説明

プラズマCVD装置及びプラズマCVD装置を用いたシリコン系膜の製造方法

【課題】
薄膜シリコン太陽電池の微結晶シリコン膜及び多結晶シリコン太陽電池のパッシベーション膜等を製造するプラズマCVD装置の応用分野においては、生産性向上及び低コスト化を図るために、大面積基板を対象に高速、高品質のシリコン系膜の形成が可能なプラズマCVD装置及びその装置を用いたシリコン系膜の製造法が求められている。特に、微結晶シリコン膜の高品質・高速製膜化が可能なプラズマCVD技術が強く求められている。
【解決手段】
一対の平行平板電極を備えたプラズマCVD装置において、ガス噴出孔を有する電極に、凹部と平坦部を設け、該凹部に原料ガスを噴出する複数の原料ガス噴出孔を配置し、該平坦部に希釈ガスを噴出する複数の希釈ガス噴出孔を配置するとともに、該希釈ガス噴出孔をその方向が基板表面の法線方向以外に向くように設置させるということを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、プラズマを利用して基板の表面に薄膜を形成するプラズマCVD装置及びプラズマCVD装置を用いたシリコン系膜の製造方法に関する。
また、本発明は、特に、薄膜太陽電池の発電膜であるアモルファスSi膜及び微結晶Si膜、並びに液晶デイスプレイの等薄膜トランジスタ等の絶縁性薄膜(窒化シリコン膜、酸化シリコン膜等)の形成に用いられるプラズマCVD装置及びプラズマCVD装置を用いたシリコン系膜の製造方法に関する。
また、多結晶シリコン太陽電池の反射膜及びパッシベーション膜等に用いられる窒化シリコン膜及び酸化シリコン膜等の形成に用いられるプラズマCVD装置及びプラズマCVD装置を用いたシリコン系膜の製造方法に関する。
【背景技術】
【0002】
プラズマCVD装置及びプラズマCVD法に関する典型的な従来例を図20に示す。図20において、真空容器100にはプラズマを発生させるためのガスシャワー孔(ガス噴出孔)101を有する第1の電極102と基板103を載置する電気的に接地された第2の電極104が平行に設置されている。第1及び第2の電極102、104には、高周波電源105、インピーダンス整合器106及び同軸ケーブル107からなる電力供給系108から、例えば周波数が13.56MHzの電力が供給される。
ガスシャワー孔(ガス噴出孔)101には、ガス供給源109、第1のガス導入管110、バルブ111及び第2のガス導入管112から成るガス供給系113から、例えばシランガス(SiH4)と水素ガス(H2)の混合ガス114が供給され、該ガスシャワー孔(ガス噴出孔)101からその混合ガス114が噴出する。噴出した混合ガス114は、図示しない真空ポンプにより、排気管115a、115bを介して排気される。基板103は第2の電極に内蔵された電気ヒータ(図示しない)により所定の温度に加熱される。
【0003】
図20の装置を用いて基板103の表面に、例えば微結晶Si薄膜を形成する場合、ガスシャワー孔(ガス噴出孔)101からシランガス(SiH4)と水素ガス(H2)の混合ガス114を噴出させ、第1の電極と第2の電極間に、例えば周波数が13.56MHzの電力を供給する。該電力により該一対の電極間に強い電界が発生する。強い電界が発生すると、その電界により加速された電子がシランガス(SiH4)と水素ガス(H2)の分子に衝突し、電離作用が発生する。ガス分子が電離すると、グロー放電即ちプラズマが発生する。プラズマが発生すると、プラズマ中の電子及びイオン等がシランガス(SiH4)と水素ガス(H2)の分子に衝突し、それを解離・分解させるので、種々のプラスイオン及びマイナスイオンの他に、化学的に活性で、電気的には中性の種々のラジカルが発生する。この場合、ラジカルとしては、例えば、SiH、SiH、SiH、H等が発生する。そして、ラジカルは、プラズマの中から基板表面まで拡散現象で移動し、基板の面上に堆積する。その結果、例えば、アモルファスSiあるいは微結晶Siが基板上に形成される。
なお、高品質のアモルファスSiあるいは微結晶Siを形成させる場合には、プラズマ中のSiHの濃度を増大させることと、それを実現するための条件を把握することがキーポイントであることが、一般に知られている。また、粗悪な膜が形成される場合の主たる原因は、SiHプラジカルを主体とした反応であることが、一般に知られている。また、プラズマ中のSiHの濃度が増大すると、プラズマの気相中でパウダー(パーテイクル)が発生し、そのパウダーが製膜される膜に混入し、その結果、粗悪な膜が形成されるということも、一般に知られている
【0004】
製膜されたシリコン系薄膜の膜厚分布は、図20の装置を用いる場合、非特許文献1に記載のように、概略、次式で表わされる。
I(x)=cos(2πx/λ)
ただし、I(x)は膜の厚み、xは基板中央からその周辺方向への距離、λは使用電力の波長(プラズマ中での波長)である。
この式は、膜の均一性は、使用される電力のプラズマ中での波長に依存することを示している。例えば周波数が13.56MHz(真空中の波長λ=22.1m)、プラズマ中での波長短縮率λ/λが0.65の場合、cos(2πx/λ)の平坦部は基板中央点近傍のλ/8の範囲であるとすると、直径1.8m程度の面積に亘ってほぼ均一な膜が得られる、という意味である。
【0005】
プラズマCVD装置及びプラズマCVD法の産業分野への応用における代表例として、薄膜太陽電池分野及び液晶デイスプレイ分野がある。そして、そのいずれの応用においても、半導体薄膜製品の高性能化及び低コスト化が求められており、そのニーズに対応するための研究開発が行われている。具体的には、大面積化、高品質化、高速製膜化が可能なプラズマCVD装置及びプラズマCVD法の実用化を目指した研究開発が行われている。
最近、高速で高品質の膜を形成するために、ホローカソード放電方式によるプラズマ生成装置の開発例が多くなっている。なお、ホローカソード放電によるプラズマ生成法は、低電力で高密度プラズマが得られるということが、一般に知られている。
しかしながら、上記ニーズに十分に対応できる装置及び方法は発表されていない。即ち、大面積基板を対象にした応用において、高速で、高品質のシリコン系膜を製造可能であるプラズマCVD装置及びプラズマCVD装置を用いたシリコン系膜の製造方法は、依然として実現されていない。その為、新規技術の創出が望まれている。
【0006】
特許文献1には、課題として、プラズマによるイオンダメージの抑制、膜の組成比や製膜速度の制御、プラズマ生成の安定性、及びパーテイクル発生の抑制が記載されている。
そして、その課題解決のために、次の発明が記載されている。即ち、特許文献1に記載の発明は、真空排気される真空容器と、この真空容器内に収納されていて、内部にガスが導入され、かつ、下面にそのガスを噴出させる多数のガス噴出孔を有する高周波電極と、前記真空容器内に高周波電極に対向するように収納されていて、基板を載せるホルダ兼電極とを備えるプラズマCVD装置において、内部にガスが導入されるものであって、上下に貫通している多数の貫通孔と前記ホルダ兼電極の面に当該ガスを噴出させる多数のガス噴出孔とを有する中間電極を、前記高周波電極とホルダ兼電極との間に、両電極の空間を仕切るように設け、この中間電極と高周波電極との間に高周波電力を供給するようにし、しかも前記真空容器内を真空排気するための排気口を前記ホルダ兼電極の裏側のほぼ中央部に位置するように設け、かつ前記高周波電極内に、膜を形成する原料となる原料ガスを除く全てのガスを導入してそれを当該電極のガス噴出孔から噴出させ、かつ前記中間電極内に、原料ガスまたはそれと希釈ガスとの混合ガスを導入してそれを当該電極のガス噴出孔から噴出させるようにしており、更に前記高周波電極内に環状のヒータを設けていることを特徴とする。
【0007】
特許文献2には、課題として次のことが示されている。薄膜シリコン太陽電池用i型微結晶シリコン薄膜の製造においては、膜厚が2.5μmの微結晶シリコン薄膜を5分程度の時間で堆積できる高速製膜(例えば、8.3nm/s以上)を実現することが求められている。従来のプラズマCVD法による微結晶シリコン薄膜の堆積法では、シランガス/水素ガスの混合ガスにおけるシランガスと水素の流量比、即ち、(SiH)/(SiH+H)を調整することによって、結晶性を制御しようとするため、膜の結晶性と堆積レートとはトレードオフの関係にある。つまり、結晶性を向上させる製膜条件として、水素の流量を増大させると(SiHの流量を減少させる)、堆積レートが大きく低下し、1nm/s程度以下になり、上記8.3nm/s以上の堆積レートが得られないという問題がある。
また、従来のプラズマCVD法による微結晶シリコン薄膜の堆積法では、堆積レートを上げる目的で高周波電力を増加させて製膜する。この場合、シランガスはプラズマ中で電子衝突によって容易に解離するために、高周波電力を増加させてプラズマの電子密度が高くなると、SiH、SiH、Siが多量に生成され、気相中でパーテイクルが生成されてしまい、欠陥の多いシリコン膜が生成されるという問題があった。
その課題解決のために、次の発明が記載されている。即ち、成膜室内に基板ステージとプラズマ電極とが対向して配設され、前記プラズマ電極にシランガスと水素ガスとを供給するとともに、高周波電圧を印加してプラズマを生成し、前記基板ステージに保持された基板上に微結晶シリコン薄膜を形成する薄膜形成装置において、前記成膜室の外部から前記プラズマ電極に供給される前記シランガスを前記基板上に吹出させるシランガス供給手段と、前記成膜室の外部から前記プラズマ電極に供給される前記水素ガスを水素プラズマにして、前記シランガス供給手段から吹出される前記シランガスに接触させるように前記基板上に吹出させて、前記シランガスをプラズマ化させる水素供給手段と、を備えることを特徴とする。
【0008】
特許文献3には、課題として次のことが示されている。従来のプラズマCVD装置においては、原料ガスの高圧・枯渇条件を作ることにより高速製膜を図ることができる。しかし、この方法は十分でなく、例えば工業における微結晶シリコン薄膜太陽電池作製に求められる製膜速度(約10nm/s)は達成できていない。また、高圧条件下においては気相中でパウダーが形成されやすく、装置の稼働率を低下させている。
そして、その課題解決のために、次の発明が示されている。即ち、特許文献3は、反応容器、該容器内に反応ガスを導入する手段、ガスを排気する手段、該容器内に収容されたカソード及びアノードから成る放電用電極並びに該電極に電力を供給する電源とを有し、反応容器内に設置された基板表面に薄膜を形成するプラズマCVD装置において、該反応ガスを該基板面内に均一に導入するシャワーヘッド型導入口と該カソード電極を一体型とし、該カソード電極表面に複数の凹部を設け、該凹部の底部に該凹部の短辺よりも小さな穴を穿ち、該穴を反応ガス導入口としたことを特徴とする。
【0009】
特許文献4には、課題として、次のことが示されている。薄膜太陽電池の分野では発電能力と生産効率の向上のために大面積化が求められている。ところが、平行平板電極を有するプラズマCVD装置で製造された薄膜太陽電池の光電変換特性は基板上の局所的な平面位置に依存して変動する傾向が強くなるという事実がある。これは、製膜室内で異常放電が発生することに起因するものである。この傾向は、製膜条件として、高圧力(反応ガス圧が高い場合)、狭電極間隔(基板と対向電極との間の間隔が狭い場合)及び高パワー(高い高周波パワー密度の場合)を選定した場合に顕著となる。なお、この条件で発生するプラズマの状況は、その強度が不均一となり、電極間以外でもプラズマが発生するという異常放電となる。
そして、その課題解決のために、次の発明が示されている。即ち、特許文献4に記載の発明は、プラズマCVD反応室と、前記反応室内において成膜用基板を支持するための基板支持電極と、前記基板に対面すべき対向電極を備え、前記対向電極は中空であって、前記基板に向けて反応ガスを吹出すために、複数のガス吹出孔及び複数の差圧調整孔を有するガス吹出面板を含み、前記差圧調整孔は前記ガス吹出孔の入口側の孔径よりも大きな孔径を有し、前記ガス吹出孔の長さが前記ガス吹出面板の厚さより小さく、そのガス吹出孔の入口側が前記差圧調整孔に接続されており、前記ガス吹出面板が前記基板と対向する面において、プラズマの発生を促進するためのプラズマ促進溝が形成されていることを特徴とする。
【0010】
特許文献5には、課題として、次のことが示されている。従来のホローカソード放電を用いるカソード電極は、平板のカソード電極を構成する板材を切削等の加工によって穴を形成することによって、ホローカソード電極となる凹凸部を形成している。このカソード電極の凹部の底面は一平面で形成され、凸部の端部からの距離およびアノード電極との距離を一定とする構成である。この構成では、凹部内における反応ガスのガス噴出量の分散状況やプラズマ放電の状態等は、カソード電極全面で一様とならず、場所によって異なることが予想される。
そして、その課題解決のために、次の発明が示されている。即ち、特許文献5に記載の発明は、高周波を印加して高周波容量結合型プラズマを形成する電極であって、カソード電極はアノード電極と対向して配置し、アノード電極と対向する対向面は、底面からなる凹部と、当該凹部の底面からアノード電極側に向かって突出する複数の突出部から形成される凸部とからなる凹凸形状を有し、前記凸部の少なくとも何れか一つの突出部は、側面に反応ガスの噴出を可能とする反応ガス噴出孔を少なくとも一つを有し、前記凸部を形成する全ての突出部は、アノード電極側の端部の高さレベルを同一とし、前記凹部を形成する底面は、前記突出部の端部の高さレベルからの距離を異にする複数の底面部分を含むことを特徴とする。
【0011】
【特許文献1】特許第2601127号(図1、図2)
【特許文献2】特開2010−73970(図1〜図3)
【特許文献3】特開2004−296526(図1、図3、図4)
【特許文献4】特許4578693(図1−図9)
【特許文献5】特開2009−253102(図7、図8)
【非特許文献1】A.Perret、P.Chabert、J.P.Booth、J.Jolly、J.Guillon and Ph.Auvray:Applied Physics Letters、Vol.83、No.2(14 July 2003)、243−245.
