説明

モータ駆動制御装置

【課題】 相電流検出のためのDCリンク電流検出タイミングを電圧指令信号の値に応じて変化させずに所定タイミングに固定して相電流検出を可能とし、電流検出タイミングを制御する回路や処理を低減する。
【解決手段】 所定のタイミングで値が更新される複数相の電圧指令信号をキャリア信号によりパルス幅変調して生成される少なくとも1相のPWM信号のパルス幅が、電圧指令信号の値の増加に応じて、電圧指令信号の値更新周期の前端を基準として後端方向へ増加し、この後端方向にパルス幅の増加したPWM信号とは別の少なくとも1相のPWM信号のバルス幅が、電圧指令信号の値の増加に応じて、電圧指令信号の値更新周期の後端を基準として前端方向へ増加するよう、PWM手段が複数相のPWM信号を生成する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、複数相のコイルを有したモータを回転駆動するための駆動電流を供給するブリッジ回路中、ブリッジ回路から接地GNDへ流れるDCリンク電流を検出する電流検出回路のみを用いて、複数相コイルを流れる交流の相電流を検出するモータ駆動制御装置に関する。
【背景技術】
【0002】
複数のトランジスタとダイオードにより構成されるブリッジ回路は、直流電圧をパルス幅変調により交流電圧に変換する回路であり、同期モータや誘導モータの無整流子型モータを駆動するためのインバータとして、OA機器、家電機器、車両走行用電動機の分野において広く利用されている。
【0003】
このようなブリッジ回路を用いてモータを駆動する場合、モータの発生トルクを精度よく制御するためには、各相のコイルを流れる相電流の交流基本波成分を検出してフィードバック制御する必要があり、相電流の検出には、検出モータの各相毎に電流検出手段を設けて、それぞれが各相の相電流を検出する手法が最も容易である。
【0004】
しかしながら、複数の電流検出手段を設けることはコストアップ要因になるため、電流検出手段をブリッジ回路のDCリンク部にのみ備え、DCリンク電流の検出値から複数相の相電流の値を検出する方法が提案されている。
【0005】
この手法について、以下、図14から図16を用いて説明する。
まず、図14は装置の全体構成を示す図である。モータ1は無整流子型の3相モータであり、互いに120度の位相差をもつ、U相、V相、W相の3相で構成され、3相のコイルはY字結線され、U相、V相、W相の各コイル端子でブリッジ回路2に接続されている。
【0006】
ブリッジ回路2は、図15に示すように、スイッチング素子25とダイオード26が並列に接続された上側アーム21と、同様に構成された下側アーム22とを、3相接続して構成されている。上側アーム21は直流電源31に、下側アーム22は接地であるGND32に接続され、上側アーム21と下側アーム22の接続点でモータ1の各相のコイルに接続されている。それぞれのスイッチング素子25は、ゲート信号(UH、VH、WH、UL、VL、WL)によりON/OFF駆動され、モータ1のコイルにパルス幅変調された電圧を印加して、コイルへ駆動電流を供給し、モータ1を回転駆動する。このとき、3相のコイルを流れる相電流を、それぞれiu、iv、iwとする。相電流iu、iv、iwは、ブリッジ回路2からモータ1のコイルへ流れるときを正として、コイルはY結線のため、キルヒホッフの第一法則により相電流iu、iv、iwの合計は零になる。
【数1】

【0007】
上側アーム21のゲート信号UH、VH、WHと、下側アーム22のゲート信号UL、VL、WLは、図16に示すように、各相毎に相補的にON/OFFする信号であり、ON/OFFの切り替え時には、貫通電流によるスイッチング素子破壊を防止するため、長さtdのデッドタイムが設けられている。DCリンク電流igは、ブリッジ回路2とGND32の間を流れる電流を示し、ブリッジ回路2からGND32へ向かう方向を正とする。
【0008】
ブリッジ回路2において、上側アームのゲート信号UH、VH、WHがハイ(上側アームのスイッチング素子がON状態)である相の相電流は、相電流が正ならば直流電源31から供給されてGND32へ流れ、相電流が負ならばGND32から供給されて直流電源31へ流れる。つまり、DCリンク電流igは、相電流iu、iv、iwの組み合わせである。
【0009】
ここで、図16のゲート信号を例として、DCリンク電流igと相電流の関係について説明する。上側アーム21のスイッチング素子25のON/OFFによって、区間(a)から区間(d)に分けると、それぞれの区間における上側アームのスイッチング素子の状態は以下の通りである:
区間(a):上側アームのスイッチング素子がON状態の相はない
区間(b):U相の上側アームのスイッチング素子がON状態である
区間(c):U相およびV相の上側アームのスイッチング素子がON状態である
区間(d):3相全ての上側アームがON状態である
【0010】
このとき、区間(a)から区間(d)のそれぞれにおける、DCリンク電流igは以下の通りであり、図16に示すように各区間毎にパルス状の電流となる:
区間(a):DCリンク電流igは零である
区間(b):DCリンク電流igはiuである
区間(c):DCリンク電流igはiuとivの合計である
区間(d):DCリンク電流igは、零である
なお、区間(d)の場合は、上側アームのスイッチング素子は全てON状態であり、電流はブリッジ回路とコイル内で還流するため、DCリンク電流は零になるのである。
【0011】
DC電流検出手段4は、上側アーム21のゲート信号UH、VH、WHに基づいて、上側アーム21のスイッチング素子25の1相または2相がON状態であり、かつ上側アーム21の他のスイッチング素子25のON/OFF状態が異なる2つの検出タイミングにおいて、DCリンク電流igの値を検出し、これら2回のDCリンク電流の検出値ia、ibを出力する。
【0012】
