説明

複合金属箔の製造方法、複合金属箔、成形金属箔及び成形金属箔の製造方法

【課題】凹凸形状の微細加工に適し、製造効率を向上させた複合金属箔、複合金属箔の製造方法、成形金属箔及び成形金属箔の製造方法を提供することを目的とする。
【解決手段】凹凸形状を有する複合金属箔ならびに成形金属箔の製造において、作製すべき複合金属箔ならびに成形金属箔の凹凸形状に対応する凹凸形状をキャリア基材表面に形成する工程と、前記凹凸形状が形成されたキャリア基材の表面に沿うようにして気相成長法を用いて被覆金属層を形成する工程とを含む製造方法を採用する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、凹凸形状を備える複合金属箔の製造方法及びこの製造方法で作られた複合金属箔ならびに凹凸形状を備える成形金属箔及びこの成形金属箔の製造方法に関する。
【背景技術】
【0002】
凹凸形状を備える金属箔は、燃料電池のセパレータ、緩衝材、環境浄化用フィルタ、排ガス浄化担体等、導通路や空間を要する場合や、より広い表面積を要する場合等において、所望の形状に対応させて機械、建材、電子機器部品等様々な分野で用いられている。上記用途に用いられる金属箔の材料としては、ステンレス、ニッケル、チタン等、軽量で耐食性に優れたものが用いられている。例えば、特許文献1には、セパレータ用耐食金属クラッド材料の製造方法が開示されており、冷間圧延法によってコア材の両面に被覆層を形成し、この被覆層に数回圧延を行って厚さを調整した後、プレス法により水素供給用通路と酸素供給用通路とを形成したセパレータ用耐食金属クラッド材料を用いたセパレータが開示されている。これらの耐食性に優れた金属の中でも、チタン系の金属は、強度が高く、軽量で安定した耐食性を備えるので、小型軽量、長寿命等の性能が求められる二次電池のセパレータ、小型のヒートシンク等の用途として特に注目されている。
【0003】
【特許文献1】特開2005−2411号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
特許文献1に開示されているようにプレス法により金属箔を成形する技術は、微細な凹凸形状の加工には不向きである。また、プレス法により成形された金属箔は、製造工程が多いため、製造コストが大きい点が課題となっている。更に、製造工程における加熱、冷却の他物理的な作用が製造品に加わることにより生じる製造ロスが、工程が多い程に生じる可能性が高まる点でも、製造効率の向上の阻害要因となる。そこで本発明は、微細形状の加工が可能で、且つ、製造効率を向上させる、チタン等の加工に適した複合金属箔の製造方法及び複合金属箔ならびに成形金属箔及び成形金属箔の製造方法を提供することを目的とする。
【課題を解決するための手段】
【0005】
本発明者等は、鋭意研究を行った結果、以下の製造方法を採用することで上記目的を達成するに到った。以下、複合金属箔ならびに成形金属箔の製造方法と、この製造方法により製造した複合金属箔及び成形金属箔とに分けて説明する。
【0006】
〈複合金属箔の製造方法〉
本発明に係る複合金属箔の製造方法は、凹凸面を備える複合金属箔の製造方法であって、以下の工程A〜工程Cを含むことを特徴とする。
工程A:複合金属箔に備える凹凸形状と同じ凹凸形状をキャリア基材の表面に形成するための型枠となる突起状レジストパターンを、キャリア基材の表面に形成する工程。
工程B:前記キャリア基材表面と突起状レジストパターンとにより形成されたレジスト凹部に、電解めっき法を用いて埋設めっきを行った後、前記突起状レジストパターンを除去して、キャリア基材の表面に突起部を形成することにより表面に凹凸形状を備えるキャリア基材とする工程。
工程C:凹凸形状が形成された前記キャリア基材の表面に、気相成長法を用いて被覆金属層を形成し、凹凸形状を備える複合金属箔とする工程。
【0007】
そして、上記複合金属箔の製造方法においては、前記工程Aは、キャリア基材の表面にレジスト層を形成し、フォトマスク法によりキャリア基材表面に前記突起状レジストパターンを形成することが好ましい。
【0008】
また、本発明に係る複合金属箔の製造方法では、前記気相成長法は、スパッタリング蒸着法又は電子ビーム蒸着法のいずれかであることが好ましい。
【0009】
更に、本発明に係る複合金属箔の製造方法では、前記凹凸形状を備えるキャリア基材において、前記キャリア基材表面に形成された突起部の断面における側壁面は、当該側壁面と、突起部間に露出するキャリア基材表面とでなす角が90°〜135°の範囲の傾きを有するものであることが好ましい。
【0010】
また、本発明に係る複合金属箔の製造方法では、前記キャリア基材表面に形成された突起部の突出する高さが10μm〜50μmであることが好ましい。
【0011】
〈複合金属箔〉
本発明に係る複合金属箔は、キャリア基材表面に備える凹凸形状に沿った被覆金属層を備える複合金属箔であって、上述の複合金属箔の製造方法を用いて得られることを特徴とする。
【0012】
本発明に係る複合金属箔の被覆金属層は、チタン、タンタル、ニオブあるいはこれらの合金のいずれかで構成されたもの(以下、「チタン等で構成された金属」と称する。)であることが好ましい。
