいても良い。陽極側に隣接する層への電子の注入性を上げるため、例えば、BaO、SrO、LiO、LiCl、LiF、MgF、MgO、又はCaFなどの電子注入性化合物を電荷発生層の陽極側に積層させてもよい。
以上で挙げられた内容以外にも、特開2003−45676号公報、米国特許第6337492号公報、同第6107734号公報、同第6872472号公報等に記載を元にして、電荷発生層の材料を選択することができる。
【0120】
本発明における有機EL素子は、共振器構造を有しても良い。例えば、透明基板上に、屈折率の異なる複数の積層膜よりなる多層膜ミラー、透明または半透明電極、発光層、および金属電極を重ね合わせて有する。発光層で生じた光は多層膜ミラーと金属電極を反射板としてその間で反射を繰り返し共振する。
別の好ましい態様では、透明基板上に、透明または半透明電極と金属電極がそれぞれ反射板として機能して、発光層で生じた光はその間で反射を繰り返し共振する。
共振構造を形成するためには、2つの反射板の有効屈折率、反射板間の各層の屈折率と厚みから決定される光路長を所望の共振波長の得るのに最適な値となるよう調整される。
第一の態様の場合の計算式は特開平9−180883号明細書に記載されている。第2の態様の場合の計算式は特開2004−127795号明細書に記載されている。
【0121】
有機ELディスプレイをフルカラータイプのものとする方法としては、例えば「月刊ディスプレイ」、2000年9月号、33〜37ページに記載されているように、色の3原色(青色(B)、緑色(G)、赤色(R))に対応する光をそれぞれ発光する有機EL素子を基板上に配置する3色発光法、白色発光用の有機EL素子による白色発光をカラーフィルターを通して3原色に分ける白色法、青色発光用の有機EL素子による青色発光を蛍光色素層を通して赤色(R)及び緑色(G)に変換する色変換法、などが知られている。
また、上記方法により得られる異なる発光色の有機EL素子を複数組み合わせて用いることにより、所望の発光色の平面型光源を得ることができる。例えば、青色および黄色の発光素子を組み合わせた白色発光光源、青色、緑色、赤色の発光素子を組み合わせた白色発光光源、等である。
【0122】
4.保護絶縁膜
本発明の有機EL表示装置において、有機EL素子上全体は、保護絶縁膜によって保護されている。保護絶縁膜は、有機EL素子上にTFTを作製する際に、有機EL素子へ与えるダメージを低減する機能と、有機EL素子とTFTとを電気的に絶縁する機能を有する。また、保護絶縁膜は、水分や酸素等の素子劣化を促進するものが素子内に入ることを抑止する機能を有しているものであることが更に好ましい。
【0123】
その具体例としては、MgO、SiO、SiO、Al、GeO、NiO、CaO、BaO、Fe、Y、TiO等の金属酸化物、SiN、SiN等の金属窒化物、MgF、LiF、AlF、CaF等の金属フッ化物、ポリエチレン、ポリプロピレン、ポリメチルメタクリレート、ポリイミド、ポリウレア、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリジクロロジフルオロエチレン、クロロトリフルオロエチレンとジクロロジフルオロエチレンとの共重合体、テトラフルオロエチレンと少なくとも1種のコモノマーとを含むモノマー混合物を共重合させて得られる共重合体、共重合主鎖に環状構造を有する含フッ素共重合体、吸水率1%以上の吸水性物質、吸水率0.1%以下の防湿性物質等が挙げられる。
【0124】
保護絶縁膜の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、MBE(分子線エピタキシ)法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法(高周波励起イオンプレーティング法)、プラズマCVD法、レーザーCVD法、熱CVD法、ガスソースCVD法、コーティング法、印刷法、転写法を適用できる。
