説明

熱硬化型樹脂組成物、その硬化物およびプリント配線板用層間接着フィルム

【課題】 硬化物の寸法安定性に優れ、半硬化(B−ステージ化)時の低温溶融性にも優れ、B−ステージ化時のフィルム状に形成した際に屈曲性が良好でカールしにくいフィルムが得られ、しかも、粘度の経時変化が少ない熱硬化型ポリイミド樹脂組成物、該組成物の硬化物及び該組成物を用いて得られるプリント配線板用層間接着フィルムを提供すること。
【解決手段】 5員環状イミド骨格中の窒素原子に直結するビフェニル骨格を有し、重量平均分子量(Mw)が3,000〜150,000である熱硬化型ポリイミド樹脂(A)と、芳香環を有し、分子量が200〜1,000であるポリマレイミド化合物(B)とを含有する熱硬化型ポリイミド樹脂組成物、該組成物を硬化させてなる硬化物、該組成物により形成される層を、キャリアフィルム上に有するプリント配線板用層間接着フィルム。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は硬化物の寸法安定性に優れ、半硬化(B−ステージ化)時の低温溶融性にも優れ、B−ステージ化時のフィルム状に形成した際に屈曲性が良好でカールしにくいフィルムが得られ、しかも、粘度の経時変化が少ない熱硬化型ポリイミド樹脂組成物、該組成物の硬化物及び該組成物を用いて得られるプリント配線板用層間接着フィルムに関する。
【背景技術】
【0002】
近年、より薄型かつ軽量で実装密度の高い半導体部品への要求が高まっており、回路基板の配線密度は今後ますます向上していくと予想されている。配線密度の向上の手段として、例えば、配線板の積層による回路の3次元化が行われている。今後、積層数は10層以上に達すると予想され、積層数の増加に伴い絶縁層と銅箔の熱膨張の差による回路ひずみ応力の発生が問題視されてきており、絶縁層の低熱膨張化が求められてきている。
【0003】
しかし、一方で、低線膨張性の樹脂は一般的に溶融加工性に乏しく、この樹脂を用いた硬化性組成物は回路基板の積層プロセスに適さないといった問題が生じている。このため、低熱膨張化と溶融加工性を両立する樹脂の出現は業界でも特に強く望まれている。
【0004】
溶融加工性に加え、機械強度、被着体との接着強度、成膜性、耐熱性、耐圧性に優れる硬化物が得られる樹脂組成物として、好ましくはガラス転移温度が330℃のポリアミドイミド樹脂(東洋紡績株式会社製バイロマックスHR16NN)とジフェニルエタンビスマレイミド(ケイアイ化成株式会社製BMI−70)とアリルフェノール樹脂(昭和化成工業株式会社製MEH−8000H)とを含む樹脂組成物が開示されている(例えば特許文献1参照。)。しかしながら、該樹脂組成物は熱可塑性の高分子量のポリアミドイミド樹脂を使用しているため、低温溶融性が悪く、またマレイミド化合物との相溶性が悪いため塗膜硬化時の相分離が発生することがあり、均一塗膜が得られ難い、またNMPの様な高沸点溶剤を使用しているためBステージでの残留溶剤がある問題がある。この影響としてBステージ塗膜の基板への熱プレス時に膨れ、はがれが発生する問題があり、さらに樹脂組成中にアリルフェノール樹脂を使用しているため硬化塗膜が脆く屈曲性に劣る。
【0005】
また、被着体との接着性に優れる硬化物が得られる樹脂組成物としてシロキサン変性ポリイミドと2,2−ビス(4−ヒドロキシ−3−アリルフェニル)プロパンとジフェニルエタンビスマレイミドとを含有する樹脂組成物が開示されている。しかしながら、該樹脂組成物もイミド樹脂中にシロキサン骨格が導入されていることにより線膨張係数が増大し、寸法安定性や金属、プラスチック、無機材料などの各種基板との付着性が悪化するなどの問題がある。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2004−168894号公報(第10頁)
【特許文献2】特開2000−223805号公報(第18頁)
【発明の開示】
【発明が解決しようとする課題】
【0007】
本発明の課題は、本発明は硬化物の寸法安定性に優れ、半硬化(B−ステージ化)時の低温溶融性にも優れ、B−ステージ化フィルム状に形成した際に屈曲性が良好でカールしにくいフィルムが得られ、しかも、粘度の経時変化が少ない熱硬化型ポリイミド樹脂組成物と、該組成物の硬化物及び該組成物を用いて得られるプリント配線板用層間接着フィルムを提供することにある。
【課題を解決するための手段】
【0008】
本発明者らは鋭意検討した結果、熱硬化型ポリイミド樹脂とマレイミド化合物を含有する樹脂組成物において、熱硬化型ポリイミド樹脂として5員環状イミド骨格に直結するビフェニル骨格を有し、重量平均分子量(Mw)が3,000〜150,000であるポリイミド樹脂を用い、マレイミド化合物として芳香環を有し、分子量が200〜1,000であるポリマレイミド化合物を用いることにより硬化物の線膨張係数が低く寸法安定性に優れる硬化物が得られること、Bステージ化して得られる硬化物は低温溶融性に優れること、フィルム状に形成した際に屈曲性に優れ、カールしにくいフィルムが得られること、粘度の経時変化が少ないこと等を見出し、本発明を完成するに至った。
【0009】
即ち、本発明は、5員環状イミド骨格中の窒素原子に直結するビフェニル骨格を有し、重量平均分子量(Mw)が3,000〜150,000である熱硬化型ポリイミド樹脂(A)と、芳香環を有し、分子量が200〜1,000であるポリマレイミド化合物(B)とを含有することを特徴とする熱硬化型ポリイミド樹脂組成物を提供するものである。
【0010】
また、本発明は、前記熱硬化型ポリイミド樹脂組成物を硬化させてなることを特徴とする硬化物を提供するものである。
【0011】
更に本発明は前記熱硬化型ポリイミド樹脂組成物により形成される層を、キャリアフィルム上に有することを特徴とするプリント配線板用層間接着フィルムを提供するものである。
【発明の効果】
【0012】
本発明の熱硬化型ポリイミド樹脂組成物は、B−ステージ化した後の低温溶融性に優れるにも関わらず、その硬化物の線膨張率は低く、寸法安定性に優れる。また、B−ステージ化して得られるフィルムは屈曲性に優れ、カールしにくい。しかも、粘度の経時変化が少なく、取り扱いが容易である。これらの性能を利用して種々の分野にて使用することができる。具体的には、エンジン周辺部、摺動部、HDD摺動部、ボイスコイル、電磁コイル、各種フィルムへのコート剤、電線の絶縁被覆剤、加熱調理器等の耐熱性、難燃性、絶縁性が要求されるコーティング剤用途;炭素繊維プリプレグのような繊維強化複合材料、プリント配線基板、半導体の絶縁材料、カバーレイ、ソルダーレジスト等の表面保護層、ビルドアップ材料、プレプリグ用樹脂、フレキシブルディスプレイの絶縁材料、有機TFT絶縁層、バッファーコート、Low−k等の半導体コート、ポリマー導波路、半導体封止剤、アンダーフィル等接着剤等の各種電子材料用途;太陽電池、リチウム電池、コンデンサー、電気二重層キャパシタ等の絶縁層、電極バインダー、セパレーター等の各種エネルギー産業用材料用途;その他、レーザープリンタ、コピー機の転写ベルト、定着ベルト等のエンドレスベルトまたはそのコーティング剤、導電膜、放熱膜のバインダー、カラーフィルターの配向膜、オーバーコート膜等に使用でき、特に多層プリント配線板等の絶縁層やソルダーレジストに好適に使用できる。また、本発明のプリント配線板用層間接着フィルムを用いることにより銅箔との圧着時に低温で溶融しながら、硬化物の線膨張率が低い絶縁層を得ることができ、多層プリント配線板の層間絶縁層を形成する為に接着フィルムとして好適に用いられる。
【発明を実施するための形態】
【0013】
熱硬化型ポリイミド樹脂(A)は、重量平均分子量(Mw)が3,000〜150,000ある。重量平均分子量(Mw)が3,000より小さいとB−ステージ化した硬化物の屈曲性が悪くなることから好ましくない。重量平均分子量(Mw)が150,000より大きいと溶融粘度が上昇する、溶融できなくなり、B−ステージ化した硬化物の低温溶融性が劣ることから好ましくない。重量平均分子量(Mw)は5,000〜50,000が好ましい。
【0014】
本発明において、重量平均分子量(Mw)の測定は、ゲルパーミエーションクロマトグラフ(GPC)を用い、下記の条件により求めた。
測定装置 : 東ソー株式会社製 HLC−8320GPC、UV8320
カラム : 東ソー株式会社製 SuperAWM−H×2本
検出器 : RI(示差屈折計)及びUV(254nm)
データ処理:東ソー株式会社製 EcoSEC−WorkStation
測定条件: カラム温度 40℃
溶媒 DMF
流速 0.35ml/分
標準 :ポリスチレン標準試料にて検量線作成
試料 :樹脂固形分換算で0.2重量%のDMF溶液をマイクロフィルターでろ過したもの(注入量:10μl)
【0015】
また、熱硬化型ポリイミド樹脂(A)は、イミド骨格に直結するビフェニル骨格を有する。このような構造を有することにより本発明の熱硬化型ポリイミド樹脂組成物を硬化させた硬化物は寸法安定性に優れると発明者は考えている。
【0016】
また、ビフェニル骨格は、後述するマレイミド化合物(B)が有する芳香環と良好な相溶性を有する。その為、本発明の熱硬化型イミド樹脂組成物は寸法安定性に優れる硬化物が得られる。更に剛直で動き難い熱硬化型ポリイミド樹脂(A)に低分子量のマレイミド化合物(B)が割り込んで入り込み、B−ステージ化した硬化物の低温溶融性にも優れると発明者は考えている。
【0017】
熱硬化型ポリイミド樹脂(A)中のビフェニル骨格の含有率は20〜45質量%が寸法安定性に優れる硬化物が得られ、且つ、B−ステージ化した硬化物の低温溶融性にも優れることから好ましく、25〜40質量%がより好ましく、25〜35質量%が更に好ましい。
【0018】
尚、ビフェニル構造の含有量は、ポリイミド樹脂主鎖への結合箇所が2箇所のビフェニル構造の場合は分子量を152、結合箇所が4箇所のビフェニル構造の場合は分子量を150として、ポリイミド樹脂全体の重量に占めるビフェニル構造の割合から算出することができる。
【0019】
また、熱硬化型ポリイミド樹脂(A)の対数粘度は、0.1〜0.9dl/gであることが、十分な強度の硬化物が得られ、且つ、B−ステージ化した際の低温溶融性にも優れる熱硬化型イミド樹脂組成物が得られることから好ましい。熱硬化型ポリイミド樹脂(A)の対数粘度は、0.2〜0.8dl/gが好ましく、0.3〜0.7dl/gがより好ましい。
【0020】
本発明において熱硬化型ポリイミド樹脂(A)の対数粘度は以下の条件にて求めた。
ポリイミド樹脂を樹脂濃度が0.5g/dlとなるようにN−メチル−2−ピロリドンに溶解して樹脂溶液を得た。樹脂溶液の溶液粘度、及び、溶媒粘度(N−メチル−2−ピロリドンの粘度)を30℃で、ウベローデ型の粘度管により測定して、得られた測定値を下記の式にあてはめて求めた。
【0021】
対数粘度(dl/g)=[ln(V1/V2)]/V3
上記式中、V1 はウベローデ型粘度管により測定した溶液粘度を示し、V2 はウベローデ型粘度管により測定した溶媒粘度を示す。ここで、V1 及びV2 は樹脂溶液及び溶媒(N−メチル−2−ピロリドン)が粘度管のキャピラリーを通過する時間から求めた。また、V3 は、ポリマー濃度(g/dl)である。
【0022】
熱硬化型ポリイミド樹脂(A)としては、例えば、以下の構造を有するポリイミド樹脂等を例示することができる。
【0023】
【化1】

