説明

セラミックス薄膜形成用組成物の保存方法、セラミックス薄膜の製造方法、圧電素子の製造方法、及び液体噴射ヘッドの製造方法

【課題】 保存安定性を長期に亘って良好に保持することができるセラミックス薄膜形成
用組成物の保存方法、セラミック薄膜の製造方法、圧電素子の製造方法、液体噴射ヘッド
の製造方法を提供する。
【解決手段】 セラミックス薄膜を構成する有機金属化合物と、水と、を少なくとも混合
してセラミックス薄膜形成用組成物とし、該セラミックス薄膜形成用組成物を冷結晶化さ
せた後、冷結晶化のピーク領域の上限温度より高く融解開始温度より低い温度で保存する

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、化学溶液法によりセラミックス薄膜を作製するためのセラミックス薄膜形成
用組成物の保存方法、並びにこれを用いたセラミックス薄膜の製造方法、圧電素子の製造
方法、及び液体噴射ヘッドの製造方法に関する。
【背景技術】
【0002】
チタン酸ジルコン酸鉛(PZT)等に代表される圧電セラミックス薄膜は、自発分極、
高誘電率、電気光学効果、圧電効果、焦電効果等を有しているため、圧電素子等の広範な
デバイス開発に応用されている。また、このような圧電セラミックス薄膜の成膜方法とし
ては、例えば、MOD法、ゾル−ゲル法、CVD(Chemical Vapor Deposition)法、
スパッタリング法等が知られているが、特に、MOD法及びゾル−ゲル法などの化学溶液
法は、圧電セラミックス薄膜を比較的低コストで且つ簡便に成膜することができるという
利点を有する。
【0003】
圧電セラミックス薄膜は、MOD法によって成膜する場合、一般的に、金属アルコキシ
ド等の有機金属化合物をアルコールに溶解し、これに加水分解抑制剤等を加えて得たコロ
イド溶液を被対象物上に塗布した後、これを乾燥して焼成することで成膜される。一方、
ゾル−ゲル法によって成膜する場合には、有機金属化合物をアルコールに溶解し、この有
機金属化合物の溶液に必要最小限の水を加えて加水分解及び重縮合させて得たコロイド溶
液を用いる以外、MOD法と同様にして圧電セラミックス薄膜が成膜される(例えば、特
許文献1参照)。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開平06−5946号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、このようなMOD法、ゾル−ゲル法等の化学溶液法によって圧電セラミ
ックス薄膜を形成する際に用いられる圧電セラミックス薄膜形成用組成物は、保存安定性
が悪いという問題があった。例えば、長期間保存すると、粘度が低下してしまい、圧電セ
ラミックス薄膜を形成する際に膜厚を制御することができなくなってしまう。また、長期
間保存するとゾルが凝集して析出してしまうことがある。ゾルが凝集して析出が生じると
、圧電セラミックス薄膜形成用組成物の組成が変動し、これが原因となって、圧電セラミ
ックス薄膜の膜成分が不均一に分散し、圧電セラミックス薄膜を有する圧電素子の圧電特
性が変動してしまう。さらに、圧電素子をアクチュエーター装置として備えた液体噴射ヘ
ッドにおいては、このような圧電素子の圧電特性の変動が、液体吐出特性のばらつきの原
因となってしまう。
【0006】
なお、上述した問題は、圧電セラミックス薄膜形成用組成物に限定されず、他のセラミ
ックス薄膜形成用組成物においても同様に存在する。
【0007】
本発明はこのような事情に鑑み、保存安定性を長期に亘って良好に保持することができ
るセラミックス薄膜形成用組成物の保存方法、並びにこれを用いたセラミックス薄膜の製
造方法、圧電素子の製造方法、及び液体噴射ヘッドの製造方法を提供することを目的とす
る。
【課題を解決するための手段】
【0008】
上記課題を解決する本発明の態様は、セラミックス薄膜を構成する有機金属化合物と、
水と、を少なくとも混合してセラミックス薄膜形成用組成物とし、該セラミックス薄膜形
成用組成物を冷結晶化させた後、冷結晶化のピーク領域の上限温度より高く融解開始温度
より低い温度で保存することを特徴とするセラミックス薄膜形成用組成物の保存方法にあ
る。
【0009】
かかる態様では、セラミックス薄膜形成用組成物の保存安定性を長期に亘って良好に保
持することができる。
【0010】
本発明の好適な実施態様としては、前記セラミックス薄膜形成用組成物は、圧電セラミ
ックス薄膜形成用組成物が挙げられる。
【0011】
前記圧電セラミックス薄膜形成用組成物は、鉛、チタン、及びジルコニウムを少なくと
も含むものが好ましい。これによれば、圧電特性の優れたセラミックス薄膜を形成するこ
とができるものとなる。
【0012】
本発明の好適な実施態様としては、前記セラミックス薄膜形成用組成物は、アルコール
及びカルボン酸のうち少なくとも一方を含むものが挙げられる。
【0013】
また、保存後のセラミックス薄膜形成用組成物の粘度は、7.0mPa・s以上25.
