説明

金属シリサイド晶子上にナノ構造物を形成する方法、並びにこの方法により得られる構造物及びデバイス

本発明の種々の実施形態は、非単結晶基板上にナノ構造物を形成する方法、並びにその結果得られるナノ構造物及びナノスケール機能デバイスに関する。本発明の一実施形態では、ナノ構造物を形成する方法は、金属層(100)及びシリコン層(104)を含む多層構造物(106)を形成することを含む。多層構造物(106)は、熱工程にかけられ、それにより金属シリサイド晶子(110)が形成される。金属シリサイド晶子(110)上にはナノ構造物(114)が成長される。本発明の別の実施形態では、構造物は、非単結晶基板(102)及び非単結晶基板(102)上に形成された層(108)を含む。層(108)は、金属シリサイド晶子(110)を含む。金属シリサイド晶子(110)上にいくつかのナノ構造物(114)が形成されてもよい。開示の構造物は、電子デバイス及び/又は光電子デバイスで使用されるいくつかの異なるタイプの機能デバイスを形成するために使用することができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、概括的には、ナノスケール電子デバイス及びナノスケール光電子(オプトエレクトロニクス)デバイスに関する。より詳細には、本発明の実施形態は、非単結晶基板上にナノ構造物を形成する方法、並びにこの方法により得られる構造物及びデバイスに関する。
【背景技術】
【0002】
集積回路の製造業者及び設計者は、トランジスタ及び信号線のような集積回路の機能要素(構成要素)のサイズを過酷なまでに縮小し、これに対応して集積回路内に機能要素を製造できる密度を高め続けている。例えば、次世代集積回路及びデータ伝送アーキテクチャ(基本設計)は、高密度、高速及び高容量デバイスを作成するための電子機器及び光電子機器の両方を含む。製造業者及び設計者は、従来のフォトリソグラフィ技術によって製造されたそのような集積回路内での機能要素のサイズのさらなる縮小を妨げる根本的な物理的制限に対する取り組みを始めた。最近の研究努力は、現在利用可能な高分解能フォトリソグラフィ技術によって製造された現在利用可能なサブマイクロスケールの電子機器から、機能要素のサイズの著しい縮小を提供するナノスケール電子機器及びナノスケール光電子機器を製造するための新しい非フォトリソグラフィ技術に移行している。
【0003】
ナノスケール機能デバイスを設計し製造する1つの手法では、単結晶半導体基板の表面上のエピタキシャル成長によって、「一次元」ナノ構造物、例えばナノワイヤ、及び「0次元」ナノ構造物、例えば量子ドットを製造することができる。ナノワイヤに基づくデバイスでは、構成可能な抵抗器、スイッチ、ダイオード、トランジスタ、及び集積回路の他の周知の電子部品の特性が得られるよう、隣り合うナノワイヤ間の最も近い接点であるナノワイヤ接合を構成することができる。他の手法では、クロスバー構造を有するナノワイヤを形成することができる。格子状ナノワイヤクロスバーは、電子機器及び光電子機器内の様々な異なるタイプの機能デバイス又はサブシステムを形成するために構成できる2次元配列のナノワイヤ接合を提供する。ナノワイヤは、ナノワイヤ接合を形成するために使用される他に、センサ内での相互接続として、また多数の他の用途で有用性を見出した。ナノワイヤに基づくデバイスと比べて成熟した技術である量子ドットに基づくデバイスは、様々な電子機器への用途及び光電子機器への用途で利用することができる。エピタキシャル成長によって形成された量子ドットを使用して、量子ドットのナノスケール寸法によって提供される固有の特性を利用する様々なタイプのナノスケール電子デバイス及びナノスケール光電子デバイスを形成することができる。
【0004】
ナノワイヤ及び量子ドットの製造はこれまで、高品質エピタキシャル成長を保証し且つ個別のナノ構造物又は一群のナノ構造物への電気的なアクセスを可能にするように、適切な単結晶半導体基板の表面上に単結晶ナノワイヤ又は量子ドットをエピタキシャル成長させることによって行われてきた。しかし、単結晶シリコンウェハや単結晶ガリウム砒素ウェハ等の単結晶半導体基板のコストは極めて高い。さらに、単結晶シリコンウェハの世界的需要は急激に増加しているようであり、そのため、単結晶シリコンウェハの価格はさらに上昇するであろう。したがって、ナノスケールデバイスの研究者及び開発者は、ナノスケール機能デバイス用の電気的にアクセス可能な高品質単結晶ナノ構造物を製造するためのより手頃で且つより汎用性の高い材料プラットホーム及び技術を探し続けている。
【発明の概要】
【課題を解決するための手段】
【0005】
本発明の様々な実施形態は、非単結晶基板上にナノ構造物を形成する方法、並びにそれにより得られる構造物及びナノスケール機能デバイスに関する。本発明の一実施形態では、ナノ構造物を形成する方法は、金属層及びシリコン層を含む多層構造物を形成することを含む。多層構造物には

熱工程を実施し、それにより金属シリサイド晶子が形成される。この金属シリサイド晶子上にナノ構造物を成長させる。
【0006】