【0024】
(式中、Rはそれぞれ水素原子、フッ素原子等のハロゲン原子で置換されていても良いアルキル基等表す。また、(a1)と(a2)は共に存在しても良いが(a1)の構造は必ず樹脂中に存在する。)
【0025】
前記構造(a1)、(a2)を有するポリイミド樹脂としては、例えば、下記構造を有するポリイミド樹脂等が挙げられる。
【0026】
【化2】

【0027】
【化3】

【0028】
熱硬化型ポリイミド樹脂(A)は、例えば、ビフェニル骨格を有するポリイソシアネートと酸無水物とを反応させる方法ことにより容易に得る事ができる。このような方法としては、例えば、ビフェニル骨格を有するポリイソシアネート化合物(a1)および/またはビフェニル骨格を有する酸無水物(a2)と、必要に応じて(a1)以外のポリイソシアネート化合物(a3)や(a2)以外の酸無水物(a4)を反応させる方法が挙げられる。
【0029】
ここでポリイソシアネート化合物(a1)やポリイソシアネート化合物(a3)のかわりに、それぞれの化合物中の主構造を有するポリアミン化合物を用いて、酸無水物(a2)や酸無水物(a4)とともに反応させ同様なイミド樹脂を得ることも可能である。
【0030】
前記ビフェニル骨格を有するポリイソシアネート化合物(a1)としては、例えば、4,4´−ジイソシアネート−3,3´−ジメチル−1,1´−ビフェニル、4,4´−ジイソシアネート−3,3´−ジエチル−1,1´−ビフェニル、4,4´−ジイソシアネート−2,2´−ジメチル−1,1´−ビフェニル、4,4´−ジイソシアネート−2,2´−ジエチル−1,1´−ビフェニル、4,4´−ジイソシアネート−3,3´−ジトリフロロメチル−1,1´−ビフェニル、4,4´−ジイソシアネート−2,2´−ジトリフロロメチル−1,1´−ビフェニル等が挙げられる。
【0031】
前記ビフェニル骨格を有する酸無水物(a2)としては、例えば、ビフェニル−3,3´ ,4,4´−テトラカルボン酸、ビフェニル−2,3,3´,4´−テトラカルボン酸、およびこれらの一無水物、二無水物等などが挙げられ、これらは単独、或いは、2 種以上の混合物として用いることができる。
【0032】
前記(a1)以外のポリイソシアネート化合物(a3)としては、例えば、(a1)以外の芳香族ポリイソシアネート、脂肪族ポリイソシアネート等が挙げられる。
【0033】
前記(a1)以外の芳香族ポリイソシアネートとしては、例えば、p−フェニレンジイソシアネート、m−フェニレンジイソシアネート、p−キシレンジイソシアネート、m−キシレンジイソシアネート、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、4,4′−ジフェニルメタンジイソシアネート、3,3′−ジメチルジフェニル−4,4′−ジイソシアネート、3,3′−ジエチルジフェニル−4,4′−ジイソシアネート、m−キシレンジイソシアネート、p−キシレンジイソシアネート、1,3−ビス(α,α−ジメチルイソシアナートメチル)ベンゼン、テトラメチルキシリレンジイソシアネート、ジフェニレンエーテル−4,4′−ジイソシアネートおよびナフタレンジイソシアネート等が挙げられる。
【0034】
前記脂肪族ポリイソシアネート化合物としては、例えば、ヘキサメチレンジイソシアネート、リジンジイソシアネート、トリメチルヘキサメチレンメチレンジイソシアネート、イソホロンジイソシアネート、4,4′−ジシクロヘキシルメタンジイソシアネート、水素添加キシレンジイソシアネートおよびノルボルネンジイソシアネート等が挙げられる。
【0035】
ポリイソシアネート化合物としては、前記ポリイソシアネート化合物と各種ポリオール成分とをイソシアネート基過剰で予め反応させたイソシアネートプレポリマーを使用したり、ビュウレット化、イソシアヌレート化、カルボジイミド化、ウレットジオン化等の変性を施して使用することも可能である。
【0036】
前記熱硬化型ポリイミド樹脂(A)は、ビフェニル骨格を有するポリイソシアネートと酸無水物とを反応させて得られる熱硬化型ポリイミド樹脂であることが好ましく、特に前記ビフェニル骨格を有するポリイソシアネートがトリジンジイソシアネートまたはトリジンジイソシアネートから誘導されるポリイソシアネートから合成される熱硬化型ポリイミド樹脂(A)が好ましい。
【0037】
熱硬化型ポリイミド樹脂(A)は、溶剤溶解性や他の樹脂との相溶性を向上させるため分岐構造をとっても良い。かかる分岐の手法としては、ポリイソシアネート化合物として、例えば、前記ジイソシアネート化合物等のイソシアヌレート体であるイソシアヌレート環を有する3官能以上のポリイソシアネート化合物や前記ジイソシアネートのビュレット体、アダクト体、アロハネート体、あるいはポリメチレンポリフェニルポリイソシアネート(クルードMDI)等を使用すればよい。
【0038】
(a2)以外の酸無水物(a4)としては、例えば、(a2)以外の芳香族トリカルボン酸無水物、脂環式トリカルボン酸無水物、(a2)以外のテトラカルボン酸無水物等が挙げられる。(a2)以外の芳香族トリカルボン酸無水物としては、無水トリメリット酸、ナフタレン−1,2,4−トリカルボン酸無水物等が挙げられる。
【0039】
脂環式トリカルボン酸無水物としては、シクロヘキサン−1,3,4−トリカルボン酸無水物-3,4−無水物、シクロヘキサン−1,3,5−トリカルボン酸無水物-3,5−無水物、シクロヘキサン−1,2,3−トリカルボン酸無水物-2,3−無水物等が挙げられる。
【0040】
前記(a2)以外のテトラカルボン酸無水物としては、例えば、ピロメリット酸二無水物、ベンゾフェノン−3,3′,4,4′−テトラカルボン酸二無水物、ジフェニルエーテル−3,3′,4,4′−テトラカルボン酸二無水物、ベンゼン−1,2,3,4−テトラカルボン酸二無水物、ナフタレン−2,3,6,7−テトラカルボン酸二無水物、ナフタレン−1,2,4,5−テトラカルボン酸二無水物、ナフタレン−1,4,5,8−テトラカルボン酸二無水物、デカヒドロナフタレン−1,4,5,8−テトラカルボン酸二無水物、4,8−ジメチル−1,2,3,5,6,7−ヘキサヒドロナフタレン−1,2,5,6−テトラカルボン酸二無水物、2,6−ジクロロナフタレン−1,4,5,8−テトラカルボン酸二無水物、2,7−ジクロロナフタレン−1,4,5,8−テトラカルボン酸二無水物、2,3,6,7−テトラクロロナフタレン−1,4,5,8−テトラカルボン酸二無水物、フェナントレン−1,3,9,10−テトラカルボン酸二無水物、ベリレン−3,4,9,10−テトラカルボン酸二無水物、ビス(2,3−ジカルボキシフェニル)メタン二無水物、ビス(3,4−ジカルボキシフェニル)メタン二無水物、1,1−ビス(2,3−ジカルボキシフェニル)エタン二無水物、1,1−ビス(3,4−ジカルボキシフェニル)エタン二無水物、2,2−ビス(2,3−ジカルボキシフェニル)プロパン二無水物、2,3−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、ビス(3,4−ジカルボキシフェニル)スルホン二無水物、ビス(3,4−ジカルボキシフェニル)エーテル二無水物、
【0041】
エチレングリコールビスアンヒドロトリメリテート、プロピレングリコールビスアンヒドロトリメリテート、ブタンジオールビスアンヒドロトリメリテート、ヘキサメチレングリコールビスアンヒドロトリメリテート、ポリエチレングリコールビスアンヒドロトリメリテート、ポリプロピレンレングリコールビスアンヒドロトリメリテートやその他アルキレングリコールビスアンヒドロキシトリメリテート等が挙げられる。
【0042】
熱硬化型ポリイミド(A)は、更にベンゾフェノン構造を有するポリイミド樹脂がより耐熱性や低線膨張性を発現することから好ましい。ベンゾフェノン構造を有するポリイミド樹脂は、例えば、前記製法において、ベンゾフェノンテトラカルボン酸無水物を必須として用いることにより得る事ができる。
【0043】
ベンゾフェノン構造の含有率は、ポリイミド樹脂の質量を基準として1〜30質量%が耐熱性に優れる硬化物が得られることから好ましく、5〜20質量%が合成安定性に優れることからより好ましい。
【0044】
ベンゾフェノン構造の含有量は、ポリイミド樹脂主鎖への結合箇所が4箇所のベンゾフェノン構造の分子量を178として、ポリイミド樹脂全体の重量に占めるベンゾフェノン構造の割合から算出することができる。
【0045】
また、熱硬化型ポリイミド(A)は、更にトリレン構造を有するポリイミド樹脂が溶融付着性と低線膨張性を発現しやすいことから好ましい。トリレン構造を有するポリイミド樹脂は、例えば、前記製法において、トルエンジイソシアネートを必須として用いることにより得る事ができる。
【0046】
トリレン構造の含有量は、ポリイミド樹脂主鎖のトリレン構造の分子量を150として、ポリイミド樹脂全体の重量に占めるトリレン構造の割合から算出することができる。