0mPa・s以下であるのが好ましい。これによれば、セラミックス薄膜形成用組成物は
均一な膜厚のセラミックス薄膜を形成することができる。
【0014】
本発明の他の態様は、セラミックス薄膜を構成する有機金属化合物と、水と、を少なく
とも混合してセラミックス薄膜形成用組成物とし、該セラミックス薄膜形成用組成物を冷
結晶化させた後、冷結晶化のピーク領域の上限温度より高く融解開始温度より低い温度で
保存する工程と、基板の一方面側に保存したセラミックス薄膜形成用組成物を塗布し、焼
成してセラミックス薄膜を形成する工程と、を具備することを特徴とするセラミックス薄
膜の製造方法にある。
【0015】
かかる態様では、保存期間にかかわらず、膜内の特性が均一なセラミックス薄膜を形成
することができる。また、製品毎に特性のばらつきがないセラミックス薄膜の製造方法と
なる。
【0016】
本発明の他の態様は、基板上に設けられた第1電極と、前記第1電極上に設けられた圧
電体層と、前記圧電体層上に設けられた第2電極とを具備する圧電素子の製造方法であっ
て、セラミックス薄膜を構成する有機金属化合物と、水と、を少なくとも混合してセラミ
ックス薄膜形成用組成物とし、該セラミックス薄膜形成用組成物を冷結晶化させた後、冷
結晶化のピーク領域の上限温度より高く融解開始温度より低い温度で保存する工程と、前
記第1電極上に保存したセラミックス薄膜形成用組成物を塗布し、焼成して前記圧電体層
を形成する工程と、を具備することを特徴とする圧電素子の製造方法にある。
【0017】
かかる態様では、保存期間にかかわらず、圧電特性のばらつきの発生を抑制して、圧電
特性の優れた圧電素子を製造することができる。また、製品毎に圧電特性のばらつきがな
い圧電素子の製造方法となる。
【0018】
本発明の他の態様は、液体を噴射するノズル開口に連通する圧力発生室が形成された流
路形成基板と、前記流路形成基板上に設けられた第1電極と、前記第1電極上に設けられ
た圧電体層と、前記圧電体層上に設けられた第2電極とを具備し、各圧力発生室に対応す
る圧電素子と、を具備する液体噴射ヘッドの製造方法であって、セラミックス薄膜を構成
する有機金属化合物と、水と、を少なくとも混合してセラミックス薄膜形成用組成物とし
、該セラミックス薄膜形成用組成物を冷結晶化させた後、冷結晶化のピーク領域の上限温
度より高く融解開始温度より低い温度で保存する工程と、前記第1電極上に保存したセラ
ミックス薄膜形成用組成物を塗布し、焼成して前記圧電体層を形成する工程と、を具備す
ることを特徴とする液体噴射ヘッドの製造方法にある。
【0019】
かかる態様では、保存期間にかかわらず、圧電特性のばらつきの発生を抑制して、圧電
特性の優れた液体噴射ヘッドを製造することができる。また、製品毎に圧電特性のばらつ
きがない液体噴射ヘッドを製造することができる。
【図面の簡単な説明】
【0020】
【図1】セラミックス薄膜形成用組成物の温度変化に対する熱流の関係を示す図。
【図2】実施例1及び参考例1の温度変化に対する熱流の関係を示す図。
【図3】実施形態2に係る記録ヘッドの概略構成を示す分解斜視図。
【図4】実施形態2に係る記録ヘッドの平面図及び断面図。
【図5】実施形態2に係る記録ヘッドの製造方法を示す断面図。
【図6】実施形態2に係る記録ヘッドの製造方法を示す断面図。
【図7】実施形態2に係る記録ヘッドの製造方法を示す断面図。
【図8】実施形態2に係る記録ヘッドの製造方法を示す断面図。