本発明の別の実施形態では、構造物は、非単結晶基板、及びこの非単結晶基板上に形成された層を含む。この層は、金属シリサイド晶子を含む。金属シリサイド晶子上に多数のナノ構造物を形成することもできる。開示の構造物は、電子及び/又は光電子デバイス用の多数の異なるタイプの機能デバイスを形成するために使用することができる。
【0007】
図面に、本発明の種々の実施形態を示す。類似の参照番号は、図面に示す様々な表示又は実施形態における類似の要素又は特徴部を指す。
【図面の簡単な説明】
【0008】
【図1】本発明による方法の一実施形態の実施の際に形成された、製造中の基板構造の概略的な側面図であって、基板上に堆積させた金属層を含む。
【図2】本発明による方法の一実施形態の実施の際に形成された、製造中の基板構造の概略的な側面図であって、図1に示した金属層上にシリコン層を堆積させた後の図である。
【図3】本発明による方法の一実施形態の実施中に形成された、製造中の基板構造の概略的な側面図であって、図2に示した金属層とシリコン層との間の拡散反応の結果として形成された金属シリサイド晶子を含む。
【図4】図3に示した製造中の基板構造の概略的な拡大上面図である。
【図5】本発明による方法の一実施形態の実施の際に形成された、製造中の基板構造の概略的な断面図であって、図3及び図4に示した金属シリサイド晶子上にナノ構造物を選択的に成長させた後の図である。
【図6A】図5に示した製造中の基板構造の概略的な拡大した等角上面図である。
【図6B】図5に示した製造中の基板構造の概略的な拡大した等角上面図であって、ナノワイヤが金属シリサイド晶子上に優勢的に成長したものである。
【図7】本発明の一実施形態による、金属シリサイド晶子上に優勢的に成長させたナノ構造物を利用する電子デバイス及び/又は光電子デバイスで使用されるデバイス構成要素の概略断面図である。
【図8】本発明のさらに別の実施形態による、電子デバイス及び/又は光電子デバイスで使用されるデバイス構成要素の製造方法における様々な段階の1つを示す概略的な断面図である。
【図9】本発明のさらに別の実施形態による、電子デバイス及び/又は光電子デバイスで使用されるデバイス構成要素の製造方法における様々な段階の1つを示す概略的な断面図である。
【図10】本発明のさらに別の実施形態による、電子デバイス及び/又は光電子デバイスで使用されるデバイス構成要素の製造方法における様々な段階の1つを示す概略的な断面図である。
【図11A】本発明による方法の一実施形態の実施の際に形成された、製造中の基板構造の概略的な上面図であって、図2に示した製造中の基板構造の多層構造物から形成された多数の下側アドレス線を含む。
【図11B】図11Aに示した製造中の基板構造の概略的な側面図である。
【図12】本発明による方法の一実施形態の実施中に形成された、製造中の基板構造の概略的な上面図であって、図11A及び図11Bに示した製造中の基板構造を熱工程にかけて下側アドレス線に金属シリサイド晶子を形成した後の図である。
【図13】本発明による方法の一実施形態の実施中に形成された、製造中の基板構造の概略的な上面図であって、図12に示した金属シリサイド晶子上にナノ構造が優勢的に成長した後の図である。
【図14】本発明の方法の別の実施形態により図11A及び図11Bに示した下側アドレス線におけるほぼ選択された位置に金属シリサイド晶子を形成するために使用されるエネルギービームを示す概略図である。
【図15】製造中の基板構造の概略的な上面図であって、図14に示したエネルギービームに曝した結果として下側アドレス線の長さに沿った選択された位置に形成された複数の金属シリサイド晶子を含む。この金属シリサイド晶子上にはナノ構造物優勢的に成長している。
【図16】本発明の一実施形態による機能デバイスの概略的な上面図であって、この機能デバイスが、図15に示した下側アドレス線の上に上側アドレス線層を作成することによって形成され、下側アドレス線における金属シリサイド晶子上に形成されたナノ構造物を電気的にアドレス指定できるようになっている。
【図17】図16に示した線A−Aに沿った断面図である。
【発明を実施するための形態】
【0009】
本発明の様々な実施形態は、非単結晶基板上に単結晶ナノ構造物を形成する方法、並びにその方法により得られる構造物及びナノスケール機能デバイスに関する。このナノ構造物は、量子ドット又はナノワイヤとして成長させることができ、そのようなナノ構造物は、様々な異なるタイプのナノスケール電子デバイス及びナノスケール光電子デバイスに利用することができる。
【0010】