【0047】
ポリイミド樹脂中のトリレン構造の含有量は、1〜20質量%が合成安定性に優れることから好ましく、2〜14重量%が低線膨張性と合成安定性に優れることからより好ましい。
【0048】
前記製法では、ポリイソシアネート化合物と酸無水物基を有する化合物とが反応する。ポリイソシアネート化合物中のイソシアネート基のモル数(ma)と酸無水物基を有する化合物中の無水酸基とカルボキシル基との合計のモル数(mb)の割合(ma)/(mb)は、分子量の大きいポリイミド樹脂が得やすく、機械物性に優れる硬化物が得られるポリイミド樹脂となることから0.7〜1.2の割合が好ましく、さらに0.8〜1.2の割合がより好ましい。また、保存安定性に優れるポリイミド樹脂が得やすいことから前記(ma)/(mb)は0.9〜1.1の範囲がより好ましい。尚、無水トリメリット酸などのカルボン酸無水物を併用する場合は、前記(mb)は全てのカルボン酸無水物の中の無水酸基とカルボキシル基との合計のモル数である。
【0049】
前記製法において1段反応で製造を行う場合は、例えば、反応容器にポリイソシアネート化合物と酸無水物基を有する化合物とを仕込み、攪拌を行いながら昇温することで脱炭酸させながら反応を進行させる。
【0050】
反応温度としては、50℃から250℃の範囲で行うことが可能であり、反応速度と副反応防止の面から70℃から180℃の温度で行うことが好ましい。
【0051】
反応は、イソシアネート基がほぼ全て反応するまで行った方が得られるポリイミド樹脂の安定性が良好となることから好ましい。また、若干残存するイソシアネート基に対して、アルコールやフェノール化合物を添加し反応させても良い。
【0052】
熱硬化型ポリイミド樹脂(A)を製造する際には、有機溶剤を使用すると均一な反応を進行できるため好ましい。ここで有機溶剤は、系中にあらかじめ存在させてから反応を行っても、途中で導入してもよい。また、適切な反応速度を維持するためには、系中の有機溶剤の割合は、反応系の98質量%以下であるが好ましく、10〜90質量%であることがより好ましく、40〜90質量%が更に好ましい。かかる有機溶剤としては、原料成分としてイソシアネート基を含有する化合物を使用するため、水酸基やアミノ基等の活性プロトンを有しない非プロトン性極性有機溶剤が好ましい。
【0053】
前記非プロトン性極性有機溶剤としては、例えば、ジメチルホルムアミド、ジメチルアセトアミド、N−メチル−2−ピロリドン、ジメチルスルフォキシド、スルホラン、およびγ−ブチロラクトンなどの極性有機溶媒を使用することができる。また、上記溶媒以外に、溶解可能であれば、エーテル系溶剤、エステル系溶剤、ケトン系溶剤、および石油系溶剤等を使用しても良い。また、各種溶剤を混合して使用しても良い。
【0054】
特に溶剤の塗膜乾燥及び塗膜硬化時の残存溶剤量の低減、ポリイミド樹脂の溶解性の観点から、ジメチルアセトアミドの使用が好ましい
【0055】
本発明で用いるポリイミド樹脂の製造方法で用いる事ができるエーテル系溶剤としては、例えば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル等のエチレングリコールジアルキルエーテル類;ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリエチレングリコールジブチルエーテル等のポリエチレングリコールジアルキルエーテル類;エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート等のエチレングリコールモノアルキルエーテルアセテート類;ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、トリエチレングリコールモノメチルエーテルアセテート、トリエチレングリコールモノエチルエーテルアセテート、トリエチレングリコールモノブチルエーテルアセテート等のポリエチレングリコールモノアルキルエーテルアセテート類;
【0056】
プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジブチルエーテル等のプロピレングリコールジアルキルエーテル類;ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、ジプロピレングリコールジブチルエーテル、トリプロピレングリコールジメチルエーテル、トリプロピレングリコールジエチルエーテル、トリプロピレングリコールジブチルエーテル等のポリプロピレングリコールジアルキルエーテル類;プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート等のプロピレングリコールモノアルキルエーテルアセテート類;ジプロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノブチルエーテルアセテート、トリプロピレングリコールモノメチルエーテルアセテート、トリプロピレングリコールモノエチルエーテルアセテート、トリプロピレングリコールモノブチルエーテルアセテート等のポリプロピレングリコールモノアルキルエーテルアセテート類;低分子のエチレン−プロピレン共重合体等の共重合ポリエーテルグリコールのジアルキルエーテル類;共重合ポリエーテルグリコールのモノアセテートモノアルキルエーテル類;共重合ポリエーテルグリコールのアルキルエステル類;および共重合ポリエーテルグリコールのモノアルキルエステルモノアルキルエーテル類等が挙げられる。
【0057】
エステル系溶剤としては、例えば、酢酸エチルおよび酢酸ブチル等が挙げられる。ケトン系溶剤としては、アセトン、メチルエチルケトン、およびシクロヘキサノン等が挙げられる。また、石油系溶剤としては、トルエン、キシレンやその他高沸点の芳香族溶剤等や、ヘキサン、シクロヘキサン等の脂肪族および脂環族溶剤を使用することも可能である。
【0058】
熱硬化型ポリイミド樹脂(A)が有機溶剤に溶解するか否かの判定は、有機溶剤に本発明のポリイミド樹脂濃度を10質量%となるように加え、25℃で7日間時間静置した後、目視にて外観を観察することにより行うことができる。
【0059】
熱硬化型ポリイミド樹脂(A)は線状の構造を有するポリイミド樹脂でも良いし、分岐状の構造を有するポリイミド樹脂でもよい。また、共重合成分としてポリエステル変性したポリエステルイミドやウレタン変性したポリウレタンイミドの構造を有していても良い。
【0060】
本発明でのポリイミド樹脂(A)は、熱硬化型であることが必要であり、樹脂の末端の構造としては、例えば、カルボン酸、カルボン酸の無水物、イソシアネート基、アミン基等の構造が挙げられる。末端の構造としては、本発明のポリイミド樹脂自体の安定性や、有機溶剤や他の樹脂との配合後の安定性が良好なことからカルボン酸やその無水物の構造が好ましい。末端構造がカルボン酸やその無水物の構造のときは、酸価は、固形分酸価で5〜200が、熱可塑性が強くなく架橋性も良好で組成物の硬化時に分離しにくいこと、得られる硬化物が脆くなりにくいこと、組成物の貯蔵安定性も良好であることから好ましく、10〜100がより好ましく、10〜50が更に好ましい。
【0061】
また、熱硬化型ポリイミド樹脂(A)は、寸法安定性を低下させる原因となるアルキレン構造を有さないポリイミド樹脂が好ましい。
【0062】
本発明で用いるポリマレイミド化合物(B)は芳香環を有する。前記の通り、芳香環を有することにより、熱硬化型ポリイミド樹脂(A)が有するビフェニル骨格との相溶性が良好となり組成物の溶融温度と粘度を低下させ、さらに反応して硬化した場合は相互のスタッキング等の効果により本発明の熱硬化型イミド樹脂組成物は寸法安定性に優れる硬化物が得られ、B−ステージ化した硬化物の低温溶融性にも優れる効果を奏すると考えられる。
【0063】
ポリマレイミド化合物(B)は分子量が200〜1,000である。この範囲の分子量を有するポリマレイミド化合物(B)を用いることにより本発明の樹脂組成物の溶融粘度の減少、溶液での安定性向上、Bステージ状態のフィルムのカール性防止、柔軟性の確保などの効果が得られる。分子量は250〜600が好ましく、260〜400がより好ましい。
【0064】
ポリマレイミド化合物(B)としては、例えば、下記式で表される化合物を好ましく使用する事ができる。
【0065】
【化4】

【0066】
(a2)は芳香環を有する2価の有機基を表す。
【0067】
前記式(a2)で表される化合物としては、例えば、以下の化合物等が挙げられる。
【0068】
【化5】

【0069】
〔式中、Rは、単結合あるいはメチレンを示し、Rは、それぞれ水素原子または炭素原子数1〜6のアルキル基を示し、nは0から4の整数である。〕
【0070】
前記式(b2−1)で表される化合物としては、例えば、以下に示す化合物等が表される。
【0071】
【化6】

