説明

高トルク型切替式反作用電動機

本発明の一実施例によれば、電気機械が固定子と回転子とを有する。固定子は、第一の脚と第二の脚を備えた、少なくとも1つの固定子極を有する。回転子は、少なくとも1つの回転子極を有する。回転子は、固定子に対して回転する。少なくとも1つの回転子極は、少なくとも1つの固定子極の第一の脚と第二の脚の間で回転するように構成される。


【発明の詳細な説明】
【技術分野】
【0001】
本発明は、概して電気機械に係り、特に高トルク型切替式反作用電動機に関する。
【背景技術】
【0002】
切替式反作用電動機(switched reluctance motor:SRM)は、通常、鉄やニッケルやコバルトなどの磁性体から作られた部品を含む。SRM内の対向する一組のコイルには、電流を流すことができる。電流が流されたコイルに内側の磁性体が引き寄せられることにより、内側アッセンブリがトルクを生成しながら回転する。一旦位置が揃うと、上記対向する一組のコイルへの電流は遮断され、次の対向する一組のコイルに電流が流される。
【発明の開示】
【発明が解決しようとする課題】
【0003】
従来の半径方向及び軸方向SRMにおいて、磁束は、固定子及び回転子の本体全体を通る長い経路を流れる。鉄が飽和すると磁束経路が非常に長くなるため、従来のSRMでは、磁気推進力(magneto motive force:MMF)が大幅に低下する。MMFの損失を低減する1つの方法は、磁束密度が小さくなるように、固定子及び回転子を厚くすることである。しかしながら、この方法は、機械の重量、コスト、及び、サイズの増加を招く。したがって、本発明では、このような損失を、機械のジオメトリ及び種類に応じた磁束経路を最小化することによって低減する。
【0004】
また、本発明では、新たな組み合わせの固定子/極の相互関係を導入する。この組み合わせにおいて、固定子極は、従来の円筒形状からU字形状へ変更されている。この構成により、磁束経路が短くなり、機械の効率、トルク、及びパワ密度が向上する。
【0005】
本発明に係るセンサなしSRM及びブラシレスDC電動機制御方法を用いると、本発明の隔離された回転子/固定子構造の利点を完全に得ることができる。
【0006】
SRMは、固定子及び回転子の双方に凸状極を有する。固定子上には密に巻かれた巻線が備えられ、回転子上には巻線は存在しない。この構造は、安価で、でこぼこしており、SRMが幅広い速度範囲で高効率で作動するのを助ける。さらに、その変換器は、故障が発生しても許容して動き続ける。SRMは、過酷な環境でも非常に良好に作動できるため、メカニカルな機械(例えば、圧縮機、拡張機、エンジン、及び、ポンプなど)に一体化することができる。しかしながら、それらの動作は切替が必要であるため、SRMはパワスイッチ及びコントローラを必要とする。最近では安価なパワ半導体及びデジタル・コントローラが利用可能であるため、SRMは従来の電気機器に対する重大な競合相手となっている。
【0007】
回転子及び固定子の極数及びサイズに応じて、SRMには複数の構成が存在する。また、従来の電気機械を用いる場合と同じように、SRMは、線形機械として、又は、回転機械として、又は、軸方向磁束機械として、組み立てることができる。これらの構成において、磁束は、鉄を通って、180電気角度流れる。鉄の飽和により、この長い経路は、MMFの大幅な低下をもたらし、当該機械のトルク密度、パワ、及び、効率を低下させる。固定子及び回転子の裏当て鉄のサイズを大きくすればこのMMFの低下を回避できるが、残念ながら、同時に、電動機のサイズ、重量、及び、コストも増加してしまう。位相の両極励磁を用いることにより磁束経路を短くすることができるが、複雑な変換器が必要となってしまう。また、それらは、位相の電気伝導性に重なりが存在しない場合には適用できない。
【0008】
図1Aは、従来のSRM100の概略図である。図1AのSRM100は、固定子110と、回転子140とを有する。固定子110は、8つの固定された固定子極120(各々が誘電子コイル120を有する)を有し、内側の回転子140は、6つの回転する回転子極150(コイルなし)を有する。SRM100の部品は、通常、鉄やニッケルやコバルトなどの磁性体から作られる。SRM100の材料は、渦電流の効果を低減するために、積層されてもよい。任意の時点で、対向する一組のコイル130に電流が流される。回転子140の回転子極150の内側磁性体は、電流が流されたコイル130に引き寄せられて、内側回転子140全体をトルクを生成させながら回転させる。一旦位置合わせが実現されると、対向する一組のコイル130への電流は遮断され、次の対向する一組のコイル130に電流が流される。このようにコイル130に順に電流を流すことにより、回転子140はトルクを生成しながら回転する。一例を図1Bを参照して説明する。
【0009】
図1Bは、図1AのSRM100の点表記である。白丸は固定子極120を表し、黒丸は回転子極150を表している。固定子極120A、120Bは、現時点で、回転子極150A、150Bと位置が揃っている。したがって、この位置合わせに関連するコイル(固定子極120A、120Bに関連するコイル)への電流は遮断され、別の一組のコイルに電流が流される。例えば、固定子極120C及び120Dに関連するコイルに電流が流される場合、回転子極150C、150Dが引き寄せられ、回転子140が反時計回りに回転する。図1のSRM100は、元々、2つの対称部分から成る。
【0010】
図2は、図1Aの従来のSRM100を通る長い磁束経路を概略的に示す図である。SRM100において、磁束は、固定子110及び回転子140の双方(例えば、固定子極120G、回転子極150G、回転子極150H、固定子極120H、及び、内側回転子140自体)を通って、180度横断しなければならない。このような長い磁束経路は、エネルギを熱として浪費する望ましくない渦を生成し得る。加えて、磁束密度が高いために、MMFの低下が非常に大きくなる。固定子110及び回転子140の裏当て鉄が薄い場合は特に。
【0011】
MMF低下の一例として、図3は、1位相・1馬力の機械のトルク生成におけるMMF低下の効果を示すグラフ105である。図3では、回転子角度160に対する出力トルク170の大きさがプロットされている。グラフ線180は、回転子140及び固定子110の裏当て鉄が飽和していないときのトルクを示しており、グラフ線190は、回転子140及び固定子110の裏当て鉄が飽和しているときのトルクを示している。トルク生成におけるMMF低下は、6%を超え得ることは明らかである。したがって、本発明は、磁束経路の長さを低減させる。
【課題を解決するための手段】
【0012】
本発明の一実施例によれば、電気機械が固定子と回転子とを有する。固定子は、第一の脚と第二の脚を備えた、少なくとも1つの固定子極を有する。回転子は、少なくとも1つの回転子極を有する。回転子は、固定子に対して回転する。少なくとも1つの回転子極は、少なくとも1つの固定子極の第一の脚と第二の脚の間で回転するように構成される。
【発明の効果】
【0013】
