説明

リモートプラズマCVD装置

【課題】CNTを気相成長させる原料ガスを一定の流れで基板に供給できるメンテナンス性のよいリモートプラズマCVD装置を提供する。
【解決手段】本発明のリモートプラズマCVD装置Mは、処理すべき基板Sが載置される基板ステージ3を有する上方に開口したチャンバ本体1aと、チャンバ本体の上面開口に着脱自在に装着される蓋体1bと、チャンバ本体内にプラズマを発生させるプラズマ発生手段7と、基板ステージ上の基板がプラズマに曝されないように基板上方に設けられた複数の透孔を有する板状の遮蔽部材8cとを備える。蓋体の下面周縁部に周方向の間隔を存して垂設した複数本の支持部材8aと、これら支持部材の下端部に連結される支持フレーム8bとを有し、遮蔽部材の周縁部を支持フレームに遮蔽部材の熱膨張または熱収縮が許容されるように載置される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、リモートプラズマCVD装置に関し、特に、カーボンナノチューブを形成することに適したものに関する。
【背景技術】
【0002】
従来、カーボンナノチューブ(以下、「CNT」という)を低温で効率よく気相成長させるために、所謂リモートプラズマCVD装置を用いることが知られている(例えば、特許文献1参照)。このリモートプラズマCVD装置は、真空チャンバ内で処理すべき基板が載置される基板ステージと、真空チャンバ内にプラズマを発生させるプラズマ発生装置とを備える。そして、基板ステージの直上に位置させて基板面積より大きいメッシュ部材(板状の遮蔽部材)を設け、基板ステージとメッシュ部材との間で所定の電位を印加することで、CNTの形成中に基板がプラズマに曝されないように遮っている(つまり、プラズマで電離したイオン種がメッシュ部材で遮られ、ラジカル種がメッシュ部材の各網目を通して基板に到達するようになる)。
【0003】
ここで、上記のようにメッシュ部材を真空チャンバ内に設ける場合、真空チャンバの底部に設けた基板ステージの周囲に、この基板ステージより上方に突出した周壁を有する上面開口の保持ボックスを設け、この保持ボックス上面でメッシュ部材を支持することが特許文献2で知られている。
【0004】
然しながら、特許文献2記載のものでは、CNTを気相成長させる原料ガスを真空チャンバ内に導入して基板に供給する場合に、基板の周囲に保持ボックスの周壁等の部品が存するため、この部品周囲で乱流が生じて原料ガスの流れが不規則になる。このため、基板全面に亘って長さの揃ったCNTを形成することができないという不具合が生じる。
【0005】
また、上記特許文献2記載のものでは、上面にメッシュ部材が載置された保持ボックス内に基板が収納された形態であるため、公知の真空搬送ロボットにて基板ステージに対して基板を受け渡しする場合、メッシュ部材を取り外すと共に、基板を保持ボックスより上方に持ち上げる必要がある。このため、基板の受け渡しが著しく面倒であり、しかも、リフト機構等の部品が必要となり、部品点数が増えてコスト高になる。この場合、保持ボックスに基板搬送用に開口を形成したりすることが考えられるが、これでは、原料ガスの流れが一層不規則になり易い。また、保持ボックスやリフト機構などの部品を真空チャンバの底部に設けたのでは、メンテナンススペースが殆どない状態となり、クリーニングを含むメンテナンス作業が著しく面倒となる。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2005−350432号公報
【特許文献2】特開平6−151334号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明は、以上の点に鑑み、CNTを気相成長させる原料ガスを一定の流れで基板に供給できるメンテナンス性のよいリモートプラズマCVD装置を提供することをその課題とするものである。
【課題を解決するための手段】
【0008】