【発明の開示】
【発明が解決しようとする課題】
【0012】
従来のプラズマCVD装置及びプラズマCVD法には、上記特許文献1〜5に指摘されているようないろいろな課題があり、半導体関連の産業界のニーズへの対応が十分に出来ない。特に、薄膜太陽電池分野及び液晶デイスプレイ分野でのニーズ、即ち、大面積基板に、高速で、高品質の膜を形成可能であるプラズマCVD装置及びプラズマCVD装置を用いたシリコン系膜の製造方法の実用化に関し、充分に対応することが出来ないという課題がある。
【0013】
また、上記特許文献に記載されている発明においても、以下に示すような問題を抱えており、上記ニーズに対応することが困難である。
以下に、上記特許文献1〜5に記載の発明によるプラズマCVD装置及びプラズマCVD法が抱える問題を説明する。
【0014】
先ず、特許文献1に記載の発明は、原料ガスを除く全てのガス(例えば、希釈ガス、反応性ガス)を高周波電極と中間電極の間(プラズマ発生領域)でプラズマ化し、そのプラズマを中間電極に設けられた貫通孔(開口)から、該中間電極の外側(基板側)へ引き出すとともに、該中間電極の外側(基板側)に設けられた原料ガス(シランガス)またはそれと希釈ガスと混合ガスを噴出する多数のガス噴出孔から吹き出す構造になっている。そして、本発明の技術的特徴として、プラズマ発生領域で発生した励起活性腫は、該プラズマ発生領域からガスの流れによって中間電極の貫通孔を通して該中間電極の外側(基板側)、即ち、プラズマ非発生領域へ導かれるということが記載されている。また、上記中間電極の貫通孔を通して該中間電極の外側へ導かれた励起活性腫と、該プラズマ非発生領域へ導かれた原料ガス(シランガス)は、基板の表面近傍で化学反応を起こして基板の表面に膜が形成されるということが記載されている。
ここで、上記発明では、(い)基板の上に堆積される膜を形成するに必要な励起活性腫は、該中間電極の貫通孔を通して該中間電極の外側へ導かれること、(ろ)上記励起活性腫とプラズマ化されていない原料ガスが基板近傍で化学反応を起こすということを前提に考えられている。
しかしながら、励起活性腫の中の電気的に中性の励起活性腫はガスの流れには余り影響されず、拡散現象に従う。即ち、上記貫通孔を通して流れる中性励起活性腫の量は、中性励起活性腫の濃度の勾配に比例した量になる。このことは、上記発明の構成においては基板近傍に導かれる中性励起活性腫の濃度は余り高くはならないということを意味する。励起活性腫の中の電気を帯びた励起活性腫はガスの流れには余り影響されず、電気的事象に従う。即ち、上記プラズマ発生領域と上記貫通孔の内部のプラズマはそれを囲うシースで保持されているので、該貫通孔を通して流れる電気を帯びた励起活性腫の量は、著しく少ない。このことは、上記発明の構成においては、基板近傍に導かれる電気を帯びた起活性腫の密度(濃度)は余り高くないということを意味する。
したがって、上記(い)及び(ろ)を前提とする上記発明では、高品質で高速製膜が可能なプラズマCVD装置を実現することが困難である。また、上記発明、あるいは上記発明と同様な構成を有するリモートプラズマ(成膜室の外部で生成するプラズマ)を応用したプラズマCVD装置は、一般的に、高速製膜に不適である。
【0015】
次に、特許文献2に記載の発明は、基板が配置される成膜室にプラズマ化された水素ガスと、プラズマ化されていないシランガス(原料ガス)を基板近傍に噴出させて接触させることにより、該水素ガスプラズマにより該シランガスをプラズマ化させ、その結果発生する水素プラズマとシランプラズマの励起活性腫で基板上にシリコン膜を形成させるものである。実施例として示されている装置の構成によれば、成膜室に基板ステージとプラズマ電極が対向して配置され、該プラズマ電極に複数の円形の貫通孔を設け、その複数の貫通孔のそれぞれの中心に、それぞれに円管を配置している。該円管の基板側の端部はシランガスの吹出し口で、貫通孔の基板側の端部は水素ガスの吹出し口である。なお、シランガスは上記複数の吹出し口から基板に向けて噴出され、水素ガスは吹出し口から基板に向けて噴出される。上記シランガスを吹出す円管と上記貫通孔のギャップ(隙間)には高周波電圧が印加され、水素プラズマを生成する。また、プラズマ電極に印加される高周波電圧により、該プラズマ電極と基板ステージの間にシランガスと水素ガスの混合ガスのプラズマが生成される。
なお、上記水素ガスの吹出し口とシランガスの吹出し口は、プラズマ電極の表面に位置しているので、その2つの吹出し口はそれぞれ、基板表面から等しい距離に位置する。また、吹出し口から噴出するガスの方向は基板の法線方向を向いている。
ここで、上記発明では、(は)基板が配置される成膜室にプラズマ化した水素と、プラズマ化されてないシランガスを導入させること、(に)水素プラズマのプラズマ密度は高く、例えば1x1010(cm−3)以上とし、シランプラズマのプラズマ密度は低く、例えば1x1010(cm−3)以下にすること、ということを前提に考えられている。
高品質で高速製膜を実現するには、高品質膜の形成に貢献するSiHラジカルの濃度を増大させ、かつ、高品質膜の形成を阻害する主要因であるSiHラジカルの発生を抑制する手段が必要である。しかしながら、SiHラジカル濃度の増大についての手段、SiHラジカル濃度の減少かあるいはその発生の抑制についての手段についての記載はない。また、それを示唆するような記載も無い。
更に、SiH及びSiHラジカル発生でのパラメータは、プラズマ密度の高低ではなく、プラズマのエネルギーの高低、あるいは電子温度の高低であるので、上記特許文献2に記載の発明の特徴、即ち上記(は)、(に)だけでは、SiHラジカルの濃度増大化、SiHの発生の抑制を行うことは困難である。
なお、粗悪膜の生成に貢献するSiHラジカルはSiHに9.47eV以上のエネルギーを持つ電子の衝突により発生し、良質膜の生成に貢献するSiHラジカルはSiHに8.75eV以上のエネルギーを持つ電子の衝突により発生するということが、一般に知られている。
更に、実施例として示されている装置構成によれば、水素プラズマは上記シランガスを吹出す円管と上記貫通孔のギャップ(隙間)と、上記プラズマ電極と基板ステージの間、即ち2つの空間で発生するので、該シランガスを吹出す円管と上記貫通孔のギャップ(隙間)での水素プラズマ生成の条件と、該プラズマ電極と基板ステージの間での水素プラズマ発生条件は著しく異なる。それ故、上記2つの空間領域で、安定したプラズマを同時生成することは困難である。このことは、上記実施例によって上記(は)及び(に)を実現することは極めて困難である、ということを意味でする。
したがって、上記発明においては高品質で高速製膜が可能なプラズマCVD装置を実現することが困難である。
更に、実施例として示されている装置構成によれば、水素プラズマを生成する空間である上記シランガスを吹出す円管と上記水素ガスを吹出す貫通孔のギャップ(隙間)を寸法を整えて製造することが技術的に困難であるとともに、特に、大面積基板を対象とする場合、製造コストが著しく高くなるということが推察される。
また、大面積基板を対象にして高品質の微結晶シリコン膜を成膜する場合、一般に、原料ガス(シランガス)の他に大量の水素ガスを供給する手法が用いられるが、上記実施例として示されている装置構成によれば、膨大な数のシランガス吹出し円管と上記水素ガス吹出し貫通孔から成る2重管の形で製造する必要があるので、技術的に困難であるとともに、製造コストが著しく高くなるということが推察される。
【0016】
次に、特許文献3に記載の発明は、カソード電極に設けられた凹部の底面に有るガス噴出孔から反応ガスを噴出させ、該凹部構造が有するホローカソー放電効果により、高密度のプラズマが生成させることを想定している。
しかしながら、高速製膜条件下で高品質のシリコン系薄膜を形成するには、SiHラジカル発生とSiHラジカル発生に関する制御手段が必要である。カソード電極に設けた凹部構造が有するホローカソー放電の効果を期待するということでは、高密度プラズマの発生が可能というだけであり、典型的なガスシャワー孔付き平行平板電極を用いたプラズマ生成において投入電力を増大してプラズマ密度を増大し、その結果、高速製膜化を図るという従来の常套手段と違いがないと、言える。
また、上記特許文献3に記載の発明によれば、ホローカソー放電効果を有する凹部の底面に有るガス噴出孔から反応ガスを噴出させながら、該反応ガスを高密度プラズマ化させる。その結果、シランガスと水素ガスの混合ガスが高密度のプラズマになると、SiH、SiH、SiH、Si、及びHラジカル等のラジカルが大量に発生し、高速製膜の条件が整う。しかしながら、その条件は基板表面の近傍及び基板表面のみならず、成膜室全体に及ぶ。特に、ガスの流れに澱みが発生する上記ホローカソー放電効果を有する凹部の底面及び側面に対しても、シリコン系膜が高速で堆積する。
この場合、凹部の底面及び側面に堆積したシリコン系膜が反応ガス噴出孔から噴出するガスによって剥げ落ちて、その欠片が基板表面の膜に混入することが考えられる。仮に、凹部の底面及び側面に堆積したシリコン系膜が剥げ落ちないとしても、その場所にはシリコン膜が高速で製膜されるので、生産現場での応用に際しては、頻繁にクリニーングを実施する必要があり、装置の稼働率が落ちると、考えられる。
また、上記反応ガス噴出孔の近傍は、ホローカソー放電効果により高密度のプラズマになるので、SiHラジカルの濃度が増大し、ジシラン(SiH+SiH→Si)、トリシラン(SiH+Si→Si)及びテトラシラン(SiH+Si→Si10)等からなるパウダーが生成されるという問題がある。
したがって、上記発明では高品質で高速製膜が可能なプラズマCVD装置を実現することが困難である、と言える。
【0017】
次に、特許文献4に記載の発明は、カソード電極に設けられた凹部の底面に有るガス噴出孔から反応ガスを噴出させ、該凹部構造が有するホローカソー放電効果により、高密度のプラズマが生成させることを想定している。また、プラズマ生成の促進効果のあるプラズマ促進溝を有する構造になっている。
高速製膜条件下で高品質のシリコン系薄膜を形成するには、SiHラジカル発生の増大化とSiHラジカル発生の抑制化に関する制御手段が必要である。しかしながら、カソード電極に設けた凹部構造が有するホローカソー放電の効果及びプラズマ促進溝のプラズマ生成の促進効果を期待するということでは、高密度プラズマの発生が可能というだけであり、典型的なガスシャワー孔付き平行平板電極を用いたプラズマ生成において投入電力を増大してプラズマ密度を増大し、その結果、高速製膜化を図るという従来の常套手段と違いがないと、言える。
また、特許文献4に記載の発明によれば、ホローカソー放電効果を有する凹部の底面に有るガス噴出孔から反応ガスを噴出させながら、該反応ガスを高密度プラズマ化させる。その結果、シランガスと水素ガスの混合ガスが高密度のプラズマになると、SiH、SiH、SiH、Si、及びHラジカル等のラジカルが大量に発生し、高速製膜の条件が整う。しかしながら、その条件は基板表面の近傍及び基板表面のみならず、成膜室全体に及ぶ。特に、ガスの流れに澱みが発生する上記ホローカソー放電効果を有する凹部の底面及び側面に対しても、シリコン系膜が高速で堆積する。
この場合、凹部の底面及び側面に堆積したシリコン系膜が反応ガス噴出孔から噴出するガスによって剥げ落ちて、その欠片が基板表面の膜に混入することが考えられる。仮に、凹部の底面及び側面に堆積したシリコン系膜が剥げ落ちないとしても、その場所にはシリコン膜が高速で製膜されるので、生産現場への応用に際しては、頻繁にクリニーングを実施する必要があり、装置の稼働率が落ちると、考えられる。
また、上記反応ガス噴出孔の近傍は、ホローカソー放電効果により高密度のプラズマになるので、SiHラジカルの濃度が増大し、ジシラン(SiH+SiH→Si)、トリシラン(SiH+Si→Si)及びテトラシラン(SiH+Si→Si10)等からなるパウダーが生成されるという問題がある。
したがって、上記発明では高品質で高速製膜が可能なプラズマCVD装置を実現することが困難である、と言える。
【0018】
次に、特許文献5に記載の発明は、カソード電極に設けられた複数の深さが異なる凹部の側面に有るガス噴出孔から反応ガスを噴出させ、該凹部構造が有するホローカソー放電効果により、高密度のプラズマが生成させることを想定している。
高速製膜条件下で高品質のシリコン系薄膜を形成するには、SiHラジカル発生の増大化とSiHラジカル発生の抑制化に関する制御手段が必要である。しかしながら、カソード電極に設けた凹部構造が有するホローカソー放電の効果を期待するということでは、高密度プラズマの発生が可能というだけであり、典型的なガスシャワー孔付き平行平板電極を用いたプラズマ生成において投入電力を増大してプラズマ密度を増大し、その結果、高速製膜化を図るという従来の常套手段と違いがないと、言える。
また、特許文献5に記載の発明によれば、ホローカソー放電効果を有する凹部の側面にあるガス噴出孔から反応ガスを噴出させながら、該反応ガスを高密度プラズマ化させる。その結果、シランガスと水素ガスの混合ガスが高密度のプラズマになると、SiH、SiH、SiH、Si、及びHラジカル等のラジカルが大量に発生し、高速製膜の条件が整う。しかしながら、その条件は基板表面の近傍及び基板表面のみならず、成膜室全体に及ぶ。
特に、ガスの流れに澱みが発生する上記ホローカソー放電効果を有する凹部の底面及び側面に対しても、シリコン系膜が高速で堆積する。
この場合、凹部の底面及び側面に堆積したシリコン系膜が反応ガス噴出孔から噴出するガスによって剥げ落ちて、その欠片が基板表面の膜に混入することが考えられる。仮に、凹部の底面及び側面に堆積したシリコン系膜が剥げ落ちないとしても、その場所にはシリコン膜が高速で製膜されるので、生産現場への応用に際しては、頻繁にクリニーングを実施する必要があり、装置の稼働率が落ちると、考えられる。
また、上記反応ガス噴出孔の近傍は、ホローカソー放電効果により高密度のプラズマになるので、SiHラジカルの濃度が増大し、ジシラン(SiH+SiH→Si)、トリシラン(SiH+Si→Si)及びテトラシラン(SiH+Si→Si10)等からなるパウダーが生成されるという問題がある。
したがって、上記発明では高品質で高速製膜が可能なプラズマCVD装置を実現することが困難である、と言える。
【0019】
以上説明したように、従来のプラズマCVD装置及びプラズマCVD法では、大面積基板に、高速で高品質の膜を形成することができない、という課題がある。
そこで、本発明は、大面積・高品質・高速製膜が可能なプラズマCVD装置及びプラズマCVD法を提供することを目的とする。
【課題を解決するための手段】
【0020】
以下に、本発明を実施する為の最良の形態で使用される番号・符号を用いて、課題を解決する為の手段を説明する。
これらの番号・符号は、特許請求の範囲の記載と発明を実施する為の最良の形態との対応関係を明らかにするために括弧付きで付加したものである。ただし、それらの番号・符号を、特許請求の範囲に記載されている発明の技術的範囲の解釈に用いてはならない。
【0021】
本願に係る第1の発明のプラズマCVD装置は、排気系を備えた真空容器と、
原料ガスの供給源及び該原料ガスを希釈する希釈ガスの供給源と、
該原料ガス及び該希釈ガスを該真空容器に導入するガス導入管と、
該原料ガス及び該希釈ガスを噴出するガス噴出孔を有する電気的に非接地の平行平板型の第1の電極及び基板を載置する平行平板型の第2の電極からなる一対の電極と、
該一対の電極に高周波電力を供給する高周波電力供給系と、を具備し、
該真空容器内に設置された基板に薄膜を形成するプラズマCVD装置において、
前記第1の電極(2)の第2の電極(3)と対向する対向面に複数の凹部(8a、8b、8c、8d)又は穴(8f、8g)が形成され、該複数の凹部又は穴の底面に前記原料ガス(10b)又は該原料ガスと前記希釈ガスの混合ガス(10b)を噴出する原料ガス噴出孔(7a)が設置されるとともに、該対向面の該複数の凹部又は穴の部分を除く平坦部(6a、6b、6f)に前記希釈ガス(10a)を噴出する希釈ガス噴出孔(5a、5b、5c)が設置されるという構成を有することを特徴とする。
【0022】
本願に係る第2の発明のプラズマCVD装置は、上記本願に係る第1の発明のプラズマCVD装置において、前記希釈ガス(10a)を前記第1及び第2の電極間に噴出させる際に、少なくとも、第1の電極の側面に配置される第1のガスヘッダー(13a)と、第1の電極の内部に配置される第1の洞穴型ガス導入路(15a)と、第1の電極の第2の電極と対向する対向面に配置される希釈ガス噴出孔(5a、5b、5c)が用いられるとともに、前記原料ガス(10b)又は原料ガスと希釈ガスの混合ガス(10b)を前記第1及び第2の電極間に噴出させる際に、少なくとも、第1の電極の側面に配置される第2のガスヘッダー(13b)と、第1の電極の内部に配置される第2の洞穴型ガス導入路(15b)と、第1の電極第1の電極の第2の電極と対向する対向面に配置される原料ガス噴出孔(7a)が用いられるということを特徴とする。
【0023】
本願に係る第3の発明のプラズマCVD装置は、上記本願に係る第1あるいは第2の発明のプラズマCVD装置のいずれか一つのプラズマCVD装置において、前記凹部の断面形状は、矩形(8a、8b)、台形(8d)、又は波形(8c)であることを特徴とする。