【図9】実施形態2に係る記録ヘッドの製造方法を示す断面図。
【発明を実施するための形態】
【0021】
以下に本発明を実施形態に基づいて詳細に説明する。
(実施形態1)
本発明のセラミックス薄膜形成用組成物の保存方法は、セラミックス薄膜を構成する有
機金属化合物と、水と、を少なくとも混合してセラミックス薄膜形成用組成物とし、セラ
ミックス薄膜形成用組成物を冷結晶化させた後、冷結晶化のピーク領域の上限温度より高
く融解開始温度より低い温度で保存するというものである。このセラミックス薄膜形成用
組成物は、MOD法やゾル−ゲル法などの化学溶液法に用いられるものである。
【0022】
本発明では、セラミックス薄膜を構成する有機金属化合物と、水と、を少なくとも混合
してセラミックス薄膜形成用組成物とすることにより、温度を低下させて冷結晶化させる
ことができる。ここで、水を添加していないセラミックス薄膜形成用組成物は、温度を低
下させても冷結晶化することがないが、本発明にかかるセラミックス薄膜形成用組成物は
、水を所定量添加することにより冷結晶化させることができる。そして、セラミックス薄
膜形成用組成物を冷結晶化させた後、冷結晶化のピーク領域の上限温度より高く融解開始
温度より低い温度で保存する。冷結晶化状態では分子運動が抑圧されるため、セラミック
ス薄膜形成用組成物中の有機金属化合物、溶媒、及び添加物の反応が抑制される。このよ
うに、本発明では、冷結晶状態でセラミックス薄膜形成用組成物を保存することにより、
セラミックス薄膜形成用組成物の組成が変動するのを防止する。したがって、保存安定性
を長期に亘って良好に保持することができる。
【0023】
図1は、本実施形態にかかるセラミックス薄膜形成用組成物の温度変化に対する熱量を
示す図である。具体的には、示差走査熱量測定(DSC)装置を使用して、セラミックス
薄膜形成用組成物を等速冷却した後に等速昇温した際に測定される熱量(mW)を示して
おり、上方向が吸熱を示すようになっている。図1(1)は、本実施形態にかかるセラミ
ックス薄膜形成用組成物を25℃から−150℃まで冷却した後、25℃まで昇温させた
際のDSC曲線であり、(2)は、本実施形態にかかるセラミックス薄膜形成用組成物を
25℃から−90℃まで冷却した後、25℃まで昇温させた際のDSC曲線であり、(3
)は、本実施形態にかかるセラミックス薄膜形成用組成物を25℃から−40℃まで冷却
した後、25℃まで昇温させた際のDSC曲線である。
【0024】
ここで、冷結晶化とは、ガラス状態から昇温する際に起こる結晶化現象を指し、例えば
、示差走査熱量測定(DSC)装置を使用した等速昇温過程において、発熱ピーク(冷結
晶化ピーク)が観測されることにより確認することができる。具体的には、図1(1)や
(2)のように、示差走査熱量測定(DSC)装置を使用した等速昇温過程において、発
熱反応により熱が放出されてDSC曲線のベースラインよりも下側のピークが観測される
ものは、冷結晶化している。なお、(3)は、発熱ピークが観測されず、冷結晶化してい
ない。すなわち、セラミックス薄膜形成用組成物を冷結晶化させるとは、示差走査熱量測
定(DSC)装置を使用した等速昇温過程において発熱ピークが確認されるように温度を
低下させることを指す。また、本発明にかかる冷結晶化のピーク領域の上限温度とは、冷
結晶化が進行してDSC曲線がベースラインに戻る温度を指す。融解開始温度とは、結晶
が融解し始める温度であり、DSC曲線のベースラインよりも上側となるところを指す。