【0072】
【化7】

【0073】
【化8】

【0074】
ポリマレイミド化合物(B)の中でも、B−ステージ化した硬化物の溶融粘度が下がり、且つ、完全硬化した硬化物の寸法安定性にも優れる熱硬化型ポリイミド樹脂組成物が得られることからフェニレンビスマレイミドまたはメチルフェニレンビスマレイミドが好ましい。
【0075】
ポリマレイミド化合物(B)の使用量としては、ポリイミド樹脂(A)100質量部に対して5〜200質量部がB−ステージ化した硬化物の溶融粘度が下がり、且つ、完全硬化した硬化物の寸法安定性にも優れる熱硬化型ポリイミド樹脂組成物が得られることから好ましく、10〜100質量部が、更に得られる硬化物の機械物性が強靭になることからより好ましい。
【0076】
本発明の熱硬化型ポリイミド樹脂組成物にはエポキシ樹脂を(C)を含有させることにより強靭で基材との接着性が良好な硬化物やプリント配線板用層間接着フィルムが得られることから好ましい。エポキシ樹脂(C)は分子内に2個以上のエポキシ基を有していることが好ましい。こうしたエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂;ビフェニル型エポキシ樹脂;ナフタレン型エポキシ樹脂;フェノールノボラックエポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノール型ノボラック等のノボラック型エポキシ樹脂;ジシクロペンタジエンと各種フェノール類と反応させて得られる各種ジシクロペンタジエン変性フェノール樹脂のエポキシ化物;フルオレン骨格を有するエポキシ樹脂;10−(2,5−ジヒドロキシフェニル)−10H−9−オキサ−10−ホスファフェナントレン−10−オキシド等を用いて合成されるリン含有エポキシ樹脂;ネオペンチルグリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル等の脂肪族エポキシ樹脂;3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカルボキシレート、ビス−(3,4−エポキヒシクロヘキシル)アジペート等の脂環式エポキシ樹脂;トリグリシジルイソシアヌレート等のごときヘテロ環含有エポキシ樹脂等が挙げられる。中でも、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂からなる群から選ばれる1種以上のエポキシ樹脂が、得られる硬化物が低線膨張でありながら、低温での溶融性に優れる組成物となることから好ましい。
【0077】
ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂からなる群から選ばれる1種以上のエポキシ樹脂を用いることで硬化物が低線膨張で、且つ、低温での溶融性に優れるのは、ポリイミド樹脂(A)が有するビフェニル構造と、エポキシ樹脂が有するビスフェノールAの構造、ビスフェノールFの構造、ビフェニル構造、ナフタレン構造が、相溶性がよく、溶融時にはエポキシ樹脂がポリイミド樹脂の凝集を妨げると同時に、硬化後にはお互いが密接に相互作用し合い、密な硬化状態を形成するためであると発明者は推測している。
【0078】
また、こうしたエポキシ樹脂(C)の分子量としては、300〜1,000の範囲が溶融性と接着性の両立、さらに線膨張係数の低下の面で好ましく、300〜500の範囲がより好ましい。
【0079】
前記エポキシ樹脂(C)の含有量は、前記ポリイミド樹脂(A)100質量部に対して5〜200質量%が、硬化物が低線膨張でありながら、低温での溶融性に優れる熱硬化型樹脂組成物が得られることから好ましく、10〜150質量%がより好ましく、10〜100質量%が更に好ましい。
【0080】
また、エポキシ樹脂(C)の粘度は、低温溶融性に優れる組成物となることから、150℃における粘度が12Pa・s以下のエポキシ樹脂が好ましく、10Pa・s以下のエポキシ樹脂がより好ましい。
【0081】
本発明の熱硬化型ポリイミド樹脂組成物にはホウ酸および/またはホウ酸エステルなどのホウ素化合物を併用することが可能である。このような化合物としては、例えば、ホウ酸;トリメチルボレート、トリエチルボレート、トリブチルボレート、トリn−オクチルボレート、トリ(トリエチレングリコールメチルエーテル)ホウ酸エステル、トリシクロヘキシルボレート、トリメンチルボレート等のトリアルキルホウ酸エステルに代表される直鎖脂肪族系ホウ酸エステル;トリo−クレジルボレート、トリm−クレジルボレート、トリp−クレジルボレート、トリフェニルボレート等の芳香族系ホウ酸エステル、トリ(1,3−ブタンジオール)ビボレート、トリ(2−メチル−2,4−ペンタンジオール)ビボレート、トリオクチレングリコールジボレートなどのホウ素原子を2個以上含み、かつ、環状構造を含むホウ酸エステル;ポリビニルアルコールホウ酸エステル、へキシレングリコール無水ホウ酸等が挙げられる。
【0082】
更に、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド等のリン化合物も本発明の熱硬化型ポリイミド樹脂組成物に加える事ができる。
【0083】
本発明の熱硬化型ポリイミド樹脂組成物にエポキシ樹脂(C)以外の化合物を加える場合、保存安定性が良好な熱硬化型樹脂組成物が得られ、且つ、寸法安定性に優れる硬化塗膜が得られることからホウ酸、直鎖脂肪族系ホウ酸エステルが好ましい。直鎖脂肪族系ホウ酸エステルの中でも、炭素原子数が4〜20のトリアルキルホウ酸エステルが好ましく、中でも、トリブチルボレート(ホウ酸トリブチル)が好ましい。
【0084】
本発明の熱硬化型ポリイミド樹脂組成物には、更に、その他の熱硬化型樹脂成分を添加することができる。具体的には、例えば、フェノール化合物、イソシアネート化合物、シリケート、およびアルコキシシラン化合物、メラミン樹脂、等が挙げられる。
【0085】
フェノール化合物の好ましい例としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールSのようなフェノール性水酸基を1分子中に2個以上有するビスフェノール化合物;ハイドロキノン、4,4’−ビフェノール、3,3’−ジメチル−4,4’ビフェノール、3,3’,5,5’−テトラメチルビフェノール、2,4−ナフタレンジオール、2,5−ナフタレンジオール、 2,6−ナフタレンジオールのようなフェノール性水酸基を1分子中に2個以上有する化合物、10−(2,5−ジヒドロキシフェニル)−10H−9−オキサ−10−ホスファフェナントレン−10−オキシドのようなリン原子を含有するフェノール化合物; フェノールノボラック樹脂、クレゾールノボラック樹脂、t−ブチルフェノールノボラック樹脂、ジシクロペンタジェンクレゾールノボラック樹脂、ジシクロペンタジェンフェノールノボラック樹脂、キシリレン変性フェノールノボラック樹脂、ナフトールノボラック樹脂、トリスフェノールノボラック樹脂、テトラキスフェノールノボラック樹脂、ビスフェノールAノボラック樹脂、ポリ−p−ビニルフェノール樹脂、アミノトリアジンノボラック型フェノール樹脂、フェノールアラルキル樹脂等のノボラック型フェノール樹脂が挙げられる。これらのフェノール樹脂は、単独で又は2種類以上を組み合わせて使用することができる。中でも、10−(2,5−ジヒドロキシフェニル)−10H−9−オキサ−10−ホスファフェナントレン−10−オキシドやアミノトリアジンノボラック型フェノール樹脂が得られる硬化物が高耐熱、難燃、低線膨張でありながら、低温での溶融性に優れる組成物となることから好ましい。
【0086】
前記イソシアネート化合物としては、例えば、芳香族系のイソシアネート化合物、脂肪族系のイソシアネート化合物および脂環族系のイソシアネート化合物等が使用できる。好ましくは、1分子中に2個以上のイソシアネート基を有するポリイソシアネート化合物が好ましい。また、ブロックイソシアネート化合物も使用可能である。
【0087】
上述のアルキルアルコキシシランとしては、例えば、アルキルトリアルコキシシラン、ジアルキルジアルコキシシラン等が挙げられる。
【0088】
前記アルキルトリアルコキシシランとしては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリプロポキシシラン、エチルトリブトキシシラン、フェニルトリメトキシラン、フェニルトリエトキシシラン、フェニルトリプロポキシシラン、フェニルトリブトキシシラン等が挙げられる。
【0089】
前記ジアルキルジアルコキシシランとしては、例えば、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジプロポキシシラン、ジメチルジブトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジエチルジプロポキシシラン、ジエチルジブトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、ジフェニルジプロポキシシラン、ジフェニルジブトキシシラン、メチルエチルジメトキシシラン、メチルエチルジエトキシシラン、メチルエチルジプロポキシシラン、メチルエチルジブトキシシラン、メチルフェニルジメトキシシラン、メチルフェニルジエトキシシラン、メチルフェニルジプロポキシシラン、メチルフェニルジブトキシシラン、トリメチルメトキシシラン、トリメチルエトキシシラン、トリエチルメトキシシラン、トリエチルエトキシシラン、トリフェニルメトキシシラン、トリフェニルエトキシシラン等が挙げられる。
【0090】
また、アルキルアルコキシシランの縮合物も使用可能であり例えば、前記したアルキルトリアルコキシシランの縮合物や、ジアルキルジアルコキシシランの縮合物等が挙げられる。
【0091】
前記メラミン樹脂としては、例えば、メラミンやベンゾグアナミン等のトリアジン環含有のアミノ化合物とホルムアルデヒドとの反応により得られるメチロール化物の一部乃至全部をアルコール化合物との反応により得られるアルコキシ化メラミン樹脂を使用することができる。ここで用いるアルコール化合物としては、炭素原子数が1〜4程度の低級アルコールが使用することができ具体的には、メトキシメチロール化メラミン樹脂、ブチル化メチロール化メラミン樹脂等使用することができる。分子構造としては、完全にアルコキシ化されても良く、メチロール基が残存していても良く、さらにはイミノ基が残存していても良い。
【0092】
このアルコキシ化メラミン樹脂は、本発明の熱硬化型樹脂組成物において、架橋成分としての耐熱性や物性の改良以外にもホウ酸および/またはホウ酸エステル等の添加した場合の経時析出防止効果があり、熱硬化型樹脂組成物としての安定性を改良する。
【0093】
前記アルコキシ化メラミン樹脂の樹脂構造としては、メトキシメチロール化メラミン樹脂がポリイミド樹脂との相溶性と硬化時の硬化性が良好となることから好ましく、さらに好ましくは、メトキシ化率80%以上のメトキシメチロール化メラミン樹脂がより好ましい。
【0094】
また、樹脂構造としては、自己縮合して多核体であっても良い。この時の重合度は相溶性や安定性の面で1〜5程度が好ましく、さらに1.2〜3程度がより好ましい。
【0095】
前記アルコキシ化メラミン樹脂の数平均分子量としては、100〜10000のものが使用できる。好ましくは、300〜2000がポリイミド樹脂との相溶性と硬化時の硬化性の面で好ましく、さらに400〜1000がより好ましい。
【0096】
前記アルコキシ化メラミン樹脂としては、メラミンやベンゾグアナミン、ホルマリン及びアルコールを同時に仕込んで反応させても、メラミンやベンゾグアナミンとホルマリンを予め反応させてメチロール化メラミン化合物を得てからアルコール化合物とのアルコキシ化を行っても良い。