本発明によれば、様々な技術的利点が提供される。例えば、電気機械における極の対称性を向上させて、トルクを増加させることができる。また、例えば、熱的効果や遠心力効果によって部品が変形したときであっても、電気機械におけるギャップを非常に小さく維持することができる。また、電気機械が圧縮機や拡張機やポンプなどと一体化されたときに化学的に腐食し得る外部のコイルを電気機械の内部から隔離することができる。さらに、隣接する極から電気的及び磁気的に隔離されたU字状の極を用いることができるため、製造及び修理が容易な非磁気フレームに挿入されるモジュールとして極を組み立てることができる。また、U字状極を電動機ハウジングの外に配置することができるため、周囲とのより良好な熱的接触が得られ、オーバーヒートする傾向が低減される。また、電気機械の回転子に回転子の軸を横切らない磁束を生成することができる。また、電気機械の回転子の内部スペースを、圧縮機や、拡張機、エンジン、又は、ポンプなどのアイテムを収容するのに用いることができる。以上、本発明の利点の一部を列挙したが、本発明の実施例はこれらすべてを包含している場合もあれば、一部のみを包含している場合もあれば、1つも包含していない場合もある。他の利点は、以下の説明、添付図面、及び、請求項の記載から、当業者には容易に明らかになるであろう。
【0014】
本発明の詳細は、以下により具体的に説明する。
【発明を実施するための最良の形態】
【0015】
本発明の実施形態並びにその特徴及び利点は、以下の説明及び添付図面からより明らかにされる。添付図面において、同じ符号は同じ部品を示している。
【0016】
以下に本発明の実施形態の例を示すが、本発明の実施形態は、既知の又は現存するあらゆる技術を用いて、実施することができる。本発明は、以下に示す実施例、図面、及び、技術に決して限定されるべきではない。加えて、図面は必ずしも実際のスケールでは描かれていない。
【0017】
ここに示した実施形態は、電動機や発電機などの様々な電気機械、及び、そのような電動機及び発電機の種類バリエーションに利益をもたらす。種類バリエーションは、例えば、SRM、永久磁石AC電動機、ブラシレスDC(BLDC)電動機、切替式反作用発電機(SRG)、永久磁石AC発電機、ブラシレスDC発電機(BLDCG)などである。実施例は電動機及び/又は発電機の1以上の種類バリエーションを参照して説明されているが、そのような実施例は他の種類バリエーションの電動機又は発電機を用いても実現できることは明らかである。したがって、ここに示した実施例の説明は、単に、本発明の実施形態の利点を提供し得る種類バリエーションの具体例を説明するためのものに過ぎない。例えば、本発明の実施例の中には、電動機(特にSRM)のトルクパワ及び効率を向上させるものがあるが、そのような実施例では、永久磁石AC電動機やBLDC電動機を用いることも可能である。これら実施例を参照して説明された同じ利点のうちの一部は、SRG、永久磁石AC発電機、及び、BLDCGを用いても実現可能である。
【実施例】
【0018】
図4は、本発明の一実施例に係るSRM200の点表記である。図4のSRM200は、図1Bを参照して説明したSRMと同じように作動する。但し、図1BのSRM100が一度に2つの固定子極120に関連する2つのコイルに電流を流すのに対し、図4のSRMは、一度に4つの固定子極220に関連する4つのコイルに電流を流す。このように電流を流すコイル/固定子極220を増やすことにより、トルクが増加する。
【0019】
図4のSRM200は、8つの回転子極250を持つ回転子と、12個の固定子極220を持つ固定子と、を有する。固定子極220のうち磁化されたアクティブなものは、矢印225によって示されており、(例えば、回転子極250と固定子極220の間の)磁束鎖交を通る引力は、回転子が反時計回りに40°進んだ回転を通る短い線235によって示されている。45°において、この構成は0°における構成と同一に見える。これら様々な回転子角度を参照すると明らかなように、4つの固定子極220と4つの回転子極250の間の位置が合うとすぐに、4つの異なる固定子極220に電流が流されて、回転子極250がそれら4つの異なる固定子極220へ引き寄せられる。
【0020】
図4のSRM200は、4つの対称部分から成る。すなわち、いつでも、固定子極220の中の4つの極225に電流が流される。上述のように、これは従来のSRM(例えば、図1のSRM100)の2倍である。電流が流される固定子極220が2倍になるため、トルクも2倍になる。
【0021】
より多くの対称部分を加えて、トルクを更に増加させてもよい。例えば、6つの対称部分は、従来のSRMと比べて、トルクを3倍にする。対称部分は、例えば図5A及び5Bを参照して後述するように、回転子をU字状の固定子内で回転する羽根状の突起物として形成することによって増加させてもよい。対称部分は、後に詳述する他の方法によって増加させることもできる。
【0022】
図5A及び5Bは、本発明の一実施例に係る回転子/固定子構成300を示している。便宜上、図5A及び5Bの回転子/固定子構成300をSRMとして説明するが、既述のように、回転子/固定子構成300は、他の種類の電動機としても用いることができる。また、回転子/固定子構成300は、発電機などの他の種類の電気機械としても用いることができる。
【0023】
図5A及び5Bの回転子/固定子構成300において、回転する本体340に取り付けられた羽根状の回転子極又は羽根350は、U字状の電磁石コア又はU字状固定子極320を貫いている。この構成において、磁束経路は、従来のSRMと比べて、比較的短い。例えば、U字状極320のコイル3300に電流を流すことによって生じた磁束は、円形のような経路で、U字状固定子極320の一方の脚322、そして羽根350を通って、U字状固定子極320の他方の脚324へ流れる。この短い経路は、上述の経路が長いという欠陥を低減することに加えて、対称性を向上させることもできる。なぜなら、この経路は、回転する本体340の中心を横断しないため、他の磁束経路にほとんど影響を与えないからである。加えて、この短い経路は、他の目的のために、回転する本体340の中心を用いることもできる。そのような実施例については、後に詳述する。さらに、この実施例では、半径方向負荷が回転子に加えられ、回転子上の軸方向負荷は均衡している。加えて、羽根350により半径が延伸されるため、生成されるトルクが増加する。
【0024】
以下は、本発明の一実施例に係る、1枚の羽根350と極320のセットの間の電磁相互作用の一次分析である。図5A及び5Bは、一組の羽根350と極320のセットの概略図である。ここで、rは外側圧縮機回転子340の外縁を定義し、rは羽根先端における半径であり、Δrは羽根350の半径方向長さであり、αは羽根350の角度寸法であり、βはコイル330の角度寸法であり、θはコイル330内での回転子羽根350の重なり角度であり、A(θ)は磁束鎖交が可能な面積であり、gは羽根350の各側面における隙間寸法であり、wは羽根350の幅であり、wはコアの幅である。
【0025】
生成された磁気回路を通る磁束は、
【0026】
【数1】