【0013】
なお、チタン、タンタル、ニオブの合金とは、チタン、タンタル、ニオブの内から1種以上を含み、その他の金属成分が任意の割合で含まれる限りその成分組成には限定されない。なぜなら、スパッタリング蒸着法を用いることを考えれば、ターゲット組成を変更することにより、幅広い組成の組合せが採用出来るからである。例えば、チタン、タンタル、ニオブの内から2種以上を含むものの他、チタン、タンタル、ニオブのいずれか1種以上と、モリブデン、アルミニウム、パラジウム等の金属からなる組成のものも考えられる。また、スパッタリング蒸着法では、一般にアルゴンガスを用いるが、酸素、窒素、炭素等の反応性ガスを導入してスパッタすると、ターゲットと反応して酸化物、窒化物、炭化物等の化合物薄膜を形成することができる。このように反応性ガスを導入してスパッタして成膜すると均質で安定した薄膜を形成することができる。
【0014】
また、本発明に係る複合金属箔は、前記被覆金属層が、厚さ1μm〜15μmであることが好ましい。
【0015】
更に、本発明に係る複合金属箔は、断面観察における最大厚さが、38μm〜400μmであることが好ましい。
【0016】
また、本発明に係る複合金属箔の前記凹凸形状は、その断面観察におけるキャリア凹部及び突起部のピッチが30μm〜200μmであることが好ましい。
【0017】
更に、本発明に係る複合金属箔は、前記キャリア基材表面に備える突起部は、キャリア基材の両面に形成されるものであることが好ましい。
【0018】
〈成形金属箔〉
本発明に係る成形金属箔は、上述の複合金属箔の内、キャリア基材の片面に凹凸形状の被覆金属層を備える複合金属箔を用いて得られる金属箔であって、当該金属箔のキャリア基材を除去することにより、被覆金属層のみを分離採取して得られたことを特徴する。
【0019】
また、本発明に係る成形金属箔は、厚さ10μm〜50μmであることが好ましい。
【0020】
そして、本発明に係る成形金属箔は、チタン、タンタル、ニオブあるいはこれらの合金のいずれかの金属成分で構成されたものであることが好ましい。
【0021】
あるいは、本発明に係る成形金属箔は、チタン、タンタル、ニオブあるいはこれらの合金のいずれかの金属成分で構成されたものと、これと異なる異種金属とからなる二層以上の構造であることも好ましい。
【0022】
〈成形金属箔の製造方法〉
本発明に係る成形金属箔の製造方法は、上述のいずれかに記載の金属箔の製造方法であって、キャリア基材の片面に凹凸形状の被覆金属層を備える複合金属箔を、被覆金属層の構成金属とキャリア基材の構成金属との選択エッチング可能な溶液に浸漬し、キャリア基材の金属成分のみをエッチング除去することを特徴とする。
【発明の効果】
【0023】
本発明に係る複合金属箔ならびに成形金属箔の製造方法を用いれば、従来製造が難しかった微細な凹凸形状を備える金属箔を高精度且つ美麗に製造することが出来る。また、従来のプレス法による複合金属箔の製造方法と比べて、凹凸形状の自由度が高く、且つ、製造工程が少なくて生産性が高い製造方法であると言える。
【発明を実施するための最良の形態】
【0024】
以下、本発明に係る複合金属箔ならびに成形金属箔と、それらの製造方法の最良の実施の形態に関して説明する。図1は、本発明に係る複合金属箔の製造方法及び成形金属箔の製造方法に共通する工程を説明するための模式図である。初めに、本発明に係る複合金属箔ならびに成形金属箔の製造方法の特徴は、例えば図1に示すように、複合金属箔1ならびに成形金属箔10に備える凹凸形状を形成するために、キャリア基材2の表面に凹凸形状を形成し、この凹凸形状を備えるキャリア基材2の表面に気相成長法により金属膜を形成する点にある。そして、複合金属箔1はキャリア基材2とこのキャリア基材表面4を被覆する被覆金属層9とからなる金属箔であるのに対し、成形金属箔10は前記複合金属箔1からキャリア基材2を分離採取して得られた被覆金属層9の部分のみからなる点で異なる。即ち、成形金属箔の製造方法では、図1(1)〜(5)に示す工程A〜工程Cを経た後、図3(6)に示すような、キャリア基材2の分離採取工程を行う。一方、複合金属箔の製造方法では、図1(1)〜(5)の工程により、キャリア基材2の片面のみに凹凸形状を形成した複合金属箔とする場合や、図2に示すように、両面に凹凸形状を備えるように加工する工程を含む場合や、図示しないが、図1(5)に例示した片面のみに凹凸形状を備える複合金属箔の凹凸形状が形成されていない他方の面にも被覆金属層9を形成する等の工程を経て複合金属箔を得る場合がある。以下、複合金属箔、成形金属箔の順に最良の実施の形態を説明する。
【0025】
〈複合金属箔の製造方法〉
まず、本発明に係る複合金属箔の製造方法について、以下に工程A〜工程Cに沿って説明する。
【0026】
工程A: 工程Aでは、複合金属箔1に備える凹凸形状と同じ凹凸形状をキャリア基材2の表面に形成するための型枠となる突起状レジストパターン6を、キャリア基材表面4に形成する。
【0027】