図1〜図6に、本発明の方法の一実施形態による、金属シリサイド晶子上にナノワイヤ及び量子ドット等のナノ構造物を成長させる方法での様々な段階を示す。図1に示すように、金属層100は、基板102上に、任意の物理的又は化学的堆積技術、例えばスパッタリング、電子ビーム蒸着又は他の適切な堆積技術によって堆積させる。金属層100の厚みは、例えば約1nm〜約1μmであってよい。金属層100は、シリコンと反応して金属シリサイドを形成することができる金属又は合金を含むことができる。例えば、金属層100は、1つ以上の複数の遷移金属(例えば、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Pd、Ag、Ta、W、Pt、Au)、Al、1つ以上の希土類金属(例えば、Er、Dy、Gd、Th、Ho、Tb、Sm)、又は金属シリサイドを形成することができる他の適切な金属若しくは合金を含む。本発明のいくつかの実施形態では、金属層100は、異なる組成を有する金属層を含む多層膜であってよい。基板102は、従来の単結晶半導体基板よりも安価な多数の材料、例えば非単結晶材料から形成されていてよい。例えば、基板102は、ガラス基板、多結晶金属基板(例えば、ステンレス鋼)、ポリマー基板、非単結晶半導体基板、金属酸化物基板、又は後続の処理操作と適合する他の適切な基板であってよい。
【0011】
図2に示すように、シリコン層104が堆積され、これにより、金属層100上に多層構造物106が形成される。シリコン層104の厚みは、例えば約1nm〜約1μmであってよい。シリコン層104の厚みに応じて、シリコン層104は、アモルファス(非晶質)シリコン、又はアモルファスシリコンマトリクス内に分散された例えば約1nm〜約100μmの大きさを有するシリコン晶子を含む。例えば、シリコン層104が水素化シリコン層の場合、堆積の際、水素化シリコン層は最初にアモルファス相で堆積させる。堆積工程中、水素化シリコン層の厚みが大きくなると、アモルファスシリコンマトリクス中に分散されたシリコン晶子が核形成する。水素化シリコン層中に存在する水素は、シリコン原子の任意のダングリングボンドを保護(不動態化)し得る。本発明の一実施形態では、シリコン層104は、プラズマ化学気相成長(「PECVD」)、反応スパッタリング、又は他の適切な堆積技術を使用して、水素化シリコン層として堆積させ、アモルファスシリコン、又はアモルファスシリコン晶子とシリコン晶子との混合物を形成することができる。また、シリコン層104は、導電率を高めるためにn型ドーパント又はp型のドーパントで高濃度ドープされてもよく、これらのドーパントは、堆積工程中又は堆積後の堆積後工程、例えば注入工程又は拡散工程で導入されてもよい。水素化シリコンは、半導体処理分野では「微晶質シリコン(microcrystalline silicon)」又は「μc−Si」と呼ばれることがある。しかしながら、「微晶質シリコン」又は「μc−Si」という用語は、シリコン晶子が、ナノメートルスケールの寸法を含む広範囲の寸法を有する場合もあるので誤称である。
【0012】
図3の側面図及び図4の上面図に示したように、多層構造物106を形成した後、多層構造物106を熱工程にかけてもよく、それにより、金属層100とシリコン層104との間での拡散反応を起こして反応層108が形成される。反応層108は、アモルファスマトリクス112中でランダムに分散された金属シリサイド晶子110を含む。しかし、金属シリサイド晶子110は、アモルファスマトリクス112内に好ましい結晶学的配向又はテクスチャ(集合組織)を有していてよい。反応層108内の金属シリサイド晶子110の体積分率は、確定できない小さな値から約100パーセントまで変動していてよい。金属シリサイド晶子110は、金属層100の成分及び熱処理に応じて、2成分シリサイド、3成分シリサイド又は別のタイプのシリサイドであってよく、「金属シリサイド」という語は、ここで用いられる限りでは、これらのシリサイドのうちの任意のものを含む。例えば、金属層100がクロム層である場合、熱工程中に形成される金属シリサイド晶子110は、クロムシリサイドを含む。また、反応層108中に金属シリサイドの異なる相があってもよい。金属シリサイド晶子110の平均サイズは、例えば、約2nm〜約100μmであってよい。アモルファスマトリクス112は、金属シリサイド晶子110と類似又は同じ化学成分を有していてよいが、非晶質マトリクス112の原子には、規則的な結晶構造を形成する顕著に長い範囲の配列はない。本発明の一実施形態では、熱工程は、アニール工程であり、この工程では、多層構造物106が、約100℃〜1000℃の温度で、金属層100とシリコン層104との間の拡散反応により金属シリサイド晶子110を形成させるのに十分な長さの時間にわたり加熱される。
【0013】
本発明の別の実施形態では、基板102上にシリコン層104を形成し、続いて、前述の堆積技術のいずれかを使用して、シリコン層104上に金属層100を形成する。この構造物を前述のように熱工程にかけると、図3及び図4に関して前述した場合と同様に、金属シリサイド晶子を含む反応層が形成される。
【0014】