【0024】
本願に係る第4の発明のプラズマCVD装置は、上記本願に係る第1あるいは第2の発明のプラズマCVD装置のいずれか一つのプラズマCVD装置において、前記穴の形状は、円筒形(8f)あるいは円錐形(8g)であることを特徴とする。
【0025】
本願に係る第5の発明のプラズマCVD装置は、上記本願に係る第1から第4の発明のいずれか一つのプラズマCVD装置において、前記希釈ガス噴出孔(5b、5c)は、該希釈ガスの噴出の方向が前記第2の電極(3)の表面の法線方向以外の方向へ向くように配置されるということを特徴とする。
【0026】
本願に係る第6の発明のプラズマCVD装置を用いたシリコン系膜の製造方法は、排気系を備えた真空容器と、原料ガスの供給源及び該原料ガスを希釈する希釈ガスの供給源と、該原料ガス及び該希釈ガスを該真空容器に導入するガス導入管と、該原料ガス及び該希釈ガスを噴出するガス噴出孔を有する電気的に非接地の平行平板型の第1の電極及び基板を載置する平行平板型の第2の電極からなる一対の電極と、該一対の電極に高周波電力を供給する高周波電力供給系と、を具備し、該真空容器内に設置された基板に膜を形成するプラズマCVD装置を用いてシリコン系膜を製造する方法であって、前記ガス噴出孔を前記原料ガス又は原料ガスと希釈ガスの混合ガスを噴出する複数の原料ガス噴出孔(7a)と前記希釈ガスを噴出する複数の希釈ガス噴出孔(5a、5b、5c)に分離し、該希釈ガス噴出孔(5a、5b、5c)を第2の電極の表面から近い位置である第1の位置に配置させ、該原料ガス噴出孔(7a)を第2の電極の表面から遠い位置である第2の位置に配置させることにより、該原料ガス噴出孔(7a)から噴出する原料ガス(18)又は原料ガスと希釈ガスの混合ガス(18)が該一対の電極から印加される電界の強さと、該希釈ガス噴出孔(5a、5b、5c)から噴出する希釈ガス(17)が該一対の電極から印加される電界の強さが異なるようにしたことを特徴とする。
【0027】
本願に係る第7の発明のプラズマCVD装置を用いたシリコン系膜の製造方法は、上記本願に係る第1から第5の発明のいずれか一つのプラズマCVD装置を用いて、シリコン系膜を製造する方法であって、少なくともシランガス(18)を含む原料ガスと、少なくとも水素ガス(17)を含む希釈ガスを用いて、微結晶シリコン膜を製造することを特徴とする。
【発明の効果】
【0028】
本発明によれば、ガス噴出孔を有する電極に、凹部と平坦部を設け、該凹部に原料ガス又は原料ガスと希釈ガスの混合ガスを噴出する複数の原料ガス噴出孔を配置し、該平坦部に希釈ガスを噴出する複数の希釈ガス噴出孔を配置させるとともに、該希釈ガス噴出孔の方向が基板表面の法線方向以外に向くように設置させたプラズマCVD装置を実現化できる。これにより、電界の弱い空間領域、即ち、上記凹部と第2の電極間で原料ガスをプラズマ化するとともに、電界の強い空間領域、即ち、上記平坦部と第2の電極間で希釈ガスをプラズマ化することが可能となり、かつ、プラズマ化された後の原料ガスと希釈ガスの接触及び混合を促進することが可能である。
これにより、SiHガスを過度の解離を抑制した形で、即ち、粗悪な膜形成要因のSiHを抑制した形で、SiH→H+SiHの反応を促進するとともに、SiHガスに比べて解離しにくいHガスを強い電界でラズマ化することにより、H→H+Hの反応を促進させることが可能である。更に、プラズマ化したSiHガスとプラズマ化したHガスの接触、混合を促進できるので、高品質膜形成に必要な多量のHと多量SiHを生成(SiH→H+SiH、H→H+H)し、かつ、粗悪な膜形成要因のSiHを消滅(SiH+H→SiH)することが可能である。その結果、従来の装置及び方法では困難視されているシリコン系膜の高品質、高速製膜が可能である。
したがって、薄膜太陽電池の発電膜である微結晶Si膜、多結晶シリコン太陽電池のパッシベーション膜、並びに液晶デイスプレイの薄膜トランジスタの絶縁性薄膜(窒化シリコン膜、酸化シリコン膜等)の製造工場におけるスループットの向上が可能となるという効果を有する。
特に、タンデム型薄膜太陽電池生産工場における大面積基板を対象にした高速、高品質シリコン系膜製造での生産性向上及び製造コストの低減に寄与できる効果は著しく大きい。
【図面の簡単な説明】
【0029】
【図1】図1は本発明の第1の実施形態に係わるプラズマCVD装置の構成を示す模式的な説明図である。
【図2】図2は本発明の第1の実施形態に係わるプラズマCVD装置に用いられる一対の電極の模式的概念図である。
【図3】図3は本発明の第1の実施形態に係わるプラズマCVD装置に用いられガス導入路を示す模式的構造図(図2のC1−C1線の断面図)である。
【図4】図4は本発明の第1の実施形態に係わるプラズマCVD装置に用いられる第1の電極を示す模式的な平面図(基板側から見た平面図)である。
【図5】図5は図4のA1−A1線の断面図である。
【図6】図6は図4のA2−A2線の断面図である。
【図7】図7は図4のA3−A3線の断面図である。
【図8】図8は本発明の第1の実施形態に係わるプラズマCVD装置により水素ガスのプラズマ生成実験をする際に観測窓から見えるプラズマのシースに関する説明図である。
【図9】図9は本発明の第1の実施形態に係わるプラズマCVD装置により水素ガスのプラズマ生成実験をする際に得られる典型的なデータの説明図である。
【図10】図10は本発明の第1の実施形態に係わるプラズマCVD装置によりシランガスを用いてプラズマ生成実験をする際に得られる典型的なデータの説明図である。
【図11】図11は本発明の第1の実施形態に係わるプラズマCVD装置によりシランガスと水素ガスを用いてプラズマ生成実験をする際に得られる典型的なデータの説明図である。
【図12】図12は本発明の第2の実施形態に係わるプラズマCVD装置に用いられる第1の電極2を示す模式的な平面図(基板側から見た平面図)である。
【図13】図13は図12のB2−B2線の断面図である。
【図14】図14は希釈ガス噴出孔5b、5cの模式的な説明図である。
【図15】図15は本発明の第3の実施形態に係わるプラズマCVD装置に用いられる第1の電極2を示す模式的な断面図である。
【図16】図16は本発明の第4の実施形態に係わるプラズマCVD装置に用いられる第1の電極2を示す模式的な断面図である。
【図17】図17は本発明の第5の実施形態に係わるプラズマCVD装置に用いられる第1の電極2を示す模式的な平面図(基板側から見た平面図)である。
【図18】図18は図17のF1−F1線の断面図である。
【図19】図19は本発明の第6の実施形態に係わるプラズマCVD装置に用いられる第1の電極2を示す模式的な断面図である。
【図20】図20は従来のプラズマCVD装置の模式的な説明図である。
【図21】図21は一対の電極間に印加される電圧(V)と該一対の電極の電極間の距離dと圧力pの積pd(Pa・cm)の関係を示すパッシェンの曲線(パッシェンの法則)の説明図である。
【発明を実施するための形態】
【0030】
以下、本発明を実施するための形態について、図面を参照しながら説明する。なお、各図において、同様の部材には同一の符号を付し、重複する説明は省略する。また、以下の実施例での説明では、プラズマCVD装置及びプラズマCVD装置を用いたシリコン膜の製造方法の一例として、太陽電池用のi型微結晶半導体層を製作する装置及び方法が記載されているが、本願の発明対象が下記の例に限定されるものではない。
【0031】
(実施例1)
先ず、本発明の第1の実施形態に係わるプラズマCVD装置及びプラズマCVD装置を用いたシリコン系膜の製造方法を図1ないし図11を参照して説明する。
図1は本発明の第1の実施形態に係わるプラズマCVD装置の構成を示す模式的な説明図である。図2は本発明の第1の実施形態に係わるプラズマCVD装置に用いられる一対の電極の模式的概念図である。図3は本発明の第1の実施形態に係わるプラズマCVD装置に用いられガス導入路を示す模式的構造図(図2のC1−C1線の断面図)である。図4は本発明の第1の実施形態に係わるプラズマCVD装置に用いられる第1の電極を示す模式的な平面図(基板側から見た平面図)である。図5は図4のA1−A1線の断面図である。図6は図4のA2−A2線の断面図である。図7は図4のA3−A3線の断面図である。図8は本発明の第1の実施形態に係わるプラズマCVD装置により水素ガスのプラズマ生成実験をする際に観測窓から見えるプラズマのシースに関する説明図である。図9は本発明の第1の実施形態に係わるプラズマCVD装置により水素ガスのプラズマ生成実験をする際に得られる典型的なデータの説明図である。図10は本発明の第1の実施形態に係わるプラズマCVD装置によりシランガスを用いてプラズマ生成実験をする際に得られる典型的なデータの説明図である。図11は本発明の第1の実施形態に係わるプラズマCVD装置によりシランガスと水素ガスを用いてプラズマ生成実験をする際に得られる典型的なデータの説明図である。
【0032】
先ず、装置の全体の構成を、図1ないし図7を参照して説明する。なお、図2ないし図7において、説明の便宜上、図に示している座標(X、Y、Z)を参照する。
符番1は真空容である。この真空容器1には、後述の原料ガス及び希釈ガスをプラズマ化する一対の電極、即ち非接地の第1の電極2と図示しない基板ヒータを内臓した接地された第2の電極3が配置されている。また、図示しないプラズマ観察窓が複数個設置されている。
符番2は第1の電極で、絶縁物製の支持手段4を介して真空容器1に固着されている。第1の電極2は、図2に示すように矩形の形状を有し、材料はアルミニウム、アルミニウム系合金、あるいはSUS等の金属で、例えばアルミニウムである。サイズは、例えば、外寸法で、長さ1.2mx幅1.2mx高さ8cmとする。なお、図示しない冷媒を通すパイプを内蔵しており、第1の電極2の温度を制御することが可能である。
この第1の電極2の第2の電極と対向する対向面、即ち、第1の電極2の基板側表面には、後述するように、凹部8aが形成され、その凹部8aには原料ガス噴出孔7aが配置される。なお、該第1の電極2の基板側表面上の凹部8a以外の面は平坦部であり、ここでは、平坦部6aと呼ぶ。
符番3は第2の電極で、図示しない基板ヒータを内臓し、その上に設置される基板9の温度を100〜350℃の範囲で、任意の温度に設定可能である。なお、第2の電極3は基板ヒータの他に、冷媒を通すパイプを内蔵しており、基板9の温度を制御することが可能である。また、第2の電極3は、図1及び図2に示すように、矩形平板で、その材料は金属で、第1の電極2に平行に対向して設置される。その具体的なサイズは、例えば、外寸法で、長さ約1.3mx幅約1.3mx高さ約8cmとする。
符番4は第1の電極2の支持手段で、第1の電極2を真空容器1に固定する。なお、材質は絶縁物(例えば、高純度のセラミック)である。この支持手段4は、第1の電極2、第1の電極2に接続されている第1のガスヘッダー13a及び第1のガス導入管12aを、真空容器1に対し電気的に絶縁する。また、後述の第2のガスヘッダー13b、第2のガス導入管12bを、真空容器1に対し電気的に絶縁する。
符番9は基板である。基板9は、図示しない基板搬入搬出装置で、第2の電極3に設置され、また、取り出される。
【0033】
第1及び第2の電極2、3の間隔は、図示しない基板リフターを上下に作動させることにより、予め、任意に設定可能であり、5mm〜50mmの範囲で、例えば10mmに設定される。
【0034】
符番10aは、原料ガスを希釈する希釈ガスの供給源である。例えば水素ガスの供給源である。これは、後述の第1のガス供給管11a、第1の絶縁性真空フランジ14a、第1のガス導入管12a、第1のガスヘッダー13a、第1の洞穴型ガス導入路15a及び希釈ガス噴出孔5aを介して、第1及び第2の電極2、3間に希釈ガスを供給する。そのガスの量は、希釈ガス供給源10aに付属する流量計で制御される。
希釈ガス供給源10aは、第1のガス供給管11aに供給する原料ガスの圧力を、1〜10Kg/cm程度の範囲で調整できる。ここでは、例えば3.5Kg/cmに設定する。また、希釈ガスの流量は、0.5〜30SLM(標準状態換算でのガス流量:L/分)の範囲で設定される。
符番11aは第1のガス供給管で、希釈ガス供給源10aから供給される希釈ガスを第1の絶縁性真空フランジ14aを介して第1のガス導入管12aに供給する。
符番14aは第1の絶縁性真空フランジで、希釈ガス供給管11aと第1のガス導入管12aを接続し、気密性を確保する。電気的には、絶縁性が高く、第1の電極2、並びに第1の電極2に接続されている第1のガスヘッダー13a及び第1のガス導入管12aを、真空容器1に対し電気的に絶縁する。また、第2のガスヘッダー13b、第2のガス導入管12bを、真空容器1に対し電気的に絶縁する。
符番12aは第1のガス導入管で、第1のガス供給管11aから第1の絶縁性真空フランジ14aを介して供給された希釈ガス、例えば水素ガスを第1のガスヘッダー13aに供給する。
符番13aは第1のガスヘッダーで、第1のガス導入管12aから供給された水素ガスを第1の洞穴型ガス導入路15aに供給する。なお、図2及び図3(図2のC1−C1線の断面図)に示されているように、第1のガスヘッダー13aは第1の電極2の一方の側面に気密性を保持して固着されている。また、複数の第1の洞穴型ガス導入路15aに接続されている。
符番15aは第1の洞穴型ガス導入路で、第1のガスヘッダー13aから供給される希釈ガスを希釈ガス噴出孔5aを介して第1及び第2の電極2、3間に供給する。なお、第1の洞穴型ガス導入路15aは、深穴加工機(例えば、ガンドリル加工機)で、直径1mm〜35mm、例えば直径6mmに加工され、設定される。
【0035】
符番8aは、第1電極2の第2電極3と対向する対向面、即ち、基板側の表面に設けられる凹部である。この凹部8aは、図4に示すように、X方向及びY方向に延在する格子状の溝で、溝の深さは一対の電極2、3間の距離dの0.1〜1倍程度、即ち、0.1d〜d程度で、例えば3mmである。そして、その凹部8aの幅は、X軸方向に延在する方がW1を有し、Y軸方向に延在する方がW2を有する。その幅W1及びW2は、それぞれ、4mm〜20mm程度、例えばW1=6mm、W2=6mmとする。なお、この格子状に配置される凹部8aは、例えばフライス盤、あるいは平削盤で加工し、製作される。
上記凹部8aの底面の角及びその開口部の角は、異常放電防止のために、角取り加工を行い、曲面を持たせる。なお、その曲面は、溝の深さに応じて、半径2mm〜5mm(2R〜5R)程度の丸みを持たせる。
また、凹部8aの深さは、電極間距離dと溝幅W1、W2の数値を考慮して選定する必要がある。その際に重要なことは、異常放電を抑制することである。ここでは、凹部8aによるホローカソード放電等の異常放電を抑制するために、凹部8aの深さの値は電極間距離dと溝幅W1、W2に比べて十分に小さい値を選定している。
符番6aは、第1電極2の第2電極3側の表面に設けられる平坦部である。この平坦部6aは、図4に示すように、格子状の凹部8aに囲まれている。平坦部6aの幅は、X軸方向にW3を有し、Y方向にW4を有する。その幅W3及びW4は、それぞれ、4mm〜20mm程度、例えばW3=6mm、W4=6mmとする。
なお、電極のサイズが、例えば、1206mmx1206mmで、格子状の凹部8aの幅が例えば、W1=6mm、W2=6mmで、平坦部6aの幅は、W3=6mm、W4=6mmの場合、格子状の凹部8aの個数はX方向に100列、Y方向に100列、合計100列x100列となる。
【0036】
符番5aは希釈ガス噴出孔で、直径約0.4〜1.0mm、例えば直径約0.8mmである。ここでは、第1の電極2の平坦部6aに、図3のY軸方向(第1の洞穴型ガス導入路15aの奥行き方向)に複数個、5mm〜20mmの範囲で、略等間隔に、例えば12mm間隔に設置される。
この希釈ガス噴出孔5aは、第1の洞穴型ガス導入路15aから供給される希釈ガス、例えば水素ガスを第1及び第2の電極2、3間に噴出する。噴出した希釈ガスは、排気管16a、16bから図示しない真空ポンプにより真空容器1の外部へ排出される。
符番7aは原料ガス噴出孔で、原料ガスまたは原料ガスと希釈ガスの混合ガスを噴出する。原料ガス噴出孔7aは、直径約0.4〜1.0mm、例えば直径約0.5mmで、多数個が設定される。ここでは、第1の電極2の凹部8aに、第2の洞穴型ガス導入路15bの奥行き方向(Y軸方向)に複数個、5mm〜20mmの範囲で、略等間隔に、例えば12mm間隔に設置される。原料ガス噴出孔7aは、第2の洞穴型ガス導入路15bから供給される原料ガスまたは原料ガスと希釈ガスの混合ガスを第1及び第2の電極2、3間に噴出する。噴出した原料ガスまたは原料ガスと希釈ガスの混合ガスは、排気管16a、16bから図示しない真空ポンプにより真空容器1の外部へ排出される。
【0037】
希釈ガス噴出孔5aは第1の電極2の平坦部6aに配置され、原料ガス噴出孔7aは第1の電極2の凹部8aに配置されるので、希釈ガス噴出孔5aと第2の電極3の表面の間の距離は、原料ガス噴出孔7aと第2の電極3の表面の間の距離に比べて短い。この距離の違いにより、一対の電極2、3間でのプラズマ生成プロセスで、次の作用がある。