【0125】
尚、有機EL素子の上部電極と駆動TFTのソースまたはドレイン電極とは、電気的に接続する必要がある為に、保護絶縁膜にはコンタクトホールを作製する必要がある。コンタクトホールを作製する方法としては、エッチング液によるウエットエッチング法、プラズマを用いたドライエッチング法、レーザーによるエッチング法等がある。
【0126】
5.有機EL表示装置の画素回路構成
図6は、本発明に用いられるTFT素子を用いたアクティブマトリクス型有機EL表示装置の画素回路の模式図である。本発明における表示装置の回路は、特に図6に示すものに限定されるものではなく、従来公知の回路をそのまま応用することができる。
【0127】
(応用)
本発明の有機EL表示装置は、携帯電話ディスプレイ、パーソナルデジタルアシスタント(PDA)、コンピュータディスプレイ、自動車の情報ディスプレイ、TVモニター、あるいは一般照明を含む広い分野で幅広い分野で応用される。
【実施例】
【0128】
以下に、本発明の有機EL表示装置について、実施例により説明するが、本発明はこれら実施例により何ら限定されるものではない。
【0129】
実施例1
1.有機EL表示装置の作製
1−1.有機EL表示装置1の作製
図1の構成の有機EL表示装置を作製した。
(有機EL素子部の作製)
1)下部電極の形成
ガラス基板(コーニング社製、品番NO.1737)の上に酸化インジウム錫(以後、ITOと略記)を150nmの厚さで蒸着し、陽極とした。
【0130】
2)有機層の形成
洗浄後、順次、正孔注入層、正孔輸送層、発光層、正孔ブロッキング層、電子輸送層、および電子注入層を設けた。
【0131】
各層の構成は、下記の通りである。各層はいずれも抵抗加熱真空蒸着により設けた。
正孔注入層:4,4’,4’’−トリス(2−ナフチルフェニルアミノ)トリフェニルアミン(2−TNATAと略記する)、厚み140nm。
正孔輸送層:N,N’−ジナフチル−N,N’−ジフェニル−[1,1’−ビフェニル]−4,4’−ジアミン(α−NPDと略記する)、厚み10nm。
発光層:CBPおよびIr(ppy)をCBPに対して5質量%含有する層、厚み20nm。
正孔ブロック層:bis−(2−methyl−8−quinonylphenolate)aluminium(BAlqと略記する)、厚み10nm。
電子輸送層:トリス(8−ヒドロキシキノリナート)アルミニウム(Alq3と略記する)、厚み20nm。
電子注入層:LiF、厚み1nm。
【0132】
3)上部電極
素子サイズが2mm×2mmとなるようにシャドウマスクによりパターニングしてAlを厚み100nmに蒸着し、陰極とした。
【0133】
(保護絶縁膜)
上部電極上に、保護絶縁膜として500nmのSiON膜をイオンプレーティング法により成膜した。成膜後、レーザーによりコンタクトホールを形成した。
【0134】
(駆動TFT部の作製)
1)ソース電極及びドレイン電極
ソース電極及びドレイン電極としてMoを40nmおよびITOを40nmの厚みにRFマグネトロンスパッタにて、蒸着した。尚、ソース電極およびドレイン電極のパターニングには、スパッタ時にシャドウマスクを用いることにより行った。この際、チャネル長(L)=200μm、チャネル幅(W)=1000μmとなるようにソース・ドレイン電極のギャップを形成した。尚、有機EL素子の上部電極(陰極)とドレイン電極とがコンタクトホールを介して電気的に接続される構成とした。
【0135】
2)活性層
InGaZnOの組成を有する多結晶焼結体をターゲットとして、RFマグネトロンスパッタ真空蒸着法により、IGZOの厚み50nmの蒸着層を設けた。活性層の電気伝導度は5.7×10−3Scm−1であった。尚、活性層のパターニングには、スパッタ時にシャドウマスクを用いることにより行った。
【0136】
3)ゲート絶縁膜