である。ここで、Nはコイル330の巻き数であり、iはコイル330を通る電流であり、R及びRはそれぞれコア及びエアーギャップのリラクタンスである。リラクタンスは、
【0027】
【数2】

である。ここで、lはコア材料の磁束長さであり、μはコア材料の透磁率であり、Aはコアの横断面積であり、gはエアーギャップ厚さであり、μは自由空間(エアーギャップ)の透磁率であり、Aは磁束鎖交が発生する隙間の面積である。羽根350の両側面に1つずつ存在する2つの隙間は、リラクタンス表現で説明される。磁気リラクタンスRは電気抵抗と類似している。コイル材料の透磁率は空気の透磁率よりも大幅に大きいため、式1Aにおいてはエアーギャップのリラクタンスが支配的となる。そこで、この表現をRの代わりに式1Aに入れると、
【0028】
【数3】

となる。エアーギャップは総リラクタンスを支配すると思われるので、インダクタンスLは、
【0029】
【数4】

と表すことができる。ここで、λ=Nφは磁束鎖交である。
【0030】
磁場に蓄えられたエネルギは、
【0031】
【数5】

で与えられる。
【0032】
式5Aにおいては、L(θ)を表す表現が求められる。現在の前提の下では、インダクタンスが回転子角度に応じて変化する唯一の理由は、回転に伴ってエアーギャップA上の磁束鎖交面積が変化することである。図5A及び5Bから、θとAの間の関係は
【0033】
【数6】

と書くことができる。なぜなら、円弧長さrθ上の(r=1/2(r+r))半径方向長さΔr=r−rをさっと通ることによって、エアーギャップ寸法は変化するからである。したがって、
【0034】
【数7】