突起状レジストパターン6は、キャリア基材表面4に凹凸形状を形成するための型枠として所望の形状に成形された突状のものであり、非導電性のものである。このため、後の工程Bにおける電解めっきの際に、突起状レジストパターン6が形成された部分にはめっきアップされない。従って、突起状レジストパターン6により形成されたレジスト凹部3に電解法によって埋設めっきを行うと、当該突起状レジストパターン6が形成された部分が型枠となり、キャリア基材表面4に突起部7が形成されるのである。
【0028】
なお、キャリア基材2は、箔状態又は板状態のもので、複合金属箔1の製造において基台となるものである。また、埋設めっきにおける電解析出の際に、キャリア基材2を陰極として、その表面に金属元素を電析させて金属めっきからなる凹凸形状を形成することとなる。このため、キャリア基材2の材質は導電性を備える限り特段の材質限定は必要ない。例えば、キャリア基材には、銅、アルミニウム、ステンレス等の箔や板である金属素材、プラスチック材の表面を金属成分でコーティングした素材(例えば、プラスチックフィルムの両面若しくは片面に金属導電層を備える構成のもの等)等を使用することが可能である。特にキャリア基材は、電解若しくは圧延法で得られた18μm〜380μm厚さの銅箔が好適である。
【0029】
ここで、上記工程Aは、フォトマスク法による以下の方法を用いると、精密化、均一形状化、微小化を実現する突起状レジストパターン6を円滑に形成することができる。即ち、キャリア基材表面4にレジスト層5を形成し、前記複合金属箔1に備える凹凸形状を形成するための突起状レジストパターン6をフォトマスク法によりキャリア基材表面4に形成することが好ましい。なお、この突起状レジストパターン6は、エッチングレジスト、めっきレジストのいずれの素材を用いても構わない。以下の説明では、エッチングレジストを例に述べる。
【0030】
まず、図1(1)に示すように、キャリア基材表面4にレジスト層5を形成する。レジスト層5は、後の工程Bにおいて、キャリア基材表面に突起部を形成するための電解めっきの際に、所望の位置、形状にめっきするためのレジストとなるものである。例えば、キャリア基材表面4にドライフィルムを配し、ラミネータにより、エッチングレジスト(レジスト層5)としてのドライフィルムを貼り付ける方法がある。ここでは、ドライフィルムを貼付しやすくするために、キャリア基材表面4を適宜加工した後、ラミネータを用いて貼り付ける。
【0031】
ドライフィルムは、光によって反応する硬化レジスト層がポリエチレンフィルムとポリエステルフィルムとの間で狭持された構造を持つフィルムであり、プリント配線板のエッチングレジストとして広く使用されているものである。このドライフィルムは厚さに種々のバリエーションを持たせることが容易で、金属めっきからなる突起部7の突出する高さの選択幅を広く取ることが容易である。
【0032】
なお、レジスト層5は、上述のドライフィルムをラミネータを用いて貼り付けて形成する方法の他に好ましい方法として、液体レジスト等を用いて形成する方法、スピンコータ等を用いて感光性のレジスト層として形成する方法が挙げられる。特に液体レジストは廃棄物を出さない点で有利である。
【0033】
次に、突起状レジストパターン6をフォトマスク法で形成する。即ち、レジスト層5の表面に、作製すべき凹凸形状の面形状と同じ表面形状を有するパターンのフォトマスクを密着または接近させて配置し、紫外線を照射して上記ドライフィルムを露光現像する。次いで、フォトマスクのパターンによる未露光部分を1%炭酸ナトリウム溶液により剥離して除去することで、図1(2)に示すように所望の突起状レジストパターン6に成形した。突起状レジストパターン6は、複合金属箔1に形成される凹凸形状に対応する位置のキャリア基材表面4に突起状に形成された。即ち、突起状レジストパターン6とキャリア基材表面4とによりレジスト凹部3が形成された状態となる。
【0034】
なお、ここではネガタイプのエッチングレジストを使用した場合の凸状レジストの形成方法を示したが、フォトレジストとしては、露光処理によってエッチングレジストを硬化させ不要部分を除去することにより所望のレジストパターンが形成されるものであればよい。
【0035】
工程B: 本工程Bでは、キャリア基材表面4と突起状レジストパターン6とにより形成されたレジスト凹部3に、電解めっき法を用いて埋設めっきを行う。そして、埋設めっき後に突起状レジストパターン6を除去することにより、キャリア基材表面4に突起部7を形成する。なお、突起状レジストパターン6は、例えば、水酸化ナトリウム水溶液等レジスト成分を除去可能な溶液中に浸漬して突起状レジストパターン6を溶解する方法を用いて除去する。これにより、キャリア基材2は、その表面に凹凸形状を備えることとなる。
【0036】
ここで、本発明における複合金属箔は、特に表裏を限定するものではない。従って、キャリア基材表面は、キャリア基材の表出面を指す。また、キャリア基材表面4の少なくとも一方の面に凹凸形状を備えるものであればよい。キャリア基材表面4に凹凸形状を備える態様としては、突起部7をキャリア基材2の片面に備えるものであっても、両面に備えるものであっても良い。また、突起部7はキャリア基材2の一部であることを明記しておく。