相電流検出手段5は、ゲート信号UH、VH、WHのハイ/ローと、DCリンク電流検出値ia、ibから、相電流iu、iv、iwを検出する。具体的には、DCリンク電流検出値ia、ibと、その検出タイミングにおける上側アーム21のスイッチング素子25のON/OFF状態から、2相分の相電流値を検出し、残りの1相分の相電流値をキルヒホッフの第一法則に基づいて算出することにより、3相の相電流の値を検出することができる。例えば、図16を例にすると、区間(b)および区間(c)において検出したDCリンク電流igの検出値ia、ibから、数2に示す処理によって相電流iu、iv、iwを検出することができる。以上のようにして、DCリンク部のみの電流検出により、相電流を検出することができる。
【数2】

【0013】
上記のように、1つの電流検出手段による複数相の相電流検出手法においては、異なるタイミングで検出したDCリンク電流の値に基づいて2相の相電流値を検出し、検出した2相の相電流値およびキルヒホッフの第一法則に基づいて残りの相の電流値を算出する。しかしながら、ブリッジ回路が出力する交流電流は、交流の基本波成分に、パルス幅変調のキャリア周波数に由来する高周波の脈動成分が重畳した波形であり、異なるタイミングで2相の電流検出を実行する場合は、同じタイミングで電流検出をした場合と比較して、高周波の脈動成分の大きさの範囲内で誤差が生じる。
【0014】
このように、電流検出手段をブリッジ回路のDCリンク部にのみ備え、DCリンク電流の検出値から複数相の相電流の値を検出する方法では、正確な相電流の値を知ることができないという問題があり、特に、パルス幅変調のキャリア周期が長い場合やコイルの時定数が小さい場合は、高周波の脈動成分は大きくなるため、相電流の検出誤差も大きくなる可能性がある。
【0015】
このような問題に対して、特許文献1に記載のインバータ装置では、DCリンク部にのみ電流検出手段を備えた従来技術と同様に、直流電源に接続されたブリッジ回路と、直流電源とブリッジ回路間のDCリンク電流を検出する電流センサと、ブリッジ回路のスイッチング素子をパルス幅変調された電圧信号によりON/OFFして、モータのコイルに交流電流を出力させるとともに、適切なタイミングで前記電流センサによりDCリンク電流を検出して、コイルを流れる相電流を検出する制御回路とを備え、前記制御回路は、ON時間の長さが2番目となる相の上側アームのスイッチング素子へのON信号もしくはOFF信号を基準とし、その基準前後のタイミングで前記電流検出手段により2相分の相電流を検出する。このとき、前記制御回路は精度のよい電流検出が可能となるように、2回のDCリンク電流検出タイミング間を必要最小限に設定するため、高周波の脈動成分の影響を低減して、相電流位置を正確に検出できるように構成している。
【発明の概要】
【発明が解決しようとする課題】
【0016】
しかしながら、特許文献1に記載の手法は、スイッチング素子を駆動するゲート信号のパルス幅、つまりパルス幅変調された電圧指令値の値に応じて、DCリンク電流の検出タイミングが1キャリア周期内で大きく変動することになり、結果として、3相の相電流の値が検出完了するタイミングも1キャリア周期内で大きく変動する。
【0017】
このとき、ゲート信号のパルス幅に応じてDCリンク電流検出タイミングを制御する回路や処理が複雑になるという問題がある。
また、検出したDCリンク電流に含まれる相電流成分は1相または2相であり、スイッチング素子のON/OFF状態(ゲート信号の状態)に応じて、DCリンク電流の値から相電流を算出する処理を選択する必要があるため、回路や処理が複雑になるという問題がある。
【0018】
更に、検出した相電流の値は制御演算に利用され、演算結果はコイルへ印加する電圧指令信号に反映してフィードバックされる。このとき、前記制御演算は一般的にマイクロプロセッサ上で周期処理として実行され、次の電圧指令信号の値更新タイミングまでに前記制御演算を完了する必要があるが、3相の相電流の検出が完了するまで前記演算処理を開始することができない。そのため、相電流検出の完了が最も遅い場合、つまり制御演算の実行に許容される時間が最も短い場合に合わせて周期処理スケジュールを組むこととなり、プロセッサの高性能化が必要となり、装置のコストアップになるという問題もある。
【0019】
本発明は、上述の問題に鑑みてなされたものであり、相電流検出のためのDCリンク電流検出タイミングを電圧指令信号の値に応じて変化させずに所定タイミングに固定して相電流検出を可能とし、電流検出タイミングを制御する回路や処理を低減することを課題とする。
【課題を解決するための手段】
【0020】
上記課題は、直流電源のプラス側31またはマイナス側32に接続された複数のスイッチング素子25とダイオード26で構成され、前記スイッチング素子のオン・オフ動作によって、複数相のコイルを持つモータ1に駆動電流を供給するブリッジ回路2と;所定のタイミングで値が更新される複数相の電圧指令信号をキャリア信号によりパルス幅変調して、複数相のPWM(pulse width modulation)信号を生成するPWM手段6と;前記PWM信号に基づいて、前記ブリッジ回路のスイッチング素子を駆動するゲート信号を生成するゲート駆動手段7と;前記直流電源31,32とブリッジ回路2間を流れるDCリンク電流値を検出するDC電流検出手段4と;前記電圧指令信号の値更新タイミングの前および後において前記DC電流検出手段4が検出する前記DCリンク電流値と、前記PWM信号またはゲート信号とに基づいて、前記モータ1の複数相のコイルを流れる相電流値を検出する相電流検出手段5と;をモータ駆動制御装置が備え、少なくとも1相のPWM信号のパルス幅が、前記電圧指令信号の値の増加に応じて、前記電圧指令信号の値更新周期の前端を基準として後端方向へ増加し、この後端方向にパルス幅の増加したPWM信号とは別の少なくとも1相のPWM信号のバルス幅が、前記電圧指令信号の値の増加に応じて、前記電圧指令信号の値更新周期の後端を基準として前端方向へ増加するよう、前記PWM手段6が前記PWM信号を生成する、ことによって解決される。
【0021】
前記モータ1が3相モータであり、前記電圧指令信号が2相変調された信号であることが想定される。前記PWM手段6は、前記電圧指令信号をパルス幅変調して得られる信号のパルス幅を拡大して、少なくとも2相のパルス幅を所定の最低値以上を制限するパルス幅制限手段61を備えていれば、好適である。その際、前記PWM手段6は、前記パルス幅制限手段61によるパルス幅の拡大に対して、拡大分の電圧ベクトルが零もしくは略零となるように、他相のパルス幅を補正する電圧補正手段62を備えていれば、一層効果的である。