SiOをRFマグネトロンスパッタ真空蒸着法にて200nm形成し、ゲート絶縁膜を設けた。尚、ゲート絶縁膜のパターニングには、スパッタ時にシャドウマスクを用いることにより行った。
【0137】
4)ゲート電極
Moの厚み100nmの蒸着層を形成した。尚、ゲート電極のパターニングには、スパッタ時にシャドウマスクを用いることにより行った。
【0138】
(封止)
封止板にガラス基板(コーニング社製、品番NO.1737)を用いて、UV硬化接着材により、有機EL表示装置の封止を行った。
【0139】
1−2.比較の有機EL表示装置Aの作製
有機EL表示装置1において、活性層を有機半導体であるペンタセンを用いて、厚み50nmに蒸着した。これを比較の有機EL表示装置Aとした。
【0140】
1−3.有機EL表示装置2の作製
実施例1の有機EL表示装置1において、活性層を下記の活性層と抵抗層の2層構成に変更した。ソース電極およびドレイン電極に近い層を抵抗層、ゲート絶縁膜に近い層を活性層とした。その他は実施例1の有機EL表示装置1と同様にして本発明の有機EL表示装置2を作製した。
【0141】
抵抗層:RFマグネトロンスパッタ真空蒸着法により、IGZOを厚み40nmに蒸着した。Ar流量およびO流量を調整して、電気伝導度は1.0×10−4Scm−1であった。
活性層:IGZOを10nmに蒸着した。Ar流量およびO流量を調整して、電気伝導度が2.6×10−1Scm−1であった。
【0142】
1−4.有機EL表示装置3の作製
有機EL表示装置2において、ガラス基板と封止板とを両面にバリア層としてSiONを厚み40nm有するPEN基板に変更し、その他は有機EL表示装置2と同様にして本発明の有機EL表示装置3を作製した。
【0143】
2.性能評価
(評価項目)
1)電気伝導度の測定方法
上記有機EL表示装置における活性層の作製と同一条件で上記ガラス基板(コーニング社、品番NO.1737)に直接これらの層を100nmの厚みで設けた物性測定用サンプルを作製した。これらの物性測定用サンプルを周知のX線回折法により分析した結果、これらのIGZO膜はいずれもアモルファス膜であることが確認できた。
物性測定用サンプルの電気伝導度は、サンプルの測定されたシート抵抗と膜厚から計算し求めた。ここで、シート抵抗をρ(Ω/□)、膜厚をd(cm)とすると、電気伝導度σ(Scm−1)は、σ=1/(ρ*d)として算出される。
本実施例において、物性測定用サンプルのシート抵抗10Ω/□未満の領域ではロレスタ−GP(三菱化学社製)、シート抵抗10Ω/□以上の領域ではハイテスタ−UP(三菱化学社製)を用いて20℃の環境下で行った。物性測定用サンプルの膜厚測定には触針式表面形状測定器DekTak−6M(ULVAC社製)を用いた。
また作製したTFTの特性を半導体パラメータ・アナライザー4156C(アジレントテクノロジー社製)を用いて行った結果、本発明の有機EL表示装置の構成であるIGZOを活性層に用いたTFTは、ゲート電圧をプラスに印加するとソース・ドレイン間電流が増加するN型TFTを示すことが確認できた。
【0144】
2)素子性能
(1)発光輝度:駆動TFTのゲート電極に20V、有機EL素子の陽極に20V印加した時の、輝度を測定した。
(2)駆動耐久性:初期輝度が100cd/mとなるように、駆動TFTのゲート電圧、有機EL素子の陽極の電圧を調整し、100時間通電試験後の輝度を測定した。
【0145】
3.性能評価
得られた結果を表1に示した。
表1の結果より、有機EL素子上に酸化物TFTを形成した有機EL表示装置1の方が、従来の有機EL素子上に有機TFTを形成した有機EL表示装置Aより、高輝度で高寿命であることが分かった。また、活性層の酸化物半導体を二層化(有機EL表示装置3)にすることにより、より高輝度、より高寿命であった。また、フイルム基板上でも、従来の有機EL表示装置Aよりも高輝度、高寿命であることが示された。
【0146】
実施例2
2−1.有機EL表示装置4の作製