【0097】
アルコキシ化メラミン樹脂の市販品としては、例えば、メトキシメチロール化メラミン樹脂としては、具体的には、例えば、日本サイテックインダストリーズ製の商品サイメル300、301、303、305等が挙げられる。また、メチロール基含有のメトキシメチロール化メラミン樹脂としては、例えば、日本サイテックインダストリーズ製の商品サイメル370、771等が挙げられる。イミノ基含有メトキシ化メラミン樹脂としては、例えば、三井サイテック(株)製の商品サイメル325、327、701、703、712等が挙げられる。メトキシ化ブトキシ化メラミン樹脂としては、例えば、日本サイテックインダストリーズ製の商品サイメル232、235、236、238、266、267、285等が挙げられる。ブトキシ化メラミン樹脂としては、例えば、日本サイテックインダストリーズ製の商品ユーバン20SE60等が挙げられる。
【0098】
さらに本発明の熱硬化型ポリイミド樹脂組成物にはポリエステル、フェノキシ樹脂、PPS樹脂、PPE樹脂、ポリアリレーン樹脂等のバインダー樹脂、フェノール樹脂、メラミン樹脂、アルコキシシラン系硬化剤、多塩基酸無水物、シアネート化合物等の硬化剤あるいは反応性化合物やメラミン、ジシアンジアミド、グアナミンやその誘導体、イミダゾール類、アミン類、水酸基を1個有するフェノール類、有機フォスフィン類、ホスホニュウム塩類、4級アンモニュウム塩類、光カチオン触媒等の硬化触媒や硬化促進剤、さらにフィラー、その他の添加剤として消泡材、レベリング剤、スリップ剤、ぬれ改良剤、沈降防止剤、難燃剤、酸化防止剤、紫外線吸収剤等添加することも可能である。
【0099】
本発明の熱硬化型ポリイミド樹脂組成物としては、該組成物を硬化させた際の硬化物の線膨張係数が50ppm/℃以下となる組成物が好ましい。
【0100】
また、本発明の熱硬化型ポリイミド樹脂組成物には、更に必要に応じて、種々の充填材、有機顔料、無機顔料、体質顔料、防錆剤等を添加することができる。これらは単独でも2種以上を併用してもよい。
【0101】
前記充填材としては、例えば、硫酸バリウム、チタン酸バリウム、酸化けい素酸粉、微粒状酸化けい素、シリカ、タルク、クレー、炭酸マグネシウム、炭酸カルシウム、酸化アルミニウム、水酸化アルムニウム、雲母、アルミナ等が挙げられる。
【0102】
充填材としては、各種粒子径のものが使用可能であり、本樹脂やその組成物の物性を阻害しない程度に添加することが可能である。かかる適正な量としては、質量で5〜80%程度の範囲であり、好ましくは均一に分散してから使用することが好ましい。分散方法としては、公知のロールによる分散やビーズミル、高速分散等により行うことが可能であり、粒子表面を予め分散処理剤で表面改質しても良い。
【0103】
前記有機顔料としては、アゾ顔料;フタロシアニン・ブルー、フタロシアニン・グリーンの如き銅フタロシアニン系顔料、キナクリドン系顔料等が挙げられる。
【0104】
前記無機顔料としては、例えば、黄鉛、ジンククロメート、モリブデート・オレンジの如きクロム酸塩;紺青の如きフェロシアン化物、酸化チタン、亜鉛華、ベンガラ、酸化鉄;炭化クロムグリーンの如き金属酸化物、カドミウムイエロー、カドミウムレッド;硫化水銀の如き金属硫化物、セレン化物;硫酸鉛の如き硫酸塩;群青の如き珪酸塩;炭酸塩、コバルト・バイオレッド;マンガン紫の如き燐酸塩;アルミニウム粉、亜鉛末、真鍮粉、マグネシウム粉、鉄粉、銅粉、ニッケル粉の如き金属粉;カーボンブラック等が挙げられる。
【0105】
また、その他の着色、防錆、体質顔料のいずれも使用することができる。これらは単独でも2種以上を併用してもよい。
【0106】
本発明の硬化物は本発明の熱硬化型ポリイミド樹脂組成物を硬化させてなる。具体的には、例えば、本発明の熱硬化型ポリイミド樹脂組成物は基材に塗工した後、100〜300℃で加熱することで硬化させた硬化物が挙げられる。
【0107】
前記塗膜の形成方法で用いる基材は特に制限無く用いることができる。基材としては、例えば、プラスチック、金属、木材、ガラス、無機材、およびこれら複合材料等が挙げられる。基材の形状としては、特に制限がなく、シートやフィルム状のものやチップ形状、立体形状など例示することができる。
【0108】
本発明のプリント配線板用層間接着フィルムは、熱硬化型ポリイミド樹脂組成物により形成される層を、キャリアフィルム上に有することを特徴とする。このような接着フィルムは、例えば、本発明の熱硬化型ポリイミド樹脂組成物の層(A層)及び支持体フィルム(B層)からなるフィルム(接着フィルム)の形態を例示することができる。
【0109】
接着フィルムは、種々の方法に従って、例えば、本発明の熱硬化型ポリイミド樹脂組成物を有機溶剤に溶解した樹脂ワニスを調製し、支持体フィルムにこの樹脂ワニスを塗布し、加熱又は熱風吹きつけ等により有機溶剤を乾燥させて樹脂組成物層を形成させることにより製造することができる。
【0110】
支持体フィルム(B層)は、接着フィルムを製造する際の支持体となるものであり、プリント基板の製造において、最終的には剥離または除去されるものである。支持体フィルムとしては、例えば、ポリエチレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート(以下、「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、更には離型紙や銅箔等の金属箔などを挙げることができる。なお、銅箔を支持体フィルムとして使用する場合は、塩化第二鉄、塩化第二銅等のエッチング液でエッチングすることにより除去することができる。支持フィルムはマット(mat)処理、コロナ処理の他、離型処理を施してあってもよいが、剥離性を考慮すると離型処理が施されている方がより好ましい。支持フィルムの厚さは特に限定されないが、通常10〜150μmであり、好ましくは25〜50μmの範囲で用いられる。
【0111】
ワニスを調製するための有機溶剤としては、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン、ガンマブチロラクトン等を挙げることができる。有機溶剤は2種以上を組み合わせて用いてもよい。
【0112】
乾燥条件は特に限定されないが、樹脂組成物中への有機溶剤の含有割合が通常5質量%以下、好ましくは3質量%以下となるように乾燥させる。具体的な乾燥条件は、樹脂組成物の硬化性やワニス中の有機溶媒量によっても異なるが、例えば30〜60質量%の有機溶剤を含むワニスにおいては、通常80〜120℃で3〜13分程度乾燥させることができる。当業者は、簡単な実験により適宜、好適な乾燥条件を設定することができる。
【0113】
樹脂組成物層(A層)の厚さは通常5〜500μmの範囲とすることができる。A層の厚さの好ましい範囲は接着フィルムの用途により異なり、ビルドアップ工法により多層フレキシブル回路基板の製造に用いる場合は、回路を形成する導体層の厚みが通常5〜70μmであるので、層間絶縁層に相当するA層の厚さは10〜100μmの範囲であるのが好ましい。
【0114】
A層は保護フィルムで保護されていてもよい。保護フィルムで保護することにより、樹脂組成物層表面へのゴミ等の付着やキズを防止することができる。保護フィルムはラミネートの際に剥離される。保護フィルムとしては支持フィルムと同様の材料を用いることができる。保護フィルムの厚さは特に限定されないが、好ましくは1〜40μmの範囲である。
【0115】
本発明の熱硬化型ポリイミド樹脂組成物を用いて得られる接着フィルムは特に多層プリント基板の製造に好適に使用することができる。以下に、プリント基板を製造する方法について説明する。本発明の熱硬化型ポリイミド樹脂組成物を用いて得られる接着フィルムは真空ラミネーターにより好適にプリント基板にラミネートすることができる。ここで使用するプリント基板は、主として、エポキシ基板、ガラスエポキシ基板などの繊維強化型プリプレグ、ポリエステル基板、ポリイミド基板、ポリアミドイミド基板、液晶ポリマー基板等の基板の片面又は両面にパターン加工された導体層(回路)はもちろん、回路と絶縁層が交互に層形成され、片面又は両面が回路形成されている多層プリント基板を更に多層化するために使用することもできる。なお回路表面は過酸化水素/硫酸、メックエッチボンド(メック(株)社製)等の表面処理剤により予め粗化処理が施されていた方が絶縁層の回路基板への密着性の観点から好ましい。
【0116】
市販されている真空ラミネーターとしては、例えば、ニチゴー・モートン(株)製 バキュームアップリケーター、(株)名機製作所製 真空加圧式ラミネーター、日立テクノエンジニアリング(株)製 ロール式ドライコータ、日立エーアイーシー(株)製真空ラミネーター等を挙げることができる。
【0117】
ラミネートにおいて、接着フィルムが保護フィルムを有している場合には該保護フィルムを除去した後、接着フィルムを加圧及び加熱しながら回路基板に圧着する。ラミネートの条件は、接着フィルム及び回路基板を必要によりプレヒートし、圧着温度を好ましくは70〜140℃、圧着圧力を好ましくは1〜11kgf/cmとし、空気圧20mmHg以下の減圧下でラミネートするのが好ましい。また、ラミネートの方法はバッチ式であってもロールでの連続式であってもよい。
【0118】
接着フィルムを回路基板にラミネートした後、室温付近に冷却し支持体フィルムを剥離する。次いで、回路基板にラミネートされた熱硬化型ポリイミド樹脂組成物を加熱硬化させる。加熱硬化の条件は通常150℃〜220℃で20分〜180分の範囲で選択され、より好ましくは160℃〜200℃で30〜120分の範囲で選択される。なお支持体フィルムが離型処理やシリコン等の剥離層を有する場合は、熱硬化型ポリイミド樹脂組成物の加熱硬化後あるいは加熱硬化及び穴開け後に支持体フィルムを剥離することもできる。
【0119】
熱硬化型ポリイミド樹脂組成物の硬化物である絶縁層が形成された後、必要に応じて回路基板にドリル、レーザー、プラズマ、又はこれらの組み合わせ等の方法により穴開けを行いビアホールやスルーホールを形成してもよい。特に炭酸ガスレーザーやYAGレーザー等のレーザーによる穴開けが一般的に用いられる。
【0120】
次いで絶縁層(熱硬化型ポリイミド樹脂組成物の硬化物)の表面処理を行う。表面処理はデスミアプロセスで用いられる方法を採用することができ、デスミアプロセスを兼ねた形で行うことができる。デスミアプロセスに用いられる薬品としては酸化剤が一般的である。酸化剤としては、例えば、過マンガン酸塩(過マンガン酸カリウム、過マンガン酸ナトリウム等)、重クロム酸塩、オゾン、過酸化水素/硫酸、硝酸等が挙げられる。好ましくはビルドアップ工法による多層プリント配線板の製造における絶縁層の粗化に汎用されている酸化剤である、アルカリ性過マンガン酸溶液(例えば過マンガン酸カリウム、過マンガン酸ナトリウムの水酸化ナトリウム水溶液)を用いて処理を行うのが好ましい。酸化剤で処理する前に、膨潤剤による処理を行うこともできる。また酸化剤による処理の後は、通常、還元剤による中和処理が行われる。
【0121】
表面処理を行った後、絶縁層表面にメッキにより導体層を形成する。導体層形成は無電解メッキと電解メッキを組み合わせた方法で実施することができる。また導体層とは逆パターンのメッキレジストを形成し、無電解メッキのみで導体層を形成することもできる。導体層形成後、150〜200℃で20〜90分アニール(anneal)処理することにより、導体層のピール強度をさらに向上、安定化させることができる。
【0122】