であるから、式5Aは、
【0035】
【数8】

と書き直せる。式7Aを式8Aに入れると、
【0036】
【数9】

となる。
【0037】
エネルギ保存の原則から、dWfldは、
【0038】
【数10】

と表すことができる。
【0039】
独立変数λ及びrθに対するdWfldの全微分は、
【0040】
【数11】

である。
【0041】
式10A及び11Aから、
【0042】
【数12】

であることがわかる。
【0043】
式4Aのλ=L(rθ)iを式12Aへ入れると、
【0044】
【数13】

というように、ffldをコイル電流iで表すことができる。
【0045】
最終的に、半径rにおいて作用するffldから生成されるトルクが、個々の羽根350/極320セットについて必要となる。この結果得られるトルクは、
【0046】
【数14】

である。
【0047】
(SRMトルク生成)
上記分析の重要な結果は、図5A及び5Bに示したような1つの羽根350と極320のセットの相互作用によって生成されたトルクについての
【0048】
【数15】

という式である。
【0049】
式(1)において、Tfldは磁場によって生成されたトルクであり、Nは固定子極コアまわりの巻線の巻き総数であり、μは自由空間の透磁率であり、Δr=r−r(回転子羽根の半径方向寸法)であり、r=r+Δr/2(羽根中心までの半径)であり、iはコイル電流であり、gはエアーギャップ寸法である。
【0050】
例えば図5A及び5Bの回転子/固定子構成300などの回転子/固定子構成は、発電機圧縮機などの他の特徴や本願にその全体が組み込まれる米国特許公報第2003/0228237号、米国特許公報第2003/0215345号、米国特許公報第2003/0106301号、米国特許第6336317号、及び、米国特許第6530211号に記載された他の実施形態と一体化させることも可能である。
【0051】
一体化された圧縮機/SRMを設計するために、式(1)を適用するときには以下を前提とする。
【0052】
1)磁束を運ぶのに積層されたSofcomag(2.3テスラ飽和限界)が用いられる。
【0053】
2)磁束は、飽和未満である2.0テスラに制限される。
【0054】
3)4つの極は、任意の時点で磁化される。
【0055】
4)積層板におけるフリンジ効果は無視する。
【0056】
一例として、産業用圧縮機は、おおよそ2.6MWを必要とする。3,600rpmで運転すると、必要とされるトルクは、6,896Nmである。この特定の容量を処理するために適切な回転子及びそのサイズは、r=14インチ(0.3556メートル)である。熱膨張と軸受遊びを与える合理的なギャップ寸法は、g=0.080インチ(0.00203メートル)である。上記の前提2)により、電流と巻き数の積の最大値は、2テスラ磁束密度を超えないように計算することができる。また、上記の分析から、
【0057】
【数16】

である。
【0058】
Niの積の最大値は、6,468Aとして計算することができる。r=r+Δr/2であるから、Δrは、軸方向に重ねられた羽根/極アレイの数に応じて、トルク要求を満足するように選択される。既述のように、ある任意の一時点においてアクティブな羽根/極セットは4つである。重ねられたアレイの数をmとすると、総トルクは、
【0059】
【数17】