【0022】
前記DC電流検出手段4は、高域遮断フィルタ46および高域遮断フィルタの出力値を検出するデータ取得部42を備えていても、好ましい。その際、前記データ取得部42は、前記高域遮断フィルタ46の出力信号をA/D変換するA/D変換手段であるのがよい。また、前記DC電流検出手段4が前記電圧指令信号の値更新タイミングの前および後に実行するDCリンク電流の検出において、2回の電流検出間の間隔は、前記データ取得部が値の取得開始から検出した結果を出力するまでに要する時間以上であるのも好ましい。
【0023】
前記検出した相電流値に基づいて前記モータを駆動するための電圧指令値を算出し、算出した前記電圧指令値を前記所定の値更新タイミングにおいて前記電圧指令信号に反映して出力する制御演算手段8を備えることが想定される。その際、前記制御演算手段8は、前記相電流値に基づいて電流ベクトル演算を実行して、前記モータをベクトル制御駆動するための前記電圧指令値を算出するのが好都合である。
【発明の効果】
【0024】
請求項1に係る発明では、直流電源のプラス側またはマイナス側に接続された複数のスイッチング素子とダイオードで構成され、前記スイッチング素子のオン・オフ動作によって、複数相のコイルを持つモータに駆動電流を供給するブリッジ回路と;所定のタイミングで値が更新される複数相の電圧指令信号をキャリア信号によりパルス幅変調して、複数相のPWM信号を生成するPWM手段と;前記PWM信号に基づいて、前記ブリッジ回路のスイッチング素子を駆動するゲート信号を生成するゲート駆動手段と;前記直流電源とブリッジ回路の間を流れるDCリンク電流値を検出するDC電流検出手段と;前記電圧指令信号の値更新タイミングの前および後において前記DC電流検出手段が検出する前記DCリンク電流値と、前記PWM信号またはゲート信号とに基づいて、前記モータの複数相のコイルを流れる相電流値を検出する相電流検出手段と;を備え、少なくとも1相のPWM信号のパルス幅が、前記電圧指令信号の値の増加に応じて、前記電圧指令信号の値更新周期の前端を基準として後端方向へ増加し、この後端方向にパルス幅の増加したPWM信号とは別の少なくとも1相のPWM信号のバルス幅が、前記電圧指令信号の値の増加に応じて、前記電圧指令信号の値更新周期の後端を基準として前端方向へ増加するよう、前記PWM手段が前記PWM信号を生成するので、本モータ駆動制御装置は、相電流検出のためのDCリンク電流検出タイミングを、前記値更新タイミングの前および後の所定タイミングに固定しても相電流の検出が可能となるため、電圧指令信号の値に応じて電流検出タイミングを変化させる必要がなく、電流検出タイミングを制御する回路や処理を低減することができる。
【0025】
前記モータが3相モータであり、前記電圧指令信号が2相変調された信号であれば、前記複数回検出するDCリンク電流値は、それぞれいずれか1相の相電流値のみを示しているため、DCリンク電流値およびゲート信号に基づいて相電流を検出する処理を低減することができる。
【0026】
前記PWM手段が、前記電圧指令信号をパルス幅変調して得られる信号のパルス幅を拡大して、少なくとも2相のパルス幅を所定の最低値以上を制限するパルス幅制限手段を備えていれば、電圧小出力時においても、DCリンク電流検出による相電流の検出において安定した検出を維持することができる。その際、前記PWM手段が、前記パルス幅制限手段によるパルス幅の拡大に対して、拡大分の電圧ベクトルが零もしくは略零となるように、他相のパルス幅を補正する電圧補正手段を備えていれば、電圧小出力時において、前記効果に加えて、電圧指令信号に応じたコイルへの電圧印加を精密に保ち、前記モータを精密に駆動することができる。
【0027】
前記DC電流検出手段が、高域遮断フィルタおよび高域遮断フィルタの出力値を検出するデータ取得部を備えていれば、リンギング等のノイズの影響を低減して、精密に電流を検出することができる。その際、前記データ取得部が、前記高域遮断フィルタの出力信号をA/D変換するA/D変換手段であれば、相電流値をデジタルデータとして検出するため、マイクロプロセッサを用いた制御演算に容易に利用することができる。また、前記DC電流検出手段が前記電圧指令信号の値更新タイミングの前および後に実行するDCリンク電流の検出において、2回の電流検出間の間隔は、前記データ取得部が値の取得開始から検出した結果を出力するまでに要する時間以上であれば、1つの電流検出手段による相電流の検出を可能にして、かつPWM駆動するモータの相電流に含まれる、高周波の脈動成分の影響を低減して、精度よい相電流の検出をすることができる。
【0028】
前記検出した相電流値に基づいて前記モータを駆動するための電圧指令値を算出し、算出した前記電圧指令値を前記所定の値更新タイミングにおいて前記電圧指令信号に反映して出力する制御演算手段を備えていれば、前記キャリア信号周期内において、DCリンク電流検出に基づく相電流検出が完了するタイミングがほぼ固定となるため、前記検出した相電流値に基づく制御演算のスケジュールを可変とせず、ほぼ固定とすることができる。その際、前記制御演算手段が、前記相電流値に基づいて電流ベクトル演算を実行して、前記モータをベクトル制御駆動するための前記電圧指令値を算出すれば、前記キャリア信号周期内において、DCリンク電流検出による相電流検出が完了するタイミングがほぼ固定となり、前記検出した相電流値に基づく電流ベクトル演算の処理スケジュールをほぼ固定することができるため、処理スケジュールにおける演算時間のマージンを低減することが可能となり、性能の低いプロセッサでもモータをベクトル制御駆動することができる。
【図面の簡単な説明】
【0029】
【図1】例1における装置の全体構成を示す図である。
【図2】例1における電圧指令信号の2相変調の波形を示す図である。
【図3】例1におけるPWM手段の構成を示す図である。
【図4】例1における電圧指令制限手段の動作を示すフローチャートである。
【図5】例1における電圧補正手段の動作を示すフローチャートである。