また、融解温度(Tm)とは結晶が完全に融解する温度であり、DSC曲線のピークトッ
プを指す。
【0025】
本実施形態にかかるセラミックス薄膜形成用組成物は、−70〜−50℃において冷結
晶化のピークが観測され、融解開始温度は−25℃であり、融解温度(Tm)は−12℃
である。したがって、本実施形態にかかるセラミックス薄膜形成用組成物は、−70℃よ
り低くすることで冷結晶化させた後、−50℃より高く、融解開始温度である−25℃よ
り低い温度(Ta)で保存すればよい。
【0026】
セラミックス薄膜形成用組成物における水の量は、セラミックス薄膜形成用組成物を冷
結晶化させることができる量であればよく、例えば、セラミックス薄膜形成用組成物にお
ける水の量が1wt%以上となるように添加するのが好ましく、1〜25wt%となるよ
うにするのが特に好ましい。セラミックス薄膜形成用組成物における水の量が25wt%
より多くとなると、セラミックス薄膜形成用組成物の粘度が低くなりすぎる虞があるため
である。
【0027】
本発明にかかる保存後のセラミックス薄膜形成用組成物の粘度は、7.0mPa・s以
上25.0mPa・s以下であるのが好ましい。これにより、均一な膜厚のセラミックス
薄膜を形成することができる。7.0mPa・s未満となると、所望の膜厚を得ることが
困難となる虞があり、25.0mPa・sより高くなると塗布時の塗れ広がりが悪くなり
、均一な膜厚のセラミックス薄膜を形成することが困難となる虞がある。本発明では、保
存後のセラミックス薄膜形成用組成物の粘度の低下が抑制される。したがって、溶媒の量
や水の量を調整して、保存前のセラミックス薄膜形成用組成物の粘度を上記範囲内とする
ことにより、保存後のセラミックス薄膜形成用組成物の粘度を上記範囲内とすることがで
きる。
【0028】
本発明にかかるセラミックス薄膜形成用組成物は、セラミックス薄膜を構成する有機金
属化合物と、水と、を少なくとも混合したものである。具体的には、セラミックス薄膜を
構成する有機金属化合物と、水と、溶媒と、その他必要に応じて添加される添加物と、を
混合したものである。
【0029】
有機金属化合物としては、例えば、セラミックス薄膜を構成する金属のメトキシド、エ
トキシド、プロポキシド、若しくはブトキシド等のアルコキシド、又はアセテート化合物
が挙げられる。例えば、チタン酸ジルコン酸鉛(PZT)薄膜を形成するためのPZT薄
膜形成用組成物の場合には、PZTを構成する金属、すなわち、鉛(Pb)、チタン(T
i)、ジルコニウム(Zr)のアルコキシド、又はアセテート化合物が用いられる。
【0030】
ここで、セラミックス薄膜形成用組成物により形成されるセラミックス薄膜は、例えば
、チタン酸ジルコン酸鉛(PZT)等の強誘電体材料や、これにニオブ、ニッケル、マグ
ネシウム、ビスマス又はイットリウム等の金属を添加したリラクサ強誘電体等の圧電セラ
ミックス薄膜が挙げられる。圧電セラミックス薄膜の組成としては、例えば、PbTiO
(PT)、PbZrO(PZ)、Pb(ZrTi1−x)O(PZT)、Pb(
Mg1/3Nb2/3)O−PbTiO(PMN−PT)、Pb(Zn1/3Nb
/3)O−PbTiO(PZN−PT)、Pb(Ni1/3Nb2/3)O−Pb
TiO(PNN−PT)、Pb(In1/2Nb1/2)O−PbTiO(PIN
−PT)、Pb(Sc1/2Ta1/2)O−PbTiO(PST−PT)、Pb(
Sc1/2Nb1/2)O−PbTiO(PSN−PT)、BiScO−PbTi