一対の平行平板電極を用いてプラズマを生成場合、プラズマ放電開始電圧Vs(V)と、圧力p(Pa)と電極間距離d(cm)の積pd(Pa・cm)の関係は、例えば、図21に示すようなパッシェンの曲線(パッシェンの法則)に従うことが、一般に知られている。なお、図21において、縦軸はプラズマ放電開始電圧Vs(V)、横軸は圧力p(Pa)と電極間距離d(cm)の積pd(Pa・cm)である。
この場合、pd積の値が350〜700Pa・cmにおいて、一対の電極間の電界E(V/cm)はプラズマ放電開始電圧Vs(V)と電極間距離d(cm)に依存し、E=Vs/dで表わされる。
このことは、pd積の値が350〜700Pa・cmにおいて、電界Eは電極間距離dに反比例している、ということを意味している。即ち、上記平坦部6aと第2の電極3の間の空間(ここでは、強電界領域と呼ぶ)での電界は、上記凹部8aと第2の電極3の間の空間(ここでは、弱電界領域と呼ぶ)での電界より強くなる、ということを意味している。
一対の電極2、3間において、強い電界が印加された空間に供給されるガスは、強い電界でプラズマ化されて解離されるので、強いプラズマが生成する。他方、弱い電界が印加された空間に供給されるガスは、弱い電界でプラズマ化されて解離されるので、弱いプラズマが生成する。
したがって、上記強電界領域に噴出する希釈ガス、例えば水素ガスは、強いプラズマとなり、プラズマ反応及び解離反応が強く促進される。その結果、H→H+Hの反応が容易に起こり易いという作用がある。
また、上記強電界領域に噴出する原料ガスまたは原料ガスと希釈ガスの混合ガスは、弱いプラズマになる。原料ガスがSiHの場合、SiH→H+SiHの反応が起こり易いという作用がある。強いプラズマでSiHガスをプラズマ化すれば、過度の分解反応が起こり、SiHが容易に発生する。なお、プラズマでの電子エネルギーが8.75eV以上であればSiHが生成され、9.47eV以上であればSiHが生成されることが、一般に知られている。
即ち、一対の電極2、3間に強電界領域と弱電界領域を設定し、強電界領域に水素ガスを噴出し、弱電界領域に原料ガスまたは原料ガスと水素ガスの混合ガスを噴出することにより、H→H+Hの反応(多量の原子状Hを生成)及びSiH→H+SiHの反応(多量のSiHラジカルを生成)が起こり易くなるという条件が整う。
【0038】
真空容器1内の圧力は、図示しない圧力計によりモニターされ、図示しない圧力調整弁により自動的に所定の値に調整、設定される。なお、ここでは、原料ガスが流量0.5〜10SLMの範囲で、希釈ガスが0.5〜30SLMの範囲の場合、圧力1.333Pa(0.01Torr)〜1333Pa(10Torr)程度に調整できる。
なお、原料ガス及び希釈ガスが無い場合、真空容器1の真空到達圧力は2.66〜3.99E−5Pa(2〜3E−7Torr)程度である。
【0039】
符番10bは、原料ガス供給源であり、原料ガスあるいは原料ガスと希釈ガスの混合ガスを、後述の第2のガス供給管11b、第2の絶縁性真空フランジ14b、第2のガス導入管12b、第2のガスヘッダー13b、第2の洞穴型ガス導入路15b及び原料ガス噴出孔7aを介して、第1及び第2の電極2、3間に供給する。そのガスの量は、原料ガス供給源10bに付属する流量計で制御される。
原料ガス供給源10bは、第2のガス供給管11bに供給する原料ガスあるいは原料ガスと希釈ガスの混合ガスの圧力を、1〜10Kg/cm程度の範囲で調整できる。ここでは、例えば3.5Kg/cmに設定する。また、原料ガスと希釈ガスの混合ガスの流量は、0.5〜10SLM(標準状態換算でのガス流量:L/分)の範囲で設定される。
符番11bは第2のガス供給管で、原料ガス供給源10bから供給される原料ガスあるいは原料ガスと希釈ガスの混合ガスを第2の絶縁性真空フランジ14bを介して第2のガス導入管12bに供給する。
符番14bは第2の絶縁性真空フランジで、第2のガス供給管11bと第2のガス導入管12bを接続し、気密性を確保する。電気的には、絶縁性が高く、第1の電極2、並びに第1の電極2に接続されている第2のガスヘッダー13b及び第2のガス導入管12bを、真空容器1に対し電気的に絶縁する。また、第1のガスヘッダー13a、第1のガス導入管12aを、真空容器1に対し電気的に絶縁する。
符番12bは第2のガス導入管で、第2のガス供給管11bから第2の絶縁性真空フランジ14bを介して供給された原料ガスあるいは原料ガスと希釈ガスの混合ガスを第2のガスヘッダー13bに供給する。
符番13bは第2のガスヘッダーで、第2のガス導入管12bから供給された原料ガスあるいは原料ガスと希釈ガスの混合ガスを第2の洞穴型ガス導入路15bに供給する。
符番15bは第2の洞穴型ガス導入路で、第2のガスヘッダー13bから供給される原料ガスあるいは原料ガスと希釈ガスの混合ガスを原料ガス噴出孔7aを介して第1及び第2の電極2、3間に供給する。なお、第2の洞穴型ガス導入路15bは、深穴加工機(例えば、ガンドリル加工機)で、直径1mm〜35mm、例えば直径6mmに加工され、設定される。
【0040】
ここで、希釈ガス噴出孔5a及び原料ガス噴出孔7aと、凹部8a及び平坦部6aの構造上の関係並びに作用上の関係を説明する。
図7において、希釈ガスは、第1の電極2に設置された第1のガス導入路15aから希釈ガス噴出孔5aに供給され、その孔5aから希釈ガスの噴流17として噴出される。希釈ガス噴出孔5aは直径0.4〜0.8mm程度、その深さは3mm〜10mm程度の範囲に、例えば、直径0.8mm、深さ6mmとする。
複数個の希釈ガス噴出孔5aから噴出するガスの全体の量は、希釈ガス供給源10aに付属する流量計で制御される。
複数個ある個々の希釈ガス噴出孔5aの1個当たりの噴出ガス量は、第1の洞穴型ガス導入路15aのガス圧が3Kg/cm程度以上であり、かつ、希釈ガス噴出孔5aの孔の直径が0.4〜0.8mm程度、その孔の深さが3mm〜10mm程度であれば、個々の孔で違いはなく、ほぼ一定の値の値になることが、一般に知られている。また、その噴出ガスの分散状況も、個々の孔で違いはなくほぼ同じであることが、一般に知られている。
【0041】
図7において、原料ガスあるいは原料ガスと希釈ガスの混合ガスは、第1の電極2に設置された第2のガス導入路15bから原料ガス噴出孔7aに供給され、その孔7aから原料ガスの噴流18として噴出される。原料ガス噴出孔7aは直径0.4〜0.8mm程度、その深さは3mm〜10mm程度の範囲に、例えば、直径0.5mm、深さ3mmとする。
複数個の原料ガス噴出孔7aから噴出するガスの全体の量は、原料ガス供給源10bに付属する流量計で制御される。
複数個ある個々の原料ガス噴出孔7aの1個当たりの噴出ガス量は、第2の洞穴型ガス導入路15bのガス圧が3Kg/cm程度以上であり、かつ、原料ガス噴出孔7aの孔の直径が0.4〜0.8mm程度、その孔の深さが3mm〜10mm程度であれば、個々の孔で違いはなく、ほぼ一定の値の値になることが、一般に知られている。また、その噴出ガスの分散状況も、個々の孔で違いはなくほぼ同じであることが、一般に知られている。
【0042】
図7図示の希釈ガスの噴流17及び原料ガスの噴流18について説明する。
希釈ガスの噴流17は、一対の電極2、3の間のガス圧が1.333Pa(0.01Torr)〜1333Pa(10Torr)程度の範囲、かつ、希釈ガス噴出孔5aの直径が0.4〜0.8mm程度、その深さが3mm〜10mm程度であれば、平坦部6aからの距離で5mm〜10mm程度で分散し、その広がりは、直径10〜20mmm程度の面積に広がることが、一般に知られている。
他方、原料ガスの噴流18は、一対の電極2、3の間のガス圧が1.333Pa(0.01Torr)〜1333Pa(10Torr)程度の範囲、かつ、原料ガス噴出孔7aの直径が0.4〜0.8mm程度、その深さが3mm〜10mm程度であれば、凹部8aの底面からの距離で5mm〜10mm程度で分散し、その広がりは、直径10〜20mmm程度の面積に広がることが、一般に知られている。
したがって、希釈ガスの噴流17と原料ガスの噴流18は、平坦部6aの上面から基板の法線方向の距離10mm程度で、互いに重なり合い、接触し混合される。なお、ここでは、このガス混合が起こる空間を混合領域19と呼ぶ。
後述の電力供給系から第1及び第2の電極2、3に電力が供給されると、原料ガスの噴流18と希釈ガスの噴流17は噴出直後からプラズマ化され、そのプラズマ化された原料ガスと希釈ガスは混合領域19で混合する。
原料ガスと希釈ガスはプラズマ化されると、種々のプラスイオン及びマイナスイオンの他に、化学的に活性で、電気的には中性の種々のラジカルを発生する。この場合、電気的に中性のラジカル、例えば、SiH、SiH、SiH、H等は、混合領域19から基板表面まで拡散現象で移動し、基板の面上に堆積する。
ここで、上述したように、凹部8aと平坦部6aの設置により、本発明特有の作用が生まれる。即ち、希釈ガス噴出孔5aは第1の電極2の平坦部6aに配置され、原料ガス噴出孔7aは第1の電極2の凹部8aに配置されるので、希釈ガス噴出孔5aと第2の電極3の表面の間の距離は、原料ガス噴出孔7aと第2の電極3の表面の間の距離に比べて短い。この距離の違いにより、一対の電極2、3間でのプラズマ生成プロセスで、次の作用がある。
一対の電極2、3間において、強い電界が印加された空間に供給されるガスは、強い電界でプラズマ化されて解離されるので、強いプラズマが生成する。他方、弱い電界が印加された空間に供給されるガスは、弱い電界でプラズマ化されて解離されるので、弱いプラズマが生成する。
したがって、上記強電界領域に噴出する希釈ガス、例えば水素ガスは、強いプラズマとなり、プラズマ反応及び解離反応が強く促進される。その結果、H→H+Hの反応が容易に起こり易いという作用がある。
また、上記強電界領域に噴出する原料ガスまたは原料ガスと希釈ガスの混合ガスは、弱いプラズマになる。原料ガスがSiHの場合、SiH→H+SiHの反応が起こり易いという作用がある。強いプラズマでSiHガスをプラズマ化すれば、過度の分解反応が起こり、SiHが容易に発生する。なお、プラズマでの電子エネルギーが8.75eV以上であればSiHが生成され、9.47eV以上であればSiHが生成されることが、一般に知られている。
即ち、一対の電極2、3間に強電界領域と弱電界領域を設定し、強電界領域に水素ガスを噴出し、弱電界領域に原料ガスまたは原料ガスと水素ガスの混合ガスを噴出することにより、H→H+Hの反応(多量の原子状Hを生成)及びSiH→H+SiHの反応(多量のSiHラジカルを生成)が起こり易くなるという条件が整う。
なお、供給された原料ガス及び希釈ガスの中でプラズマ化されなかった残留ガスの中の電気的に中性のもの及びパーテイクル等は第1の電極2と基板9の間を周辺に向かって流れ、排出される。
【0043】
符番20は発信器である。発信器20は、周波数10〜100MHzの任意の周波数の正弦波の電圧信号を発生する。
符番21は電力増幅器である。これは、発信器20の出力信号が入力されると、その電力を増幅して、1〜20KWの範囲で、例えば10KWを出力する。
符番22はインピーダンス整合器である。インピーダンス整合器22は、後述の同軸ケーブル23b、電流導入端子24、電力供給導体25及び給電点26を介して、第1及び第2の電極2、3に電力を供給する際に、その一対の電極2、3の間に発生するプラズマのインピーダンスと電力増幅器21のインピーダンスの整合を取るものである。
符番23a、23bは同軸ケーブルで、高周波数の電力を流すことができる。
符番24は電流導入端子で、真空容器1の気密を保持して、同軸ケーブル23bと電力供給導体25を接続する。
符番25は電力供給導体で、電流導入端子24と給電点26を接続し、高周波電力を送電する。
符番26は給電点で、電力供給導体25を介して送電される電力増幅器21の出力電力を給電する位置である。なお、電力増幅器21の出力電力が給電点26に給電されると、一対の電極2、3の間に、プラズマが生成される。
【0044】
ここで、上記電力増幅器21の機能について、補足説明をする。
電力増幅器21には、図示しない出力値(進行波)のモニター及び下流側から反射して戻ってくる反射波のモニターが付属している。また、その反射波による電力増幅器21の電気回路を防護するためのアイソレータが付属されている。出力値(進行波)のモニター及び下流側から反射して戻ってくる反射波のモニターは、次に示すように使われる。
先ず、例えば、電力増幅器21の最大出力の20〜30%程度の出力を、インピーダンス整合器22、同軸ケーブル23b、電流導入端子24、電力供給導体25及び給電点26を介して、第1及び第2の電極2、3に供給する。
次に、電力増幅器21に付属した進行波Pf及び反射波Prのモニターを見ながら、インピーダンス整合器22のリアクタンス(LとC)を調整する。インピーダンス整合器22のリアクタンス(LとC)を調整しながら、反射波Prが最小値になる条件を選定する。そして、電力増幅器21の出力を所要の数値に設定し、その出力で、再度、インピーダンス整合器22のリアクタンス(LとC)を調整しながら、反射波Prが最小値になる条件を選ぶ。
なお、この整合器の調整、即ち、反射波Prが最小値になる条件を設定する作業は、プラズマ生成条件を変更しない限り、プラズマのインピーダンスの変化は少ないので、特に多くの時間を必要とはしない。
【0045】
次に、上述のプラズマCVD装置、即ち、図1〜図7に示した構成を有するプラズマCVD装置を用いて、集積化タンデム型薄膜太陽電池用i型微結晶シリコン膜を製膜する方法を説明する。
i型微結晶シリコン膜の製膜に際し、原料ガスや希釈ガス、圧力、投入すべき電力等については、公知の製膜条件を参考に行う。
ただし、上記構成を有するプラズマCVD装置に係わる特有の諸条件は、以下に示す手順で、予め確認し、調整することが必要である。その後、目的とするi型微結晶シリコン膜の製膜を行う。
【0046】
(ステップ1)では、図1〜図7に示した構成を有するプラズマCVD装置において、希釈ガス噴出孔5aを用いて、例えば、水素ガスのみを用いて予備的なプラズマ生成実験を行う。
(ステップ2)では、図1〜図7に示した構成を有するプラズマCVD装置において、原料ガス噴出孔7aを用いて、例えば、原料ガスあるいは原料ガスと希釈ガスの混合ガスを用いて予備的なプラズマ生成実験を行う。
(ステップ3)では、図1〜図7に示した構成を有するプラズマCVD装置において、例えば、シランガスを原料ガス噴出孔7aから噴出させるとともに、希釈ガス噴出孔5aから水素ガスを噴出させて、目的とするi型微結晶シリコン膜の製膜実験を行う。
(ステップ4)では、上記(ステップ1)〜(ステップ3)の結果を参照して、目的とする高品質i型微結晶シリコン膜の製造を行う。
【0047】
(ステップ1)
図1〜図7において、予め、基板9を第2の電極3の上に設置し、図示しない真空ポンプを稼動させ、真空容器1内の空気及び不純物ガス等を除去した後、希釈ガス供給源10aから第1のガス供給管11a、第1の絶縁性真空フランジ14a、第1のガス導入管12a、第1のガスヘッダー13a、第1の洞穴型ガス導入路15aを介して希釈ガス噴出孔5aから水素ガスを、0.5〜30SLM(標準状態換算でのガス流量:L/分)の範囲で、例えば4SLMを供給しつつ、圧力を533.2Pa(4Torr)に維持する。基板温度は100〜350℃の範囲、例えば220℃に保持する。
なお、基板9のサイズは、第1の電極2のサイズに合わせて、長さ1mx幅1m(厚み4mm)とする。
次に、発信器20の周波数を13.56MHzとし、電力増幅器21の出力を、例えば3KWとし、インピーダンス整合器22、同軸ケーブル23b、電流導入端子24、電力供給導体26を介して、給電点26に供給する。
この場合、インピーダンス整合器22を調整することにより、その整合器22の上流側に上記供給電力の反射波が戻らないようにすることができる。一般的には、反射波は進行波の1〜3%程度に抑えることができる。
【0048】
上記の条件で、10〜20分程度の時間、プラズマを生成し、図示しない発光分光スペクトル測定器と測定プローブを用いて、水素プラズマ発光スペクトルの波長486nmに着目し、その強さを測定、評価する。なお、スペクトル波長486nmは一般にHβ線と呼ばれる水素プラズマ発光での代表的な波長である。
ところで、第1の電極に設けられる凹部8aの形状が図4ないし図7に示すように格子状の溝の形になっていることから、強電界領域、即ち、平坦部6a近傍の空間部分と、弱電界領域、即ち、凹部8a近傍の空間部分ではプラズマの発生状況が異なる。この場合、観測窓から見えるプラズマは、図8に示すように、平坦部6a近傍のプラズマのシース31の厚みは凹部8a近傍のプラズマのシース32の厚みに比べて薄くなっている。なお、図8図示の符番30はシースと発光を伴うプラズマの境界を示す。
凹部8a近傍のプラズマのシース32の厚みが平坦部6a近傍のプラズマのシース31の厚みに比べて厚いということは、凹部8a近傍のプラズマの密度は平坦部6a近傍のプラズマの密度に比べて、低いということを意味する。即ち、平坦部6a近傍のプラズマ密度が1x1010cm−3程度であれば、凹部8a近傍のプラズマ密度はそれよりも小さいということである。また、凹部8a近傍のプラズマは弱電界領域のプラズマであるので、原料ガスの過度の解離は起こらないと、考えられる。
上記の図示しない発光分光スペクトル測定器と測定プローブを用いた水素プラズマ発光スペクトルの測定であるが、圧力を533.2Pa(4Torr)一定とし、水素ガスの流量を4SLMに保ち、電力を変化させ、波長486nmの発光強度と供給電力との関係を把握する。