【図6】例1における前寄せ相の信号を示す図である。
【図7】例1における後寄せ相の信号を示す図である。
【図8】例1における最小電圧制限時のPWM信号の波形を示す図である。
【図9】例1におけるDC電流検出手段の構成を示す図である。
【図10】例1における電流検出回路の構成を示す図である。
【図11】例1におけるDCリンク電流サンプリングのタイミングを示す図である。
【図12】例2における装置の全体構成を示す図である。
【図13】例2における処理スケジュールを示す図である。
【図14】従来技術における装置の全体構成を示す図である。
【図15】ブリッジ回路を構成する上側アームの構成を示す図である。
【図16】従来技術におけるゲート信号とDCリンク電流の波形例を示す図である。
【発明を実施するための形態】
【0030】
(例1)
以下、本例におけるモータ駆動制御装置について、図1を用いて説明する。ただし、従来技術の説明と重複する部分は、共通の符号を付すにとどめ、その説明は、上記背景技術の項での説明に譲り、省略する。モータ1、ブリッジ回路2、直流電源31、接地GND32などは、図14から図16に関連して説明した通りである。なお、この例1は、請求項1から請求項7に係る構成に対応するものである。
【0031】
電圧指令信号Vm(Vmu、Vmv、Vmw)は、モータ1の3相のコイルに印加する電圧値を示す信号であり、3相全てが非負、かつ少なくとも1相は必ず零となるよう2相変調された信号とする。例えば、図2に、振幅が規格化された互いに120度の位相差を持つ正弦波形(上図)とそれを2相変調した波形(下図)を示す。これは、コイル端子間の電圧差を同等に保つ変調処理であり、電圧指令ベクトルは等価である。なお、前記電圧指令信号Vmおよび後述する後段の電圧指令信号において、信号の値が零の相を零相、値が零でない相を非零相とよぶ。
【0032】
駆動検出手段10のPWM手段6は、図3に示すように、電圧指令信号Vm(Vmu、Vmv、Vmw)に対して、非零相の電圧指令信号Vmの最低値を制限する電圧指令制限手段61と、この電圧指令制限手段61の制限処理により生じる電圧ベクトルのずれを補正する電圧補正手段62と、この電圧補正手段62の出力する補正済電圧指令信号Vrをキャリア信号に基づいてパルス幅変調してPWM信号Uon、Von、Wonを出力する変調手段63とを備えている。
【0033】
以下、PWM手段6を構成する各部について、詳細を説明して動作説明とする。電圧指令制限手段61は、2相変調されている電圧指令信号Vmに対して、非零相の電圧指令信号の値を、所定の最小値である最小電圧Vth以上に制限して、制限済電圧指令信号Vl(Vlu、Vlv、Vlw)として出力する。
【0034】
以下、電圧指令制限手段61の実行する制限処理について、図4を用いて説明する。まず、3相の電圧指令信号Vmの値から、値が零である相を零相、値が正の相を非零相と判別する。ただし、電圧指令信号Vmに値が零の相が複数ある場合は、どれか1相を零相として、残りは全て非零相とみなす(S11)。次に、非零相の2相に対して、電圧指令信号の値が小さい方の相を電圧最小相と判定する(S12)。値が同じ場合は、どちらか一方を電圧最小相と判定する。次に、電圧最小相の電圧指令信号の値が所定の最小電圧Vth未満ならば制限処理「要」と判定して、制限処理(S14)へ分岐する。電圧最小相が所定の最小電圧Vth以上ならば「否」と判定して、電圧指令信号Vm(Vmu、Vmv、Vmw)をそのまま制限済電圧指令信号Vl(Vlu、Vlv、Vlw)として出力して処理を完了する(S13)。制限処理は、電圧最小相の制限済電圧指令値Vl(Vlu、Vlv、Vlwの対応するいずれか1つ)を最小電圧Vthにして出力する。また、零相および非零相の他方の相においては、電圧指令信号Vm(Vmu、Vmv、Vmwの対応する2つ)を、そのまま制限済電圧指令信号Vl(Vlu、Vlv、Vlwの対応する2つ)として出力するものである(S14)。
【0035】
以上が、電圧指令制限手段61における制限処理であり、上記の処理を電圧指令信号Vmの値更新タイミング毎に実行する。また、例えばU相とV相が非零相であり、W相が零相であり、U相が電圧最小相かつ電圧指令信号Vmuの値が最小電圧Vth未満のとき、制限処理は数3に示す通りである。なお、電圧指令制限手段61が直接制限する対象は電圧指令信号の値であるが、これは後述するパルス幅変調された電圧のパルス幅を制限することに相当する。
【数3】

【0036】
電圧補正手段62は、前記制限処理により生じる電圧指令信号の電圧ベクトルのずれを補正して、補正済電圧指令信号Vr(Vru、Vrv、Vrw)を出力する。ただし、零相については、補正済電圧指令信号Vrにおいて補正せず、補正量のみ出力して、後述するPWM手段において補正する。
【0037】
以下、電圧補正手段62の実行する補正処理について、図5を用いて説明する。まず、3相の電圧指令信号Vmと制限済電圧指令信号Vlの値を比較して、補正処理の要否判定を行う。3相の値が全て同じならば補正処理要否は「否」であり、制限済電圧指令信号Vlを補正済電圧指令信号Vrとして出力して、補正分の電圧値を示す補正量dVは零として出力して、処理を完了する(S21)。また、前記比較において値が異なる相がある場合は、補正処理要否は「要」であり、次の処理へ進む(S21)。次に、電圧補正処理を実行すべき相を判定する(S22)。電圧指令信号Vmおよび制限済電圧指令信号Vlの比較において信号の値が異なる相、および信号の値が零の零相を除いた、残りの1相を補正相と判定する。次に、補正すべき電圧値を算出する(S23)。前記信号の値が異なる相(制限処理を実行した相)における、制限済電圧指令信号Vl(Vlu、Vlv、Vlwの対応するいずれか1つ)から電圧指令信号Vm(Vmu、Vmv、Vmwの対応するいずれか1つ)の値を減じた値を補正量dVとして、次の処理へ進む。次に、前記補正相の制限済電圧指令信号Vl(Vlu、Vlv、Vlwの対応するいずれか1つ)に、前記補正量dVを加算して補正済電圧指令信号Vr(Vru、Vrv、Vrwの対応するいずれか1つ)として出力して、残りの相については、制限済電圧指令信号Vl(Vlu、Vlv、Vlwの対応する2つ)をそのまま補正済電圧指令信号Vr(Vru、Vrv、Vrwの対応する2つ)として出力する(S24)。