となる。
【0060】
Δr=4.5インチ(0.127メートル)に対して、r=16.5インチ(0.4191メートル)である。m=3とすると、Ttotは、7,323Nmと計算できる。結果として、3,600rpmにおいて得られるパワ出力は、2.76MWである。
【0061】
(ケース設計例)
図6〜10は、本発明の一実施例に係る回転子/固定子構成450を示す。図6〜10の回転子/固定子構成450は、圧縮機とともに用いられる。ただし、既述の通り、回転子/固定子構成450は、他の種類の電動機や発電機などの他の種類の電気機械として用いられることも可能である。図6〜10の回転子/固定子構成450では、12個の固定子極444と8つの回転子羽根412からなるアレイが3つ重ねられている。図6〜10の圧縮機用回転子/固定子構成450は、図5A及び5Bを参照して説明した回転子/固定子構成300と同じように作動する。図6は、本発明の一実施例に係る回転子/固定子構成450の外側回転子アッセンブリ400を示す。図6の外側回転子アッセンブリ400は、軸受キャップ402と、軸受スリーブ404と、ポート板406と、吸排気ポート408と、回転子羽根412が取り付けられた2つの回転子セグメント410A、410Bと、濡れていない圧縮領域を潤滑されたギア穴から隔離するシール板414と、外側ギア416(内部ギア)と、羽根412が取り付けられたエンドプレート418と、外側後部軸受420と、別の軸受キャップ422と、を有する。この実施例において、外側圧縮機回転子は、SRMの回転子として機能する。
【0062】
この実施例において、回転子極の放射状アレイ413の各々には、8つの羽根412を備えた8つの外側回転子ロブ411が設けられる。このような対称性は、遠心力による応力/変形を最小化するのに必要となる場合もある。この構成において、回転子/固定子構成450の作動に用いられる強磁性体材料は、放射状アレイ413の羽根412のみに配置されてもよい。
【0063】
図7は、本発明の一実施例に係る回転子/固定子構成450の内側回転子アッセンブリ430を示す。図7の内側回転子アッセンブリ430は、内側シャフト432と、重ねられた3つの(7つのロブを持つ)内側回転子434A/434B/434Cと、平歯車436と、内側後部軸受438と、を有する。
【0064】
本発明の特定の実施形態に係る外側回転子アッセンブリ400や他の変形例の構成を持つ外側回転子アッセンブリ400に対する内側回転子アッセンブリ430の動作の詳細は、本願にその全体が組み込まれる米国特許出願第2003/0228237号、米国特許出願第2003/0215345号、米国特許第6336317号、及び、米国特許第6530211号の中の1以上においてより詳細に説明されている。
【0065】
図8は、本発明の一実施例に係る回転子/固定子構成450の固定子/圧縮機ケース440を示す。図8の本実施例に係る固定子/圧縮機ケース440は、等しい角度間隔で配置された12個の固定子極444の3つのスタック442A、442B、442Cを有する。固定子極444は、様々な方法でケース440に取り付けることができるが、外部コイルを用いる場合が図8には示されている。固定子極ごとに2つずつ設けられたコイル446A、446Bは、3つずつセットになって非強磁性基板448に取り付けられ、ボルト穴カートリッジ450を形成する。コイル446A、446Bは、例えば、銅製であるが、他の材料から作られてもよい。任意の固定子極444におけるコイル446の数を2より多くして、各コイルへ供給されなければならない電圧を低減してもよい。作動中、4つのカートリッジ450(90°間隔)のすべての極を同時に磁化してもよい。磁化を順次発生させることにより、図6の外側回転子アッセンブリ400が回転する。
【0066】
図9は、本発明の一実施例に係る回転子/固定子構成450の複合アッセンブリ460の一部を切り落としたところを示している。複合アッセンブリ460は、一体化された図6〜8の外側アッセンブリ400、内側アッセンブリ430、及び、固定子/圧縮機ケース440を有するとともに、軸受を支持するエンドプレート462と、気体吸排気ポート貫通穴464と、を有する。図10は、複合アッセンブリ460を部分的な切り落としなしで示している。
【0067】
作動中、回転子は遠心力及び熱的効果により膨張し得る。回転子極と固定子極の接触を防ぐために、通常はエアーギャップが大きくとられる。図5A及び5Bを参照して説明した上述の式(1)は、トルクはエアーギャップによって大きく影響を受けることを示している。ギャップが小さくなると、トルクが大きくなる。したがって、このギャップをできる限り低減することが好ましい。本実施例は、熱及び遠心力で回転子が膨張しているときにもギャップが小さく維持されるようにする。
【0068】
図11は、回転子540が遠心力及び熱的効果により膨張したときにどのように形状を変化させるかを示す側面図である。回転子540は、回転軸503を有する。実線505は膨張前の回転子540を表し、破線507は膨張後の回転子540を表している。点510A、512A、及び、514Aは、冷えた/静止位置における回転子540上の点を表し、点510C、512C、及び、514Cは、熱い/回転位置における回転子540上の同じ点を表している。左縁又は熱基準点530は所定の位置に保持されているため変化しない。右縁は自由に膨張する。点の軌跡510B、512B、及び、514Bは、熱基準点530からきれいに放射状になっており、熱基準点530から離れるほど軸方向に近くなる。
【0069】
図12は、本発明の一実施例に係る回転子/固定子構成600を示している。回転子/固定子構成600は、軸603まわりに回転する回転子640を有する。回転子640は、例えばコイル630に電流が流されたときに、固定子極620と相互作用する回転子極650を有する。図12の回転子/固定子構成600は、図5A及び5Bの回転子/固定子構成300と同じように作動するが、但し、回転子極650と固定子極620の間にインターフェース645を設けた点で異なる。図12の回転子/固定子構成600において、回転子極650と固定子極620の間のインターフェース645の角度は、図11に示した回転子540の表面上の点の軌跡と同じである。これらの角度を一致させることにより、回転子極540の表面と固定子極620の表面とが、回転子640が回転し熱くなっているときであっても、エアーギャップ647を変えることなく、互いにすれ違う。このデザインにより、回転子の温度を問わず、非常に小さいエアーギャップを維持することができる。固定子極620を保持するハウジングは、一定の温度に維持されるものと仮定することができる。回転子極650と固定子極620のペアの単一の構成について、様々な異なるインターフェース645の角度が回転子640の表面上の点の軌跡に応じて提供され得る。
【0070】
図13A及び13Bは、本発明の別の一実施例に係る回転子/固定子構成700A、700Bを示している。回転子/固定子構成700A、700Bは、軸703まわりに回転する回転子740を有する。図13A及び13Bの回転子/固定子構成700A、700Bは、図5A及び5Bの回転子/固定子構成300と同じように作動し、回転子極750と、固定子極720A、720Bと、コイル730A、730Bと、を有する。図13Aの回転子/固定子構成700Aは、独立したユニットとして作動する3つのU字状固定子720Aを示している。図13Bの回転子/固定子構成700Bは、3つのU字状固定子720Aが一体化したかのように作動する単一のE字状固定子710Bを示している。このE字状固定子720Bにより、より高いトルク密度が実現される。図13BではE字状固定子を示したが、固定子極を他の形状の単一のユニットに統合することも可能である。
【0071】
図14は、本発明の別の実施例に係る回転子/固定子構成800を示している。既述の実施例と同様に、図14の回転子/固定子構成800も、様々な種類の電気機械(電動機や発電機など)とともに用いることができる。図14の回転子/固定子構成800は、図5A及び5Bの回転子/固定子構成300と同じように作動し、回転子極850と、U字状固定子極820と、を有する。但し、固定子極820は、回転子極850がU字状固定子極820の隙間を横断しないように、軸方向に90°ずらされている。図5A及び5Bと同様に、磁束経路は比較的短い。例えば、U字状極820上の電流が流されたコイルによって生成された磁束は、円形のような経路で、極820の一方の脚822、回転子極850、及び、別の回転子極850を通る回転子の縁を順に通って、極820の他方の脚824へ達する。
【0072】
図14の回転子/固定子構成800は、3つの位相A、B、及び、Cを有し、位相ごとに2組の固定子極820を有する。本実施例において、固定子極820は、非強磁性ヨーク890に挿入されたコイルを備えたU字状鉄芯である。固定子極820は、鉄以外の材料から作られてもよく、他の構成をとってもよい。固定子極820は、電気的及び磁気的に互いに隔離されてもよい。図14の回転子840は、従来のSRMの回転子のように作動する。但し、従来のSRMとは異なり、回転子極850と固定子極820のピッチは同じである。
【0073】
各位相の磁気リラクタンスは、回転子840の位置によって変化する。図15に示すように、回転子極850が2つの固定子極820と位置が揃っていないとき、位相インダクタンスは最小となる。この位置をずれ位置と呼ぶ。回転子極850が固定子極820と位置が揃っているとき、磁気インダクタンスは最大となる。この位置を合わせ位置と呼ぶ。合わせ位置とずれ位置の間は、中間位置である。SRMトルクは、最小リラクタンス(最大インダクタンス)構成を見つけようとする磁気回路の傾向によって成長する。
【0074】
図14の構成では、回転子840が1つの位相と位置が揃ったとき、他の2つの位相とは完全には位置が揃っていない状態となるため、回転子840は、いずれの位相が次に励磁されるかに応じて、一方向に回転できる。磁束に関連する電流iを位相コイルに流すと、コエネルギ(co−energy)W’は
【0075】
【数18】

という定積分から求めることができる。
【0076】
任意の回転子位置において1つの位相コイルにより生成されるトルクは、
【0077】
【数19】

という式によって与えられる。
【0078】
SRMの出力トルクは、すべての位相のトルクの合計であるので、
【0079】
【数20】

となる。
【0080】
飽和効果を無視すると、瞬間トルクは、
【0081】
【数21】

となる。
【0082】
式(7)から、SRMにおいて正のトルク(動力発生トルク)を生成するためには、位相バルクインダクタンスが増加して、回転子が固定子極へ向けて動いたときに、位相が励磁される必要があることがわかる。そのとき、位相が合わせ位置にあるときには、励磁されるべきではない。このサイクルは、磁束鎖交(λ)−位相電流(iph)平面におけるループとして示すことができる。このループは、図16に示すようなエネルギ保存ループである。このループ(S)の内側の面積は、1ストロークにおいて変換されるエネルギに等しい。よって、機械の平均パワ(Pave)及び平均トルク(Tave)は、
【0083】
【数22】