図5及び図6Aに示すように、金属シリサイド晶子110が形成された後、反応層108の表面109に存在する金属シリサイド晶子110上に多数のナノ構造物114を優勢的に成長させる。金属シリサイド晶子110は、金属シリサイド晶子110上に、ナノ構造物114が、アモルファスマトリクス112の代わりに優勢的に成長するように種結晶として働くことができ、ナノ構造物114は、金属シリサイド晶子110上にエピタキシャル成長することができる。複数のナノ構造物114が、相応の比較的大きな金属シリサイド晶子110上に形成されてもよい。本発明の一実施形態では、ナノ構造物114はそれぞれ、例えば約2nm〜約50nmの直径又は横方向寸法を有する量子ドットを含んでいてよい。本発明の別の実施形態では、ナノ構造物114はそれぞれ、例えば約2nm〜約500nmの直径又は横方向寸法、及び例えば約10nm〜約100μmの長さを有するナノワイヤを含んでいてよい。図6Bに示すように、ナノ構造物がナノワイヤ114’として成長する時、各ナノワイヤ114’は、ナノワイヤ114’がその上で成長する金属シリサイド晶子110の表面から外へと突出する。ナノワイヤ114’がその上で成長する金属シリサイド晶子110がランダムな配向を有するので、ナノワイヤ114’は、ランダムな方向に突出していてよい。ナノワイヤ114’は、量子ドットを形成するために使用される堆積工程を、高い縦横比のナノワイヤを形成するのに十分な時間にわたり続けることによって形成することができ、このナノワイヤ114’は、ナノワイヤ114’がその上に成長した金属シリサイド晶子110の表面から外突出する長さを有する。
【0015】
ナノ構造物114及び114’は、多数の異なる単結晶半導体及び絶縁体材料から形成することができる。本発明の様々な実施形態によれば、ナノ構造物114及び114’は、IV族半導体(例えば、Si、Ge)、II−VI族半導体化合物(例えば、ZnO、ZnSe)、III−V族半導体化合物(例えば、GaAs、InAs及びInP)、金属酸化物、又は別の適切な材料から形成されていてよい。ナノ構造物114及び114’は、化学気相成長法(「CVD」)、例えば有機金属CVD(「MOCVD」)によって形成することができる。例えば、InP量子ドットは、水素キャリアガス中のトリメチルインジウム(「(CH33In」)及びホスフィン(「PH3」)を使用したMOCVDによって、金属シリサイド晶子110上に優勢的に成長し、図3及び図4に示した製造中の基板構造が、約300℃〜約500℃の温度に加熱される。ナノワイヤ114’は、量子ドットを形成するために使用される堆積工程を、高い縦横比のナノワイヤを形成させるのに十分な時間にわたり特定の堆積条件下で続けることによって形成することができる。例えば、本発明の一実施形態では、ナノワイヤ114’を形成するために、MOCVD堆積工程で使用される前駆体ガス組成を変更し、ナノ構造物の縦方向成長に対し横方向成長を抑制又は減少させるようにしてもよい。本発明の別の実施形態では、金属触媒ナノ粒子(例えば、Au、Ag又はTiナノ結晶)を、反応層108の露出面109上に堆積(付着)させてもよい。ナノワイヤ114’の成長は、蒸気−液体−固体成長工程を使用して行うことができ、この工程では、前駆体ガス材料が、金属触媒ナノ粒子中に溶け、金属触媒ナノ粒子の下にある金属シリサイド晶子110上にエピタキシャル堆積してナノワイヤ114’が形成される。例えば、本発明の1つの特定の実施形態では、トルエン中に分散された金コロイド金属触媒ナノ粒子を、反応層108の表面109に付着させる。
【0016】
本発明の他の実施形態では、金属シリサイド晶子110を形成するために別個のアニール工程を使用しなくてもよい。その代わり、図2に示した製造中の基板構造物を、ナノ構造物を成長させる装置、例えばCVD装置のチャンバ内に提供する。ナノ構造成長工程が実施される温度は、金属シリサイド晶子110を形成しそのように形成された金属シリサイド晶子上にナノ構造物を成長させるのに十分な温度である。金属シリサイド晶子110の形成と、そのように形成された金属シリサイド晶子110上のナノ構造物の成長とは実質的に同時に行われてもよく、金属シリサイド晶子110が形成された直後に、そのように形成された金属シリサイド晶子110上にナノ構造物が成長する。
【0017】
金属シリサイド晶子110上にナノ構造物114を成長させることによって、光電子デバイス及び/又は電子デバイスで使用するための多数の異なるタイプのデバイス構成要素を形成することができる。図7に、本発明の一実施形態による様々な異なる電子デバイス及び/又は光電子デバイスで使用するのに適したデバイス構成要素115を示す。デバイス構成要素115において、反応層108は、第1の電極として機能してもよい。ナノ構造物114を機械的に支持し且つナノ構造物114を互いに電気的に絶縁するために、隣り合うナノ構造物114の間に、支持材料111、例えば金属酸化物、高分子材料、半導体材料又は別の適切な材料を堆積させてもよい。必要に応じて、支持材料111及びナノ構造物114を平坦化するか、支持材料111及びナノ構造物114をエッチングして端部107を露出させることによって、ナノ構造物114の端部107を露出させることができる。次に、ナノ構造物114上に、ナノ構造物114の少なくとも一部分又は全てと電気接触するように、第2の電極113を形成することができる。第2の電極113は、元素金属や合金等の金属材料を含んでいてよい。第2の電極113は、支持材料111及びナノ構造物114上に多層構造物を形成すべくシリコン層及び金属層を堆積させ、その後でそれらの2つの層を反応させて、反応層108に使用されたものと同じか又は類似の方式で金属シリサイド晶子を形成することによって形成された金属シリサイド晶子を含んでいてもよい。少なくとも反応層108(つまり、第1の電極)を金属シリサイド晶子を含む材料から形成することによって、第1の電極は、高濃度ドープ半導体材料より実質的に高い導電率を示す。したがって、電極が金属シリサイド晶子を含む場合、デバイス構成要素115の応答時間及び他の性能特性を高めることができる。