【0038】
以上が、電圧補正手段62における補正処理であり、上記の処理を制限済電圧指令信号Vlの値更新タイミング毎に実行する。例えば、U相とV相が非零相であり、W相が零相であり、かつ電圧指令制限手段61がU相に対して制限処理を実行したとき、上記補正処理は数4で示す通りである。なお、電圧ベクトルを補正するためには、前記零相の電圧指令信号も補正しなくてはならないが、これは後述するPWM手段63において補正量dVに基づいて補正される。
【数4】

【0039】
変調手段63は、前記補正済電圧指令信号Vrをキャリア信号に基づいてパルス幅変調して、PWM信号Uon、Von、Wonを出力する。以下、変調手段63の動作詳細を図を用いて説明する。まず、3相の補正済電圧指令信号Vrは、電圧指令制限手段61の制限処理により、2相が最小電圧Vth以上の非零相であり、残り1相は値が零の零相である。非零相の2相については、いずれか一方を、パルス幅変調された電圧指令信号のパルスが1キャリア周期内で前側に寄せられている前寄せ相として、他方を同様にパルスが後側に寄せられている後寄せ相とする。
【0040】
以下、U相が前寄せ相の場合を例に、前寄せ相のパルス幅変調の説明をする。図6に示すように、周期的な補正済電圧指令信号Vrの値更新タイミング(v)から次の値更新タイミング(v)の間に、値が0から電源電圧Vccまで増加する、周期tpwmのノコギリ波形状のキャリア信号Vcfと、補正済電圧指令信号Vruを比較することにより、PWM信号Uonを生成する。
【0041】
同様に、V相前が後せ相の場合を例にして、後寄せ相のパルス幅変調の説明をする。図7に示すように、周期的な補正済電圧指令信号Vrの値更新タイミング(v)から次の値更新タイミング(v)の間に、値が電源電圧Vccから0まで減少する、周期tpwmのノコギリ波形状のキャリア信号Vcbと、補正済電圧指令信号Vrvを比較することにより、PWM信号Vonを生成する。このとき、非零相である2相の制限済電圧指令信号Vrの値は必ず最小電圧Vth以上であることから、非零相のPWM信号の最小パルス幅は、数5に示す最小パルス幅th以上である。なお、図6および図7における値更新タイミング(v)は同じタイミングを示すとする。
【数5】

【0042】
また、図示しないが、更新タイミング(v)を示す更新信号vtrigを出力する。
以下、零相に対する変調手段63の処理について、W相が零相の場合を例として説明する。前記補正量dVが0のときは、PWM信号Wonはパルスを一切出力しない。一方で、前記補正量dVが非零のときは、補正量dVをパルス幅変調した信号をPWM信号Wonとして出力する。このとき、PWM信号Wonのパルス幅tzと補正量dVの関係は数6で示される。ただし、1キャリア周期内におけるパルス発生タイミングは、後述するDCリンク電流検出における電流サンプリングのタイミングに重複しないよう設定する。
【数6】

【0043】
例として、U相およびV相が非零相であり、V相に対して制限処理が実行された場合のPWM信号の波形例を図8に示す。図8において、PWM信号Vonの斜め掛け部分が制限処理によって電圧指令値の最小値が制限され、結果としてパルス幅が増加した分であり、PWM信号Uon、Wonの網掛け部分が、補正処理により、結果としてパルス幅が増加した分を示している。なお、零相のPWM信号Wonの最大パルス幅は、数5に示す非零相の最小パルス幅に等しい。前記補正処理および上記の零相の処理により、前記制限処理において発生する電圧ベクトルのずれは補正される。
【0044】
以上が、変調手段63の動作説明である。
再び、図1を用いた本例の装置の説明に戻る。
ゲート駆動手段7は、PWM信号Uon、Von、Wonに対して、各相毎にブリッジ回路2の上側アーム21と下側アーム22のスイッチング素子を駆動するゲート信号を生成する。
【0045】
U相を例として詳細に説明すると、図6に示すように、上側アーム21のスイッチング素子のゲート信号UHは、PWM信号Uonの立ち上がりからデッドタイムの長さtdだけ遅れて立ち上がり、同様に、PWM信号Uonの立ち下がりからデッドタイムの長さtdだけ遅れて立ち下がるように生成される。また、下側アーム22のスイッチング素子のゲート信号ULは、PWM信号Uonの立ち上がりに同期して立ち下がり、PWM信号Uonの立ち下がりからデッドタイムの長さtdの2倍だけ遅れて立ち上がるように生成させる。なお、デッドタイムは、貫通電流によるスイッチング素子の破壊を防止するために設けられた区間であり、長さtdは固定値である。以上の動作を、前記した前寄せ相・後寄せ相・零相の違いにかかわらず、他相についても同様に実行する。
【0046】
このとき、或るキャリア周期における後寄せ相の上側アームのゲート信号のパルスと、電圧指令信号の値が更新された次のキャリア周期における前寄せ相の上側アームのゲート信号のパルスは、常に隣接するようになっている。これは、図8に示すように、非零相のPWM信号UonおよびVonのパルスが、値更新タイミング(v)を境にして常に隣接するよう変調手段63が構成されており、上側アームのゲート信号は、PWM信号からデッドタイムの長さtdだけ遅れた信号であるため、上側アームのゲート信号においても同様に両信号のパルスが隣接することになる。
【0047】
DC電流検出手段4は、図9に示すように、ブリッジ回路2のDCリンク電流igを検出する電流検出回路41と、所定のタイミングで電流検出回路41の出力をサンプリングして、DCリンク電流データの取得および出力するデータ取得部42とを備える。
【0048】
以下、DC電流検出手段4を構成する各部について詳細を説明する。電流検出回路41は、図10に示すように、ブリッジ回路2とGND32の間に設けられ、電流が抵抗を流れることによる電圧降下を利用して電流値を検出するシャント抵抗45と、抵抗とコンデンサで構成され、前記シャント抵抗45により検出した信号の高域成分を除去するLPF46と、LPF46の出力を増幅およびレベルシフトするアンプ47とを備え、電流検出信号idetを出力する。なお、本例におけるLPF46は、アンプ47の前段に配置しているが、後段に配置する構成としてもよい。