【0084】
【数23】

として計算することができる。ここで、Nは位相あたりの固定子極ペアの数であり、Nは回転子極の数であり、Nphは固定子位相の数であり、ωは回転子速度である。
【0085】
位相の数、固定子極ピッチ、及び、固定子の位相間距離角度を変えることによって、様々な種類の、磁束経路が短いSRMを設計することができる。
【0086】
図17は、本発明の別の実施例に係る回転子/固定子構成900を示している。図17の回転子/固定子構成900は、図14を参照して説明したモデルと同じように作動する2位相モデルである。図17の構成900は、回転子940と、回転子極950と、固定子極920と、脚922、924と、ヨーク990と、を有する。
【0087】
図18は、本発明の別の実施例に係る回転子/固定子構成1000を示している。既述の他の実施例と同様に、図18の回転子/固定子構成1000は、様々な種類の電気機械(電動機や発電機など)と共に用いることができる。図18の回転子/固定子構成1000は、図14の回転子/固定子構成1000と同じように動作し、U字状固定子極1020と、回転子極1050と、非強磁性ヨーク1080と、位相A、B、Cと、を有する。但し、図18の回転子/固定子構成1000において、回転子極1050は、固定子極1020から半径方向外側に配置される。したがって、回転子1040は、固定子極1020まわりに回転する。図14と同様に、磁束経路は比較的短い。例えば、U字状極1020上で電流が流されたコイルによって生成された磁束は、円形のような経路で、固定子極1020の一方の脚1022及び回転子極1050を順に通り、固定子極820の他方の脚1024に達する。回転子/固定子構成1000の用途は、例えば、ハイブリッド車、電気自動車、又は、燃料電池車などのハブに備えられた電動機である。この場合、車輪は、回転子1040に連結され、固定子1020まわりに回転する。加えて、この回転子/固定子構成1000は、例えば図19に示されたような永久磁石電動機にも提供できる。
【0088】
図19は、本発明の別の実施例に係る回転子構成1100を示している。図14の回転子/固定子構成1100は、図14の回転子/固定子構成1100と同じように動作し、U字状固定子極1120と、非強磁性ヨーク1190と、位相A、B、Cと、を有する。但し、回転子1140は、交互に並べられた永久磁石極1152、1154を有する。
【0089】
図20は、本発明の別の実施例に係る回転子/固定子構成1200を示している。既述の他の実施例と同様に、図20の回転子/固定子構成1200は、様々な種類の電気機械(電動機や発電機など)と共に用いることができる。図20の回転子/固定子構成1200は、既述の複数の概念を統合したものであって、羽根1250A、1250B(図5A及び5B)と、E字状固定子極1220A、1220B(図13B)と、回転子極1250Bの半径方向内側の固定子極1220B(図6〜10)と、回転子極1250Bの半径方向外側の固定子極1220A(図18)とを有する。固定子極1220Aは、ドラム1285の半径方向内側及び外側の両側に設けられる。これにより、トルクが内側及び外側の両方から掛けられるため、トータルのトルク及びパワ密度が増加する。回転子極1250A、1250Bは、例えば、SRMの一部品である強磁性材料(例えば鉄など)から作られる。回転子極1250A、1250Bは、永久磁石電動機の一部品である、回転軸に平行な極を備えた永久磁石であってもよい。
【0090】
図21A及び21Bは、本発明の別の一実施例に係る回転子/固定子構成1300を示している。既述の他の実施例と同様に、図21A及び21Bの回転子/固定子構成1200は、様々な種類の電気機械(電動機や発電機など)と共に用いることができる。図21A及び21Bの回転子/固定子構成1300は、図5A及び5Bの回転子/固定子構成1300と同じように作動し、回転子極1350と、U字状固定子極1320と、を有する。但し、回転子極1350が、回転子極1350の半径方向内側の固定子極1320の一脚1322と、回転子極1350の半径方向外側の固定子極1320の一脚1324の間で回転するように、回転子極1350とU字状極1320は90°ずれている。図21A及び21Bの回転子/固定子構成1300においては、軸方向磁束と半径方向磁束が共存することは明らかである。
【0091】
本実施例及び他の実施例において、固定子に磁気裏当て鉄は必ずしも必要ない。さらに、本実施例及び他の実施例において、回転子が磁気源を一切搭載していなくてもよい。さらに、回転子の裏当て鉄は、必ずしも強磁性材料から作られる必要はない。これにより、機械的負荷へのインターフェースの設計自由度が増す。
【0092】
本発明及び他の実施例に係る構成によれば、パワ密度レベルが高くなり、力生成処理における固定子及び回転子の感応が良くなり、さらに、鉄損失が低くなるため、高周波数用途に対して良い解を提供できる。既述の様々な実施例において、固定子極の数及び回転子極の数は、所望の対速度トルク特性が得られるように、選択される。実施例によっては、固定子の冷却が非常に容易になる場合もある。さらに、モジュール構造を採用することにより、1以上の位相が故障したときでも、作動し続けることができるようにすることもできる。
【0093】
(磁力の最適化)
図22〜25は、本発明の一実施例に係る磁力の最適化を示している。回転子の表面上の電磁力は2つの成分を持つ。一方は、移動方向に垂直な成分であり、他方は、移動方向の接線成分である。これらの力成分は、垂直力及び切線分力と呼ばれ、
【0094】
【数24】

【0095】
【数25】

に従って、磁場量から計算することができる。
【0096】
最適化演算において、切線分力は、垂直力が最小限のレベルに維持されるか、可能であれば除去されるようにしつつ、最適化される必要がある。但し、これは、従来の電気機械変換機の場合である。逆に、垂直力は、電気機械エネルギ変換処理の支配的な生成物を形成する。これの主要な理由は、以下の連続定理により説明することができる。磁束線は空中から透磁性が比較的高い強磁性材料に入るため、磁束密度の切線分力及び垂直力は、
【0097】
【数26】

【0098】
【数27】

という式に従って変化する。
【0099】
上記の二式は、エアーギャップにおける磁束線は、ほぼ垂直に鉄に入り、鉄に入ると直ちに方向を変える、ことを示唆している。換言すれば、SRMにおいて、回転子の表面には半径方向の力しか生じないことを示唆している。
【0100】
図22は、SRMドライブにおける磁束線の分布を示している。磁束密度Bがテスラ(T)単位で示されている。回転子の右側面に作用する半径方向の力(縁磁束1400)は、回転子を正方向に推進する力を生成する(回転子の表面に対して)半径方向の力を生成する。これは、注目が必要なエリアである。この角へ向けてより多くの磁束が押されるほど、機械の作動がより良好となる。これは、飽和状態下でなぜSRMがより効率的に作動するかを説明している。これは、飽和により、機械の有効ギャップが増加し、より多くの磁束線が縁経路を選択しているからである。
【0101】
縁エリアへ向かう磁束線の移動を促進するために、本発明の一実施例は、回転子の表面に複合材料を用いる。回転子表面の複合材料において、最上部分は、比較的低い磁束密度で比較的容易に飽和する材料によって形成される。これにより、電気機械エネルギ変換処理の比較的早い段階における縁回りが強化される。磁束障壁の形状又は複合材料の形状は、例えば、磁気構成の利点が完全に得られるように最適化される。磁束障壁は、回転子に垂直に進入してより多くの磁束線を縁エリアへ向けて押す半径方向の磁束を分別するために、回転子に設けられてもよい。図23、24、及び、25は、これらの実施例を示している。
【0102】
図23及び24は、容易に飽和する材料又は磁束障壁1590A、1590B、1590C、及び、1590Dを回転子1550A、1550B及び固定子1520A、1520Bの表面の下に配置したところを示している。容易に飽和する材料又は磁束障壁1590は、例えば、M−45などである。回転子1550及び固定子1520用の強磁性材料は、例えば、HyperCo−50などである。容易に飽和する材料又は磁束障壁の形状、構成、及び、配置は、回転子及び固定子の構造に応じて変えることができる。
【0103】
図25は、様々な合金についてのB−H曲線のグラフ1600を示している。図25のグラフ1600は、合金1605、1615、及び、1625について、磁場H(1685)に対する磁束密度B(1675)をグラフ化したものである。
【産業上の利用可能性】
【0104】
いくつかの実施例を挙げて説明した本発明に係る磁束経路が短い構成は、固定子及び回転子の極の数及びサイズを変更することによって、あらゆるSRM用途に適用可能である。同様の構成は、軸方向場と線形電動機の場合にも利用可能である。
【0105】
上記実施例のいくつかは、回転子に永久磁石のS極/N極が交互に配置された永久磁石AC機械にも用いることができる。これら関連機械の双方、SRM、及び、BLDCは、電動機としても発電機としても用いることができる。
【0106】
加えて、上記実施例は、裏表をひっくり返して、固定子が内側に、回転子が外側にそれぞれ配置されたSRM又はBLDC機械として用いることも可能である。換言すれば、上記実施例は、電動機としても、発電機としても、双方としても、用いることができる。
【0107】
様々な他の変更、置換、変形、入れ替え、及び、修正も当業者には明らかであろうが、本発明はそのような変更、置換、変形、入れ替え、及び、修正のすべてを請求項の範囲内に入るものとして包含することが意図されている。
【図面の簡単な説明】
【0108】
【図1A】従来のSRMの概略図である。
【図1B】図1Aに示したSRMの点表記である。
【図2】図1Aに示した従来のSRMを通る長い磁束経路の概略図である。
【図3】1位相・1馬力のモータのトルク生成におけるMMF低下の効果を示すグラフである。
【図4】本発明の一実施例に係るSRMの点表記である。
【図5A】本発明の一実施例に係る回転子/固定子構成を示す図である。
【図5B】本発明の一実施例に係る回転子/固定子構成を示す図である。
【図6】本発明の一実施例に係る回転子/固定子構成の外側回転子アッセンブリを示す図である。
【図7】本発明の一実施例に係る回転子/固定子構成の内側回転子アッセンブリを示す図である。
【図8】本発明の一実施例に係る回転子/固定子構成の固定子/圧縮機ケースを示す図である。
【図9】本発明の一実施例に係る複合アッセンブリの一部を切り取った図である。
【図10】図9の複合アッセンブリを切り取りなしで示す図である。
【図11】遠心力効果及び熱的効果により膨張したときの回転子の形状変化を示す側面図である。
【図12】本発明の別の一実施例に係る回転子/固定子構成を示す図である。
【図13A】本発明の別の一実施例に係る回転子/固定子構成を示す図である。
【図13B】本発明の別の一実施例に係る回転子/固定子構成を示す図である。
【図14】本発明の別の一実施例に係る回転子/固定子構成を示す図である。
【図15】ずれ位置、中間位置、及び、合わせ位置を示す図である。
【図16】エネルギ変換ループを示す図である。
【図17】本発明の別の一実施例に係る回転子/固定子構成を示す図である。
【図18】本発明の別の一実施例に係る回転子/固定子構成を示す図である。
【図19】本発明の別の一実施例に係る回転子構成を示す図である。
【図20】本発明の別の一実施例に係る回転子/固定子構成を示す図である。
【図21A】本発明の別の一実施例に係る回転子/固定子構成を示す図である。
【図21B】本発明の別の一実施例に係る回転子/固定子構成を示す図である。
【図22】SRMドライブにおける磁束線の構成を示す図である。
【図23】回転子表面の下に配置された容易に飽和する材料又は磁束障壁を示す図である。
【図24】回転子表面の下に配置された容易に飽和する材料又は磁束障壁を示す図である。
【図25】様々な合金についてのB−H曲線を示すグラフである。