導体層をパターン加工し回路形成する方法としては、例えば当業者に公知のサブトラクティブ法、セミアディディブ法などを用いることができる。サブトラクティブ法の場合、無電解銅メッキ層の厚みは0.1乃至3μm、好ましくは0.3乃至2μmである。その上に電気メッキ層(パネルメッキ層)を3乃至35μm、好ましくは5乃至20μmの厚みで形成した後、エッチングレジストを形成し、塩化第二鉄、塩化第二銅等のエッチング液でエッチングすることにより導体パターンを形成した後、エッチングレジストを剥離することにより、回路基板を得ることが出来る。また、セミアディティブ法の場合には、無電解銅メッキ層の厚みを0.1乃至3μm、好ましくは0.3乃至2μmで無電解銅メッキ層を形成後、パターンレジストを形成し、次いで電気銅メッキ後に剥離することにより、回路基板を得ることができる。
【0123】
支持体フィルムを耐熱樹脂層(耐熱樹脂フィルム)で置き換えた形態のフィルム、すなわち、本発明の熱硬化型ポリイミド樹脂組成物層(A層)及び耐熱樹脂層(C層)からなるフィルムは、フレキシブル回路基板用のベースフィルムとして使用できる。本発明の熱硬化型ポリイミド樹脂組成物層(A層)、耐熱樹脂層(C層)及び銅箔(D層)からなるフィルムも同様にフレキシブル回路基板のベースフィルムとして使用できる。この場合ベースフィルムはA層、C層、D層の順の層構成を有する。以上のようなベースフィルムでは、耐熱樹脂層は剥離されずに、フレキシブル回路基板の一部を構成することとなる。
【0124】
本発明の熱硬化型ポリイミド樹脂組成物の硬化物からなる絶縁層(A´層)が耐熱樹脂層(C層)上に形成されたフィルムは片面フレキシブル回路基板用のベースフィルムとして使用できる。また、A´層、C層及びA´層の順の層構成を有するフィルム、及びA´層、C層及び銅箔(D層)からなり、A´層、C層及びD層の順の層構成を有するフィルムも同様に両面フレキシブル回路基板用のベースフィルムとして使用できる。
【0125】
耐熱樹脂層に用いられる耐熱樹脂は、ポリイミド樹脂、アラミド樹脂、ポリアミドイミド樹脂、液晶ポリマーなどを挙げることができる。特に、ポリイミド樹脂及びポリアミドイミド樹脂が好ましい。またフレキシブル回路基板に用いる特性上、破断強度が100MPa以上、破断伸度が5%以上、20〜150℃間の熱膨張係数が40ppm以下、およびガラス転移温度が200℃以上又は分解温度が300℃以上である耐熱樹脂を用いるのが好ましい。
【0126】
このような特性を満たす耐熱樹脂としては、フィルム状で市販されている耐熱樹脂を好適に用いることができ、例えば、宇部興産(株)製ポリイミドフィルム「ユーピ レックス−S」、東レ・デュポン(株)製ポリイミドフィルム「カプトン」、鐘淵化学工業(株)製ポリイミドフィルム「アピカル」、帝人アドバンストフィルム(株)製「アラミカ」、(株)クラレ製液晶ポリマーフィルム「ベクスター」、住友ベークライト(株)製ポリエーテルエーテルケトンフィルム「スミライトFS−1100C」等が知られている。
【0127】
耐熱樹脂層の厚さは、通常2〜150μmであり、好ましくは10〜50μmの範囲とするのがよい。耐熱樹脂層(C層)は表面処理を施したものを用いてもよい。表面処理としては、マット(mat)処理、コロナ放電処理、プラズマ処理等の乾式処理、溶剤処理、酸処理、アルカリ処理等の化学処理、サンドブラスト処理、機械研磨処理などが挙げられる。特にA層との密着性の観点から、プラズマ処理が施されているのが好ましい。
【0128】
絶縁層(A´)と耐熱樹脂層(C)からなる片面フレキシブル回路基板用のベースフィルムは以下のようにして製造することができる。まず、前述した接着フィルムと同様に、本発明の熱硬化型ポリイミド樹脂組成物を有機溶剤に溶解した樹脂ワニスを調製し、耐熱樹脂フィルム上にこの樹脂ワニスを塗布し、加熱又は熱風吹きつけ等により有機溶剤を乾燥させて熱硬化型ポリイミド樹脂組成物層を形成させる。有機溶剤、乾燥条件等の条件は前記接着フィルムの場合と同様である。樹脂組成物層の厚さは5〜15μmの範囲とするのが好ましい 。
【0129】
次に熱硬化型ポリイミド樹脂組成物層を加熱乾燥させ、熱硬化型ポリイミド樹脂組成物の絶縁層を形成させる。加熱硬化の条件は通常150℃〜220℃で20分〜180分の範囲で選択され、より好ましくは160℃〜200℃で30〜120分の範囲で選択される。
【0130】
絶縁層(A´層)、耐熱樹脂層(C)層及び銅箔(D層)の3層からなる両面フレキシブル回路基板用フィルムのベースフィルムの製造は、耐熱樹脂層(C層)と銅箔(D層)よりなる銅張積層フィルム上に樹脂組成物を層形成し、上記と同様にして製造すればよい。銅張積層フィルムとしては、キャスト法2層CCL(Copper-clad laminate)、スパッタ法2層CCL、ラミネート法2層CCL、3層CCLなどが挙げられる。銅箔の厚さは12μm、18μmのものが好適に使用される。
【0131】
市販されている2層CCLとしては、エスパネックスSC(新日鐵化学社製)、ネオフレックスI<CM>、ネオフレックスI<LM>(三井化学社製)、S´PERFLEX(住友金属鉱山社製)等が挙げられ、また市販されている3層CCLとしては、ニカフレックスF−50VC1(ニッカン工業社製)等が挙げられる。
【0132】
絶縁層(A´層)、耐熱樹脂層(C層)及び絶縁層(A´層)の3層からなる両面フレキシブル回路基板用フィルムのベースフィルムの製造は以下のようにして行うことができる。まず前述した接着フィルムと同様に、本発明の熱硬化型ポリイミド樹脂組成物を有機溶剤に溶解した樹脂ワニスを調製し、支持体フィルム上にこの樹脂ワニスを塗布し、加熱又は熱風吹きつけ等により有機溶剤を乾燥させて樹脂組成物層を形成させる。有機溶剤、乾燥条件等の条件は前記接着フィルムの場合と同様である。樹脂組成物層の厚さは5〜15μmの範囲とするのが好ましい。
【0133】
次に、この接着フィルムを耐熱樹脂フィルムの両面にラミネートする。ラミネートの条件は前記と同様である。また耐熱フィルムの片面に予め樹脂組成物層が設けられていれば、ラミネートは片面のみでよい。次に樹脂組成物層を加熱硬化させ、樹脂組成物の層である絶縁層を形成させる。加熱硬化の条件は通常150℃〜220℃で20分〜180分の範囲で選択され、より好ましくは160℃〜200℃で30〜120分の範囲で選択される。
【0134】
フレキシブル回路基板用のベースフィルムからフレキシブル回路基板を製造する方法について説明する。A´層、C層及びA´層からなるベースフィルムの場合は、まず加熱硬化後、回路基板にドリル、レーザー、プラズマ等の方法により穴開けし、両面の導通のためのスルーホールを形成する。A´層、C層及びD層からなるベースフィルムの場合は、同様の方法により穴開けし、ビアホールを形成する。特に炭酸ガスレーザーやYAGレーザー等のレーザーによる穴開けが一般的に用いられる。
【0135】
次いで絶縁層(樹脂組成物の層)の表面処理を行う。表面処理については、前述した接着フィルムの場合と同様である。表面処理を行った後、絶縁層表面にメッキにより導体層を形成する。メッキによる導体層形成については、前述した接着フィルムの場合と同様である。導体層形成後、150〜200℃で20〜90分アニール処理することにより、導体層のピール強度をさらに向上、安定化させることができる。
【0136】
次に、導体層をパターン加工し回路形成しフレキシブル回路基板とする。A層、C層及びD層からなるベースフィルムを使用した場合は、D層である銅箔にも回路形成を行う。回路形成の方法としては、例えば当業者に公知のサブトラクティブ法、セミアディディブ法などを用いることができる。詳細は前述の接着フィルムの場合と同様である。
【0137】
このようにして得られた片面又は両面フレキシブル回路基板は、例えば、前述したように、本発明の接着フィルムを用いて多層化することで、多層フレキシブル回路基板を製造することができる。
【0138】
また、本発明の樹脂組成物は半導体とサブストレート基板間の応力緩和層を形成するための材料としても有用である。例えば、前記と同様にして、本発明の樹脂組成物を用いて得られた接着フィルムによりサブストレート基板の最も上部の絶縁層の全部または一部を形成し、半導体を接続することにより、該樹脂組成物の硬化物を介して半導体とサブストレート基板が接着された半導体装置を製造することができる。この場合、接着フィルムの樹脂組成物層の厚みは10〜1000μmの範囲で適宜選択される。本発明の樹脂組成物はメッキにより導体層の形成が可能であり、サブストレート基板上に設けた応力緩和用の絶縁層上にも簡便にメッキにより導体層を形成し回路パターンを作製することも可能である。
【実施例】
【0139】
次に実施例を示して本発明をさらに詳細に説明する。例中特に断りの無い限り「部」、「%」は質量基準である。
【0140】
合成例1〔ポリイミド樹脂(A)の合成〕
攪拌装置、温度計およびコンデンサーを付けたフラスコに、DMAC(ジメチルアセトアミド)213.2gとTDI(トリレンジイソシアネート)6.28g(0.036モル)、TODI(4,4´−ジイソシアネート−3,3´−ジメチル−1,1´−ビフェニル)38.2g(0.143モル)とTMA(無水トリメリット酸)29.1g(0.151モル)、BTDA(ベンゾフェノン−3,3′,4,4′−テトラカルボン酸二無水物、)12.2g(0.038モル)とを仕込み、攪拌を行いながら発熱に注意して1時間かけて150℃まで昇温した後、この温度で5時間反応させた。反応は炭酸ガスの発泡とともに進行し、系内は茶色の透明液体となった。25℃での粘度が2Pa・sの樹脂固形分25%で溶液酸価が16(KOHmg/g)のポリイミド樹脂の溶液(ポリイミド樹脂がDMACに溶解した樹脂組成物)を得た。これをポリイミド樹脂(A1)の溶液と略記する。尚、その値から算出された樹脂の固形分酸価は64(KOHmg/g)であった。また、ゲルパーミエーションクロマトグラフィー(GPC)の測定の結果、重量平均分子量10000であった。
【0141】
得られたポリイミド樹脂(A1)の溶液をKBr板に塗装し、溶剤を揮発させた試料の赤外線吸収スペクトルを測定した結果、イソシアネート基の特性吸収である2270cm−1が完全に消滅し、725cm−1と1780cm−1と1720cm−1とにイミド環の特性吸収が確認された。また炭酸ガスの発生量は、フラスコ内容重量の変化で追跡し、15.8g(0.36モル)であった。これよりイソシアネート基の全量である0.36モルの全量がイミド結合およびアミド結合に変換していると結論される。
【0142】
熱硬化型ポリイミド樹脂(A1)の原料の配合量、ビフェニル骨格の含有量、対数粘度、重量平均分子量及び固形分酸価を第1表に示す。
【0143】
合成例2(同上)
第1表に示す配合割合を用い、BTDAのかわりにビフェニル−3,3´,4,4´−テトラカルボン酸無水物(BPDA)を用いた以外は合成例1と同様にして、ポリイミド樹脂(A2)の溶液を得た。合成例1と同様にビフェニル骨格の含有量、対数粘度、重量平均分子量及び固形分酸価を第1表に示す。
【0144】
合成例3〜び合成例7〔同上〕
第1表に示す配合割合とした以外は合成例1と同様にして熱硬化型ポリイミド樹脂(A3)〜(A5)及び熱硬化型ポリイミド樹脂(A7)の溶液を得た。合成例1と同様にビフェニル骨格の含有量、対数粘度、重量平均分子量及び固形分酸価を第1表に示す。尚、表記載のHCA−HQは、10−(2,5−ジヒドロキシフェニル)−10H−9−オキサ−10−ホスファフェナントレン−10−オキシドを示し、GPCの面積比率からその20%が樹脂中に取り込まれ、残りはフリーで残存していた。
【0145】
【表1】