上記課題を解決するために、本発明は、処理すべき基板が載置される基板ステージを有する上方に開口したチャンバ本体と、チャンバ本体の上面開口に着脱自在に装着される蓋体と、チャンバ本体内にプラズマを発生させるプラズマ発生手段と、基板ステージ上の基板がプラズマに曝されないように基板上方に設けられた複数の透孔を有する板状の遮蔽部材とを備えたリモートプラズマCVD装置において、前記蓋体の下面周縁部に周方向の間隔を存して垂設した複数本の支持部材と、これら支持部材の下端部に連結される支持フレームとを有し、前記遮蔽部材の周縁部を支持フレームに遮蔽部材の熱膨張または熱収縮が許容されるように載置してなることを特徴とする。
【0009】
本発明によれば、真空チャンバをチャンバ本体と蓋体とから構成し、蓋体に垂設した支持手段及び支持フレームに熱膨張または熱収縮が許容される状態で遮蔽部材を載置したため、基板ステージの周囲には、遮蔽部材を支持する部品等を配置する必要はない。このため、CNTを気相成長させる原料ガスを一定の流れで基板に供給して排気することができ、基板全面に亘って長さの揃ったCNTを形成することができる。また、チャンバ本体からその上方に蓋体を脱離すると、支持手段及び支持フレームを介して蓋体と共に遮蔽部材が取り外れるようになる。この状態では、基板ステージの周囲には、他の部品がなく、十分なメンテナンススペースがあり、メンテナンス作業を容易にできる。
【0010】
ところで、CNTの気相成長中、遮蔽部材は、プラズマや加熱されている基板からの輻射熱で加熱されて熱膨張する一方、処理終了後に真空チャンバ内が冷却されると、熱収縮する。このため、遮蔽部材が例えばその周縁部で固定されていると、熱膨張や熱収縮の際に大きく変形して撓む。このことは、遮蔽部材がメッシュ部材からなる場合により顕著となる。このように遮蔽部材が変形してくると、この遮蔽部材と基板ステージ上の基板との間の距離が基板面内で一致せず、プラズマを発生させた場合に基板表面が局所的にプラズマに近接し、プラズマによって気相成長させたCNTがダメージを受けるという不具合が生じる。
【0011】
それに対して、本発明では、蓋体に垂設した支柱及び支持フレームにて遮蔽部材を支持し、遮蔽部材がビス等により固定されていない構造としたため、熱膨張や熱収縮を繰り返しても、遮蔽部材がメッシュ部材であっても、大きく変形することが抑制され、遮蔽部材と基板ステージ上の基板との間の距離を基板面内で略一定に保持されたまま、CNTを気相成長でき、しかも、CNTがダメージを受けることを防止できる。
【0012】
本発明において、前記遮蔽部材の周縁部に複数の取付孔が形成され、前記支持フレームに、これら取付孔との間で遮蔽部材の熱膨張または熱収縮を許容する隙間を存して挿通される複数のピン部材が立設されていることが望ましい。これによれば、CNTを気相成長させる処理中やチャンバ本体から蓋体を着脱するときに、支持フレームから遮蔽部材が脱落する等の不具合が生じない。
【0013】
他方で、前記支持部材または支持フレームに、遮蔽部材に当接せずに上方から遮蔽部材の周縁部を覆うカバーフレームが装着されている構成を採用してもよい。
【図面の簡単な説明】
【0014】
【図1】本発明の実施形態のリモートプラズマCVD装置を模式的に説明する断面図。
【図2】遮蔽部材の支持状態を示す平面図。
【図3】図1の一部を拡大した部分断面図。
【図4】(a)は、本発明の実施形態のリモートプラズマCVD装置にて基板上にCNTを成長させたときの外観写真、(b)は、メッシュ部材の周囲を固定した場合の外観写真。
【図5】変形例に係る支持フレームへの遮蔽部材の載置状態を示す部分拡大断面図。
【発明を実施するための形態】
【0015】
以下、図面を参照して、CNTを気相成長させることに適した本発明の実施形態のリモートプラズマCVD装置を説明する。
【0016】
図1に示すように、リモートプラズマCVD装置Mは、上方に開口した筒状のチャンバ本体1aと、チャンバ本体1aの上面開口に、図示省略のOリングを介して着脱自在に装着された蓋体たる天板1bとで構成される真空チャンバ1を備える。チャンバ本体1aの底面中央部には、下方に突出させた筒状の排気部2が形成され、排気部2は、排気管を介してロータリーポンプやターボ分子ポンプなどからなる図示省略の真空排気装置に通じる。