(BS−PT)、BiYbO−PbTiO(BY−PT)等が挙げられる。また
、上述した圧電セラミックス薄膜に限定されるものではなく、絶縁膜や保護膜等に使用さ
れるSiO、AlO、ZrO、TiO、SrO、MgO等のセラミックス薄膜が
挙げられる。
【0031】
セラミックス薄膜形成用組成物の溶媒としては、カルボン酸、アルコール等が挙げられ
る。アルコールとしては、例えば、ブタノール、メチルセロソルブ、ブチルセロソルブ、
2−n−ブトキシアルコール、n−ペンチルアルコール、2−フェニルエタノール、2−
フェノキシエタノール、メトキシエタノール、エチレングリコールモノアセテート、トリ
エチレングリコール、トリメチレングリコール、プロピレングリコール、ネオペンチルグ
リコール、酢酸イソアミル等が挙げられる。また、カルボン酸としては、例えば、酢酸、
プロピオン酸、酪酸、カプリル酸、オクチル酸等を挙げることができる。これらの溶媒は
単独で用いても複数種用いてもよい。
【0032】
また、セラミックス薄膜形成用組成物は、さらにアミン類を含有してもよい。アミン類
を含有すると、各成分の分散安定性が良好になる。アミン類としては、アルカノールアミ
ン、例えば、モノエタノールアミン、ジエタノールアミン等を挙げることができる。これ
らのアミン類は、単独で用いても複数種用いてもよい。
【0033】
さらに、各成分を安定化させるためや、形成される強誘電体膜のクラックの発生を防止
するための安定化剤として、必要に応じて、ポリエチレングリコール等を含有してもよい
。また、その他の添加剤として、増粘剤等を加えてもよい。
【0034】
以下、本発明のセラミックス薄膜形成用組成物の保存方法を実施例1及び参考例1に基
づいてさらに詳細に説明する。
【0035】
(参考例1)
不活性ガス中において、酢酸に、チタニウムテトライソプロポキシドを加えて撹拌した
。次いで、ジルコニウムテトラ−n−ブトキシドを加えて攪拌した後、ポリエチレングリ
コールを加えてさらに攪拌した。これに、酢酸鉛3水和物を加えて攪拌し、これを80℃
で30分間攪拌した後、室温になるまで自然冷却して、参考例1のPZT形成用前駆体溶
液を得た。このとき、PZT形成用前駆体溶液の粘度は8.0mPa・sであった。
【0036】
(実施例1)
参考例1のPZT形成用前駆体溶液に純水を加えて室温下で攪拌し、実施例1のPZT
薄膜形成用組成物を得た。なお、PZT薄膜形成用組成物は、水の量が5wt%であり、
PZT薄膜形成用組成物の粘度は8.0mPa・sであった。
【0037】
(試験例1)
参考例1のPZT形成用前駆体溶液及び実施例1のPZT薄膜形成用組成物を、冷却レ
ート10.00℃/minで25℃〜−150℃に冷却した後、昇温レート10.00℃
/minで25℃まで昇温させた。図2に、温度変化に対する熱流(mW)の関係を示す

【0038】
図2に示すように、水を添加していない参考例1では、−150℃以下に保存しても冷
結晶化が起きなかった。これに対し、水を添加して得た実施例1のセラミックス薄膜形成
用組成物は、冷結晶化が確認された。
【0039】
(試験例2)
また、参考例1のPZT形成用前駆体溶液及び実施例1のPZT薄膜形成用組成物を所
定期間保存した後、25℃における粘度を測定した。なお、実施例1のPZT薄膜形成用
組成物は、−90℃まで冷却した後、−30℃で保管した。
【0040】
粘度が7.0mPa・s以上25.0mPa・s以下である場合は○、7.0mPa・