上記の水素プラズマ発光スペクトルの波長486nmに着目した測定であるが、例えば、図9に示すようなデータが取得される。図9は、縦軸が波長486nmの発光強度(最大値で規格化)で、横軸が供給電力(KW)である。
図9は、水素ガス供給量4LSMにおいて、波長486nmの発光強度は供給電力に比例して増加することを示している。なお、このようなデータが得られれば、異常放電の発生はないと考えられる。
【0049】
(ステップ2)
図1〜図7において、予め、基板9を第2の電極3の上に設置し、図示しない真空ポンプを稼動させ、真空容器1内の空気及び不純物ガス等を除去した後、原料ガス供給源10bから第2のガス供給管11b、第2の絶縁性真空フランジ14b、第2のガス導入管12b、第2のガスヘッダー13b、第2の洞穴型ガス導入路15bを介して原料ガス噴出孔7aからシランガス(90%)と水素ガス(10%)の混合ガスを、0.5〜10SLM(標準状態換算でのガス流量:L/分)の範囲で、例えば2SLMを供給しつつ、圧力を533.2Pa(4Torr)維持する。基板温度は100〜350℃の範囲、例えば220℃に保持する。
なお、基板9のサイズは、第1の電極2のサイズに合わせて、長さ1mx幅1m(厚み4mm)とする。
次に、発信器20の周波数を13.56MHzとし、電力増幅器21の出力を、例えば3KWとし、インピーダンス整合器22、同軸ケーブル23b、電流導入端子24、電力供給導体26を介して、給電点26に供給する。
この場合、インピーダンス整合器22を調整することにより、その整合器22の上流側に上記供給電力の反射波が戻らないようにすることができる。一般的には、反射波は進行波の1〜3%程度に抑えることができる。
【0050】
上記の条件で、4〜6分程度の時間、プラズマを生成すると、基板9にアモルファスシリコン膜が堆積する。製膜後、真空容器1から前記基板9を取り出して、アモルファスシリコン膜の膜厚み分布を評価する。基板9に堆積されたアモルファスシリコン膜の膜厚分布は、正弦的な分布となる。即ち、製膜されたシリコン系薄膜の膜厚分布は、概略、次式で表わされる。
I(x)=cos(2πx/λ)
ただし、I(x)は膜の厚み、xは基板中央からその周辺方向への距離、λは使用電力の波長(プラズマ中での波長)である。
このような製膜実験を、原料ガス、即ち、シランガス(90%)と水素ガス(10%)の混合ガスの流量と、供給電力をパラメータに行い、製膜速度と原料ガスの流量と、供給電力との関係を把握する。
この場合、例えば、図10に示すようなデータが取得される。図10は、縦軸が製膜速度(nm/s)、横軸が供給電力(KW)である。
図10は、混合ガス供給量2LSM、4LSM、及び6LSMにおいて、製膜速度は供給電力に比例して増加するが、供給電力がある値を超えると、一定の値になる。このように、製膜速度がある値で飽和するのは、製膜速度が原料ガスの供給量に依存することを示している。
また、図10のデータでは、製膜速度の最大値は、混合ガスの流量が2LSM、4LSM、及び6LSMにおいて、それぞれ、2.2nm/s、3.15nm/s及び4.25nm/sである。
また、供給電力値と製膜速度の最大値との関係は、混合ガスの流量2LSM、4LSM、及び6LSMにおいて、それぞれ、8KW(0.556W/cm)で2.2nm/s、9KWで(0.625W/cm)で3.15nm/s、及び、9KW(0.625W/cm)で4.25m/sである。
なお、上記製膜データにおいて、供給電力が6KW程度以上になると、パウダー(パーテイクル)が発生することがある。
【0051】
(ステップ3)
図1〜図7において、予め、基板9を第2の電極3の上に設置し、図示しない真空ポンプを稼動させ、真空容器1内の空気及び不純物ガス等を除去した後、希釈ガス供給源10aから第1のガス供給管11a、第1の絶縁性真空フランジ14a、第1のガス導入管12a、第1のガスヘッダー13a、第1の洞穴型ガス導入路15aを介して希釈ガス噴出孔5aから水素ガスを、0.5〜30SLM(標準状態換算でのガス流量:L/分)の範囲で、例えば20SLMを供給しつつ、圧力を533.2Pa(4Torr)に維持する。
また、原料ガス供給源10bから第2のガス供給管11b、第2の絶縁性真空フランジ14b、第2のガス導入管12b、第2のガスヘッダー13b、第2の洞穴型ガス導入路15bを介して原料ガス噴出孔7aからシランガスを、0.5〜10SLM(標準状態換算でのガス流量:L/分)の範囲で、例えば4SLMを供給しつつ、圧力を533.2Pa(4Torr)維持する。
基板温度は100〜350℃の範囲、例えば220℃に保持する。
なお、基板9のサイズは、第1の電極2のサイズに合わせて、長さ1mx幅1m(厚み4mm)とする。
次に、発信器20の周波数を13.56MHzとし、電力増幅器21の出力を、例えば3KWとし、インピーダンス整合器22、同軸ケーブル23b、電流導入端子24、電力供給導体26を介して、給電点26に供給する。
この場合、インピーダンス整合器22を調整することにより、その整合器22の上流側に上記供給電力の反射波が戻らないようにすることができる。一般的には、反射波は進行波の1〜3%程度に抑えることができる。
なお、パウダー(パーテイクル)の発生の有無をプラズマ生成中に測定するのは、困難であるので、ここでは実施しない。パウダー(パーテイクル)の発生を抑制するために、供給電力は、電力密度0.7W/cm程度以下とする。また、シランガス供給量と水素ガス供給量の比が5倍とし、パウダーの発生を抑制する。
【0052】
上記の条件で、10〜20分程度の時間、プラズマを生成すると、基板9にi型微結晶シリコン膜が堆積する。なお、大量の水素ガスが供給されるので、得られる膜はアモルファスSiではなく、微結晶膜になる。
製膜後、真空容器1から前記基板9を取り出して、該i型微結晶シリコン膜の膜厚み分布及び結晶化率を評価する。
基板9に堆積されたi型微結晶シリコン膜の膜厚分布は、正弦的な分布となる。即ち、製膜されたシリコン系薄膜の膜厚分布は、概略、次式で表わされる。
I(x)=cos(2πx/λ)
ただし、I(x)は膜の厚み、xは基板中央からその周辺方向への距離、λは使用電力の波長(プラズマ中での波長)である。
結晶化率の評価には、ラマンスペクトル分析器を用い、膜中の結晶Siピーク(517cm−1)IcとアモルファスSiピーク(470〜480cm−1)Iaを用い、結晶化率(%)=100xIc/(Ia+Ic)と定義する。
このような製膜実験を、原料ガス及び水素ガスの流量と、供給電力をパラメータに行い、製膜速度、原料ガスの流量、水素ガス及び供給電力の関係を把握する。
この場合、例えば、図11に示すようなデータが取得される。図11は、縦軸が製膜速度(nm/s)、横軸が供給電力(KW)である。
図11は、シランガス供給量4LSMで水素ガス供給量20SLMの場合、及びシランガス供給量6LSMで水素ガス供給量30SLMの場合において、製膜速度は供給電力にほぼ比例して増加するが、供給電力がある値を超えると、飽和する傾向になることを示す。
また、図11のデータでは、製膜速度の最大値、即ち、供給電力9KW(0.625W/cm)での製膜速度は、シランガス供給量4LSMで水素ガス供給量20SLMの場合、及びシランガス供給量6LSMで水素ガス供給量30SLMの場合において、それぞれ、3.3nm/s程度及び3.9nm/sである。結晶化率は、それぞれ、60〜80%程度が得られる。
【0053】
以上説明した本発明の第1の実施形態に係わるプラズマCVD装置を用いた方法に関する特徴は、次の通りである。
図1〜図7に示したプラズマCVD装置を用いたシリコン系膜を製造する方法であって、少なくともシランガスを含む原料ガスと、少なくとも水素ガスを含む希釈ガスを用いて、微結晶シリコン膜を製造することを特徴とする。
【0054】
本発明の第1の実施形態に係るプラズマCVD装置の装置構成上の特徴を、以下に列記する。
第1の特徴は、第1の電極2の表面に、凹部8aと平坦部6aが設けられていること。
第2の特徴は、上記凹部8aは、格子状の溝のような形状を有すること。
第3の特徴は、凹部8aに原料ガス噴出孔7aが設けられ、平坦部6aに希釈ガス噴出孔5aが設けられていること。これにより、希釈ガス噴出孔5aは、原料ガス噴出孔7aより第2の電極表面に近い位置に配置されるということを特徴とする。この距離の違いにより、一対の電極2、3間でのプラズマ生成プロセスで、次の作用がある。
即ち、図8図示のプラズマのシースの厚みが凹部8aでは厚く、平坦部6aでは薄くなっていることから、凹部8a近傍のプラズマ密度は高く、平坦部6a近傍のプラズマ密度は低い。また、上記平坦部6aと第2の電極3の間の空間(強電界領域)での電界(V/cm)は、上記凹部8aと第2の電極3の間の空間(弱電界領域)での電界(V/cm)より強いことから、希釈ガスは強いプラズマで解離され、原料ガスは弱いプラズマで解離される。
その結果、水素ガスは容易に原子状Hに分解され、SiHガスは過度のプラズマ分解が抑制されるという条件が整う。これにより、H→H+H(多量の原子状Hを生成)の反応、及びSiH→H+SiH(多量のHと多量SiHを生成)の反応が起こるという条件が整う。
第4の特徴は、原料ガス及び希釈ガスを一対の電極2、3間に供給するに際し、原料ガスと希釈ガスは互いに分離して供給されることである。即ち、希釈ガスの一対の電極2、3間への供給路は、希釈ガス供給源10aから、第1のガス供給管11a、第1の絶縁性真空フランジ14a、第1のガス導入管12a、第1のガスヘッダー13a、第1の洞穴型ガス導入路15a及び希釈ガス噴出孔5aで構成されるとともに、原料ガスの一対の電極2、3間への供給路は、原料ガス供給源10bから、第2のガス供給管11b、第2の絶縁性真空フランジ14b、第2のガス導入管12b、第2のガスヘッダー13b、第2の洞穴型ガス導入路15b及び原料ガス噴出孔7aで構成されていること。これにより、希釈ガスと原料ガスの噴流を異なる空間で、かつ、異なる電界(V/cm)でプラズマ化することが可能となる。
第5の特徴は、第1及び第2のガスヘッダー13a、13bは第1の電極2の互いに対向しあう位置関係にあり、該第1の電極2側面に設置されていること。第5の特徴と後述の第6の特徴の組み合わせにより、原料ガスと希釈ガスを分離した形で、電極間に供給可能となる。
第6の特徴は、第1及び第2の洞穴型ガス導入路15a、15bは第1の電極2の第2の電極3側の表面に平行な面内に、かつ、互いに平行な関係を保つように設置されること。第6の特徴と前述の第5の特徴の組み合わせにより、原料ガスと希釈ガスを分離した形で、電極間に供給可能となる。
本実施例での実験においては、上記特徴を有することから、以下に示す条件を満たしていると考えられる。その結果、パウダーの発生はほとんど無い状態で、高速製膜が可能であると判断される。
●条件1:高濃度のH原子を生成する条件を満たすこと。上記の第1ないし第6の特徴を有するプラズマCVD装置を用いて、大量の水素ガスを供給し、プラズマを生成することから、大量の原子状水素Hが発生しやすい。即ち、H→H+Hの反応が主反応として、起こりやすい。なお、多量の原子状Hが生成(H原子濃度の増大)されると、一般的に、微結晶シリコン膜の形成が容易に可能であると、言われている。
●条件2:高濃度のSiHを生成する条件を満たすこと。上記の第1ないし第6の特徴
を有するプラズマCVD装置を用いて、大量の水素ガスを供給し、プラズマを生成することから、SiHガスの過度のプラズマ分解及び解離が起こらないという条件が整う。これにより、SiH→H+SiH、及びH+SiH→H+SiHの反応が起こり易い。また、大量Hガスを供給し、プラズマを生成することから大量のHラジカルが発生しやすい。即ち、H→H+H、及びH+SiH→H+SiHの反応が主反応として起こりやすい。なお、SiH濃度が増大すると、一般に、高品質シリコン系膜の形成が容易に可能であると、言われている。
●条件3:パウダー生成の主要因であるSiHラジカルを減少させる条件を満たすこと。上記実験では、大量の水素を供給し、プラズマ化しているので、励起されたH濃度が高くなることから、SiHを消滅させやすい。即ち、SiH+H→SiHの反応が起こりやすい。なお、SiH濃度が減少すると、ジシラン(SiH+SiH→Si)及びトリシラン(SiH+Si→Si)等のダスト(パウダー)は形成されにくくなる。
【0055】
以上の結果から、シランガス供給量4LSM、水素ガス供給量20SLMで、供給電力9KW(0.625W/cm)の場合、製膜速度3.3nm/s程度で結晶化率60〜80%程度のi型微結晶シリコン膜が得られるということが判る。
また、シランガス供給量6LSM、水素ガス供給量30SLMで、供給電力9KW(0.625W/cm)の場合、製膜速度3.9nm/s程度で結晶化率60〜80%程度のi型微結晶シリコン膜が得られるということが判る。
【0056】
(ステップ4)
実際の応用においては、上記(ステップ1)〜(ステップ3)の結果を参照して、例えば、製膜条件として、シランガス供給量6LSM、水素ガス供給量30SLM、供給電力9KW(0.625W/cm)を選定し、目的とするi型微結晶シリコン膜の製造を行う。これにより、目的とする高品質i型微結晶シリコン膜の製造を行うことができる。
【0057】
ここで、上述の本発明の第1の実施形態に係るプラズマCVD装置によるシリコン系膜の製造方法としての効果を考える。
第1の電極2の対向面に凹部8a及び平坦部6aを形成し、かつ、原料ガス噴出孔7aを凹部8aに、希釈ガス噴出孔7aを平坦部6aに設置し、パッシェンの法則に従うプラズマ生成が可能なプラズマCVD装置を実現化できるので、従来の装置では不可能であった原料ガスと希釈ガスを空間的に分離した形でのプラズマ化と、原料ガスの弱電界領域でのプラマ化及び希釈ガスの強電界領域でのプラズマ化を行い、かつ、プラズマ化された後の原料ガスと希釈ガスの接触及び混合の促進が可能となるという効果を有する。
これにより、SiHガスのプラズマ化とHガスのプラズマ化を空間的に分離して行い、かつ、プラズマ化したSiHガスとプラズマ化したHガスの接触、混合を促進できるので、高品質膜形成に必要な多量のHと多量SiHを生成(SiH→H+SiH、H→H+H)し、かつ、粗悪な膜形成要因のSiHを消滅(SiH+H→SiH)することが可能である。これにより、従来の装置及び方法では困難視されているシリコン系膜の高品質、高速製膜が可能である。
【0058】
従来の装置を用いる方法では、高い圧力条件でシランガスと水素ガスの混合ガスをプラズマ化して製膜する場合、供給電力を増大させて、即ち、プラズマの電子温度を高くして(9.47eV以上のエネルギーを持つ電子を発生させて)高密度のプラズマを生成させると、シランガスと水素ガスの混合ガスの高密度プラズマ化により、SiH、SiH、SiH、Si、及びHラジカル等のラジカルが大量に発生し、高速製膜の条件が整う。
しかし、その条件は基板表面の近傍及び基板表面のみならず、成膜室全体に及ぶ。その結果、生成されたラジカル同志の反応が必要以上に広い反応空間の中で、必要以上に長い反応時間で反応が起こるので、副作用として膜質を悪くする反応が起こる。
その為、高品質膜の形成に必要な下記(a)〜(d)の反応に加えて、粗悪な膜を形成するSiHに関する反応(e)と(f)が強く起こる。
【0059】
(高品質膜の形成に必要な反応)
(a)SiH→H+SiH(8.75ev以上9.47eV以下のエネルギーを持つ電子の衝突により、多量のHと多量SiHを生成):SiH濃度の増大により、高品質シリコン系膜形成が容易に可能となる条件が成立。
(b)H→H+H(多量の原子状Hを生成):H原子濃度の増大により、微結晶シリコン膜の形成が容易に可能となる条件が成立。
(c)H+SiH→H+SiH(多量のHと多量SiHを生成):SiH濃度の増大により、高品質シリコン系膜形成が容易に可能となる条件が成立。
(d)SiH+H→SiH(多量のSiHを消滅):SiH濃度の減少により、ジシラン(SiH+SiH→Si)及びトリシラン(SiH+Si→Si)等のダスト(パウダー)形成要因が除去される条件が成立。
(粗悪な膜を形成する反応)
(e)SiH→H+SiH(9.47eV以上のエネルギーを持つ電子の衝突により、多量SiHを生成):SiHラジカルの濃度が増大し、ジシラン(SiH+SiH→Si)、トリシラン(SiH+Si→Si)及びテトラシラン(SiH+Si→Si10)等からなるパウダーが生成されるという条件が成立。
(f)SiH→H+H+SiH(多量SiHを生成):SiHラジカルの濃度が増大し、ジシラン(SiH+SiH→Si)、トリシラン(SiH+Si→Si)及びテトラシラン(SiH+Si→Si10)等からなるパウダーが生成されるという条件が成立。
なお、従来の装置は、主として、上記(e)と(f)の反応に起因する問題を抱えており、高品質膜の高速製膜化ができないのである。
【0060】
これに対して、本実施例では、原料ガスと希釈ガスを、それぞれ、原料ガス噴出孔7a及び希釈ガス噴出孔5aから噴出させて、噴出直後、原料ガスは弱電界領域の空間で、希釈ガスは強電界領域の空間でプラズマ化できるので、H、SiHラジカル、励起されたH等の高品質膜形成に貢献するラジカルを多量に発生できる。