【0017】
また、排気部2内には支柱3aが同心に挿設され、この支柱3aのチャンバ本体1aに突出した上端に基板ステージ3が設けられている。基板ステージ3には、特に図示しないが、例えば抵抗加熱式ヒータが内蔵され、基板ステージ3に載置された基板Sを所定温度に加熱保持できる。また、チャンバ本体1a内で基板ステージ3の周囲には、この基板ステージ3の外周端から所定の間隔を存してリング部材4が設けられ、基板ステージ3とリング部材4との間の隙間4aを介して等方排気されるようになっている。
【0018】
天板1bの中央部には円形の開口11が形成されている。また、天板1bの下面には、基板ステージ3径より大きな径を有するリング状のガス導入管5が取付けられている。ガス導入管5の下面には、所定の間隔を存してガス噴射口(図示せず)が形成されている。そして、ガス導入管5に、図示省略のマスフローコントローラが介設されたガス管5aが接続され、所定の炭素含有の原料ガスをチャンバ本体1a内に導入できるようになっている。
【0019】
ここで、基板Sとしては、遷移金属、例えばNi、Fe、Coからなる基板、この遷移金属の少なくとも1種を含む合金の基板、またはガラス、石英やSiウェハー等のCNTを直接気相成長できない基板表面の任意の部位に、上記金属を種々の任意のパターンで形成した基板を用いることができる。また、基板S表面にCNTを気相成長させる際に、真空チャンバ1内に導入する炭素含有の原料ガスとしては、メタン、アセチレンなどの炭化水素ガス若しくは気化させたアルコール、または気相成長における希釈と触媒作用のために、これらのガスに水素、アンモニア、窒素若しくはアルゴンのうち少なくとも1つを混合したものが用いられる。
【0020】
天板1b上には、この天板1bの開口11を臨むようにフランジ6aで支持された石英製のガラス窓6が装着され、ガラス窓6の上方にプラズマ発生手段7が設けられている。プラズマ発生手段7は、ガラス窓6に向かって下方に拡径したラッパ型導波管71と、ラッパ型導波管に上端に連結された筒状導波管72と、この筒状導波管72の端部に接続されたマイクロ波発生器73とを備える公知のものであり、ここでは詳細な説明を省略する。
【0021】
図2及び図3に示すように、天板1aの下面には、ガス導入管5の内側に位置させて、周方向に90℃間隔で4本の支柱(支持手段)8aが垂設され、これら支柱8aの下端部でリング状の支持フレーム8bが支持されている。支柱8a及び支持フレーム8bは、例えばステンレス製である。そして、支持フレーム8bには、平面視円形のメッシュ部材(板状の遮蔽部材)8cがその周縁部においてこのメッシュ部材8cの熱膨張または熱収縮が許容されるように載置されている。ここで、メッシュ部材8cは、例えばステンレス製であり、φ0.1〜1.0mmの線材を格子状に組み付け、これらの線材の自由端をその外周端に設けた剛性を付与するリブに固定してなる公知のものである。この場合、各網目(透孔)の大きさが1〜3mmの範囲に設定されている。各網目の大きさが1mmより小さいと、原料ガスの流れを遮ってしまい、3mmより大きく設定すると、プラズマを遮ることができない。なお、遮蔽部材8cは、上記に限定されるものではなく、板状部材に複数の円形や矩形の透孔を開設して形成することもできる。
【0022】
支持フレーム8b上には、基板Sより径方向外側に位置させて、周方向に所定間隔で複数本(本実施形態では、支柱8aから周方向に45度ずらした位置に4本)のピン部材8dが立設される。この場合、メッシュ部材8cの周縁部には、ピン部材8dの位置に応じて円形の取付孔81が形成されている。そして、ピン部材8dを、取付孔81の直径より大きな径を有する頭部82と上記取付孔81より小さい径を有し、下端部にねじ山が形成された脚部83とから構成し、脚部83を支持フレーム8bの所定位置に螺合することで取り付けられ、このとき、頭部82の下面がメッシュ部材8cに当接しないように位置決めされる。これにより、ピン部材8dの脚部83が、取付孔81との間でメッシュ部材8cの熱膨張または熱収縮を許容する隙間を存して挿通されるようになる。なお、メッシュ部材8cの周縁部のうち、支柱8aに対応する箇所には径方向内方に向かってくぼむ凹部84が形成され、メッシュ部材8cが熱膨張したときに、メッシュ部材8cが支柱8aに接触してメッシュ部材8cが変形しないようにしている。