【0037】
工程Bにおいては、上述の通り、突起部(銅めっき層)7は突起状レジストパターン6より高さが低い状態で埋設めっきされているので、突起状レジストパターン6が水酸化ナトリウム水溶液に浸漬する面積を広くすることができ、且つ、突起部7と、この突起部7よりも高く突出している突起状レジストパターン6とに囲まれている凹部分に水酸化ナトリウム水溶液が溜まりやすくなる。これにより、突起状レジストパターン6と水酸化ナトリウム水溶液との接触が多くなり、レジスト成分の膨潤を促進させることができ、突起部7と突起状レジストパターン6との界面におけるレジスト成分の膨潤が促進され、突起状レジストパターン6を速やかに除去することができる。従って、埋設めっきはレジスト凹部3を完全に埋める高さまでめっきしない方が好ましい。
【0038】
このようにして形成されたキャリア基材表面の凹凸形状について、より詳しく説明する。キャリア基材表面4の凹凸形状は、複合金属箔に形成したい凹凸形状と同じ凹凸形状を有するものである。突起部7の突出高さは10μm〜50μmであることが好ましい。突起部7の突出高さを10μm未満とすると、凹凸形状を有する複合金属箔としてのメリットがない。一方、突起部7の突出高さを50μm超とすると、突起部7を厚くすることによる製造コストが上昇するので工業生産性から見て好ましくない。また、微細加工に適する本発明に係る製造方法を用いるメリットがない。
【0039】
更に、突起部7の側壁面8は、図1(4)に示す様に、その断面形状において、当該側壁面8と、この突起部7間に形成されるキャリア凹部11の底面ともなる露出したキャリア基材表面4とでなす角θが90°〜135°の範囲となる傾きを有するものであることが好ましい。角θが90°を下回る傾きの側壁面8にすると、被覆金属層9を形成する際に、物理蒸着でキャリア凹部11の全面を連続して覆うことが難しくなる。なお、より好ましくは、上記角θは95°〜135°の範囲である。そして、本発明は微細加工に特徴を有する複合金属箔であるので、凹凸形状の幅や高さ等の形状を考慮すると、角θが135°を超える角度では工業的に実用可能な凹凸形状を形成しえないと考える。
【0040】
また、キャリア基材表面4の凹凸形状は、その断面観察におけるキャリア凹部11及び突起部7のピッチが30μm〜200μmとする。ここで、キャリア凹部11及び突起部7のピッチとは、キャリア基材表面4に複数の突起部7を備える場合に、隣り合う突起部7どうしの距離を示すものであり、例えば、図1(5)に示すように、一の突起部7の突出開始点から次の突起部7の突出開始点までの距離Lを示すものである。本発明の突起部7の突出高さ及び側壁面8の傾き等の形状や、微細形状加工に適した製造方法を考慮すると、ピッチが30μm〜200μmが本発明の利点が生かせる範囲と考える。
【0041】
なお、突起状レジストパターン6を除去後のキャリア基材表面4(突起部7を含む)には、目的に応じて、めっきやエッチング等によって、凹凸形状を更に加工することも可能である。
【0042】
以上の方法を採用することにより、キャリア基材表面4に形成する凹凸形状の微細化に対応することができる。また、電解めっき法を用いてレジスト凹部3を埋設めっきすることにより形成した突起部7は滑らかな表面を有し、この突起部7とキャリア基材表面4との上面に形成される被覆金属層9も滑らかな表面形状とすることが可能となり凹凸形状を美麗に仕上げることができる。
【0043】
工程C: 凹凸形状が形成されたキャリア基材の表面に、気相成長法を用いて被覆金属層9を形成し、凹凸形状を備える複合金属箔とする。
【0044】
なお、ここで言う気相成長法は、PVD法やCVD法と称される全てのものを含む。CVD法としては、化学気相成長、ガスソースMBE、ALCVD、プラズマCVDが含まれる。また、PVD法としては、真空蒸着法、各種イオンガンを備えるスパッタリング蒸着法、イオンプレーティング法等が含まれる。特に、スパッタリング蒸着法又は電子ビーム蒸着法はチタン等を極めて緻密且つ均一に成膜することができ、また、キャリア基材に対して密着性が高く且つ平滑な成膜面を形成することができるので、チタン、タンタル、ニオブ等の高融点の金属、合金、化合物等の薄膜化に好適であり高品質な複合金属箔を提供可能となり好ましい。更に、スパッタリング蒸着法では湿式表面処理加工のように溶剤等を使用しないので、溶剤処理や反応物による大気汚染防止処理等が不要である。
【0045】
被覆金属層9は、厚さ1μm〜15μmである。被覆金属層9の厚さが1μm未満であると、実用上の機械的強度や被覆精度が不十分となる。一方、厚さが15μm超のものも製造は可能だが、工業的にみてコスト高となるうえに、寸法精度が低下する。
【0046】
ここで、本発明に係る複合金属箔は、このキャリア基材表面4に形成される凹凸形状の表面に、気相成長法により成膜することにより製造されるので、凹凸形状の設計の自由度が高い点に特徴がある。なお、突起部7の突出高さの上限は、レジスト層が設定可能な厚さによって規定される。そして、キャリア基材表面4に形成される凹凸形状は、突起状レジストパターン6の形状に規定される。また、レジスト凹部3は、少なくとも埋設めっきに必要なキャリア基材表面4の表出が必要であるので、レジスト凹部3の底面はキャリア基材表面4である。