これにより、膜の品質を低下させる主たる要因であるSiHラジカルの発生反応は、H、SiHラジカル、励起されたH等の高品質膜形成に貢献するラジカルの発生に比べて、大幅に抑制される。
また、大量に供給されるHガスを、プラズマ化した後に混合領域で、シランガスプラズマと混合させるので、従来装置に比べて、上記(a)〜(d)の反応が起こり易くなる。その結果、SiHの発生を抑制する形で、シリコン系膜を形成可能である。
【0061】
(実施例2)
本発明の第2の実施形態に係わるプラズマCVD装置及びプラズマCVD装置を用いたシリコン系膜の製造方法を図12ないし図14を参照して説明する。図1〜図3も参照する。
【0062】
図12は本発明の第2の実施形態に係わるプラズマCVD装置に用いられる第1の電極2を示す模式的な平面図(基板側から見た平面図)である。図13は図12のB2−B2線の断面図である。図14は希釈ガス噴出孔5b、5cの模式的な説明図である。
【0063】
先ず、装置の構成を、図12ないし図14を参照して説明する。なお、図12及び図13において、説明の便宜上、上述の本発明の第1の実施形態に係わるプラズマCVD装置の説明と同様に、図に示している座標(X、Y、Z)を参照する。
本発明の第2の実施形態に係わるプラズマCVD装置では、前述の本発明の第1の実施形態に係わるプラズマCVD装置に用いられた第1の電極2に設置されている凹部8aの型が格子状からスリット状に代えられる。
【0064】
符番8bは第1の電極2に設けられたスリット状の凹部で、複数個設置される。凹部8bの断面形状は矩形である。この凹部8bは図12のY方向に延在する溝で、溝の深さは電極間距離dの0.1〜1倍程度、即ち、0.1d〜d程度、例えば3mmである。そして、その凹部8bの幅はW2である。その幅W2は、6mm〜15mm程度、例えばW2=6mmである。凹部8bの開口部の角は異常放電防止のため、実施例1の場合と同様に、角を丸く加工する。
また、凹部8bの深さは、電極間距離dと溝幅W1、W2の数値を考慮して選定する必要がある。その際に重要なことは、異常放電を抑制することである。ここでは、凹部8bによるホローカソード放電等の異常放電を抑制するために、凹部8bの深さの値は電極間距離dと溝幅W1、W2に比べて十分に小さい値を選定している。
なお、電極のサイズが、例えば、1206mmx1206mmで、スリット状の凹部8bの幅が例えば、W2=6mmで後述の平坦部6bの幅W4がW4=6mm場合、その個数はX方向に100列である。また、このスリット状に配置される凹部8bは、例えばフライス盤、あるいは平削盤で加工し、製作される。
【0065】
符番7aは原料ガス噴出孔で、凹部8bの底面に、図12のY軸方向に複数個、5mm〜20mmの範囲で、略等間隔に、例えば12mm間隔に設置される。原料ガス噴出孔7aは、第2の洞穴型ガス導入路15bから供給される原料ガス又は原料ガスと希釈ガスの混合ガスを第1及び第2の電極2、3間に噴出する。
噴出した原料ガス又は原料ガスと希釈ガスの混合ガスは、排気管16a、16bから図示しない真空ポンプにより真空容器1の外部へ排出される。
【0066】
原料ガス噴出孔7aは第1の電極2の凹部8bに配置され、後述の希釈ガス5b、5cは第1の電極2aの平坦部6bに配置されるので、希釈ガス噴出孔5b、5cと第2の電極3の表面の間の距離は原料ガス噴出孔7と第2の電極3の表面の間の距離に比べて、短い。この距離の違いにより、一対の電極2、間でのプラズマ生成プロセスで、次の作用がある。
一対の平行平板電極を用いてプラズマを生成場合、プラズマ放電開始電圧Vs(V)と、圧力p(Pa)と電極間距離d(cm)の積pd(Pa・cm)の関係は、例えば、図21に示すようなパッシェンの曲線(パッシェンの法則)に従うことが、一般に知られている。なお、図21において、縦軸はプラズマ放電開始電圧Vs(V)、横軸は圧力p(Pa)と電極間距離d(cm)の積pd(Pa・cm)である。
この場合、pd積の値が350〜700Pa・cmにおいて、一対の電極間の電界E(V/cm)はプラズマ放電開始電圧Vs(V)と電極間距離d(cm)に依存し、E=Vs/dで表わされる。
このことは、pd積の値が350〜700Pa・cmにおいて、電界Eは電極間距離dに反比例している、ということを意味している。即ち、上記平坦部6aと第2の電極3の間の空間(ここでは、強電界領域と呼ぶ)での電界は、上記凹部8aと第2の電極3の間の空間(ここでは、弱電界領域と呼ぶ)での電界より強くなる、ということを意味している。
一対の電極2、3間において、強い電界が印加された空間に供給されるガスは、強い電界でプラズマ化されて解離されるので、強いプラズマが生成する。他方、弱い電界が印加された空間に供給されるガスは、弱い電界でプラズマ化されて解離されるので、弱いプラズマが生成する。
したがって、上記強電界領域に噴出する希釈ガス、例えば水素ガスは、強いプラズマとなり、プラズマ反応及び解離反応が強く促進される。その結果、H→H+Hの反応が容易に起こり易いという作用がある。
また、上記強電界領域に噴出する原料ガスまたは原料ガスと希釈ガスの混合ガスは、弱いプラズマになる。原料ガスがSiHの場合、SiH→H+SiHの反応が起こり易いという作用がある。強いプラズマでSiHガスをプラズマ化すれば、過度の分解反応が起こり、SiHが容易に発生する。なお、プラズマでの電子エネルギーが8.75eV以上であればSiHが生成され、9.47eV以上であればSiHが生成されることが、一般に知られている。
即ち、一対の電極2、3間に強電界領域と弱電界領域を設定し、強電界領域に水素ガスを噴出し、弱電界領域に原料ガスまたは原料ガスと水素ガスの混合ガスを噴出することにより、H→H+Hの反応(多量の原子状Hを生成)及びSiH→H+SiHの反応(多量のSiHラジカルを生成)が起こり易くなるという条件が整う。
【0067】
符番6bは、第1電極2aの第2電極3側の表面に設けられる平坦部である。この平坦部6bはスリット状の凹部8bに挟まれている。平坦部6bの幅はW4である。その幅W4は、6mm〜15mm程度、例えばW4=6mmとする。
なお、電極のサイズが、例えば、1206mmx1206mmで、凹部8bの幅W2=6mmで、平坦部6bの幅W4=6mmの場合、平坦部6bの個数はX方向に101列である。
【0068】
符番5b、5cは、第1の電極2の平坦部6bに設置される原希釈ガス噴出孔で、Y方向に複数個設置される。また、希釈ガス噴出孔5b、5cは、図12に示すように、帯状の平坦部6b上面の原料ガス噴出孔7aの近傍に複数個、例えば2個を1組にして設置される。なお、複数組みの希釈ガス噴出孔5b、5cの設置位置は、Y方向で見ると、図12に示すように、略等間隔に、5mm〜20mmの範囲で、例えば12mm間隔となる。
噴出した希釈ガスは、排気管16a、16bから図示しない真空ポンプにより真空容器1の外部へ排出される。
また、希釈ガス噴出孔5b、5cは、図13及び図14に示すように、平坦部6bの上面に希釈ガス噴出孔5bの噴出方向と希釈ガス噴出孔5cの噴出方向の間の角度がθになるように設置される。この角度θは、希釈ガス噴出孔5bの噴出方向と希釈ガス噴出孔5cの噴出方向の間の角度である。
角度θの具体的値は、一対の電極2a、3の間隔によるが、数度〜80度程度の範囲に設定される。例えば角度θ=20度とした場合を図14に示している。この場合は、図14に示すように、一対の電極2、3の間隔が10mmであれば、希釈ガス噴出孔5bの中心線が第2の電極3の表面と交わる点P1と、希釈ガス噴出孔5cの中心線が第2の電極3の表面と交わる点P2との距離が、略3.6mmになる。
即ち、希釈ガス噴出孔5b、5cが角度θを持って設置されるので、希釈ガス噴出孔5b、5cから噴出した希釈ガスは、原料ガス噴出孔7aから噴出した原料ガス又は原料ガスと希釈ガスの混合ガスを第2の電極3の表面と平行な方向へ押し出す形で接触する。その結果、原料ガスと希釈ガスの混合が促進される。
この場合、原料ガスと希釈ガスの接触の強さあるいは混合の強さは角度θに依存する。当然ながら、第1及び第2の電極2a、3の間の圧力にも依存する。
【0069】
希釈ガス噴出孔5b、5cが角度θを持って平坦部6bの上面に設置されると、上述の希釈ガス噴出孔5b、5cと原料ガス噴出孔7aの位置の違い、即ち、電極間距離に起因する作用に加えて、希釈ガス噴出孔5b、5cの有する角度θの作用が発生する。
即ち、希釈ガスと原料ガスを、それぞれ、第2の電極3表面からの距離が異なる位置に設置されている希釈ガス噴出孔5b、5c及び原料ガス噴出孔7aから噴出させ、その噴出の後に、別々の空間でプラズマ化するとともに、基板9の表面近傍で希釈ガスと原料ガスを接触させ、両者の混合を促進させる。その結果、H、SiHラジカル、励起されたH等の高品質膜形成に貢献するラジカルが多量に発生される。
つまり、希釈ガス噴出孔5b、5cから噴出した希釈ガスが、原料ガス噴出孔7aから噴出した原料ガスを第2の電極3の表面と平行な方向へ押し出す形で接触するので、希釈ガスと原料ガスの混合を促進させる。この希釈ガスと原料ガスの混合促進は、次に示す反応(b)〜(d)を促進させるという作用を生む。
即ち、希釈ガスと原料ガスの混合促進の結果、従来の装置に比べて、次の反応が顕著になる。
(b)H→H+H(多量の原子状Hを生成):H原子濃度の増大により、微結晶シリコン膜の形成が容易に可能となる条件が成立。
(c)H+SiH→H+SiH(多量のHと多量SiHを生成):SiH濃度の増大により、高品質シリコン系膜形成が容易に可能となる条件が成立。
(d)SiH+H→SiH(多量のSiHを消滅):SiH濃度の減少により、ジシラン(SiH+SiH→Si)及びトリシラン(SiH+Si→Si)等のダスト(パウダー)形成要因が除去される条件が成立。
【0070】
次に、図12〜図14図示の第1の電極2を用いたプラズマCVD装置により集積化タンデム型薄膜太陽電池用i型微結晶シリコン膜を製膜する方法を説明する。
i型微結晶シリコン膜の製膜に際し、原料ガスや希釈ガス、圧力、投入すべき電力等については、公知の製膜条件を参考に行う。
ただし、上記構成を有するプラズマCVD装置に係わる特有の諸条件は、以下に示す手順で、予め確認し、調整することが必要である。その後、目的とするi型微結晶シリコン膜の製膜を行う。
【0071】
(ステップ1)では、図1〜図3並びに図12〜図14図示の第1の電極2を用いたプラズマCVD装置において、希釈ガスだけで、例えば、水素ガスのみを用いて予備的なプラズマ生成実験を行う。
(ステップ2)では、図1〜図3並びに図12〜図14図示の第1の電極2を用いたプラズマCVD装置において、原料ガス又は原料ガスと希釈ガスの混合ガスを用いて予備的なプラズマ生成実験を行う。
(ステップ3)では、図1〜図3並びに図12〜図14図示の第1の電極2を用いたプラズマCVD装置において、原料ガスを原料ガス噴出孔から噴出させるとともに、希釈ガス噴出孔から希釈ガスを噴出させて、例えば、それぞれ、シランガス及び水素ガスを噴出させて、目的とするi型微結晶シリコン膜の製膜実験を行う。
(ステップ4)では、上記(ステップ1)〜(ステップ3)の結果を参照して、目的とする高品質i型微結晶シリコン膜の製造を行う。
【0072】
(ステップ1)
図1〜図3並びに図12〜図14において、予め、基板9を第2の電極3の上に設置し、図示しない真空ポンプを稼動させ、真空容器1内の空気及び不純物ガス等を除去した後、希釈ガス供給源10aから第1のガス供給管11a、第1の絶縁性真空フランジ14a、第1のガス導入管12a、第1のガスヘッダー13a、第1の洞穴型ガス導入路15aを介して希釈ガス噴出孔5b、5cから希釈ガス、例えば水素ガスを、0.5〜30SLM(標準状態換算でのガス流量:L/分)の範囲で、例えば4SLMを供給しつつ、圧力533.2Pa(4Torr)に維持する。基板温度は100〜350℃の範囲、例えば220℃に保持する。
なお、基板9のサイズは、第1の電極2のサイズに合わせて、長さ1mx幅1m(厚み4mm)とする。
次に、発信器20の周波数を13.56MHzとし、電力増幅器21の出力を、例えば3KWとし、インピーダンス整合器22、同軸ケーブル23b、電流導入端子24、電力供給導体26を介して、給電点26に供給する。
この場合、インピーダンス整合器22を調整することにより、その整合器22の上流側に上記供給電力の反射波が戻らないようにすることができる。一般的には、反射波は進行波の1〜3%程度に抑えることができる。
【0073】
上記の条件で、10〜20分程度の時間、プラズマを生成する。そして、図示しない発光分光スペクトル測定器と測定プローブを用いて、水素プラズマ発光スペクトルの波長486nmに着目し、その強さを測定、評価する。なお、スペクトル波長486nmは一般にHβ線と呼ばれる水素プラズマ発光での代表的な波長である。
このような発光スペクトル測定実験を、圧力を533.2Pa(4Torr)一定とし、水素ガスの流量を4SLMに保ち、電力を変化させ、波長486nmの発光強度と供給電力との関係を把握する。
この場合、例えば、図9に示すようなデータが取得される。図9は、縦軸が波長486nmの発光強度(最大値で規格化)で、横軸が供給電力(KW)である。
図9は、水素ガス供給量4LSMにおいて、波長486nmの発光強度は供給電力に比例して増加することを示している。なお、このようなデータが得られれば、異常放電の発生はないと考えられる。
ところで、第1の電極に設けられる凹部8bの形状が図12ないし図14に示すようにスリット状の溝の形になっていることから、実施例1と同様に、強電界領域、即ち、平坦部6b近傍の空間部分と、弱電界領域、即ち、凹部8b近傍の空間部分ではプラズマの発生状況が異なる。この場合、観測窓から見えるプラズマは、図8に示すように、平坦部6b近傍のプラズマのシース31の厚みは凹部8b近傍のプラズマのシース32の厚みに比べて薄くなっている。なお、図8図示の符番30はシースと発光を伴うプラズマの境界を示す。
凹部8b近傍のプラズマのシース32の厚みが平坦部6b近傍のプラズマのシース31の厚みに比べて厚いということは、凹部8b近傍のプラズマの密度は平坦部6b近傍のプラズマの密度に比べて低いということを意味する。即ち、平坦部6b近傍のプラズマ密度が1x1010cm−3程度であれば、凹部8b近傍のプラズマ密度はそれよりも小さいということである。また、凹部8b近傍のプラズマは弱電界領域のプラズマであるので、原料ガスの過度の解離は起こらないと、考えられる。
【0074】
(ステップ2)
図1〜図3並びに図12〜図14において、予め、基板9を第2の電極3の上に設置し、図示しない真空ポンプを稼動させ、真空容器1内の空気及び不純物ガス等を除去した後、原料ガス供給源10bから第2のガス供給管11b、第2の絶縁性真空フランジ14b、第2のガス導入管12b、第2のガスヘッダー13b、第2の洞穴型ガス導入路15bを介して原料ガス噴出孔7aからシランガス(90%)と水素ガス(10%)の混合ガスを、0.5〜10SLM(標準状態換算でのガス流量:L/分)の範囲で、例えば4SLMを供給しつつ、圧力を533.2Pa(4Torr)維持する。基板温度は100〜350℃の範囲、例えば220℃に保持する。
なお、基板9のサイズは、第1の電極2のサイズに合わせて、長さ1mx幅1m(厚み4mm)とする。
次に、発信器20の周波数を13.56MHzとし、電力増幅器21の出力を、例えば3KWとし、インピーダンス整合器22、同軸ケーブル23b、電流導入端子24、電力供給導体26を介して、給電点26に供給する。
この場合、インピーダンス整合器22を調整することにより、その整合器22の上流側に上記供給電力の反射波が戻らないようにすることができる。一般的には、反射波は進行波の1〜3%程度に抑えることができる。
【0075】
上記の条件で、4〜6分程度の時間、プラズマを生成すると、基板9にアモルファスシリコン膜が堆積する。製膜後、真空容器1から前記基板9を取り出して、アモルファスシリコン膜の膜厚み分布を評価する。基板9に堆積されたアモルファスシリコン膜の膜厚分布は、正弦的な分布となる。即ち、製膜されたシリコン系薄膜の膜厚分布は、概略、次式で表わされる。
I(x)=cos(2πx/λ)
ただし、I(x)は膜の厚み、xは基板中央からその周辺方向への距離、λは使用電力の波長(プラズマ中での波長)である。
このような製膜実験を、上記混合ガスの流量と、供給電力をパラメータに行い、製膜速度と上記混合ガスの流量と、供給電力との関係を把握する。
この場合、例えば、図10に示すようなデータが取得される。図10は、縦軸が製膜速度(nm/s)、横軸が供給電力(KW)である。
図10は、原料ガス供給量2LSM、4LSM、及び6LSMにおいて、製膜速度は供給電力に比例して増加するが、供給電力がある値を超えると、一定の値になる。このように、製膜速度がある値で飽和するのは、製膜速度が原料ガスの供給量に依存することを示している。
また、図10のデータでは、製膜速度の最大値は、原料ガスの流量が2LSM、4LSM、及び6LSMにおいて、それぞれ、2.2nm/s、3.15nm/s及び4.25nm/sである。
また、供給電力値と製膜速度の最大値との関係は、原料ガスの流量2LSM、4LSM、及び6LSMにおいて、それぞれ、8KW(0.556W/cm)で2.2nm/s、9KWで(0.625W/cm)で3.15nm/s、及び、9KW(0.625W/cm)で4.25nm/sである。