【0049】
データ取得部42は、A/D変換器を備え、更新タイミング(v)を示す更新信号vtrigに基づいた所定のタイミングで2回連続して電流検出信号idetをサンプリングおよびA/D変換して、検出したDCリンク電流データdia、dibを出力する。
【0050】
以下、サンプリングのタイミングについて、図11を用いて説明する。ただし、図11に示すように、U相が前寄せ相、V相が後寄せ相、W相が零相の場合に対応する信号名を用いて説明する。まず、更新信号vtrigが示す値更新タイミング(v)からデッドタイムの長さtdだけ遅れたタイミングをゲート更新タイミング(p)とする。ゲート更新タイミング(p)は、後寄せ相のゲート信号VHと前寄せ相のゲート信号UHのパルスが隣接する点であり、電圧指令信号の値が更新された場合、更新された値は前記ゲート更新タイミング(p)からゲート信号に反映されることを意味する。また、ゲート信号VHがハイのときはDCリンク電流igに相電流ivのみが流れ、前記ゲート更新タイミング(p)を境に、ゲート信号UHがハイのときはDCリンク電流igに相電流iuのみが流れる。
【0051】
データ取得部42は、更新信号vtrigに基づいた所定のタイミングで連続2回のサンプリングを行う。このとき、前記所定のタイミングは、以下の5つの条件を満たすよう設定される。
【0052】
1つ目の条件は、ゲート信号VHがハイの区間で1回目のサンプリング(sa)を実行して、前記ゲート更新タイミング(p)の後に発生する前記ゲート信号UHがハイの区間で2回目のサンプリング(sb)を実行する。これにより、2回のサンプリング(sa)、(sb)時における前記DCリンク電流igは必ずいずれか1相の相電流になるため、後述する相電流値検出の処理を簡素化することができる。
【0053】
2つ目の条件は、2回のサンプリング(sa)および(sb)間の長さであるサンプリング間隔tsを、データ取得部42が電流検出信号idetをサンプリングしてA/D変換結果を出力するまでに要する時間より長く設定する。これにより、1つの検出手段で2回のサンプリングを可能とする。
【0054】
3つ目の条件は、1回目のサンプリング(sa)を、上側アームのゲート信号VHの立ち上がりから前記LPFの立ち上がり時間以上遅れたタイミングに設定し、2回目のサンプリング(sb)を、前記ゲート更新タイミング(p)から同様の時間以上遅れたタイミングに設定する。これにより、LPF46を通過している電流検出信号idetの信号が立ち上がるまで待ってから、前記サンプリングを実行するため、精度良い電流検出が可能となる。
【0055】
4つ目の条件は、前記サンプリング(sa)、(sb)を、それぞれ前記ゲート更新タイミング(p)から、前記最小パルス幅th以下の範囲に設定する。これにより、前記サンプリング時のDCリンク電流は必ずいずれか1相のみの相電流が流れており、電圧指令信号の値に応じてサンプリングのタイミングを変化させる必要がなくなる。
【0056】
5つ目の条件は、前記サンプリング間隔tsを、上記4つの条件を満たしつつ可能な限り短く設定する。これにより、PWM駆動時の相電流波形に重畳される高周波成分の脈動の影響を低減する電流検出が可能となる。
【0057】
以上が、データ取得部42が前記電流検出信号idetをサンプリングするタイミングについての説明である。なお、本例における電流検出タイミングは、1キャリア周期内で固定することを想定しているが、これに限るものではなく、上記5つの条件を満たす範囲においては可変でもよく、その場合も検出タイミングは電圧指令信号の値に応じて変化させる必要はなく、前記条件の範囲内で自由にタイミングを変化させてよい。
【0058】
最後に、データ取得部42は前記2回のサンプリング(sa)、(sb)におけるA/D変換結果を、それぞれDCリンク電流データdia、dibとして出力する。以上が、DC電流検出手段4の構成である。
【0059】
相電流検出手段5は、DCリンク電流データdia、dib、上側アームのゲート信号UH、VH、WH、および更新信号vtrigに基づいて、3相の相電流値を検出して相電流データdiu、div、diwを出力する。
【0060】
以下、相電流検出手段5の動作詳細を説明する。まず、DC電流検出手段4の説明で述べたように、DCリンク電流データdiaおよびdibは、必ずU相、V相、W相のいずれか1相のみの相電流の検出値であり、前記サンプリング(sa)、(sb)のタイミングにおいて上側アームのゲート信号の信号レベルがハイである相の相電流値を示している。
【0061】
上記の関係を利用して、相電流検出手段5は、更新信号vtrigに基づいて、前記サンプリング(sa)、(sb)のタイミングで上側アームのゲート信号UH、VH、WHを監視して、DCリンク電流データdia、dibが、それぞれどの相の相電流を示すのか判定して、次に、確定した2相の相電流値と数1に示したキルヒホッフの第一法則に基づいて、残りの1相の相電流値を算出して、最後に、検出した3相の相電流値を相電流データdiu、div、diwとして出力する。
【0062】
以上が、本例における装置の構成である。なお、本例において、本発明の電圧指令信号の値更新タイミングとは、前寄せ相と後寄せ相の上側アームのゲート信号においてパルスが隣接する境である、ゲート更新タイミング(p)に相当するが、これに限るものではなく、コイル端子に印加すべき電圧指令値を示す信号であれば、電圧指令信号Vm、制限済電圧指令信号Vl、補正済み電圧指令信号Vr、PWM信号Uon、Von、Wonのいずれでもよい。
【0063】
以上により、本例によれば、DCリンク電流の複数回検出することにより3相の相電流を検出する手法において、検出タイミング間を最小限に設定することによる、相電流波形に重畳される高周波の脈動の影響を低減する従来の効果に加えて、1キャリア周期内におけるDCリンク電流検出タイミングを固定できるよう構成したため、検出タイミング制御する複雑な回路が不要とすることができ、また、2回のDCリンク電流サンプリング時に検出する電流値には、常に1相分の相電流のみ含まれるようにパルス幅変調方式とDCリンク電流検出のタイミングを設定したため、検出した複数のDCリンク電流から相電流値を検出する処理を低減することができる。