s未満となった場合は×と評価した。結果を表1に示す。
【0041】
【表1】

【0042】
参考例1のPZT形成用前駆体溶液及び実施例1のPZT薄膜形成用組成物は、初期の
粘度は、8.0mPa・sであったが、参考例1のセラミックス薄膜形成用組成物は、時
間の経過に伴い劣化して、粘度が7.0mPa・s未満となってしまった。これに対し、
実施例1のセラミックス薄膜形成用組成物は、3ヶ月保存しても粘度には変化が見られな
かった。
【0043】
本発明のセラミックス薄膜形成用組成物の保存方法は、セラミックス薄膜形成用組成物
に水を添加してセラミックス薄膜形成用組成物とし、該セラミックス薄膜形成用組成物を
冷結晶化させた後、冷結晶化のピーク領域の上限温度より高く融解開始温度より低い温度
で保存するというものである。これにより、保存安定性を長期に亘って良好に保持するこ
とができる。なお、本発明のセラミックス薄膜形成用組成物の保存方法により保存された
セラミックス薄膜形成用組成物は、室温まで昇温させることにより、通常のセラミックス
薄膜形成用組成物と同様に使用することができる。
【0044】
(実施形態2)
実施形態2は、液体噴射ヘッドの製造方法の一例であるインクジェット式記録ヘッドの
製造方法である。
【0045】
図3は、実施形態2に係る液体噴射ヘッドの一例であるインクジェット式記録ヘッドの
概略構成を示す分解斜視図であり、図4は、図3の平面図及びそのA−A′断面図である

【0046】
図示するように、流路形成基板10は、本実施形態ではシリコン単結晶基板からなり、
その一方の面には酸化膜からなる弾性膜50が形成されている。
【0047】
流路形成基板10には、複数の圧力発生室12がその幅方向に並設されている。また、
流路形成基板10の圧力発生室12の長手方向外側の領域には連通部13が形成され、連
通部13と各圧力発生室12とが、各圧力発生室12毎に設けられたインク供給路14及
び連通路15を介して連通されている。連通部13は、後述する保護基板のリザーバー部
31と連通して各圧力発生室12の共通のインク室となるリザーバーの一部を構成する。
インク供給路14は、圧力発生室12よりも狭い幅で形成されており、連通部13から圧
力発生室12に流入するインクの流路抵抗を一定に保持している。なお、本実施形態では
、流路の幅を片側から絞ることでインク供給路14を形成したが、流路の幅を両側から絞
ることでインク供給路を形成してもよい。また、流路の幅を絞るのではなく、厚さ方向か
ら絞ることでインク供給路を形成してもよい。
【0048】
また、流路形成基板10の開口面側には、各圧力発生室12のインク供給路14とは反
対側の端部近傍に連通するノズル開口21が穿設されたノズルプレート20が、接着剤や
熱溶着フィルム等によって固着されている。なお、ノズルプレート20は、例えばガラス
セラミックス、シリコン単結晶基板又はステンレス鋼などからなる。
【0049】
一方、このような流路形成基板10の開口面とは反対側には、上述したように、弾性膜
50が形成され、この弾性膜50上には、絶縁体膜55が形成されている。さらに、この
絶縁体膜55上には、第1電極60と圧電体層70と第2電極80とが、後述するプロセ
スで積層形成されて、圧電素子300を構成している。ここで、圧電素子300は、第1
電極60、圧電体層70及び第2電極80を含む部分をいう。一般的には、圧電素子30
0の何れか一方の電極を共通電極とし、他方の電極及び圧電体層70を各圧力発生室12