【0018】
ナノ構造物114が量子ドットである場合、支持材料111は、量子ドットのエネルギーバンドギャップより大きいエネルギーバンドギャップを有する適切な半導体材料から選択することができる。本発明の別の実施形態では、ナノ構造物114は、半導体ナノワイヤとして構成することができ、第1の電極(つまり反応層108)、半導体ナノワイヤ及び第2の電極113は、例えば光検出器及び太陽電池等の光検出及び光電子工学機器の用途で使用される金属−半導体−金属(「MSM」)フォトダイオードを構成する。そのような実施形態では、支持材料111は、MSMフォトダイオードの半導体ナノワイヤが吸収するように設計された選択された波長又は波長範囲の光に対し透過性となっていてよい。本発明の他の実施形態では、支持材料111は、第2の電極113を形成した後、例えば選択的化学的エッチング工程によって選択的に除去してもよい。
【0019】
図8〜図10に、本発明のさらに別の実施形態により金属シリサイド晶子上に優勢的に成長したナノ構造物を利用する電子デバイス及び/又は光電子デバイスで使用されるデバイス構成要素を製造する方法の様々な段階を示す。図8に示すように、図3に示された製造中の基板構造が提供される。次に、図9に示すように、反応層108に凹部105を画定することによって電極103a及び103bを形成する。凹部105は、反応層108をフォトリソグラフィによりパターン形成しエッチングするか又は別の適切な選択的材料除去工程によって形成することができる。図9に示すように、電極103a及び103bの側壁117a及び117bは、金属シリサイド晶子110を露出する。次に、図10に示したように、前述のように側壁117a及び117b上の金属シリサイド晶子110上にナノ構造物121を優勢的に成長させ、これによりデバイス構成要素130が形成される。ナノワイヤとして示した各ナノ構造物121は、側壁117a及び117bの一方から成長して側壁117a及び117bの他方と接触し、電極103aと103bとの間に電気接続を確立する。基板102は、高分子材料及びガラスのような電気絶縁材料であってよく、それゆえ、電極103a及び103bは互いに電気的絶縁されることに注意されたい。必要に応じて、電極103a及び103bの露出上側面に成長し得るナノ構造物121を、平坦化工程を使用して除去することができる。本発明の別の実施形態では、図2に示した多層構造物106に凹部を画定することによって電極を形成してよく、さらに、電極を相互接続するナノ構造物の成長時に、インサイトゥで金属シリサイド晶子を形成してもよく、これにより、デバイス構成要素130と類似したデバイス構成要素が形成される。
【0020】
金属シリサイド晶子を含む非単結晶基板上に単結晶ナノ構造物を優勢的に形成するための前述の様々な実施形態は、ナノ構造物が個々に又は群でアクセスされ得る多数の異なる機能デバイスを製造するために使用することができる。図11A〜図17に、本発明の様々な実施形態により金属シリサイド晶子を含むパターン化されたアドレス線上に成長させたナノ構造物を含む機能デバイスを形成する方法の段階を示す。
【0021】
図11A及び図11Bに示すように、シリコン層104に塗布されたフォトレジストをフォトリソグラフィでパターン形成しエッチングするか又は別の適切な製造技術を使用することによって、図2に示す製造中の基板構造から多数の下側アドレス線116を形成することができる。各下側アドレス線116の幅Wは、例えば10nm〜約0.5μmであってよい。下側アドレス線116のそれぞれは、金属層118及びシリコン層120を含む。図12に示すように、図11A及び図11Bに示す製造中の基板構造は、図3及び図4に関して前述したように、熱工程にかけられ、それにより各下側アドレス線116のアモルファスマトリクス125中に分散された金属シリサイド晶子124を形成することができる。しかし、本発明の別の実施形態では、熱工程は、下側アドレス線を形成する前に行うこともできる。次に、図13に示すように、図5、図6A及び図6Bに関して前述したように、下側アドレス線116の金属シリサイド晶子124上にナノ構造物126を優勢的に成長させることができる。前述の実施形態のうちの1つで述べたように、下側アドレス線116から金属シリサイド晶子124を形成するために別個の熱工程を使用する必要はない。その代わりに、ナノ構造物成長工程が実行される温度は、金属シリサイド晶子124が形成され、そのすぐ後にそのように形成された金属シリサイド晶子124上にナノ構造物126が成長するのに十分なものであってよい。
【0022】