なお、上記製膜データにおいて、供給電力が6KW程度以上になると、パウダー(パーテイクル)が発生することがある。
【0076】
(ステップ3)
図1〜図3並びに図12〜図14において、予め、基板9を第2の電極3の上に設置し、図示しない真空ポンプを稼動させ、真空容器1内の空気及び不純物ガス等を除去した後、希釈ガス供給源10aから第1のガス供給管11a、第1の絶縁性真空フランジ14a、第1のガス導入管12a、第1のガスヘッダー13a、第1の洞穴型ガス導入路15aを介して希釈ガス噴出孔5b、5cから水素ガスを、0.5〜30SLM(標準状態換算でのガス流量:L/分)の範囲で、例えば20SLMを供給しつつ、圧力533.2Pa(4Torr)を維持する。
また、原料ガス供給源10bから第2のガス供給管11b、第2の絶縁性真空フランジ14b、第2のガス導入管12b、第2のガスヘッダー13b、第2の洞穴型ガス導入路15bを介して原料ガス噴出孔7aからシランガスを、0.5〜10SLM(標準状態換算でのガス流量:L/分)の範囲で、例えば4SLMを供給しつつ、圧力533.2Pa(4Torr)を維持する。
基板温度は100〜350℃の範囲、例えば220℃に保持する。なお、基板9のサイズは、第1の電極2のサイズに合わせて、長さ1mx幅1m(厚み4mm)とする。
次に、発信器20の周波数を13.56MHzとし、電力増幅器21の出力を、例えば3KWとし、インピーダンス整合器22、同軸ケーブル23b、電流導入端子24、電力供給導体26を介して、給電点26に供給する。
この場合、インピーダンス整合器22を調整することにより、その整合器22の上流側に上記供給電力の反射波が戻らないようにすることができる。一般的には、反射波は進行波の1〜3%程度に抑えることができる。
なお、パウダー(パーテイクル)の発生の有無をプラズマ生成中に測定するのは、困難であるので、ここでは実施しない。パウダー(パーテイクル)の発生を抑制するために、供給電力は、電力密度0.7W/cm程度以下とする。また、シランガス供給量と水素ガス供給量の比を5倍とし、パウダーの発生を抑制する。
【0077】
上記の条件で、10〜20分程度の時間、プラズマを生成すると、基板9にi型微結晶シリコン膜が堆積する。なお、大量の水素ガスが供給されるので、得られる膜はアモルファスSiではなく、微結晶膜になる。
製膜後、真空容器1から前記基板9を取り出して、該i型微結晶シリコン膜の膜厚み分布及び結晶化率を評価する。
基板9に堆積されたi型微結晶シリコン膜の膜厚分布は、正弦的な分布となる。即ち、製膜されたシリコン系薄膜の膜厚分布は、概略、次式で表わされる。
I(x)=cos(2πx/λ)
ただし、I(x)は膜の厚み、xは基板中央からその周辺方向への距離、λは使用電力の波長(プラズマ中での波長)である。
結晶化率の評価には、ラマンスペクトル分析器を用い、膜中の結晶Siピーク(517cm−1)IcとアモルファスSiピーク(470〜480cm−1)Iaを用い、結晶化率(%)=100xIc/(Ia+Ic)と定義する。
このような製膜実験を、原料ガス及び水素ガスの流量と、供給電力をパラメータに行い、製膜速度、原料ガスの流量、水素ガス及び供給電力の関係を把握する。
この場合、例えば、図11に示すようなデータが取得される。図11は、縦軸が製膜速度(nm/s)、横軸が供給電力(KW)である。
図11は、シランガス供給量4LSMで水素ガス供給量20SLMの場合、及びシランガス供給量6LSMで水素ガス供給量30SLMの場合において、製膜速度は供給電力にほぼ比例して増加するが、供給電力がある値を超えると、飽和する傾向になることを示す。
また、図11のデータでは、製膜速度の最大値、即ち、供給電力9KW(0.625W/cm)での製膜速度は、シランガス供給量4LSMで水素ガス供給量20SLMの場合、及びシランガス供給量6LSMで水素ガス供給量30SLMの場合において、それぞれ、3.3nm/s及び3.9nm/sである。結晶化率は、それぞれ、60〜80%程度が得られる。
【0078】
なお、本発明の第2の実施形態に係わるプラズマCVD装置を用いた方法に関する特徴は、次の通りである。
図12〜図14に示すように、スリット状の形を有する凹部8bに原料ガス噴出孔7aを配置し、平坦部6bにガス噴出方向が角度θだけ異なる希釈ガス噴出孔5b、5cを配置した第1の電極2を備えたプラズマCVD装置によりシリコン系膜を製造する方法であって、少なくともシランガスを含む原料ガスと、少なくとも水素ガスを含む希釈ガスを用いて、微結晶シリコン膜を製造することを特徴とする。
【0079】
ところで、本発明の第2の実施形態に係るプラズマCVD装置の装置構成上の特徴として、次のことが挙げられる。
第1の特徴は、第1の電極2の表面に、凹部8b及び平坦部6bが設けられていること。
第2の特徴は、上記凹部8bは、スリット状の溝のような形状を有すること。
第3の特徴は、凹部8bに原料ガス噴出孔7aが設けられ、平坦部6bに希釈ガス噴出孔5b、5cが角度θを持って設けられていること。これにより、原料ガスと希釈ガスの接触と混合が促進されるという条件が整う。即ち、原料ガスのプラズマと希釈ガスのプラズマが基板表面近傍で接触し混合されるということである。また、実施例1の場合と同様に、プラズマのシースの厚みが凹部8b近傍と平坦部6bでは異なる。即ち、図8図示のプラズマのシースの厚みが凹部8bでは厚く、平坦部6bでは薄くなっていることから、凹部8b近傍のプラズマ密度は高く、平坦部6b近傍のプラズマ密度は低いと言える。また、上記平坦部6bと第2の電極3の間の空間(強電界領域)での電界は、上記凹部8bと第2の電極3の間の空間(弱電界領域)での電界より強いことから、希釈ガスは強いプラズマで解離され、原料ガス弱いプラズマで解離される。
その結果、水素ガスは容易に原子状Hに分解され、SiHガスは過度のプラズマ分解が抑制されるという条件が整う。これにより、H→H+H(多量の原子状Hを生成)の反応、及びSiH→H+SiH(多量のHと多量SiHを生成)の反応が起こるという条件が整う。
第4の特徴は、原料ガス及び希釈ガスを一対の電極2、3間に供給するに際し、原料ガスと希釈ガスは互いに分離して供給されることである。即ち、希釈ガスの一対の電極2、3間への供給路は、希釈ガス供給源10aから、第1のガス供給管11a、第1の絶縁性真空フランジ14a、第1のガス導入管12a、第1のガスヘッダー13a、第1の洞穴型ガス導入路15a及び希釈ガス噴出孔5aで構成されるとともに、原料ガスの一対の電極2、3間への供給路は、原料ガス供給源10bから、第2のガス供給管11b、第2の絶縁性真空フランジ14b、第2のガス導入管12b、第2のガスヘッダー13b、第2の洞穴型ガス導入路15b及び原料ガス噴出孔7aで構成されていること。
第5の特徴は、第1及び第2のガスヘッダー13a、13bは第1の電極2の互いに対向しあう位置関係にあり、該第1の電極2側面に設置されていること。
第6の特徴は、第1及び第2の洞穴型ガス導入路15a、15bは第1の電極2の第2の電極3側の表面に平行な面内に、かつ、互いに平行な関係を保つように設置されること。
本実施例での実験においては、上記特徴を有することから、以下に示す条件を満たしていると考えられる。その結果、パウダーの発生はほとんど無い状態で、高速製膜が可能であると判断される。
●条件1:高濃度のH原子を生成する条件を満たすこと。上記の第1ないし第6の特徴を有するプラズマCVD装置を用いて、大量の水素ガスを供給し、プラズマを生成することから、大量の原子状水素Hが発生しやすい。即ち、H→H+Hの反応が主反応として、起こりやすい。なお、多量の原子状Hが生成(H原子濃度の増大)されると、一般的に、微結晶シリコン膜の形成が容易に可能であると、言われている。
●条件2:高濃度のSiHを生成する条件を満たすこと。上記の第1ないし第6の特徴
を有するプラズマCVD装置を用いて、大量の水素ガスを供給し、プラズマを生成することから、SiHガスの過度のプラズマ分解及び解離が起こらないという条件が整う。これにより、SiH→H+SiH、及びH+SiH→H+SiHの反応が起こり易い。また、大量Hガスを供給し、プラズマを生成することから大量のHラジカルが発生しやすい。即ち、H+SiH→H+SiHの反応が主反応として起こりやすい。なお、SiH濃度が増大すると、一般に、高品質シリコン系膜の形成が容易に可能であると、言われている。
●条件3:パウダー生成の主要因であるSiHラジカルを減少させる条件を満たすこと。上記実験では、大量の水素を供給し、プラズマ化しているので、励起されたH濃度が高くなることから、SiHを消滅させやすい。即ち、SiH+H→SiHの反応が起こりやすい。なお、SiH濃度が減少すると、ジシラン(SiH+SiH→Si)及びトリシラン(SiH+Si→Si)等のダスト(パウダー)は形成されにくくなる。
【0080】
以上の結果から、シランガス供給量4LSM、水素ガス供給量20SLMで、供給電力9KW(0.625W/cm)の場合、製膜速度3.3nm/s程度で結晶化率60〜80%程度のi型微結晶シリコン膜が得られるということが判る。
また、シランガス供給量6LSM、水素ガス供給量30SLMで、供給電力9KW(0.625W/cm)の場合、製膜速度3.9nm/s程度で、結晶化率60〜80%程度のi型微結晶シリコン膜が得られるということが判る。
【0081】
(ステップ4)
実際の応用においては、上記(ステップ1)〜(ステップ3)の結果を参照して、例えば、製膜条件として、シランガス供給量6LSM、水素ガス供給量30SLM、供給電力9KW(0.625W/cm)を選定し、目的とするi型微結晶シリコン膜の製造を行う。これにより、目的とする高品質i型微結晶シリコン膜の製造が行う。
【0082】
ここで、上述の本発明の第2の実施形態に係るプラズマCVD装置によるシリコン系膜の製造方法としての効果を考える。
一対の平行平板型電極を構成する第1の電極2の表面に凹部8aと平坦部6bを設置し、該凹部8aに原料ガス噴出孔7aを設置し、かつ、該平坦部6bにガス噴出の方向が第2の電極3の表面の法線方向と異なる方向を向いた希釈ガス噴出孔5b、5c設置し、原料ガスに印加される電界を弱く、希釈ガスに印加される電界を強くすることが可能であり、かつ、プラズマ化された原料ガスと希釈ガスの接触及び混合の促進が可能であるプラズマCVD装置を実現化できるので、従来の装置では不可能である高品質のシリコン膜を高速で製膜できるという作用効果を有する。
これにより、SiHガスのプラズマ化とHガスのプラズマ化を空間的に分離して行い、かつ、プラズマ化したSiHガスとプラズマ化したHガスの接触、混合を促進できるので、高品質膜形成に必要な多量のHと多量SiHを生成(SiH→H+SiH、H→H+H)し、かつ、粗悪な膜形成要因のSiHを消滅(SiH+H→SiH)することが可能である。これにより、従来の装置及び方法では困難視されているシリコン系膜の高品質、高速製膜が可能である。
【0083】
また、上記の本発明の第2の実施形態に係るプラズマCVD装置には、次に示すような特徴がある。
排気系を備えた真空容器と、原料ガスの供給源及び該原料ガスを希釈する希釈ガスの供給源と、該原料ガス及び該希釈ガスを該真空容器に導入するガス導入管と、該原料ガス及び該希釈ガスを噴出するガス噴出孔を有する電気的に非接地の平行平板型の第1の電極及び基板を載置する平行平板型の第2の電極からなる一対の電極と、該一対の電極に高周波電力を供給する高周波電力供給系と、を具備し、該真空容器内に設置された基板に薄膜を形成するプラズマCVD装置において、前記ガス噴出孔は、前記希釈ガスを該希釈ガスの噴出方向が前記第2の電極の表面の法線方向以外の方向に向くように配置された複数の希釈ガス噴出孔と、前記原料ガスを噴出する複数の原料ガス噴出孔から構成され、かつ、該希釈ガス噴出孔と該原料ガス噴出孔は印加される電界の強さが異なる位置に配置されるということを特徴とする。
これにより、従来の装置方法では困難視されている高品質膜シリコン系膜の形成が可能となる。
【0084】
従来の装置を用いる方法では、高い圧力条件でシランガスと水素ガスの混合ガスをプラズマ化して製膜する場合、供給電力を増大させて、即ち、プラズマの電子温度を高くして(9.47eV以上のエネルギーを持つ電子を発生させて)高密度のプラズマを生成させると、シランガスと水素ガスの混合ガスの高密度プラズマ化により、SiH、SiH、SiH、Si、及びHラジカル等のラジカルが大量に発生し、高速製膜の条件が整う。しかし、その条件は基板表面の近傍及び基板表面のみならず、成膜室全体に及ぶ。その結果、生成されたラジカル同志の反応が必要以上に広い反応空間の中で、必要以上に長い反応時間で反応が起こるので、副作用として膜質を悪くする反応が起こる。
その結果、高品質膜の形成に必要な下記(a)〜(d)の反応に加えて、粗悪な膜を形成するSiHに関する反応(e)と(f)が強く起こる。したがって、従来装置では、高品質膜の高速製膜化ができないのである。
【0085】
(高品質膜の形成に必要な反応)
(a)SiH→H+SiH(8.75ev以上9.47eV以下のエネルギーを持つ電子の衝突により、多量のHと多量SiHを生成):SiH濃度の増大により、高品質シリコン系膜形成が容易に可能となる条件が成立。
(b)H→H+H(多量の原子状Hを生成):H原子濃度の増大により、微結晶シリコン膜の形成が容易に可能となる条件が成立。
(c)H+SiH→H+SiH(多量のHと多量SiHを生成):SiH濃度の増大により、高品質シリコン系膜形成が容易に可能となる条件が成立。
(d)SiH+H→SiH(多量のSiHを消滅):SiH濃度の減少により、ジシラン(SiH+SiH→Si)及びトリシラン(SiH+Si→Si)等のダスト(パウダー)形成要因が除去される条件が成立。
(粗悪な膜を形成する反応)
(e)SiH→H+SiH(9.47eV以上のエネルギーを持つ電子の衝突により、多量SiHを生成):SiHラジカルの濃度が増大し、ジシラン(SiH+SiH→Si)、トリシラン(SiH+Si→Si)及びテトラシラン(SiH+Si→Si10)等からなるパウダーが生成されるという条件が成立。
(f)SiH→H+H+SiH(多量SiHを生成):SiHラジカルの濃度が増大し、ジシラン(SiH+SiH→Si)、トリシラン(SiH+Si→Si)及びテトラシラン(SiH+Si→Si10)等からなるパウダーが生成されるという条件が成立。
【0086】
これに対して、本実施例では、希釈ガスと原料ガスを、それぞれ、希釈ガス噴出孔5b、5c及び原料ガス噴出孔7aから噴出させ、該原料ガスを凹部8bでプラズマ化し、該希釈ガスを平坦部6bでプラズマ化して、その後、それぞれプラマ化した原料ガスと希釈ガスを基板表面の近傍で混合させる。即ち、大量の水素ガスはシランガスと別の空間でプラズマ化し、大量のH及びSiHラジカル、並びに励起されたH等の高品質膜形成に貢献するラジカルを多量に発生できる。その結果、膜の品質を低下させる主たる要因であるSiHラジカルの発生は、H、SiHラジカル、励起されたH等の高品質膜形成に貢献するラジカルの発生に比べて、大幅に抑制される。
特に、本発明の第2の実施形態に係わるプラズマCVD装置では、希釈ガス噴出孔5b、5cの噴射方向が第2の電極3の法線方向以外に向いていることから、プラズマ化された後の希釈ガスと原料ガスの接触及び混合が促進されて、上記(b)、(c)、(d)の反応が起きやすくなる。これにより、SiHの発生を抑制する形で、シリコン系膜を形成可能である。
その結果、従来装置に比べて、SiHの発生を抑制する形で、シリコン系膜を形成可能である。
【0087】
(実施例3)
本発明の第3の実施形態に係わるプラズマCVD装置及びプラズマCVD装置を用いたシリコン系膜の製造方法について、図15を参照して説明する。図1〜図3も参照する。
図15は本発明の第3の実施形態に係わるプラズマCVD装置に用いられる第1の電極2を示す模式的な断面図である。
本実施例3でのプラズマCVD装置の装置構成上の特徴は、上述の実施例2において第1の電極2に設置される凹部8bの断面形状が矩形であるのに対して、実施例3の場合は断面形状が波形であることである。
【0088】
符番8cは第1電極2の第2電極3側の表面に設けられる凹部である。この凹部8cはY方向に延在する断面形状が波形の溝で、溝の深さH1は電極間距離dの0.1〜1倍程度、即ち、0.1d〜d程度、例えば3mmである。凹部8cの幅は、W2を有する。その幅W2は、6mm〜15mm程度、例えばW2=6mmとする。
なお、この凹部8cには原料ガス噴出孔7aが設置される。
また、この波形の凹部8cは、例えばフライス盤、あるいは平削盤で加工し、製作される。
【0089】
符番6cは、第1電極2の第2電極3側の表面に設けられる凸部である。この凸部6cは凹部8bに挟まれている。凸部6cの幅はW4で、凹部8cの幅W2と同じである。その幅W4は、6mm〜15mm程度、例えばW4=6mmとする。凸部6cの高さH2は凹部8cの高さH1と同じである。
なお、電極のサイズが、例えば、1206mmx1206mmで、凹部8cの幅W2=6mmで、凸部6cの幅W4=6mmの場合、凸部6cの個数はX方向に101列である。
【0090】
実施例3においては、上記特徴以外は、実施例2の場合とほぼ同様であるので、詳細な説明は省略する。
【0091】
(実施例4)
本発明の第4の実施形態に係わるプラズマCVD装置及びプラズマCVD装置を用いたシリコン系膜の製造方法について、図16を参照して説明する。図1〜図3も参照する。