【0146】
合成例1〜7においては、ビフェニル構造を有するイソシアネート原料としてTODIを使用し、各種酸無水物と反応させている。また、合成例2においてはBPDAを酸無水物原料としている。いずれの場合もイソシアネート基の赤外スペクトル吸収は確認できず、また酸無水物基の赤外スペクトル吸収もいずれの場合も痕跡程度の残量であり、90%以上の反応と結論される。よって樹脂構造中には5員環状イミド骨格中の窒素原子に直結するビフェニル骨格を有すると結論された。
【0147】
合成例8〜13〔比較対照用ポリイミド樹脂(a)の合成〕
第2表に示す原料組成に基づいた配合割合としフラスコにこれら原料を一括仕込みを行い、合成例1と同様の合成装置、攪拌、昇温、反応時間にて比較対象用ポリイミド樹脂(a1〜a6)の合成を行った。合成例1と同様にビフェニル骨格の含有量、対数粘度、重量平均分子量及び固形分酸価を第1表に示す。合成例10に関しては、合成途中で固化して途中での反応が出来なくなり中断した。合成例11に関しては、合成途中から濁りを生じ反応後固化した。よって対数粘度、重量平均分子量、固形分酸価の値は測定できなかった。
【0148】
【化9】

【0149】
合成例14(同上)
攪拌機を備えたフラスコに、2,2−ビス[4−(アミノフェノキシ)フェニル]プロパン16.10g(39ミリモル)と3,3´−ジカルボキシ−4,4´−ジアミノジフェニルメタン1.25g(5ミリモル)と1,3−ビス(アミノフェノキシメチル)−1,1,3,3,−テトラメチルジシロキサン21.25g(56ミリモル)と3,3´,4,4´−ベンゾフェノンホンテトラカルボン酸二無水物32.22g(100ミリモル)及びN−メチル−2−ピロリドン(NMP)300mlとを氷温下で導入し攪拌を1時間続けた。次いでこの溶液を室温で3時間反応させポリアミド酸を合成した。得られたポリアミド酸に50mlのトルエンと1.0gのp−トルエンスルホン酸を加え、160℃に加熱した。トルエンと共沸して水分を分離しながらイミド化反応を3時間行った。トルエンを留去し、得られたポリイミドワニスをメタノール中に注ぎ、得られた沈殿を分離、粉砕、洗浄、乾燥させる工程を経ることにより、分子量18,000、Tg150℃、誘電率3.0のシロキサン変性ポリイミド62.5g(収率93%)を得た。赤外吸収スペクトルを測定したところ、1718、1783cm-1に典型的なイミドの吸収が認められた。このポリイミド樹脂をポリイミド樹脂(a7)と略記する。 ポリイミド樹脂(a7)をDMACで溶解させ固形分30%のポリイミド樹脂(a7)の樹脂溶液を得た。
【0150】
実施例1〜11及び比較例1〜6
【0151】
第3表〜第5表に示した配合で各成分を混合し、攪拌を行って均一な樹脂溶液を作成し本発明の熱硬化型ポリイミド樹脂組成物1〜11及び比較対照用熱硬化型樹脂組成物1´〜6´を得た。組成物、Bーステージ化した硬化物、完全に硬化した硬化物のそれぞれについて下記の通りの評価を行った。評価方法を下記に示す。
【0152】
組成物の評価:溶液粘度、経時的な粘度変化、組成物の塗装性、塗膜造膜性。
【0153】
Bーステージ化した硬化物の評価:フィルムの屈曲性、耐カール性、溶融容易性。
【0154】
完全に硬化した硬化物の評価:耐熱性、機械物性、寸法安定性、
【0155】
〔組成物の評価〕
<溶液粘度及び経時的な粘度変化の評価方法>
樹脂組成物を調整後2時間静置し、25℃でのE型回転粘度を測定評価した。測定は、10rpmと100rpmで行い、その比として10rpm/100rpmをチキソ性(TI値)として評価した。粘度計は、東機産業株式会社製 TV−22型粘度計 コーンプレートタイプ(ローター:3°×R9.7)を使用した。TI値が高いとチキソ性が大きく、塗装時の表面平滑性が悪くなる。同様な測定を室温静置20日後にも行い、この結果を経時的な粘度変化の評価結果とした。
【0156】
<組成物の塗装性の評価方法>
樹脂組成物をブリキ板に0.152ミルのアプリケーターで25℃の雰囲気下で塗装した。塗装外観について以下の評価基準で評価した。
評価基準
○:透明で表面に光沢がありフラットな面である。
△:表面に凹凸があり平坦でない。
×:均一でなく分離している、表面に光沢がない、表面がフラットではないという現象が確認できる。
【0157】
<塗膜造膜性の評価方法>
樹脂組成物を乾燥後の膜厚が30μmになるように100μm厚のPETフィルムにアプリケーターにて塗布後、100℃で10分間乾燥させて得た試験片を、25℃にて24時間放置し、塗膜外観を以下の評価基準で評価した。
評価基準
○:塗膜にクラック等の異常は見られない。
△:塗膜に若干クラックが見られる。
×:塗膜全面にクラックが発生した。
【0158】
〔Bーステージ化した硬化物の評価〕
<フィルムの屈曲性の評価方法>
樹脂組成物を乾燥後の膜厚が30μmになるように100μm厚のPETフィルム(幅10cm、長さ20cm)にアプリケーターにて塗布後、100℃で10分間乾燥させて得た試験片を作成し、室温状態で30分放置した後、塗装面を外側にPET面を内側にして以下の評価基準で評価した。
【0159】
◎:内側に直径1mmの金属棒を挟んで樹脂面を外側にしてPETフィルム積層体を折り曲げ、もどした時に塗装した樹脂組成物にクラックや浮きなど観測されない。
○:内側に直径3mmの金属棒を挟んで樹脂面を外側にしてPETフィルム積層体を折り曲げ、もどした時に塗装した樹脂組成物にクラックや浮きなど観測されない。
△:内側に直径5mmの金属棒を挟んで樹脂面を外側にしてPETフィルム積層体を折り曲げ、もどした時に塗装した樹脂組成物にクラックや浮きなど観測されない。
×:内側に直径5mmの金属棒を挟んで樹脂面を外側にしてPETフィルム積層体を折り曲げ、もどした時に塗装した樹脂組成物にクラックや浮きなどが観測される。
【0160】
<耐カール性の評価方法>
樹脂組成物を乾燥後の膜厚が30μmになるように100μm厚のPETフィルム(幅10cm、長さ20cm)にアプリケーターにて塗布後、100℃で10分間乾燥させて得た試験片を作成し、塗装されている箇所を5cm角の正方形に切り出し、水平で平坦な板の上に載せ、室温状態で30分放置した後、塗装面を外側にPET面を内側にして以下の評価基準で評価した。
【0161】
◎:水平の板面から切り出した試料の端がフラットで浮きがない。
○:水平の板面から切り出した試料の端の浮きが5mm以下である。
△:水平の板面から切り出した試料の端の浮きが10mm以下である。
×:水平の板面から切り出した試料の端の浮きが10mm以上である。
【0162】
<溶融容易性の評価方法>
溶融容易性はB−ステージ化した組成物を以下の条件で銅箔に転写し、その後、転写した組成物の膜の状態を観察するとともにテープ剥離を行うことで評価した。
(フィルムの作成)
樹脂組成物をPETフィルム上(厚さ125μm)に、乾燥後の樹脂組成物層の厚みが25μmとなるようにアプリケーターにて均一に塗布し、100℃で5分間乾燥させ、フィルムを作成した。
【0163】
(評価方法)
あらかじめ110℃に加熱した電解銅箔(厚さ18μm,表面粗さ:M面Rz 7.4μm, S面Ra 0.21μm)に上記のフィルムを樹脂面が銅と接するように重ね合わせ、0.1MPaの圧力にて1分間熱プレスし銅面に樹脂組成物を転写した。 その後、PETフィルムをはがし、さらに200℃にて60分加熱することで樹脂組成物を本硬化させた。この試験片に対し、JIS K 5400 8.5.2(付着性 碁盤目テープ法)に従いテープ剥離試験を実施し、以下の評価基準にて評価を行った。
【0164】
◎:本硬化前、PETフィルムをはがした段階で樹脂が銅箔に完全に転写され、本硬化後、テープ剥離を実施してはがれがない。
○:本硬化前、PETフィルムをはがした段階で樹脂が銅箔に完全に転写され、本硬化後、テープ剥離を実施して一部欠損が見られる。
△:本硬化前、PETフィルムをはがした段階で樹脂が銅箔に付着していない箇所がある。
×:本硬化前、PETフィルムをはがした段階で樹脂が銅箔に全く付着していない。
【0165】
〔完全に硬化した硬化物の評価〕
<耐熱性の評価方法(ハンダ浴による評価)>
(試験片の作製)
樹脂組成物を硬化後の膜厚が30μmになるように銅泊がラミネートされたガラスエポキシ基板上に塗装し、200℃の乾燥機で60分間乾燥した後、室温まで冷却し硬化塗膜を作製した。
【0166】
(評価方法)
硬化塗膜を260℃の溶融ハンダに30秒浸漬し、室温に冷却した。このハンダ浴の浸漬操作を合計3回行い、硬化塗膜の外観について以下の評価基準で評価した。
【0167】
◎:塗膜に外観異常は見られない。
○:塗膜にフクレ、はがれ等異常が若干見られる。
△:塗膜にフクレ、はがれ等異常が多く見られる
×:塗膜全面にフクレ、はがれ等異常が見られる。
【0168】
<耐熱性の評価方法(TGの測定による評価)>
(試験片の作製)
樹脂組成物を硬化後の膜厚が30μmになるようにブリキ基板上に塗装し、70℃の乾燥機で20分間乾燥した後、200℃で1時間硬化させ冷却した後、剥離した硬化塗膜を幅5mm、長さ30mmに切り出し、測定用試料を作製した。
【0169】
(評価方法)
セイコー電子(株)製熱分析システムTMA−SS6000を用いて、試料長10mm、昇温速度10℃/分、荷重30mNの条件でTMA(Thermal Mechanical Analysis)法により測定した。なお、TGは、TMA測定での温度−寸法変化曲線からその変極点を求め、その温度をTGとした。TGが高いほど耐熱性に優れることを示す。
【0170】
<寸法安定性の評価方法(線膨張係数の測定による評価)>
前記<耐熱性の評価方法(TGの測定による評価)>と同様にして試験片を作製し、TMA−SS6000を用いて、試料長10mm、昇温速度10℃/分、荷重30mNの条件でTMA(Thermal Mechanical Analysis)法により測定した。線膨張係数に使用した温度域は20〜200℃での試料長の変位より求めた。線膨張係数が小さいほど寸法安定性に優れることを示す。
【0171】
<機械物性の評価方法>
機械物性は塗膜(フィルム)の引張試験を行い、弾性率と破断強度と破断伸度を求めることにより評価した。
(試験片の作製)
樹脂組成物1を得られる塗膜の膜厚が30μmになるようにブリキ基板上に塗装した。次いで、この塗装板を50℃の乾燥機で30分間、100℃の乾燥機で30分間、200℃の乾燥機で60分間乾燥して塗膜(フィルム)を作成した。室温まで冷却した後、塗膜(フィルム)を所定の大きさに切り出し、基板から単離して測定用試料とした。
<引張試験測定方法>
測定用試料を5枚作成し、下記の条件で引張試験を行い、弾性率と破断強度と破断伸度を求めた。弾性率の値が低いほど柔軟性に優れる塗膜であることを表す。破断伸度の値が高いほど柔軟性に優れる塗膜であることを表す。そして、破断強度の値が高いほど強靭な塗膜であることを表す。
測定機器:東洋ボールドウィン社製テンシロン、サンプル形状:10mm×70mm、チャック間:20mm
引張速度:10mm/min、測定雰囲気:22℃、45%RH
【0172】
【表2】