図11A〜図13で前述した方法では、下側アドレス線116のそれぞれにおいて、アモルファスマトリクス125中に金属シリサイド晶子124がランダムに分散されている。しかし、金属シリサイド晶子124は、アモルファスマトリクス125内で好ましい結晶配向又はテクスチャを有していてよい。図14に示す本発明の別の実施形態では、金属シリサイド晶子は、各下側アドレス線の長さに沿った選択された位置におおよそ形成されていてよい。前述の金属層とシリコン層とをそれぞれ含む下側アドレス線142〜150の選択された領域を加熱するために、エネルギービーム源128、例えばショートパルスエキシマレーザ、電子ビーム源、イオンビーム源又は別の適切なエネルギービーム源を使用することができる。図14に示すように、エネルギービーム源128は、選択された領域132を局所的に加熱してその選択された領域132内に1つ又は複数の金属シリサイド晶子を形成するために集束されるビーム129を出力するように動作可能である。図15に示すように、各下側アドレス線142〜150上の複数の選択された領域を局所的に加熱することによって、この各下側アドレス線142〜150のシリコン層と金属層間との拡散反応により、アモルファスマトリクス135中に分散された選択された位置に金属シリサイド晶子136が形成される。図中の下側アドレス線142〜150の網掛け領域は、シリコン層と金属層とが互いに反応していない領域である。前述のように、金属シリサイド晶子136を選択的に形成した後に、金属シリサイド晶子136上にナノ構造物138(例えばナノワイヤ及び/又は量子ドット)を優勢的に成長させてもよい。図15が、金属−シリサイド晶子136及びナノ構造物138に関する1つの可能な選択された分布を示している過ぎないことに注意されたい。各下側アドレス線142〜150上の領域を選択的にビーム129に曝すことによって、別の分布を形成することもできる。さらに、ビーム129に曝された各領域で、アモルファスマトリクス135内に形成される金属シリサイド晶子136の数、サイズ及び形は異なっていてよい。図15に示す各アモルファスマトリクス135の詳細な幾何学形状、並びに各アモルファスマトリクス135内の金属シリサイド晶子136の数及び分布は、単に例示を目的とするものである。本発明のさらに別の実施形態では、エネルギービーム源128を使用して、図2に示す多層構造物106内で金属シリサイド晶子をおおよそ選択されたパターンで形成し、続いて下側アドレス線を形成するパターン形成工程を実行することができる。
【0023】
下側アドレス線中に分布する金属シリサイド晶子上にナノ構造物を成長させる図13又は図15に示された実施形態では、個々のナノ構造物又はナノ構造物の群が電気的にアドレス指定され得るように、ナノ構造物上に上側アドレス線の層を形成することができる。したがって、次に、図16に示すように、本発明の一実施形態による機能デバイス140は、下側アドレス線142〜150の上に、重なるアドレス線間の接合部に位置決めされたナノ構造138と電気的に接触するように、多数の上側アドレス線151〜155を製造することによって形成される。光学用途に適した本発明の一実施形態では、上側アドレス線151〜155は、導電性且つ光透過性の材料、例えばインジウムスズ酸化物又は別の適切な材料から形成することができる。アドレス線142〜155は導電性なので、接合部にあるナノ構造物は、上に重ねられたアドレス線に電流を流すことによって電気的にアドレス指定することができる。例えば、下側アドレス線142及び上側アドレス線151に電流を通すことにより、接合部160に配置されたナノ構造物138を電気的にアドレス指定することができる。さらに、下側及び上側アドレス線142〜155は、マイクロスケール、サブマイクロスケール又はナノスケールの幅を有していてもよいので、下側及び上側アドレス線142〜155は、さらに、導線及びワイヤのような他のマイクロスケール又はサブマイクロスケール接続構造によって電気的にアクセスされてもよい。さらに、金属シリサイド晶子を含む材料からアドレス線142〜155を形成することによって、アドレス線142〜155は、高濃度ドープ半導体材料より実質的に高い導電率を示す。したがって、アドレス線が、低電気抵抗を示す金属シリサイドから形成されれば、機能デバイス140の応答時間及び他の性能特性を高めることができる。
【0024】
本発明の他の実施形態では、ナノ構造物が、各下側アドレス線の長さに沿ってランダムに分布されている場合、例えば、金属シリサイド晶子及びナノ構造物が図12及び図13に関して前述したように形成されている場合、ナノ構造物の一部は、上側アドレス線のどれにも電気接続されていないこともある。しかし、またナノ構造物の一部が、上側アドレス線と電気接触して、これにより、個別のナノ構造物又は一群のナノ構造物を電気的にアドレス指定することができる。
【0025】