図16は本発明の第4の実施形態に係わるプラズマCVD装置に用いられる第1の電極2を示す模式的な断面図である。
本実施例4でのプラズマCVD装置の装置構成上の特徴は、上述の実施例2において第1の電極2に設置される凹部8bの断面形状が矩形であるのに対して、実施例4の場合は断面形状が台形であることである。
【0092】
符番8dは第1電極2の第2電極3側の表面に設けられる凹部である。この凹部8dはY方向に延在する断面形状が台形の溝で、溝の深さH1は、電極間距離dの0.1〜1倍程度、即ち、0.1d〜d程度、例えば3mmである。そして、その凹部8dの幅はW2を有する。その幅W2は、6mm〜15mm程度、例えばW2=6mmとする。
なお、この凹部8dには原料ガス噴出孔7aが設置される。
また、この台形の凹部8dは、例えばフライス盤、あるいは平削盤で加工し、製作される。
【0093】
符番6dは、第1電極2の第2電極3側の表面に設けられる凸部である。この凸部6dは凹部8bに挟まれている。凸部6dの幅はW4で、凹部8dの幅W2と同じである。その幅W4は、6mm〜15mm程度、例えばW4=6mmとする。凸部6dの高さH2は凹部8dの高さH1と同じである。
なお、電極のサイズが、例えば、1206mmx1206mmで、凹部8dの幅W2=6mmで、凸部6dの幅W4=6mmの場合、凸部6dの個数はX方向に101列である。
【0094】
実施例4においては、上記特徴以外は、実施例2の場合とほぼ同様であるので、詳細な説明は省略する。
【0095】
(実施例5)
本発明の第5の実施形態に係わるプラズマCVD装置及びプラズマCVD装置を用いたシリコン系膜の製造方法を図17及び図18を参照して説明する。図1〜図3も参照する。
【0096】
図17は本発明の第5の実施形態に係わるプラズマCVD装置に用いられる第1の電極2を示す模式的な平面図(基板側から見た平面図)である。図18は図17のF1−F1線の断面図である。
【0097】
装置の構成を、図17及び図18を参照して説明する。なお、図17及び図18において、説明の便宜上、上述の本発明の第1の実施形態に係わるプラズマCVD装置の説明と同様に、図に示している座標(X、Y、Z)を参照する。
本発明の第5の実施形態に係わるプラズマCVD装置では、前述の本発明の第1の実施形態に係わるプラズマCVD装置に用いられた第1の電極2に設置されている凹部の型が格子状から多数の円筒形に代えられる。
【0098】
符番8fは、第1の電極2に設けられた円筒状の凹部である。この凹部8fは直径2〜20mm、例えば5mmである。その深さは、電極間距離dの0.1〜1倍程度、即ち、0.1d〜d程度、例えば3mmである。
この凹部8fは多数、設置される。設置に際しては、隣り合う間隔が5mm〜50mm、例えば中心点間の距離で12mmとする。
【0099】
符番7aは原料ガス噴出孔で、多数個ある全ての凹部8fの底面に、設置される。なお、図17及び図18には1個の凹部8fに1個の原料ガス噴出孔7aを示しているが、複数個でも良い。
この原料ガス噴出孔7aは、前述の実施例と同様に、第2の洞穴型ガス導入路15bから供給される原料ガス又は原料ガスと希釈ガスの混合ガスを第1及び第2の電極2、3間に噴出する。
噴出した希釈ガスは、排気管16a、16bから図示しない真空ポンプにより真空容器1の外部へ排出される。
【0100】
符番6fは、第1電極2aの第2電極3側の表面の平坦部である。この平坦部6fは第1電極2aの第2電極3側の表面に設けられた凹部8f以外の領域である。
【0101】
符番5b、5cは希釈ガス噴出孔で、前述の実施例と同様のもので、第1電極2の平坦部6fに設置される。稀釈ガス噴出孔5b、5cは、図18に示すように、平坦部6fの原料ガス噴出孔7aの近傍に複数個、例えば2個を1組にして設置される。なお、複数組の希釈ガス噴出孔5b、5cの設置位置は、Y方向で見ると、図17に示すように、略等間隔に、5mm〜20mmの範囲で、例えば中心点間の距離で12mmとする。
噴出した希釈ガスは、排気管16a、16bから図示しない真空ポンプにより真空容器1の外部へ排出される。
また、希釈ガス噴出孔5b、5cは、図18に示すように、希釈ガス噴出孔5bの噴出方向と希釈ガス噴出孔5cの噴出方向の間の角度がθになるように設置される。この角度θは、希釈ガス噴出孔5bの噴出方向と希釈ガス噴出孔5cの噴出方向の間の角度である。
角度θの具体的値は、一対の電極2a、3の間隔によるが、数度〜80度の範囲に設定される。
即ち、希釈ガス噴出孔5b、5cが角度θを持って設置されるので、希釈ガス噴出孔5b、5cから噴出した希釈ガスは、原料ガス噴出孔7aから噴出した原料ガスを第2の電極3の表面と平行な方向へ押し出す形で接触する。その結果、原料ガスと希釈ガスの混合が促進される。
この場合、原料ガスと希釈ガスの接触の強さあるいは混合の強さは角度θに依存する。当然ながら、第1及び第2の電極2a、3の間の圧力にも依存する。
【0102】
希釈ガス噴出孔5b、5cが角度θを有することから、前述の希釈ガス噴出孔5b、5cと原料ガス噴出孔7aの位置の違いに起因する作用、即ち、印加される電界の強弱の違いに起因する作用に加えて、希釈ガス噴出孔5b、5cの有する角度θの作用が発生する。
即ち、希釈ガス噴出孔5b、5cと原料ガス噴出孔7aの位置の違いに起因する作用は次の通りである。
原料ガス噴出孔7aは第1の電極2の凹部8fに配置され、希釈ガス5b、5cは第1の電極2aの平坦部6fに配置されるので、希釈ガス噴出孔5b、5cと第2の電極3の表面の間の距離は原料ガス噴出孔7aと第2の電極3の表面の間の距離に比べて、短い。この距離の違いにより、一対の電極2、間でのプラズマ生成プロセスで、次の作用がある。
一対の平行平板電極を用いてプラズマを生成場合、プラズマ放電開始電圧Vs(V)と、圧力p(Pa)と電極間距離d(cm)の積pd(Pa・cm)の関係は、例えば、図21に示すようなパッシェンの曲線(パッシェンの法則)に従うことが、一般に知られている。なお、図21において、縦軸はプラズマ放電開始電圧Vs(V)、横軸は圧力p(Pa)と電極間距離d(cm)の積pd(Pa・cm)である。この場合、pd積の値が350〜700Pa・cmにおいて、一対の電極間の電界E(V/cm)はプラズマ放電開始電圧Vs(V)と電極間距離d(cm)に依存し、E=Vs/dで表わされる。
このことは、pd積の値が350〜700Pa・cmにおいて、電界Eは電極間距離dに反比例している、ということを意味している。即ち、上記平坦部6fと第2の電極3の間の空間(ここでは、強電界領域と呼ぶ)での電界は、上記凹部8fと第2の電極3の間の空間(ここでは、弱電界領域と呼ぶ)での電界より強くなる、ということを意味している。
一対の電極2、3間において、強い電界が印加された空間に供給されるガスは、強い電界でプラズマ化されて解離されるので、強いプラズマが生成する。他方、弱い電界が印加された空間に供給されるガスは、弱い電界でプラズマ化されて解離されるので、弱いプラズマが生成する。
したがって、上記強電界領域に噴出する希釈ガス、例えば水素ガスは、強いプラズマとなり、プラズマ反応及び解離反応が強く促進される。その結果、H→H+Hの反応が容易に起こり易いという作用がある。
また、上記強電界領域に噴出する原料ガスまたは原料ガスと希釈ガスの混合ガスは、弱いプラズマになる。原料ガスがSiHの場合、SiH→H+SiHの反応が起こり易いという作用がある。強いプラズマでSiHガスをプラズマ化すれば、過度の分解反応が起こり、SiHが容易に発生する。なお、プラズマでの電子エネルギーが8.75eV以上であればSiHが生成され、9.47eV以上であればSiHが生成されることが、一般に知られている。
即ち、一対の電極2、3間に強電界領域と弱電界領域を設定し、強電界領域に水素ガスを噴出し、弱電界領域に原料ガスまたは原料ガスと水素ガスの混合ガスを噴出することにより、H→H+Hの反応(多量の原子状Hを生成)及びSiH→H+SiHの反応(多量のSiHラジカルを生成)が起こり易くなるという条件が整えることができる。
更に、希釈ガスは、希釈ガス噴出孔5b、5c間の角度θの設定により、第2の電極表面の法線方向と異なる方向に噴出するので、設定されるので、プラズマ化された原料ガスと希釈ガスを接触させ、両者を混合させるという作用が生まれる。つまり、希釈ガス噴出孔5b、5cから噴出した希釈ガスが、原料ガス噴出孔7aから噴出した原料ガスを第2の電極3の表面と平行な方向へ押し出す形で接触するので、原料ガスと希釈ガスの混合を促進させる。この原料ガスと希釈ガスの混合促進は、次に示す反応(b)〜(d)を促進させるという作用を生む。
即ち、原料ガスと希釈ガスの混合促進の結果、従来の装置に比べて顕著となる反応として、次の反応が顕著になる。
(b)H→H+H(多量の原子状Hを生成):H原子濃度の増大により、微結晶シリコン膜の形成が容易に可能となる条件が整う。
(c)H+SiH→H+SiH(多量のHと多量SiHを生成):SiH濃度の増大により、高品質シリコン系膜形成が容易に可能となる条件が整う。
(d)SiH+H→SiH(多量のSiHを消滅):SiH濃度の減少により、ジシラン(SiH+SiH→Si)及びトリシラン(SiH+Si→Si)等のダスト(パウダー)形成要因が除去される条件が整う。
【0103】
実施例5においては、上述の装置構成上の特徴及びその作用以外は、実施例2ないし実施例4の場合とほぼ同様であるので、装置の取り扱いについての説明を省略する。
【0104】
(実施例6)
本発明の第6の実施形態に係わるプラズマCVD装置及びプラズマCVD装置を用いたシリコン系膜の製造方法について、図19を参照して説明する。図1〜図3も参照する。
図19は本発明の第6の実施形態に係わるプラズマCVD装置に用いられる第1の電極2を示す模式的な断面図である。
本実施例6でのプラズマCVD装置の装置構成上の特徴は、上述の実施例5において第1の電極2に設置される凹部8fの構造が円筒形であるのに対して、実施例7の場合は凹部8gの構造が円錐形であることである。
【0105】
符番8gは、第1の電極2に設けられた円錐状の凹部である。その円錐状の凹部8gの底面の直径は2〜20mm、例えば5mmである。その高さは3〜20mm、例えば3mmである。
この凹部8gは多数、設置される。設置に際しては、隣り合う間隔が5mm〜50mm、例えば中心点間の距離で12mmとする。
【0106】
符番7aは原料ガス噴出孔で、多数個ある全ての凹部8gの頂点部に、設置される。
この原料ガス噴出孔7aは、前述の実施例と同様に、第2の洞穴型ガス導入路15bから供給される原料ガス又は原料ガスと希釈ガスの混合ガスを第1及び第2の電極2、3間に噴出する。
噴出した原料ガスは、排気管16a、16bから図示しない真空ポンプにより真空容器1の外部へ排出される。
【0107】
符番6fは、第1電極2の第2電極3側の表面の平坦部である。この平坦部6fは第1電極2の第2電極3側の表面に設けられた凹部8g以外の領域である。
【0108】
符番5b、5cは希釈ガス噴出孔で、前述の実施例と同様のもので、第1電極2の平坦部6fに設置される。希釈ガス噴出孔5b、5cは、図19に示すように、平坦部6fの希釈ガス噴出孔7aの近傍に複数個、例えば2個を1組にして設置される。原料ガス噴出孔5b、5cは角度θを有する。なお、複数組の原料ガス噴出孔5b、5cの設置位置は、Y方向で見ると、図17に示すように、略等間隔に、5mm〜20mmの範囲で、例えば中心点間の距離で12mmとする。
【0109】
実施例6においては、上記特徴以外は、実施例5の場合とほぼ同様であるので、詳細な説明は省略する。
【符号の説明】
【0110】
1・・・真空容器、
2・・・第1の電極、
3・・・第2の電極、
4・・・第1の電極2の支持手段、
5a、5b、5c・・・希釈ガス噴出孔、
6a、6b、6f・・・第1電極2の第2電極3側の表面に設けられる平坦部、
6c、6d・・・第1電極2の第2電極3側の表面に設けられる凸部、
7a・・・原料ガス噴出孔、
8a、8b、8c、8d・・・第1電極2の第2電極との対向面に設けられる凹部、
8f、8g・・・第1電極2の第2電極との対向面に設けられる穴、
9・・・基板、
10a・・・希釈ガス供給源、
10b・・・原料ガス供給源、
11a・・・第1のガス供給管、
11b・・・第2のガス供給管、
12a・・・第1のガス導入管、
12b・・・第2のガス導入管、
13a・・・第1のガスヘッダー、
13b・・・第2のガスヘッダー、
14a・・・第1の絶縁性真空フランジ、
14b・・・第2の絶縁性真空フランジ、
15a・・・第1の洞穴型ガス導入路、
15b・・・第2の洞穴型ガス導入路、
17・・・希釈ガスの噴流、
18・・・原料ガスの噴流、
19・・・混合領域、
20・・・発信器、
21・・・電力増幅器、
22・・・インピーダンス整合器、
23a、23b・・・同軸ケーブル、
24・・・電流導入端子、
25・・・電力供給導体、
26・・・給電点。

【特許請求の範囲】
【請求項1】
排気系を備えた真空容器と、
原料ガスの供給源及び該原料ガスを希釈する希釈ガスの供給源と、
該原料ガス及び該希釈ガスを該真空容器に導入するガス導入管と、
該原料ガス及び該希釈ガスを噴出するガス噴出孔を有する電気的に非接地の平行平板型の第1の電極及び基板を載置する平行平板型の第2の電極からなる一対の電極と、
該一対の電極に高周波電力を供給する高周波電力供給系と、を具備し、
該真空容器内に設置された基板に薄膜を形成するプラズマCVD装置において、
前記第1の電極の第2の電極と対向する対向面に複数の凹部又は穴が形成され、該複数の凹部又は穴の底面に前記原料ガス又は該原料ガスと前記希釈ガスの混合ガスを噴出する原料ガス噴出孔が設置されるとともに、該対向面の該複数の凹部又は穴の部分を除く平坦部に前記希釈ガスを噴出する希釈ガス噴出孔が設置されるという構成を有することを特徴とするプラズマCVD装置。
【請求項2】
請求項1に記載のプラズマCVD装置において、前記希釈ガスを前記第1及び第2の電極間に噴出させる際に、少なくとも、第1の電極の側面に配置される第1のガスヘッダーと、第1の電極の内部に配置される第1の洞穴型ガス導入路と、第1の電極の第2の電極と対向する対向面に配置される希釈ガス噴出孔が用いられるとともに、前記原料ガス又は原料ガスと希釈ガスの混合ガスを前記第1及び第2の電極間に噴出させる際に、少なくとも、第1の電極の側面に配置される第2のガスヘッダーと、第1の電極の内部に配置される第2の洞穴型ガス導入路と、第1の電極第1の電極の第2の電極と対向する対向面に配置される原料ガス噴出孔が用いられるということを特徴とするプラズマCVD装置。
【請求項3】
請求項1あるいは2のいずれか一つに記載のプラズマCVD装置において、前記凹部の断面形状は、矩形、台形、又は波形であることを特徴とするプラズマCVD装置。
【請求項4】
請求項1あるいは2のいずれか一つに記載のプラズマCVD装置において、前記穴の形状は、円筒形あるいは円錐形であることを特徴とするプラズマCVD装置。
【請求項5】
請求項1から4のいずれか一つに記載のプラズマCVD装置において、前記希釈ガス噴出孔は、該希釈ガスの噴出の方向が前記第2の電極の表面の法線方向以外の方向へ向くように配置されるということを特徴とするプラズマCVD装置。
【請求項6】
排気系を備えた真空容器と、
原料ガスの供給源及び該原料ガスを希釈する希釈ガスの供給源と、
該原料ガス及び該希釈ガスを該真空容器に導入するガス導入管と、
該原料ガス及び該希釈ガスを噴出するガス噴出孔を有する電気的に非接地の平行平板型の第1の電極及び基板を載置する平行平板型の第2の電極からなる一対の電極と、
該一対の電極に高周波電力を供給する高周波電力供給系と、を具備し、該真空容器内に設置された基板に膜を形成するプラズマCVD装置を用いてシリコン系膜を製造する方法であって、
前記ガス噴出孔を前記原料ガス又は原料ガスと希釈ガスの混合ガスを噴出する複数の原料ガス噴出孔と前記希釈ガスを噴出する複数の希釈ガス噴出孔に分離し、該希釈ガス噴出孔を第2の電極の表面から近い位置である第1の位置に配置させ、該原料ガス噴出孔を第2の電極の表面から遠い位置である第2の位置に配置させることにより、該原料ガス噴出孔から噴出する原料ガス又は原料ガスと希釈ガスの混合ガスが該一対の電極から印加される電界の強さと、該希釈ガス噴出孔から噴出する希釈ガスが該一対の電極から印加される電界の強さが異なるようにしたことを特徴とするプラズマCVD装置を用いたシリコン系膜の製造方法。
【請求項7】
請求項1から5のいずれか一つに記載のプラズマCVD装置を用いて、シリコン系膜を製造する方法であって、少なくともシランガスを含む原料ガスと、少なくとも水素ガスを含む希釈ガスを用いて、微結晶シリコン膜を製造することを特徴とするプラズマCVD装置を用いたシリコン系膜の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate


【公開番号】特開2011−146745(P2011−146745A)
【公開日】平成23年7月28日(2011.7.28)
【国際特許分類】
【公開請求】
【出願番号】特願2011−99196(P2011−99196)
【出願日】平成23年4月27日(2011.4.27)
【出願人】(303034908)
【Fターム(参考)】