【0173】
【表3】

【0174】
【表4】

【0175】
【表5】

【0176】
第1表〜第6表の脚注
配合割合は固形分換算である。
PBM:メタフェニレンビスマレイミド 分子量:268
MPBM:4−メチル−1,3−フェニレンビスマレイミド 分子量:282
MPMBM:3,3’−ジメチル−5,5’−ジエチル−4,4’−ジフェニルメタンビスマレイミド 分子量:414
DMBM:4,4’−ジフェニルメタンビスマレイミド 分子量:358
OPBM:フェニルメタンビスマレイミドオリゴマー
構造式
【0177】
【化10】

但しnは0から10の混合物 平均分子量:950
BPABM:ビスフェノールAジフェニルエーテルビスマレイミド 分子量:570
TMBP:テトラメチルビフェニル型エポキシ樹脂 エポキシ当量:187
BPA:ビスフェノールA型エポキシ樹脂 エポキシ当量:
NP:ナフタレン型エポキシ樹脂 エポキシ当量:150
IDMBM: DMBM(4,4’−ジフェニルメタンビスマレイミド 分子量:358)をイソホロンジアミンで鎖伸長させたビスマレイミドオリゴマー 平均分子量:1150
BPAP:以下の構造を有するビスフェノールA型ビスアリル化合物
【0178】
【化11】

【0179】
【表6】

【0180】
【表7】

【0181】
【表8】

【0182】
【表9】

【0183】
第9表の脚注
プリン化:樹脂組成物溶液の流動性がなくなり、柔らかいゲル状の形態となる。
比較例3,4は、合成した樹脂が固形の為、乳鉢ですりつぶして微細化して配合、混合を行った。これをさらに100℃まで加熱して溶融させたが均一溶融せず分離状態であった。

【特許請求の範囲】
【請求項1】
5員環状イミド骨格中の窒素原子に直結するビフェニル骨格を有し、重量平均分子量(Mw)が3,000〜150,000である熱硬化型ポリイミド樹脂(A)と、芳香環を有し、分子量が200〜1,000であるポリマレイミド化合物(B)とを含有することを特徴とする熱硬化型ポリイミド樹脂組成物。
【請求項2】
前記熱硬化型ポリイミド樹脂(A)中のビフェニル骨格の含有率が20〜45質量%で、且つ、対数粘度が0.1〜0.9dl/gである請求項1記載の熱硬化型ポリイミド樹脂組成物。
【請求項3】
前記熱硬化型ポリイミド樹脂(A)が、更にベンゾフェノン構造を有するポリイミド樹脂である請求項1記載の熱硬化型ポリイミド樹脂組成物。
【請求項4】
前記熱硬化型ポリイミド樹脂(A)が、更にトリレン構造を有するポリイミド樹脂である請求項2または3記載の熱硬化型ポリイミド樹脂組成物。
【請求項5】
前記熱硬化型ポリイミド樹脂(A)がアルキレン構造を有さないポリイミド樹脂である請求項1〜4のいずれか1項記載の熱硬化型ポリイミド樹脂組成物。
【請求項6】
前記熱硬化型ポリイミド樹脂(A)がビフェニル骨格を有するポリイソシアネートと酸無水物とを反応させて得られるポリイミド樹脂である請求項1〜6のいずれか1項記載の熱硬化型ポリイミド樹脂組成物。
【請求項7】
前記ビフェニル骨格を有するポリイソシアネートがトリジンジイソシアネートまたはトリジンジイソシアネートから誘導されるポリイソシアネートである請求項6記載の熱硬化型ポリイミド樹脂組成物。
【請求項8】
前記ポリマレイミド化合物(B)が分子量250〜600のビスマレイミド化合物である請求項1記載の熱硬化型ポリイミド樹脂組成物。
【請求項9】
前記ビスマレイミド化合物が下記式で表される化合物である請求項8記載の熱硬化型ポリイミド樹脂組成物。
【化1】

〔式中、(R)は芳香環を有する2価の有機基を表す。〕
【請求項10】
前記化合物が下記式で表される化合物である請求項7記載の熱硬化型ポリイミド樹脂組成物。
【化2】

〔式中、Rは、単結合あるいはメチレンを示し、Rは、それぞれ水素原子または炭素原子数1〜6のアルキル基を示し、nは0から4の整数である。〕
【請求項11】
前記ポリマレイミド化合物(B)がフェニレンビスマレイミドまたはメチルフェニレンビスマレイミドである請求項1記載の熱硬化型ポリイミド樹脂組成物。
【請求項12】
ポリイミド樹脂(A)100質量部に対してポリマレイミド化合物(B)を5〜200質量部含有する請求項1記載の熱硬化型ポリイミド樹脂組成物。
【請求項13】
更に、エポキシ樹脂(C)を含有する請求項1〜12のいずれか1項記載の熱硬化型ポリイミド樹脂組成物。
【請求項14】
前記エポキシ樹脂(C)がビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂及びナフタレン型エポキシ樹脂からなる群から選ばれる1種以上のエポキシである請求項13記載の熱硬化型ポリイミド樹脂組成物。
【請求項15】
ポリイミド樹脂(A)100質量部に対してポリマレイミド化合物(B)を5〜200質量部含有し、エポキシ樹脂(C)を5〜200質量部含有する請求項13記載の熱硬化型ポリイミド樹脂組成物。
【請求項16】
請求項1〜15のいずれか1項記載の熱硬化型ポリイミド樹脂組成物を硬化させてなることを特徴とする硬化物。
【請求項17】
請求項1〜15のいずれか1項に記載の熱硬化型ポリイミド樹脂組成物により形成される層を、キャリアフィルム上に有することを特徴とするプリント配線板用層間接着フィルム。

【公開番号】特開2012−41382(P2012−41382A)
【公開日】平成24年3月1日(2012.3.1)
【国際特許分類】
【出願番号】特願2010−180915(P2010−180915)
【出願日】平成22年8月12日(2010.8.12)
【出願人】(000002886)DIC株式会社 (2,597)
【Fターム(参考)】