図17に、図16に示す線A−Aに沿った機能デバイス140の断面図を示し、接合部160の構造をさらによく示す。図17に示すように、上側アドレス線151〜155を形成する前に、支持材料162(図16に図示せず)、例えば金属酸化物、ポリマー材料、半導体材料又は他の適切な材料を、隣り合う下側アドレス線142〜150の間及び隣り合う下側アドレス142〜150上に成長させたナノ構造物138の間に堆積させることができる。上側アドレス線151〜155は、下側アドレス線142〜150を形成するために使用される工程と同じ又は類似の工程を使用して、支持材料162上に且つナノ構造物138と電気接触させて形成することができる。例えば、シリコン層及び金属層を含む多層構造物を、支持材料162及びナノ構造物138上に堆積させアニールすることができ、それにより、金属シリサイド晶子が形成される。多層構造物をアニールする前又は後に、上側アドレス線151〜155を、多層構造物のフォトリソグラフィパターン形成及びエッチング並びに他の適切な技術によって形成してもよい。図7に示すデバイス構成要素115と同じように、上側アドレス線151〜155を形成する前に支持材料162及びナノ構造物138を平坦化又はエッチングすることによってナノ構造物の端部を露出させてもよく、それにより、上側アドレス線151〜155とナノ構造物138との間の一定の電気接触が容易となる。
【0026】
本発明の一実施形態では、ナノ構造物、例えばナノ構造138が量子ドットである場合、支持材料162は、量子ドットのエネルギーバンドギャップより大きくなるように選択されたエネルギーバンドギャップを有する半導体材料であってよい。本発明の別の実施形態では、支持材料162は、上側アドレス線151〜155を形成した後、選択的に除去することもできる。したがって、上に重なるアドレス線をナノ構造物に電気的に結合することによって、様々な異なるタイプのデバイスを形成することができる。例えば、ナノ構造物が半導体材料を含む場合、接合160は、MSMダイオードを構成し、その場合、導電性の下側及び上側アドレス線は金属電極として働く。図16で最もよく分かるように、下側アドレス線142と上側アドレス線151とは、MSMダイオードの金属電極となっており、ナノ構造物138は、MSMダイオードの半導体構成要素を形成する。
【0027】
本発明の以下の実施例は、非単結晶基板上にInPナノワイヤを製造するために使用される1つの方法を説明する。以下の実施例は、以上述べた本発明の様々な実施形態と関連して更なる詳細を示す。
【0028】
実施例
電子ビーム蒸着を使用して、厚み約300nmのクロム層を、ガラス基板上に堆積させた。堆積工程中、ガラス基板は、約50℃の温度に維持された。クロム層上には、PECVDを使用して、厚み約100nmの水素化アモルファスシリコン層を堆積させた。このPECVD工程では、前駆体ガスとしてシラン及び水素を使用した。水素化アモルファスシリコン層の堆積中、ガラス基板は、約250℃の温度に維持した。水素キャリアガス中にあるトリメチルインジウム及びホスフィンを使用して、MOCVDによってInPナノワイヤを成長させた。水素化アモルファスシリコン層及びクロム層を含むガラス基板を、水素中で5分間、約630℃の温度に予熱し、430℃でInPナノワイヤを成長させた。成長圧力は、約76Torrであった。MOCVD工程中、水素化アモルファスシリコン層及びクロム層が反応して、アモルファスマトリクス内に分散されたCrSiとCrSi2晶子が形成された。MOCVD工程中に形成されたケイ化クロム晶子上にInP量子ドットが優勢的に成長した。X線回折を使用して、ケイ化クロム相のタイプを判定し、ケイ化クロム晶子が(111)テクスチャを示すことも確認した。
【0029】
以上、本発明を特定の実施形態の観点から説明したが、本発明はこれらの実施形態に限定されるものではない。本発明の思想の範囲内での変更は当業者に明らかであろう。例えば、本発明の別の実施形態では、各ナノ構造物が、多数の異なるタイプの半導体デバイスを形成するためにp−n接合、n−p−n構造、p−n−p構造又は組成的に異なる材料(つまりヘテロ構造)を含んでいてよい。そのような半導体構造は、ナノ構造物を成長させるために使用される前駆体ガスの成分を変更することにより形成することができる。
【0030】
説明を目的とした以上の記述では、本発明の完全な理解を提供するために特定の用語を使用している。しかし、本発明を実施するために特定の詳細が必要でないことは当業者に明らかであろう。本発明の特定の実施形態に関する以上の記述は、例示及び説明を目的として提示されている。これらの記述は、網羅的なものでもなく本発明を開示した厳密な形態に限定するものでもない。以上の教示を鑑みて多数の修正及び変更が可能である。実施形態は、本発明の原理及びその実際的応用例を最もよく説明するために示され説明されており、これにより当業者は、本発明及び様々な実施形態を、意図された特定の用途に適するように様々な改良で最もよく利用することができる。本発明の範囲は、特許請求の範囲及びそれと同等のものによって定義される。

【特許請求の範囲】
【請求項1】
ナノ構造物を形成する方法であって、
金属層(100)及びシリコン層(104)を含む多層構造物(106)を形成し、
前記多層構造物(106)に熱工程を実施し、金属シリサイド晶子(110)を形成し、