【0047】
〈複合金属箔〉
本発明に係る複合金属箔は、例えば、図1に示すように、キャリア基材表面4に備える凹凸形状に沿った被覆金属層9を備える金属箔であって、上述した複合金属箔の製造方法を用いて得られるものである。
【0048】
被覆金属層9は、厚さが1μm〜15μmであり、チタン等から構成された金属であることが好ましい。なお、本発明に係る複合金属箔や成形金属箔を燃料電池のセパレータに使用する等、耐食性が要求される場合は、チタン、タンタル、ニオブの合計の組成比を全体の70%以上とすることが好ましい。そして、複合金属箔1の凹凸形状は、その断面観察におけるキャリア凹部11及び突起部7のピッチが30μm〜200μmである。
【0049】
また、断面観察における最大厚さが、38μm〜400μmである。断面観察における最大厚さは、例えば、図2(5)に示す複合金属箔の断面図においては、両面の突起部の最大突出部分間の厚さTが最大厚さとなる。最大厚さは、キャリア基材2や突起部7の形状、安定的な強度を考慮すると38μm以上が好ましいと考える。一方、400μm超の場合、製造コストの点で本発明に係る製造方法を用いるメリットがない。
【0050】
また、キャリア基材の材質は、上記複合金属箔の製造方法で説明した通り、導電性を備える限り特段の限定は必要ない。キャリア基材の形状については、複合金属箔の用途に応じて選択されるものであり、特段の限定は必要ないが、機械的強度や、取り扱い性の観点から、厚さが18μm以上であることが望ましいと思われる。
【0051】
ここで、本発明に係る複合金属箔の製造方法は、図1に示すように、凹凸形状を形成したキャリア基材表面4に気相成長法により被覆金属層9を形成することに特徴がある。従って、本発明の複合金属箔1は、複合金属箔1の一の面に凹凸形状を備えて被覆金属層9を備えたもの、片面に凹凸形状を備え、且つその両面に被覆金属層9を備えたもの、図2に示すように、両面に凹凸形状を備え、且つ両面に被覆金属層9を備えたものを含むものである。
【0052】
なお、図2は、両面に凹凸形状を有する状態を分かりやすくするために、両面の凹凸状態が対称である例を示したが、これに限定されるものではない。本発明の製造方法では、複合金属箔の各面の凹凸形状の設計の自由度が高い点に特徴があるので、各面の凹凸形状が異なっているものであっても製造可能である。例えば、複合金属箔の一方の面のキャリア凹部により形成された溝の方向と、他方の面のキャリア凹部により形成される溝の方向とが、互いにねじれの位置となるように形成されるものであっても良い。
【0053】
〈成形金属箔の製造方法〉
本発明に係る成形金属箔10は、先に説明した通り、上記複合金属箔1からキャリア基材2を除去した被覆金属層9のみからなる凹凸形状を有するものである。即ち、複合金属箔の製造方法で説明した工程A〜工程Cを経た後、例えば、図3(6)に示すように、複合金属箔1からキャリア基材2を除去することにより被覆金属層9のみを分離採取して得られるのである。従って、成形金属箔の製造方法に含まれる前記工程A〜工程Cの説明は割愛し、図3に示す例を参照して、複合金属箔1から、前記キャリア基材2を分離する工程から説明する。
【0054】
本発明に係る成形金属箔の製造方法は、例えば図3(5)に示す様に、まず、前記工程A〜工程Cによって片面に凹凸形状を備えるキャリア基材2の表面に被覆金属層9を形成した複合金属箔1を作製する。その後、図3(6)に示すようにキャリア基材2を除去するものである。詳しくは、キャリア基材2の片面に凹凸形状の被覆金属層9を備える複合金属箔1を、被覆金属層9の構成金属とキャリア基材2の構成金属との選択エッチング可能な溶液に浸漬し、キャリア基材の金属成分のみをエッチング除去して成形金属箔とする。なお、上述の通り、突起部7はキャリア基材2の一部であるので、当該突起部7も含めてキャリア基材はすべて除去される。エッチング液は、被覆金属層9を溶かすことなく、キャリア基材2を溶解可能な溶液として、塩酸や過酸化水素を加えた塩銅、塩鉄などの銅エッチング液を用いる。
【0055】
ここで、厚さが10μm程度で凹凸形状に沿って被覆する被覆金属層9の部分のみからなる成形金属箔10を、キャリア基材無しで製造することは困難である。従って、成形金属箔10では、キャリア基材2(突起部7を含む)は、成形金属箔の製造過程に必要となる部材であって、製造された成形金属箔10を構成しないことを明記しておく。
【0056】
被覆金属層9を残しながらキャリア基材2をエッチングにより除去可能に溶解するためには、被覆金属層9の金属成分及びエッチング液の種類により、キャリア基材として選択可能な金属成分が決まる。そこで、チタン等から構成された金属を溶解しないエッチング液に可溶な金属成分をキャリア基材として用いればよい。チタン等から構成された金属を溶解しないエッチング液に可溶な金属は多く考えられ、所望のめっきができる限り、浴組成、めっき条件等を任意に変更可能であり、特段の限定は要さない。例えば、銅、ニッケルまたはこれらの合金等からなる金属めっき層とすると経済性の点で好ましい。また、金属めっき層の厚さは、電解めっきの電析時間により調整できる。また、キャリア基材には金属素材を用いると、再利用が容易であり利便性が高いため好ましい。