【特許請求の範囲】
【請求項1】
少なくとも1つの固定子極を備えた固定子と、
少なくとも1つの回転子極を備えた回転子と、を有し、
前記少なくとも1つの固定子極は、第一の脚と、第二の脚とを有し、
前記回転子は、前記固定子に対して回転し、
前記少なくとも1つの回転子極は、前記少なくとも1つの固定子極の前記第一の脚と前記第二の脚の間で回転するように構成される、
ことを特徴とする電気機械。
【請求項2】
請求項1記載の電気機械であって、
前記少なくとも1つの固定子極はU字形状である、ことを特徴とする電気機械。
【請求項3】
請求項1記載の電気機械であって、
前記少なくとも1つの回転子極は強磁性材料から成る羽根状部材である、ことを特徴とする電気機械。
【請求項4】
電動機であることを特徴とする請求項1記載の電気機械。
【請求項5】
切替式反作用電動機であることを特徴とする請求項4記載の電気機械。
【請求項6】
発電機であることを特徴とする請求項1記載の電気機械。
【請求項7】
請求項1記載の電気機械であって、
前記少なくとも1つの回転子極及び前記少なくとも1つの固定子極は、前記少なくとも1つの回転子極が前記少なくとも1つの固定子極の前記第一の脚と前記第二の脚の間を回転したときに、前記少なくとも1つの回転子極上に生じた磁束が前記少なくとも1つの固定子極の前記第一の脚から前記少なくとも1つの固定子極を通って前記第二の脚へ流れるように構成される、
ことを特徴とする電気機械。
【請求項8】
請求項7記載の電気機械であって、
前記少なくとも1つの固定子極及び前記少なくとも1つの回転子極は、前記磁束が前記回転子の内部を横断しないように構成される、
ことを特徴とする電気機械。
【請求項9】
請求項8記載の電気機械であって、
前記回転子の内部は圧縮機である、ことを特徴とする電気機械。
【請求項10】
請求項8記載の電気機械であって、
前記回転子の内部は拡張機である、ことを特徴とする電気機械。
【請求項11】
請求項7記載の電気機械であって、
前記少なくとも1つの固定子極上に配置された少なくとも1つのコイルを更に有し、
前記少なくとも1つのコイルは、該少なくとも1つのコイルが作動すると前記磁束が生じるように構成される、
ことを特徴とする電気機械。
【請求項12】
請求項11記載の電気機械であって、
前記電気機械の内部部分と外部部分とを隔てるケースを更に有し、
前記少なくとも1つのコイルは前記ケースの外表面上に配置される、
ことを特徴とする電気機械。
【請求項13】
請求項7記載の電気機械であって、
前記少なくとも1つの固定子極上に配置された少なくとも2つのコイルを更に有し、
前記少なくとも2つのコイルは前記第一の脚上及び前記第二の脚上に1つずつ配置され、
前記少なくとも2つのコイルは、該少なくとも2つのコイルが作動すると前記磁束が生じるように構成される、
ことを特徴とする電気機械。
【請求項14】
請求項1記載の電気機械であって、
前記固定子は複数の固定子極を有し、
前記複数の固定子極の各々は第一の脚と第二の脚とを有し、
前記回転子は複数の回転子極を有し、
前記複数の回転子極の各々は前記複数の固定子極の各々の前記第一の脚と前記第二の脚の間で回転する、
ことを特徴とする電気機械。
【請求項15】
請求項14記載の電気機械であって、
前記複数の固定子極及び前記複数の回転子極は、前記複数の固定子極の各々の上に生じた磁束が前記回転子の内部を横断しないように構成される、
ことを特徴とする電気機械。
【請求項16】
請求項15記載の電気機械であって、
前記回転子の内部は圧縮機である、ことを特徴とする電気機械。
【請求項17】
請求項15記載の電気機械であって、
前記回転子の内部は拡張機である、ことを特徴とする電気機械。
【請求項18】
請求項14記載の電気機械であって、
前記複数の固定子極の各々の上に配置された少なくとも1つのコイルを更に有し、
前記少なくとも1つのコイルは、該少なくとも1つのコイルが作動すると前記磁束が選択的に生じるように構成される、
ことを特徴とする電気機械。
【請求項19】
請求項18記載の電気機械であって、
前記電気機械の内部部分と外部部分とを隔てるケースを更に有し、
前記少なくとも1つのコイルは前記ケースの外表面上に配置される、
ことを特徴とする電気機械。
【請求項20】
請求項19記載の電気機械であって、
前記複数の固定子極の各々は前記ケースに着脱可能に連結されたカートリッジ上に配置される、
ことを特徴とする電気機械。
【請求項21】
請求項14記載の電気機械であって、
前記複数の固定子極の各々は、前記複数の固定子極の残りから電気的及び磁気的に隔離されている、
ことを特徴とする電気機械。
【請求項22】
請求項21記載の電気機械であって、
前記複数の回転子極の各々は強磁性材料から成る羽根状部材である、ことを特徴とする電気機械。
【請求項23】
請求項1記載の電気機械であって、
前記少なくとも1つの回転子極の少なくとも一部分は、前記少なくとも1つの固定子極の半径方向外側に配置される、
ことを特徴とする電気機械。
【請求項24】
請求項23記載の電気機械であって、
前記回転子は少なくとも1つの第二の回転子極を有し、
前記電気機械は、少なくとも1つの固定子極を備えた第二の固定子を有し、
前記第二の固定子の前記少なくとも1つの固定子極は、第一の脚と、第二の脚と、を有し、
前記回転子は、前記第二の固定子に対して回転し、
前記少なくとも1つの第二の回転子極は、前記第二の固定子極の前記第一の脚と前記第二の脚の間を回転するように構成され、
前記少なくとも1つの第二の回転子極の少なくとも一部分は、前記第二の固定子の前記少なくとも1つの固定子極の半径方向内側に配置される、
ことを特徴とする電気機械。
【請求項25】
請求項24記載の電気機械であって、
前記回転子はドラムである、ことを特徴とする電気機械。
【請求項26】
請求項1記載の電気機械であって、
前記固定子極は第三の脚を更に有し、
前記回転子極は少なくとも1つの第二の回転子極を更に有し、
前記少なくとも1つの第二の回転子極は、前記少なくとも1つの固定子極の前記第二の脚と前記第三の脚の間で回転するように構成される、
ことを特徴とする電気機械。
【請求項27】
請求項26記載の電気機械であって、
前記固定子極は第四の脚を更に有し、
前記回転子は少なくとも1つの第三の回転子極を更に有し、
前記少なくとも1つの第三の回転子極は、前記少なくとも1つの固定子極の前記第三の脚と前記第四の脚の間で回転するように構成される、
ことを特徴とする電気機械。
【請求項28】
請求項26記載の電気機械であって、
前記第一の脚、前記第二の脚、及び、前記第三の脚の各々は、前記固定子極上に磁束を生じさせるコイルを有する、
ことを特徴とする電気機械。
【請求項29】
請求項1記載の電気機械であって、
前記第一の脚の少なくとも一部分は、前記少なくとも1つの回転子極の半径方向内側に配置され、
前記第二の脚の少なくとも一部分は、前記少なくとも1つの回転子極の半径方向外側に配置される、
ことを特徴とする電気機械。
【請求項30】
請求項1記載の電気機械であって、
前記少なくとも1つの固定子極は5つ以上の固定子極であり、
前記少なくとも1つの回転子極は5つ以上の回転子極であり、
前記5つ以上の固定子極及び前記5つ以上の回転子極は、2セットの前記5つ以上の固定子極に同時に電流を流したときに2セットの前記5つ以上の回転子極を引き寄せることができるように構成される、
ことを特徴とする電気機械。
【請求項31】
少なくとも1つの固定子極を備えた固定子と、
少なくとも1つの回転子極を備えた回転子と、を有し、
前記回転子は、前記固定子に対して回転し、
前記回転子及び前記固定子は、前記回転子が膨張したときに前記回転子極の表面が前記固定子極の表面と擦れてすれ違うような角度のインターフェースを持つ、
ことを特徴とする電気機械。
【請求項32】
電動機であることを特徴とする請求項31記載の電気機械。
【請求項33】
切替式反作用電動機であることを特徴とする請求項32記載の電気機械。
【請求項34】
発電機であることを特徴とする請求項31記載の電気機械。
【請求項35】
請求項31記載の電気機械であって、
前記少なくとも1つの回転子極及び前記少なくとも1つの固定子極は、前記少なくとも1つの回転子極上に生じた磁束が前記回転子の内部を横断しないように構成される、
ことを特徴とする電気機械。
【請求項36】
請求項35記載の電気機械であって、
前記回転子の内部は圧縮機である、ことを特徴とする電気機械。
【請求項37】
請求項35記載の電気機械であって、
前記回転子の内部は拡張機である、ことを特徴とする電気機械。
【請求項38】
請求項35記載の電気機械であって、
前記少なくとも1つの固定子極上に配置された少なくとも1つのコイルを更に有し、
前記少なくとも1つのコイルは、該少なくとも1つのコイルが作動すると前記磁束が生じるように構成される、
ことを特徴とする電気機械。
【請求項39】
請求項38記載の電気機械であって、
前記電気機械の内部部分と外部部分とを隔てるケースを更に有し、
前記少なくとも1つのコイルは前記ケースの外表面上に配置される、
ことを特徴とする電気機械。
【請求項40】
請求項31記載の電気機械であって、
前記複数の固定子極の各々は、前記複数の固定子極の残りから電気的及び磁気的に隔離されている、
ことを特徴とする電気機械。
【請求項41】
請求項31記載の電気機械であって、
前記少なくとも1つの回転子極の少なくとも一部分は前記少なくとも1つの固定子極の半径方向外側に配置される、
ことを特徴とする電気機械。
【請求項42】
5つ以上の固定子極を備えた固定子と、
5つ以上の回転子極を備えた回転子と、を有し、
前記回転子は前記固定子に対して回転し、
前記5つ以上の固定子極及び前記5つ以上の回転子極は、2セットの前記5つ以上の固定子極に同時に電流を流すと2セットの前記5つ以上の回転子極が引き寄せられるように構成される、
ことを特徴とする電気機械。
【請求項43】
請求項42記載の電気機械であって、
前記5つ以上の固定子極の前記2セットの各々は180°離れている、
ことを特徴とする電気機械。
【請求項44】
請求項42記載の電気機械であって、
前記5つ以上の固定子極は7つ以上の固定子極であり、
前記5つ以上の回転子極は7つ以上の回転子極であり、
前記7つ以上の固定子極及び前記7つ以上の回転子極は、3セットの前記7つ以上の固定子極に同時に電流を流すと3セットの前記7つ以上の回転子極が引き寄せられるように構成される、
ことを特徴とする電気機械。
【請求項45】
請求項42記載の電気機械であって、