【0023】
また、メッシュ部材8cと基板Sとの間で基板Sにバイアス電位を印加する公知の構造のバイアス電源(図示せず)が設けられている。この場合、バイアス電圧は−400V〜200Vの範囲で設定される。−400Vより低い電圧では、放電が起こり易くなり、基板Sや基板S表面に気相成長させたCNTに損傷を与える虞がある。また、200Vを超えた電圧では、CNTの成長速度が遅くなる。
【0024】
そして、マイクロ波発生器73から、筒状導波管72及びラッパ型導波管71を経てガラス窓6を通して真空チャンバ1内に所定周波数のマイクロ波を導入し、このマイクロ波を、ガス導入管5を介して所定流量で真空チャンバ1内に導入される原料ガスに照射することで、原料ガスが励起されてプラズマ化する。このとき、メッシュ部材8cの上方にイオンシース領域が形成されることで、プラズマで電離したイオン種がメッシュ部材8cで遮られ、ラジカル種がメッシュ部材8cの各網目を通して基板Sに到達するようになる(リモートプラズマ)。この場合、基板ステージ3に内蔵したヒータを作動して、基板を300〜700℃の範囲内の温度に制御しておけば、原料ガスが一定の流れを持って基板Sに供給されることと、プラズマでダメージを受けることが防止されることとが相俟って、基板S表面に、この基板Sに対して垂直な向きに揃った配向性を有するCNTが気相成長できる。
【0025】
以上説明したように、本発明の実施形態のリモートプラズマCVD装置によれば、基板ステージ3の周囲には、メッシュ部材8cを支持する部品がないため、従来技術のように基板Sの周囲で乱流等が生じて原料ガスの流れが不規則になることを防止できる。また、チャンバ本体1aからその上方に天板1bを脱離すると、この天板1bと共に支柱8a、支持フレーム8b及びメッシュ部材8cが取り外されるようになる。この取り外し作業の際、ピン部材8dの頭部82を取付孔81より大きく設定しているため、天板1bを上方に持ち上げたときにこの天板1bが傾いたりしても、メッシュ部材8cが脱落する等の不具合は生じない。また、チャンバ本体1aから天板1bを持ち上げた状態では、基板ステージ3の周囲には、他の部品がなくて十分なメンテナンススペースがあり、メンテナンス作業を容易にできる。
【0026】
更に、メッシュ部材8cがプラズマや基板Sからの輻射熱で加熱されたり、真空チャンバ1内の冷却に伴って冷却されたときに、熱膨張及び熱収縮しても、メッシュ部材8cがピン部材8dで固定されない構造としているため、メッシュ部材8cの固定により発生する変形が抑制され、メッシュ部材8cと基板ステージ3上の基板Sとの間の距離を基板S面内で略一致させたまま、CNTを気相成長できる。
【0027】
以上の効果を確認すべく次の実験を行った。図1に示すリモートプラズマCVD装置1を用い、基板S上にCNTを気相成長させた。この場合、基板ステージ3上の基板Sとメッシュ部材8cとの間の距離が40mm、メッシュ部材8cと天板1bの下面との間の距離が30mmとした。基板Sとして、φ300mmのシリコン基板上にスパッタリング法によりアルミを10nmの膜厚で成膜し、次いで、アルミ膜上に、10nmの膜厚でFeを成膜したものを用いた。
【0028】
基板ステージ3上に基板を載置して真空チャンバ1を真空引きした後、ガス導入管5aを介してCを10sccm、水素ガスを190sccmの流量で真空チャンバ1内に導入し、真空チャンバ1内の圧力を10Torrに保持した。そして、基板ステージ3のヒータを作動して基板Sを400℃まで加熱した後、マイクロ波を導入した。メッシュ部材8cと基板Sとの間に、基板S側の電圧が−100Vとなるようにバイアス電圧を印加した。
【0029】