【0064】
(例2)
次に別の例に係るモータ駆動制御装置について、図12を用いて説明する。ただし、従来技術および例1と共通する説明は省略する。この例2は、請求項8,9に係る構成に対応するものである。
【0065】
モータ1は、上記背景技術の項で説明した通りである。駆動検出手段10は、図1に示すように、ブリッジ回路2、直流電源31、接地GND32、DC電流検出手段4、相電流検出手段5、PWM手段6、ゲート駆動手段7により構成され、各要素は上記例1と同様とする。つまり、2相変調器9から入力される2相変調された電圧指令信号Vmの値に応じてパルス幅変調された電圧を、モータ1のコイル端子に印加し、モータを回転駆動するための相電流iu、iv、iwを供給する。また、DCリンク電流の検出に基づいて検出した3相の相電流データdiu、div、diwを出力する。
【0066】
ホールIC15はモータ1の回転子角度に同期して周期的にハイ/ローの2値を繰り返し、信号のエッジが回転子角度の絶対値を示すホール信号hgを出力する。
エンコーダ16は、モータ1の回転軸に接続されたロータリーエンコーダであり、回転子角度の変化に応じてパルス状のエンコーダ信号Encを出力する。また、回転子1周当たりに出力する信号周期数は、ホールIC15のホール信号hgより多いとする。
【0067】
角度検出器17は、回転子位置を示す前記ホール信号hgのエッジを基準に、エンコーダ信号Encのパルス数をカウントして、高分解能に回転子角度の絶対値を示す角度データθを出力する。
【0068】
制御演算手段8は、目標周波数発生器81、周波数比較器82、目標電流生成器83、3軸2軸座標変換器85、q軸電流制御器86、d軸電流制御器87、2軸3軸座標変換器88により構成され、前記相電流データdiu、div、diw、前記角度データθおよび前記エンコーダ信号Encに基づいて、電流ベクトル制御演算を実行し、モータを目標速度で回転するためにコイル端子へ印加すべき電圧を示す制御出力信号V(Vu、Vv、Vw)を出力する。
【0069】
以下、制御演算手段8の詳細な構成について説明する。目標周波数発生器81は、モータ1の目標回転数に対応する目標周波数のパルス信号を発生する。なお、目標周波数のパルス信号を装置外部から入力される構成として、目標周波数発生器81を備えない構成や、目標周波数発生器81の出力と外部から入力されるパルス信号とから、目標周波数のパルス信号を選択可能とする構成としてもよい。
【0070】
周波数比較器82は、前記エンコーダ信号Encの周波数と、目標周波数発生器81が出力するパルス信号の周波数を比較し、両者の周波数の差に応じた誤差信号を出力するようになっている。なお、前記エンコーダ信号Encの代わりに、エンコーダ信号Encを分周した信号を用いる構成としてもよい。
【0071】
目標電流生成器83は、周波数比較器82の出力する誤差信号の値に基づいて、目標周波数に対応するモータの回転速度とモータの実際の回転速度がほぼ等しくなるように、流すべき電流の目標値であるq軸目標電流データおよびd軸目標電流データを出力する。
【0072】
3軸2軸座標変換器85は、前記相電流データdiu、div、diwを、互いに120度の位相差をもつ3軸固定座標系であるUVW軸座標系から、回転子角度に応じて回転する回転直交2軸座標系であるdq軸座標系へ座標変換(以下、3軸2軸座標変換と称する)して、dq軸座標系上のd軸電流データdidおよびq軸電流データdiqを算出して出力する。このとき、3軸2軸座標変換に必要となる回転子角度情報として、前記角度データθを用いる。
【0073】
q軸電流制御器86は、前記q軸目標電流データとq軸電流データiqの誤差であるq軸電流誤差を算出し、q軸電流誤差を増幅した値とq軸電流誤差を積分した値を加算して、q軸制御データとして出力する。
【0074】
d軸電流制御器87は、前記d軸目標電流データとd軸電流データidの誤差であるd軸電流誤差を算出し、d軸電流誤差を増幅した値とd軸電流誤差を積分した値を加算して、d軸制御データとして出力する。
【0075】
2軸3軸座標変換器88は、q軸制御データおよびd軸制御データを、回転子角度に応じて回転する回転直交2軸座標系であるdq軸座標系から、互いに120度の位相差をもつ3軸固定座標系であるUVW軸座標系へ座標変換(以下、2軸3軸座標変換と称する)して、UVW軸座標系上の3相のコイル端子に印加すべき電圧を示す値を算出して、制御出力信号V(Vu、Vv、Vw)として出力する。このとき、2軸3軸座標変換に必要となる回転子角度情報として前記角度データθを用いる。
【0076】
以下、図12を用いた装置構成の説明に戻る。2相変調器9は、前記制御出力信号V(Vu、Vv、Vw)を2相変調して、前記電圧指令信号Vm(Vmu、Vmv、Vmw)として出力する。2相変調の処理を説明すると、まず、3相の制御出力信号V(Vu、Vv、Vw)を大小比較して、最も値が小さい相である出力最小相を決定する。同値のものが複数ある場合は、いずれか1相を出力最小相とする。
【0077】
次に、出力最小相の電圧指令信号Vm(Vu、Vv、Vwの対応する1つ)を零として出力し、他の2相については、それぞれの相の制御出力信号V(Vu、Vv、Vwの対応する2つ)の値から、前記出力最小相の制御出力信号の値Vm(Vu、Vv、Vwの対応する1つ)の値を減じて、それぞれ電圧指令信号Vm(Vmu、Vmv、Vmwの対応する2つ)として出力する。例えば、U相の制御出力信号Vuの値が3相の中で最も小さい場合の処理を数7に示す。
【数7】

【0078】
ここで、1キャリア周期内における各処理のスケジュール例を、図13を用いて説明する。まず、タイミング(sa)および(sb)で検出したDCリンク電流データdia、dibに基づいて、相電流検出手段5により相電流データdiu、div、diwを検出して、次に、制御演算手段8が、相電流データdiu、div、diwに基づいて制御演算を実行して、演算結果を前記制御出力信号V(Vu、Vv、Vw)として出力して、2相変調器9が、制御出力信号Vを2相変調して、最後に、2相変調器9の処理結果は、図13に示すタイミング(m)において電圧指令信号Vmに反映される。このとき、前記補正済電圧指令信号Vrの値更新タイミング(p)までに、例1において説明した、電圧指令信号Vmから補正済電圧指令信号Vrの処理が完了するものとする。