実施例1の有機EL表示装置1において、有機EL素子部の作製における有機層の形成を以下の方法に変更し、有機EL表示装置4を作製した。
<有機層の形成>
洗浄後、順次、正孔注入層、正孔輸送層、発光層、正孔ブロッキング層、電子輸送層、および電子注入層を設けた。
【0147】
各層の構成は、下記の通りである。各層はいずれも抵抗加熱真空蒸着により設けた。
正孔注入層:4,4’,4’’−トリス(2−ナフチルフェニルアミノ)トリフェニルアミン(2−TNATAと略記する)および2,3,5,6−テトラフルオロ−7,7,8,8−テトラシアノキノジメタン(F4−TCNQと略記する)を2−TNATAに対して1質量%含有する層、厚み160nm。
正孔輸送層:N,N’−ジナフチル−N,N’−ジフェニル−[1,1’−ビフェニル]−4,4’−ジアミン(α−NPDと略記する)、厚み10nm。
発光層:1,3−bis(carbazol−9−yl)benzene(mCPと略記する)および白金錯体Pt−1をmCPに対して13質量%含有する層、厚み60nm。
正孔ブロック層:aluminium(III) bis(2−methyl−8−quinolinato)−4−pnenylphenolate(BAlqと略記する)、厚み40nm。
電子輸送層:トリス(8−ヒドロキシキノリナート)アルミニウム(Alq3と略記する)、厚み10nm。
電子注入層:LiF、厚み1nm。
【0148】
以下に実施例に用いた化合物の構造を示す。
【0149】
【化7】

【0150】
【化8】

【0151】
【化9】

【0152】
有機EL表示装置4において、駆動TFTのゲート電極に20V、有機EL素子の陽極に20V印加した時の輝度を測定した。有機EL表示装置4は良好な青色発光を示し、輝度150cd/mを得た。
【0153】
2−2.有機EL表示装置5の作製
実施例1の有機EL表示装置2において、有機EL素子部の作製における有機層の形成を有機EL表示装置4における有機層の形成に変更して、有機EL表示装置5を作製した。
有機EL表示装置5において、駆動TFTのゲート電極に20V、有機EL素子の陽極に20V印加した時の輝度を測定した。有機EL表示装置5は良好な青色発光を示し、輝度210cd/mを得た。
【0154】
【表1】

【図面の簡単な説明】
【0155】
【図1】本発明の有機EL表示装置の構造を示す模式図である。
【図2】本発明の有機EL表示装置の別の態様の構造を示す模式図である。
【図3】本発明の有機EL表示装置の別の態様の構造を示す模式図である。
【図4】本発明に用いられるTFTの構造を示す模式図である。
【図5】本発明に用いられる別の態様のTFTの構造を示す模式図である。
【図6】本発明の有機EL表示装置の画素回路の模式図である。
【符号の説明】
【0156】
1,11,100,110,120:基板
6,16:絶縁層
2,12,102,112,122:ゲート電極
3,13,1032,113,123:ゲート絶縁膜
4−2,4−12:抵抗層
4−1,4−11:活性層
5−1,5−11,105a,115a,125a:ソース電極
5−2,5−12,105b,115b,125b:ドレイン電極
30,40,50:下部電極
32,42,52:有機層
34,44,54:上部電極
106,116,126:保護絶縁膜
36,46,56:絶縁膜
108,118,128:コンタクトホール

【特許請求の範囲】
【請求項1】
基板上に少なくとも下部電極、少なくとも発光層を含む有機層、及び上部電極を順次有する有機EL素子を有する有機EL表示装置であって、前記上部電極上に少なくともゲート電極、ゲート絶縁膜、活性層、ソース電極、及びドレイン電極を有し前記有機EL素子を駆動する薄膜電界効果型トランジスタを形成し、前記活性層が酸化物半導体を含有することを特徴とする有機EL表示装置。
【請求項2】