【0057】
なお、被覆金属層9は、チタン等により構成される金属層からなる単層構造である例の他に、これと異なる異種金属とからなる二層以上の構造であっても良い。
【0058】
〈成形金属箔〉
成形金属箔10は、チタン等で構成された金属成分で構成されたものであることが好ましい。更に、成形金属箔10は、チタン等で構成された金属からなる単層のものや、銅からなるキャリア基材表面4に、まずチタン等により構成された金属層を形成し、銅、ニッケル等からなる金属層を形成し、更にチタン箔からなる金属層を形成した三層構造の被覆金属層からなる例等が考えられる。ここで、複合金属箔1の被覆金属層9の厚さは1μm〜15μmであるが、凹凸形状を備える金属箔は、厚さが7μm未満の場合は単体での強度が不足するため、支持箔が必要となる。このような場合に、後者のように複数構造の被覆金属層からなる成形金属箔とする場合、チタンからなる極めて薄い金属層を、銅、ニッケル等からなる金属層によって支持することができ、薄くて取り扱いが難しいチタン箔の物理的強度を補強することができる。なお、本発明に係る成形金属箔10は、エッチングにより複合金属箔1からキャリア基材2を除去するので、複数層からなる成形金属箔10の表面を構成する金属は、キャリア基材の構成金属ならびに、このキャリア基材をエッチングする溶液を考慮して設定する必要がある。表面を全てチタン等で構成された金属からなる成形金属箔10とすると、エッチングする溶液の選択が容易となる。
【0059】
また、成形金属箔10は、厚さ10μm〜50μmであることが好ましい。ここで、厚さが10μmを下回ると、成形金属箔としての形状の維持が困難となる。一方、成形金属箔の厚さが50μmを超えるものの場合、微細な凹凸形状に気相成長法を用いて形成する本発明の成形金属箔のメリットが発揮されない。
【0060】
本発明に係る成形金属箔は、気相成長法により成膜するので、緻密且つ均一で平滑な成膜面を形成することができ、微細且つ美麗な凹凸形状を備えるものとなる。また、チタン等、表面が酸化しやすい金属により形成された金属箔は良好な耐食性を備えたものとなる。また、エッチング液を用いてキャリア基材2を溶解させて除去するので、物理的手段で剥離する場合に比べて、不要な力が作用することがなく、成形金属箔を破損しにくく、美麗な仕上げを容易に行うことができる。このように、高品質な成形金属箔を、従来のプレス法に比べて、製造工程数を抑えて製造可能となり、製造ロスの機会を減らすことも可能となり、生産性の向上を図ることができる。
【0061】
以下、実施例を示して本発明を具体的に説明する。なお、本発明は以下の実施例に制限されるものではない。
【0062】
なお、本実施例1では、チタン層を被覆金属層9とする例を示すが、これに限定されるものではなく、例えば、キャリア基材表面に、異種金属から構成される金属層を気相成長法により成膜した後、上述のチタン層を形成する等、被覆金属層9を複数層からなる金属層としても良い。
【実施例1】
【0063】
図2は、実施例1における複合金属箔の製造工程を説明するための模式図である。実施例1では、本発明に係る複合金属箔の製造方法によって、図2(5)に示すように、両面に凹凸形状を有し、銅からなるキャリア基材と、当該キャリア基材表面がチタンを主材料とする膜で覆われた複合金属箔を製造する例を示す。
【0064】
工程A: キャリア基材表面4に突起状レジストパターン6を形成する。キャリア基材2として35μm厚の圧延銅箔を用い、フォトリソグラフィを用いて、当該キャリア基材表面4に突起状レジストパターン6を形成した。まず、キャリア基材2である圧延銅箔の表面の圧延油を脱脂処理により除去した後、光沢面を希硫酸で洗浄し、その後、水洗、乾燥した。次に、図2(1)に示すように、レジスト層5としての25μm厚のドライフィルムを乾燥後の銅箔の光沢面に配し、ラミネータにより貼り付けた。
【0065】
次に、このレジスト層5を、キャリア基材表面4に形成すべき凹凸形状を形成するための突起状レジストパターン6に成形した。即ち、キャリア基材に形成すべき凹凸形状の面形状と同じ表面形状を有する連続パターンのフォトマスクを、レジスト層5の表面に密着または接近させて配置し、紫外線を照射して上記ドライフィルムを露光現像した。次いで、フォトマスクのパターンによる未露光部分を1%炭酸ナトリウム溶液により剥離して除去することで、図2(2)に示すように所望の突起状レジストパターン6に成形した。突起状レジストパターン6は、複合金属箔1に形成される凸部に対応する位置のキャリア基材表面4に断面が略台形状の突起状に形成された。
【0066】