前記金属シリサイド晶子(110)上に前記ナノ構造物(114)を成長させることを含む、方法。
【請求項2】
前記ナノ構造物(114)がそれぞれ、
量子ドット及びナノワイヤのいずれかを含む、請求項1に記載の方法。
【請求項3】
前記多層構造物(106)に熱工程を実施して金属シリサイド晶子(110)を形成することが、前記金属シリサイド晶子(110)を含む第1の電極(108)を形成することを含み、
前記ナノ構造物(114)の上に且つ該ナノ構造物(114)の少なくとも一部と電気的に接触させて、第2の電極(113)を形成することをさらに含む、請求項1に記載の方法。
【請求項4】
前記ナノ構造物(114、138)を成長させる前に、前記金属シリサイド晶子(124、136)をそれぞれが含む第1のアドレス線層(116、142〜150)を形成し、
前記第1のアドレス線層(116、142〜150)の上に第2のアドレス線層(151〜155)を形成して、多数の接合(160)を形成することを含み、前記接合(160)の少なくとも一部が、1つ以上の前記ナノ構造物(114、138)を含む、請求項1に記載の方法。
【請求項5】
前記多層構造物(106)に熱工程を実施する前に、前記金属層(100)の一部及び前記シリコン層(104)の一部をそれぞれが含む多数のアドレス線(114)を形成することをさらに含み、
前記多層構造物(106)に熱工程を実施して金属シリサイド晶子(124)を形成することが、前記アドレス線の選択された領域をエネルギービーム(129)に曝すことを含む、請求項1に記載の方法。
【請求項6】
前記多層構造物(106)に熱工程を実施して金属シリサイド晶子(124)を形成することが、前記金属シリサイド晶子(110)を含む反応層(108)を形成することを含み、
前記反応層(108)から第1及び第2の離間電極(103a、103b)を形成することをさらに含み、
前記金属シリサイド晶子(110)上に前記ナノ構造物(121)を成長させることが、前記第1及び第2の離間電極(103a、103b)の前記金属シリサイド晶子(110)上に前記ナノ構造物(121)を成長させて、それにより、前記ナノ構造物(121)が、前記第1及び第2の離間電極(103a、103b)間にわたるようにする、請求項1に記載の方法。
【請求項7】
前記多層構造物(106)が、第1及び第2の離間電極(103a、103b)を含み、
前記多層構造物(106)に熱工程を実施して金属シリサイド晶子(110)を形成することが、前記第1及び第2の離間電極(103a、103b)内に前記金属シリサイド晶子(110)を形成することを含み、
前記金属シリサイド晶子(110)上にナノ構造物(121)を成長させることが、前記第1及び第2の離間電極(103a、103b)の前記金属シリサイド晶子(110)上に前記ナノ構造物(121)を成長させ、それにより、前記ナノ構造物(121)が前記第1及び第2の離間電極(103a、103b)間にわたるようにするステップを含む、請求項1に記載の方法。
【請求項8】
非単結晶基板(102)、
前記非単結晶基板(102)の上に形成され、金属シリサイド晶子(110)を含む層(108)、並びに
前記金属シリサイド晶子(110)上に形成された多数のナノ構造物(114)を含む、構造物。
【請求項9】
前記層(108)が、第1の電極(108、103a)を規定し、
前記第1の電極(108、113a)から離間され且つ前記ナノ構造物(114、121)の少なくとも一部と電気接触している第2の電極(113、103b)をさらに含む、請求項8に記載の構造物。
【請求項10】
前記層が、前記ナノ構造部(138)がその上に形成される前記金属シリサイド晶子(136)を含む多数の第1のアドレス線(142〜150)を含み、
前記第1のアドレス線(142〜150)の上に重ねられて多数の接合(160)を形成する多数の第2のアドレス線(151〜155)をさらに含み、前記接合(160)の少なくとも一部が、1つ以上の前記ナノ構造物(138)を含む、請求項8に記載の構造物。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6A】
image rotate

【図6B】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11A】
image rotate

【図11B】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate


【公表番号】特表2010−520619(P2010−520619A)
【公表日】平成22年6月10日(2010.6.10)
【国際特許分類】
【出願番号】特願2009−551737(P2009−551737)
【出願日】平成20年2月28日(2008.2.28)
【国際出願番号】PCT/US2008/002699
【国際公開番号】WO2008/106219
【国際公開日】平成20年9月4日(2008.9.4)
【出願人】(503003854)ヒューレット−パッカード デベロップメント カンパニー エル.ピー. (1,145)
【Fターム(参考)】