【0079】
以上が、1キャリア周期内の処理の概要であり、キャリア周期毎に実行される。このような条件分岐による処理量の差が少ない制御演算や検出処理に要する時間はほぼ一定であり、本例の構成により、1キャリア周期内において相電流データがほぼ固定のタイミングで検出が完了するため、制御演算の開始タイミングを固定することが可能となり、1キャリア周期内の上記処理のスケジュールを固定することができる。
【0080】
以上が、本例におけるモータ駆動制御装置の構成であり、DCリンク電流を複数回検出することによって相電流を検出する手法において、1キャリア周期内で電流検出するタイミングを固定しても電流検出が可能となるよう構成して、かつ検出した相電流値に基づいてベクトル制御演算を実行するよう構成したことにより、1キャリア周期内で電流検出が完了するタイミングがほぼ固定となり、ベクトル制御演算の処理スケジュールを変動させる要素が少ないため、例えば、制御演算をマイクロプロセッサ上で実行するソフトウェアで実現する場合は、コストの安い、より性能の低いプロセッサでもモータのベクトル制御駆動を実現することができる。
【符号の説明】
【0081】
1 モータ
2 ブリッジ回路
4 DC電流検出手段
5 相電流検出手段
6 PWM手段
7 ゲート駆動手段
8 制御演算手段
9 2相変調器
10 駆動検出手段
15 ホールIC
16 エンコーダ
17 角度検出器
21 上側アーム
22 下側アーム
25 スイッチング素子
26 ダイオード
31 直流電源
32 GND
41 電流検出回路
42 データ取得部
45 シャント抵抗
46 LPF
47 アンプ
61 電圧指令制限手段
62 電圧補正手段
63 変調手段
81 目標周波数発生器
82 周波数比較器
83 目標電流生成器
85 3軸2軸座標変換器
86 q軸電流制御器
87 d軸電流制御器
88 2軸3軸座標変換器
【先行技術文献】
【特許文献】
【0082】
【特許文献1】特開2007−228788号公報

【特許請求の範囲】
【請求項1】
直流電源のプラス側またはマイナス側に接続された複数のスイッチング素子とダイオードで構成され、前記スイッチング素子のオン・オフ動作によって、複数相のコイルを持つモータに駆動電流を供給するブリッジ回路と;
所定のタイミングで値が更新される複数相の電圧指令信号をキャリア信号によりパルス幅変調して、複数相のPWM信号を生成するPWM手段と;
前記PWM信号に基づいて、前記ブリッジ回路のスイッチング素子を駆動するゲート信号を生成するゲート駆動手段と;
前記直流電源とブリッジ回路間を流れるDCリンク電流値を検出するDC電流検出手段と;
前記電圧指令信号の値更新タイミングの前および後において前記DC電流検出手段が検出する前記DCリンク電流値と、前記PWM信号またはゲート信号とに基づいて、前記モータの複数相のコイルを流れる相電流値を検出する相電流検出手段と;
を備え、前記PWM手段は、
少なくとも1相のPWM信号のパルス幅が、前記電圧指令信号の値の増加に応じて、前記電圧指令信号の値更新周期の前端を基準として後端方向へ増加し、この後端方向にパルス幅の増加したPWM信号とは別の少なくとも1相のPWM信号のバルス幅が、前記電圧指令信号の値の増加に応じて、前記電圧指令信号の値更新周期の後端を基準として前端方向へ増加するよう、
前記PWM信号を生成する、
ことを特徴とするモータ駆動制御装置。
【請求項2】
前記モータは3相モータであり、前記電圧指令信号は2相変調された信号であることを特徴とする請求項1に記載のモータ駆動制御装置。
【請求項3】
前記PWM手段は、前記電圧指令信号をパルス幅変調して得られる信号のパルス幅を拡大して、少なくとも2相のパルス幅を所定の最低値以上を制限するパルス幅制限手段を備えることを特徴とする請求項1か請求項2に記載のモータ駆動制御装置。
【請求項4】
前記PWM手段は、前記パルス幅制限手段によるパルス幅の拡大に対して、拡大分の電圧ベクトルが零もしくは略零となるように、他相のパルス幅を補正する電圧補正手段を備えることを特徴とする請求項3に記載のモータ駆動制御装置。
【請求項5】
前記DC電流検出手段は、高域遮断フィルタおよび高域遮断フィルタの出力値を検出するデータ取得部を備えることを特徴とする請求項1から請求項4までのいずれか一項に記載のモータ駆動制御装置。
【請求項6】
前記データ取得部は、前記高域遮断フィルタの出力信号をA/D変換するA/D変換手段であることを特徴とする請求項5に記載のモータ駆動制御装置。
【請求項7】
前記DC電流検出手段が前記電圧指令信号の値更新タイミングの前および後に実行するDCリンク電流の検出において、2回の電流検出間の間隔は、前記データ取得部が値の取得開始から検出した結果を出力するまでに要する時間以上であることを特徴とする請求項5または請求項6に記載のモータ駆動制御装置。
【請求項8】
前記検出した相電流値に基づいて前記モータを駆動するための電圧指令値を算出し、算出した前記電圧指令値を前記所定の値更新タイミングにおいて前記電圧指令信号に反映して出力する制御演算手段を備えることを特徴とする請求項1から請求項7のいずれか一項に記載のモータ駆動制御装置。
【請求項9】
前記制御演算手段は、前記相電流値に基づいて電流ベクトル演算を実行して、前記モータをベクトル制御駆動するための前記電圧指令値を算出することを特徴とする請求項8に記載のモータ駆動制御装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate


【公開番号】特開2011−109848(P2011−109848A)
【公開日】平成23年6月2日(2011.6.2)
【国際特許分類】
【出願番号】特願2009−263860(P2009−263860)
【出願日】平成21年11月19日(2009.11.19)
【出願人】(000006747)株式会社リコー (37,907)
【Fターム(参考)】