工程B: 次に、キャリア基材表面4と突起状レジストパターン6とにより形成されたレジスト凹部3に、電解めっき法を用いて埋設めっきを行った。金属めっき層は銅で構成され、浴組成をCuSO・5HO濃度250g/l及びHSO濃度90g/l、5A/dmの電流密度、浴温50℃のめっき条件として設定し、厚さが13μmの銅めっき層を電析させた。この段階で、突起状レジストパターン6の厚さが25μmであり、銅めっき層の厚さは13μmであるので、銅めっき層は突起状レジストパターン6より低く窪んだ状態とした。
【0067】
続いて、突起状レジストパターン6を、50℃に加温した3%濃度の水酸化ナトリウム水溶液中に浸漬して、レジスト成分を膨潤させ除去した。こうして、突起状レジストパターン6を除去することにより、キャリア基材表面4に突起部7が形成され、キャリア基材表面4に凹凸形状の突起部7が形成された。
【0068】
突起部7は、突起部7の断面において略台形状であり、キャリア基材表面4からの突出高さが13μmであり、上辺(突起部の上面)が48μmであり、側壁面8は、当該突起部間に露出するキャリア基材表面4と側壁面8とでなす角θが100°の傾きを有するものであった。そして、複数の突起部が100μmのピッチでキャリア基材表面に形成させた。これにより作製すべき複合金属箔1の凹凸形状に対応した凹凸形状を有するキャリア基材を得た。
【0069】
工程C: 凹凸形状が形成されたキャリア基材表面4にスパッタリング蒸着法により金属箔を形成し被覆金属層9とした。即ち、キャリア基材表面4に対して、チタン材料からなるターゲットに不活性ガスをプラズマ化して加速電圧でスパッタして、キャリア基材表面4の凹凸形状に沿うように成膜させて厚さが2μmのチタン層(被覆金属層9)を形成した。
【0070】
ここまでの工程を、キャリア基材の両面に対して行うことにより図2に示すように、両面に凹凸形状を備える複合金属箔1が得られた。即ち、厚さ35μmの銅からなるキャリア基材2の両面には、突出高さが13μmである複数の突起部7が100μmのピッチで形成され、当該突起部7の表面に存在するチタンを主材料とする被覆金属層9の厚さが2μmであった。従って、両面に形成された凹凸形状に沿って被覆金属層9を備え、最大厚さが65μmである複合金属箔が得られたのである。
【0071】
実施例1により製造された複合金属箔は、微細且つ美麗な凹凸形状を備えるものとなる。そして、スパッタリング蒸着法によりチタンを成膜するので、上述の通り、緻密且つ均一で平滑な成膜面を形成することができる。更に、キャリア基材である銅の表面を覆うようにしてチタン層が形成される構成となっているので、小型且つ軽量で耐食性に優れ、且つ各面に異なる凹凸形状を備える複合金属箔は、例えば、燃料電池のセパレータとして好適である。即ち、燃料電池の場合、セパレータ材料と電解質が接する部分などで腐食が起こると電解質を損失して内部抵抗が増加するが、チタンは耐熱性と耐食性が良好であるため、上記内部抵抗増加要因への対応に適しているのである。更に、セパレータの小型化、軽量化に寄与でき、燃料電池の性能向上に寄与するものである。
【実施例2】
【0072】
実施例2では、本発明に係る成形金属箔の製造方法によって、チタンを主材料として、断面形状が高さ15μmの略台形状の凸部が複数連続して形成され、厚さ13μmである成形金属箔を製造する例を示す。即ち、実施例1では、キャリア基材を含む複合金属箔としたのに対し、実施例2の金属箔は、複合金属箔作製後にキャリア基材を除去する点で実施例1と異なる。
【0073】
まず、図1に示す例の様に、キャリア基材2の片面に被覆金属層9を備える複合金属箔1を製造し、次に、図3(6)に示すように、この複合金属箔1を、過酸化水素を加えた塩銅からなる銅エッチング液に浸漬し、キャリア基材2のみをエッチング除去して成形金属箔10を得た。
【0074】
上記方法で得られた成形金属箔10は、チタンを主材料とし、厚さが30μmであり、同じ形状の凹凸形状が100μmのピッチで複数形成されたものである。
【0075】
実施例2により製造された成形金属箔は微細且つ美麗な凹凸形状を備えるものとなる。そして、チタンは表面が酸化しやすい特性があり、スパッタリング蒸着法により形成された金属箔は良好な耐食性を備えたチタン箔となる。このように、高品質な成形金属箔を製造工程数を抑えて製造可能となる。そして、従来のプレス法に比べて、微細で凹凸形状の自由度が高い成形金属箔を得ることができる。
【産業上の利用可能性】
【0076】
本発明に係る複合金属箔ならびに成形金属箔の製造方法は、凹凸形状の制約が少なく、微細加工に適しているので、幅広いニーズに対応する凹凸形状を有する複合金属箔を製造することができる。更に、従来のプレス法に比べて製造工程が格段に少ないので、高品質の複合金属箔を効率よく製造することができる。また、チタン、タンタル、ニオブ等、従来製造が難しかった金属に凹凸形状加工を施した金属箔の製造にも適しているので、耐食性、耐熱性、耐酸化性に優れた金属からなり、緻密且つ均一に形成された高品質な複合金属箔の製造が可能となり、凹凸形状を備える金属箔の素材選択の幅が広がる。従って、例えば、燃料電池用のセパレータ、化学反応を促進する触媒の担持体、液体に金属イオンを付与し飲料水等の液体を改質するための液体改質用フィルタ、電磁波シールド、磁性用材料、導電用材料、小型のヒートシンク、その他広範囲な分野において、小型化、軽量化、あるいは高密度化による高効率化を図ることが可能なものである。