前記上部電極と前記トランジスタの間に保護絶縁膜を有し、前記上部電極と前記ソース電極または前記ドレイン電極とが前記保護絶縁膜に形成されたコンタクトホールを介して電気的に接続されていることを特徴とする請求項1に記載の有機EL表示装置。
【請求項3】
前記下部電極が光透過性電極であることを特徴とする請求項1または請求項2に記載の有機EL表示装置。
【請求項4】
前記上部電極が光反射性電極であることを特徴とする請求項3に記載の有機EL表示装置。
【請求項5】
前記下部電極が陽極、前記上部電極が陰極であることを特徴とする請求項1〜請求項4のいずれか1項に記載の有機EL表示装置。
【請求項6】
前記薄膜電界効果型トランジスタの極性がN型であることを特徴とする請求項5に記載の有機EL表示装置。
【請求項7】
前記活性層の酸化物半導体がアモルファス酸化物半導体であることを特徴とする請求項1〜請求項6のいずれか1項に記載の有機EL表示装置。
【請求項8】
前記活性層と前記ソース電極及び前記ドレイン電極の少なくとも一方との間に抵抗層を有することを特徴とする請求項1〜請求項7のいずれか1項に記載の有機EL表示装置。
【請求項9】
前記活性層が前記ゲート絶縁膜と接し、前記抵抗層が前記ソース電極及び前記ドレイン電極の少なくとも一方と接していることを特徴とする請求項8に記載の有機EL表示装置。
【請求項10】
前記抵抗層の膜厚が前記活性層の膜厚より厚いことを特徴とする請求項9に記載の有機EL表示装置。
【請求項11】
前記抵抗層と前記活性層の間の電気伝導度が連続的に変化していることを特徴とする請求項8又は請求項9に記載の有機EL表示装置。
【請求項12】
前記活性層の酸素濃度が前記抵抗層の酸素濃度より低いことを特徴とする請求項8〜請求項11のいずれか1項に記載の有機EL表示装置。
【請求項13】
前記酸化物半導体がIn、GaおよびZnからなる群より選ばれる少なくとも1種若しくはこれらの複合酸化物を含むことを特徴とする請求項1〜請求項12のいずれか1項に記載の有機EL表示装置。
【請求項14】
前記酸化物半導体が前記InおよびZnを含有し、前記抵抗層のZnとInの組成比(Inに対するZnの比率Zn/Inで表す)が前記活性層の組成比Zn/Inより大きいことを特徴とする請求項13に記載の有機EL表示装置。
【請求項15】
前記活性層の電気伝導度が10−4Scm−1以上10Scm−1未満であることを特徴とする請求項8〜請求項14のいずれか1項に記載の有機EL表示装置。
【請求項16】
前記活性層の電気伝導度が10−1Scm−1以上10Scm−1未満であることを特徴とする請求項15に記載の有機EL表示装置。
【請求項17】
前記抵抗層の電気伝導度に対する前記活性層の電気伝導度の比率(前記活性層の電気伝導度/前記抵抗層の電気伝導度)が、10以上1010以下であることを特徴とする請求項8〜請求項16のいずれか1項に記載の有機EL表示装置。
【請求項18】
前記抵抗層の電気伝導度に対する前記活性層の電気伝導度の比率(前記活性層の電気伝導度/前記抵抗層の電気伝導度)が、10以上10以下であることを特徴とする請求項17に記載の有機EL表示装置。
【請求項19】
前記基板が可撓性樹脂基板であることを特徴とする請求項1〜請求項18のいずれか1項に記載の有機EL表示装置。
【請求項20】
請求項1〜請求項19のいずれか1項に記載の有機EL表示装置の製造方法であって、基板上に有機EL素子及び該有機EL素子を駆動する薄膜電界効果型トランジスタを順次形成することを特徴とする有機EL表示装置の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2009−31750(P2009−31750A)
【公開日】平成21年2月12日(2009.2.12)
【国際特許分類】
【出願番号】特願2008−119003(P2008−119003)
【出願日】平成20年4月30日(2008.4.30)
【出願人】(306037311)富士フイルム株式会社 (25,513)
【Fターム(参考)】