前記5つ以上の固定子極はU字形状である、ことを特徴とする電気機械。
【請求項46】
請求項42記載の電気機械であって、
前記5つ以上の回転子極は強磁性材料から成る羽根状部材である、ことを特徴とする電気機械。
【請求項47】
電動機であることを特徴とする請求項42記載の電気機械。
【請求項48】
切替式反作用電動機であることを特徴とする請求項47記載の電気機械。
【請求項49】
請求項42記載の電気機械であって、
前記5つ以上の固定子極の各々は、第一の脚と、第二の脚と、を有し、
前記5つ以上の回転子極の各々は、前記5つ以上の固定子極の各々の前記第一の脚と前記第二の脚の間で回転する、
ことを特徴とする電気機械。
【請求項50】
請求項42記載の電気機械であって、
前記5つ以上の固定子極及び前記5つ以上の回転子極は、前記5つ以上の固定子極の各々の上に生じた磁束が前記回転子の内部を横断しないように構成される、
ことを特徴とする電気機械。
【請求項51】
請求項50記載の電気機械であって、
前記回転子の内部は圧縮機である、ことを特徴とする電気機械。
【請求項52】
請求項50記載の電気機械であって、
前記回転子の内部は拡張機である、ことを特徴とする電気機械。
【請求項53】
請求項42記載の電気機械であって、
前記5つ以上の固定子極の各々の上に配置された少なくとも1つのコイルを更に有し、
前記少なくとも1つのコイルは、該少なくとも1つのコイルが作動すると選択的に前記磁束が生じるように構成される、
ことを特徴とする電気機械。
【請求項54】
請求項53記載の電気機械であって、
前記電気機械の内部部分と外部部分とを隔てるケースを更に有し、
前記5つ以上の固定子極の各々の上の前記少なくとも1つのコイルは、前記ケースの外表面上に配置される、
ことを特徴とする電気機械。
【請求項55】
請求項54記載の電気機械であって、
前記5つ以上の固定子極の各々は、前記ケースに着脱可能に連結されたカートリッジ上に配置される、
ことを特徴とする電気機械。
【請求項56】
請求項42記載の電気機械であって、
前記5つ以上の固定子極の各々は、前記複数の固定子極の残りから電気的及び磁気的に隔離される、
ことを特徴とする電気機械。
【請求項57】
請求項42記載の電気機械であって、
前記5つ以上の回転子極の少なくとも一部分は前記5つ以上の固定子極の半径方向外側に配置される、
ことを特徴とする電気機械。
【請求項58】
少なくとも1つの固定子極を備えた固定子と、
少なくとも1つの第一の回転子極及び少なくとも1つの第二の回転子極を備えた回転子と、を有し、
前記少なくとも1つの固定子極は、第一の脚と、第二の脚と、第三の脚と、を有し、
前記回転子は、前記固定子に対して回転し、
前記少なくとも1つの第一の回転子極は、前記第一の脚と前記第二の脚の間で回転するように構成され、
前記少なくとも1つの第二の回転子極は、前記第二の脚と前記第三の脚の間で回転するように構成される、
ことを特徴とする電気機械。
【請求項59】
請求項58記載の電気機械であって、
前記少なくとも1つの第一の回転子極及び前記少なくとも1つの第二の回転子極は強磁性材料から成る羽根状部材である、
ことを特徴とする電気機械。
【請求項60】
電動機であることを特徴とする請求項58記載の電気機械。
【請求項61】
切替式反作用電動機であることを特徴とする請求項60記載の電気機械。
【請求項62】
発電機であることを特徴とする請求項58記載の電気機械。
【請求項63】
請求項58記載の電気機械であって、
前記少なくとも1つの固定子極、前記少なくとも1つの第一の回転子極、及び、前記少なくとも1つの第二の回転子極は、磁束が前記回転子の内部を横断しないように構成される、
ことを特徴とする電気機械。
【請求項64】
請求項63記載の電気機械であって、
前記回転子の内部は圧縮機である、ことを特徴とする電気機械。
【請求項65】
請求項63記載の電気機械であって、
前記回転子の内部は拡張機である、ことを特徴とする電気機械。
【請求項66】
請求項63記載の電気機械であって、
前記少なくとも1つの固定子極上に配置された少なくとも1つのコイルを更に有し、
前記少なくとも1つのコイルは、該少なくとも1つのコイルが作動すると前記磁束が生じるように構成される、
ことを特徴とする電気機械。
【請求項67】
請求項66記載の電気機械であって、
前記電気機械を内部部分と外部部分とに隔てるケースを更に有し、
前記少なくとも1つのコイルは前記ケースの外表面上に配置される、
ことを特徴とする電気機械。
【請求項68】
少なくとも1つの固定子極を備えた固定子と、
縁、少なくとも1つの第一の回転子極、及び、少なくとも1つの第二の回転子極を備えた回転子と、を有し、
前記少なくとも1つの固定子極は、第一の脚と、第二の脚と、を有し、
前記回転子は、前記固定子に対して回転し、
前記少なくとも1つの回転子及び前記少なくとも1つの固定子は、磁束が、前記第一の脚から前記少なくとも1つの第一の回転子極を通って前記縁へ流れるとともに、前記縁から前記少なくとも1つの第二の回転子極を通って前記第二の脚へ流れるように構成される、
ことを特徴とする電気機械。
【請求項69】
請求項68記載の電気機械であって、
前記回転子及び前記固定子は、前記回転子が膨張したときに前記回転子極の表面が前記固定子極の表面と擦れてすれ違うような角度のインターフェースを持つ、
ことを特徴とする電気機械。
【請求項70】
電動機であることを特徴とする請求項68記載の電気機械。
【請求項71】
切替式反作用電動機であることを特徴とする請求項70記載の電気機械。
【請求項72】
発電機であることを特徴とする請求項68記載の電気機械。
【請求項73】
請求項68記載の電気機械であって、
前記少なくとも1つの固定子極、前記少なくとも1つの第一の回転子極、前記縁、及び、前記少なくとも1つの第二の回転子極は、磁束が前記回転子の内部を横断しないように構成される、
ことを特徴とする電気機械。
【請求項74】
請求項73記載の電気機械であって、
前記回転子の内部は圧縮機である、ことを特徴とする電気機械。
【請求項75】
請求項73記載の電気機械であって、
前記回転子の内部は拡張機である、ことを特徴とする電気機械。
【請求項76】
請求項73記載の電気機械であって、
前記少なくとも1つの固定子極上に配置された少なくとも1つのコイルを更に有し、
前記少なくとも1つのコイルは、該少なくとも1つのコイルが作動すると前記磁束が生じるように構成される、
ことを特徴とする電気機械。
【請求項77】
請求項76記載の電気機械であって、
前記電気機械の内部部分と外部部分とを隔てるケースを更に有し、
前記少なくとも1つのコイルは前記ケースの外表面上に配置される、
ことを特徴とする電気機械。
【請求項78】
少なくとも1つの固定子極を備えた固定子と、
少なくとも1つの回転子極を備えた回転子と、を有し、
前記回転子は、前記固定子に対して回転し、
前記少なくとも1つの回転子極及び前記少なくとも1つの固定子極のうち少なくとも一方は、容易に飽和する材料又は磁束障壁から作られる、
ことを特徴とする電気機械。
【請求項79】
請求項78記載の電気機械であって、
前記少なくとも1つの回転子極及び前記少なくとも1つの固定子極の双方が、容易に飽和する材料又は磁束障壁から作られる、
ことを特徴とする電気機械。
【請求項80】
請求項78記載の電気機械であって、
前記少なくとも1つの回転子極の少なくとも一部分は強磁性材料から成る羽根状部材である、
ことを特徴とする電気機械。
【請求項81】
電動機であることを特徴とする請求項78記載の電気機械。
【請求項82】
切替式反作用電動機であることを特徴とする請求項81記載の電気機械。
【請求項83】
発電機であることを特徴とする請求項78記載の電気機械。
【請求項84】
請求項1乃至83のいずれか一項記載の電気機械であって、
前記少なくとも1つの固定子極、前記少なくとも1つの第一の回転子極、及び、前記少なくとも1つの第二の回転子極は、前記磁束が前記回転子の内部を横断しないように構成される、
ことを特徴とする電気機械。
【請求項85】
請求項84記載の電気機械であって、
前記回転子の内部は圧縮機である、ことを特徴とする電気機械。
【請求項86】
請求項84記載の電気機械であって、
前記回転子の内部は拡張機である、ことを特徴とする電気機械。
【請求項87】
請求項84記載の電気機械であって、
前記少なくとも1つの固定子極上に配置された少なくとも1つのコイルを更に有し、
前記少なくとも1つのコイルは、該少なくとも1つのコイルが作動すると前記磁束が生じるように構成される、
ことを特徴とする電気機械。
【請求項88】
請求項87記載の電気機械であって、
前記電気機械の内部部分と外部部分とを隔てるケースを更に有し、
前記少なくとも1つのコイルは前記ケースの外表面上に配置される、
ことを特徴とする電気機械。

【図1A】
image rotate

【図1B】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5A】
image rotate

【図5B】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13A】
image rotate

【図13B】
image rotate

【図14】
image rotate

【図15A】
image rotate

【図15B】
image rotate

【図15C】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20A】
image rotate

【図20B】
image rotate

【図21A】
image rotate

【図21B】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate


【公表番号】特表2008−537472(P2008−537472A)
【公表日】平成20年9月11日(2008.9.11)
【国際特許分類】
【出願番号】特願2008−507817(P2008−507817)
【出願日】平成18年4月18日(2006.4.18)
【国際出願番号】PCT/US2006/014613
【国際公開番号】WO2006/113746
【国際公開日】平成18年10月26日(2006.10.26)
【出願人】(507191005)ザ テキサス エイ・アンド・エム ユニヴァーシティ システム (9)
【出願人】(506250583)スターローター コーポレーション (4)
【Fターム(参考)】