【図面の簡単な説明】
【0077】
【図1】本発明に係る複合金属箔ならびに成形金属箔の製造方法に係る工程を説明するための模式図である。
【図2】実施例1における複合金属箔の製造方法に係る工程を説明するための模式図である。
【図3】実施例2における成形金属箔の製造方法に係る工程を説明するための模式図である。
【符号の説明】
【0078】
1 ・・・・複合金属箔
2 ・・・・キャリア基材
3 ・・・・レジスト凹部
4 ・・・・キャリア基材表面
6 ・・・・突起状レジストパターン
7 ・・・・突起部
8 ・・・・側壁面
9 ・・・・被覆金属層
10 ・・・・成形金属箔
11 ・・・・キャリア凹部

【特許請求の範囲】
【請求項1】
凹凸面を備える複合金属箔の製造方法であって、以下の工程A〜工程Cを含むことを特徴とする複合金属箔の製造方法。
工程A:複合金属箔に備える凹凸形状と同じ凹凸形状をキャリア基材の表面に形成するための型枠となる突起状レジストパターンを、キャリア基材の表面に形成する工程。
工程B:前記キャリア基材表面と突起状レジストパターンとにより形成されたレジスト凹部に、電解めっき法を用いて埋設めっきを行った後、前記突起状レジストパターンを除去して、キャリア基材の表面に突起部を形成することにより表面に凹凸形状を備えるキャリア基材とする工程。
工程C:凹凸形状が形成された前記キャリア基材の表面に、気相成長法を用いて被覆金属層を形成し、凹凸形状を備える複合金属箔とする工程。
【請求項2】
前記工程Aは、キャリア基材の表面にレジスト層を形成し、フォトマスク法によりキャリア基材表面に前記突起状レジストパターンを形成することを特徴とする請求項1に記載の複合金属箔の製造方法。
【請求項3】
前記気相成長法は、スパッタリング蒸着法又は電子ビーム蒸着法のいずれかである請求項1又は請求項2に記載の複合金属箔の製造方法。
【請求項4】
前記凹凸形状を備えるキャリア基材において、前記キャリア基材表面に形成された突起部の断面における側壁面は、当該側壁面と、突起部間に露出するキャリア基材表面とでなす角が90°〜135°の範囲の傾きを有するものである請求項1〜請求項3のいずれかに記載の複合金属箔の製造方法。
【請求項5】
前記キャリア基材表面に形成された突起部の突出高さが10μm〜50μmである請求項1〜請求項4のいずれかに記載の複合金属箔の製造方法。
【請求項6】
キャリア基材表面に備える凹凸形状に沿った被覆金属層を備える複合金属箔であって、
請求項1〜請求項5のいずれかに記載の複合金属箔の製造方法を用いて得られることを特徴とする複合金属箔。
【請求項7】
前記被覆金属層が、チタン、タンタル、ニオブあるいはこれらの合金のいずれかで構成されたものである請求項6に記載の複合金属箔。
【請求項8】
前記被覆金属層は、厚さ1μm〜15μmである請求項5又は請求項6に記載の複合金属箔。
【請求項9】
断面観察における最大厚さが、38μm〜400μmであることを特徴とする請求項6〜請求項8のいずれかに記載の凹凸形状を備える複合金属箔。
【請求項10】
前記凹凸形状は、その断面観察におけるキャリア凹部及び突起部のピッチが30μm〜200μmである請求項6〜請求項9のいずれかに記載の複合金属箔。
【請求項11】
前記キャリア基材表面に備える突起部は、キャリア基材の両面に形成されるものである請求項6〜請求項10のいずれかに記載の複合金属箔。
【請求項12】
請求項6〜請求項10のいずれかに記載の複合金属箔の内、キャリア基材の片面に凹凸形状の被覆金属層を備える複合金属箔を用いて得られる金属箔であって、
当該金属箔のキャリア基材を除去することにより、被覆金属層のみを分離採取して得られたことを特徴とする成形金属箔。
【請求項13】
厚さ10μm〜50μmである請求項12に記載の成形金属箔。
【請求項14】
チタン、タンタル、ニオブあるいはこれらの合金のいずれかの金属成分で構成されたものである請求項12又は請求項13に記載の成形金属箔。
【請求項15】
チタン、タンタル、ニオブあるいはこれらの合金のいずれかで構成されたものと、これと異なる異種金属とからなる二層以上の構造である請求項12又は請求項13に記載の成形金属箔。
【請求項16】
請求項12〜請求項15のいずれかに記載の成形金属箔の製造方法であって、
キャリア基材の片面に凹凸形状の被覆金属層を備える複合金属箔を、被覆金属層の構成金属とキャリア基材の構成金属との選択エッチング可能な溶液に浸漬し、キャリア基材の金属成分のみをエッチング除去することを特徴とした成形金属箔の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2008−7792(P2008−7792A)
【公開日】平成20年1月17日(2008.1.17)
【国際特許分類】
【出願番号】特願2006−176150(P2006−176150)
【出願日】平成18年6月27日(2006.6.27)
【出願人】(000006183)三井金属鉱業株式会社 (1,121)
【Fターム(参考)】