上記実験においては、図4(a)に示すように、CNTが基板S全面で均一にCNTが成長できることが確認できた。このとき、天板1bを取り外してメッシュ部材8cを目視で確認したところ、変形は見られなかった。なお、比較実験として、ピン部材8dの頭部82をメッシュ部材8cに当接させて固定し、上記と同条件でCNTを成長させたところ、図4(b)に示すように、基板Sの中央部分でしかCNTは成長しないことが確認された。上記同様、天板1bを取り外してメッシュ部材8cを目視で確認したところ、その中央部が基板S側に撓んでいることが確認された。これは、プラズマからの熱により基板S中央部の温度上昇が大きくなったことから、基板Sの中央部分でしかCNTは成長しないものと考えられる。
【0030】
以上、本発明のリモートプラズマCVD装置1について説明したが、本発明は上記実施形態のものに限定されるものでない。上記実施形態では、天板1bに4本の支柱を垂設して支持手段を構成するものを例に説明したが、ワイヤー等を用いて支持フレームを保持するようにしてもよい。また、支持フレームは、一体に形成したリング状のものを用いた例を説明したが、部分的にメッシュ部材を支持する部品を各支柱に取り付けて構成することもできる。さらに、上記実施形態では、ピン部材8dが頭部82を備えた形態のものについて説明したが、これに限定されるものではなく、ピン部材がストレートピンから構成されていても、所定長さを有していれば、メッシュ部材8cが脱落する等の不具合は生じない。
【0031】
また、上記実施形態では、ピン部材8dを用いたものを例に説明したが、図5に示すように、支持フレーム8b上にメッシュ部材8cを載置した後、メッシュ部材8cから上方に所定の隙間を持って、メッシュ部材8cの上部周縁部を覆うカバーフレーム85を、ボルト86を介して着脱自在に装着し、メッシュ部材8cの脱落を防止しつつ、熱膨張や熱収縮を許容するようにメッシュ部材8cが載置されるようにしてもよい。この場合、カバーフレーム85は、メッシュ部材8cの上部周縁部全体を覆うようにリング状に形成してもよく、また、部分的に覆うように複数の部品から構成してもよい。
【符号の説明】
【0032】
M…リモートプラズマCVD装置、1…真空チャンバ、1a…チャンバ本体、1b…天板(蓋体)、3…基板ステージ、7…プラズマ発生手段、8a…支柱(支持手段)、8b…支持フレーム、8c…メッシュ部材(遮蔽部材)、8d…ピン部材、82…頭部、S…基板

【特許請求の範囲】
【請求項1】
処理すべき基板が載置される基板ステージを有する上方に開口したチャンバ本体と、チャンバ本体の上面開口に着脱自在に装着される蓋体と、チャンバ本体内にプラズマを発生させるプラズマ発生手段と、基板ステージ上の基板がプラズマに曝されないように基板上方に設けられた複数の透孔を有する板状の遮蔽部材とを備えたリモートプラズマCVD装置において、
前記蓋体の下面周縁部に周方向の間隔を存して垂設した複数本の支持部材と、これら支持部材の下端部に連結される支持フレームとを有し、前記遮蔽部材の周縁部を支持フレームに遮蔽部材の熱膨張または熱収縮が許容されるように載置してなることを特徴とするリモートプラズマCVD装置。
【請求項2】
前記遮蔽部材の周縁部に複数の取付孔が形成され、前記支持フレームに、これら取付孔との間で遮蔽部材の熱膨張または熱収縮を許容する隙間を存して挿通される複数のピン部材が立設されていることを特徴とする請求項1記載のリモートプラズマCVD装置。
【請求項3】
前記支持部材または支持フレームに、遮蔽部材に当接せずに上方から遮蔽部材の周縁部を覆うカバーフレームが装着されていることを特徴とする請求項1記載のリモートプラズマCVD装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2010−209429(P2010−209429A)
【公開日】平成22年9月24日(2010.9.24)
【国際特許分類】
【出願番号】特願2009−58539(P2009−58539)
【出願日】平成21年3月11日(2009.3.11)
【出願人】(000231464)株式会社アルバック (1,740)
【Fターム(参考)】