毎にパターニングして構成する。そして、ここではパターニングされた何れか一方の電極
及び圧電体層70から構成され、両電極への電圧の印加により圧電歪みが生じる部分を圧
電体能動部という。本実施形態では、第1電極60を圧電素子300の共通電極とし、第
2電極80を圧電素子300の個別電極としているが、駆動回路や配線の都合でこれを逆
にしても支障はない。また、ここでは、圧電素子300と当該圧電素子300の駆動によ
り変位が生じる振動板とを合わせてアクチュエーター装置と称する。なお、上述した例で
は、弾性膜50、絶縁体膜55及び第1電極60が振動板として作用するが、勿論これに
限定されるものではなく、例えば、弾性膜50及び絶縁体膜55を設けずに、第1電極6
0のみが振動板として作用するようにしてもよい。また、圧電素子300自体が実質的に
振動板を兼ねるようにしてもよい。
【0050】
本実施形態では、圧電素子300は、白金からなる第1電極60と、チタン酸ジルコン
酸鉛(PZT)からなる圧電体層70と、イリジウムからなる第2電極80とからなる。
本実施形態では、第1電極60が白金からなり、第2電極80がイリジウムからなるよう
にしたが、特にこれに限定されず、第1電極60及び第2電極80は、それぞれ、例えば
、ニッケル、銅、ニオブ、ルテニウム、ロジウム、パラジウム、銀、錫、オスミウム、イ
リジウム、白金、金、ビスマス、もしくはこれらの積層又は合金等の金属材料からなるよ
うにしてもよい。なお、勿論、第1電極60、第2電極80は、これ以外の導電性材料か
ら構成されていてもよい。
【0051】
ここで、圧電体層70は、上記の保存方法により保存した強誘電体薄膜形成用組成物を
用いて形成したものである。詳しくは後述するが、基板の一方面側に保存したセラミック
ス薄膜形成用組成物を塗布し、焼成して形成したものである。これにより、保存期間にか
かわらず、圧電特性のばらつきの発生を抑制して、圧電特性の優れたものとすることがで
きる。
【0052】
圧電体層70は、例えば、チタン酸ジルコン酸鉛(PZT)等の強誘電体材料や、これ
に酸化ニオブ、酸化ニッケル又は酸化マグネシウム等の金属酸化物を添加したもの等が好
適である。具体的には、チタン酸鉛(PbTiO)、チタン酸ジルコン酸鉛(Pb(Z
r,Ti)O)、ジルコニウム酸鉛(PbZrO)、チタン酸鉛ランタン((Pb,
La),TiO)、ジルコン酸チタン酸鉛ランタン((Pb,La)(Zr,Ti)O
)又は、マグネシウムニオブ酸ジルコニウムチタン酸鉛(Pb(Zr,Ti)(Mg,
Nb)O)等を用いることができる。また、圧電体層70の厚さについては、製造工程
でクラックが発生しない程度に厚さを抑え、且つ十分な変位特性を呈する程度に厚く形成
すればよく、例えば、圧電体層70は1〜5μmの厚さであるのが好ましい。本実施形態
では、圧電体層70は、チタン酸ジルコン酸鉛(PZT)からなり、(100)面に優先
配向している単斜晶系構造のものとし、1μm前後の厚さで形成した。
【0053】
また、圧電素子300の個別電極である各第2電極80には、インク供給路14側の端
部近傍から引き出され、絶縁体膜55上にまで延設される、例えば、金(Au)等からな
るリード電極90が接続されている。
【0054】
このような圧電素子300が形成された流路形成基板10上には、リザーバー100の
少なくとも一部を構成するリザーバー部31を有する保護基板30が接着剤35を介して
接合されている。このリザーバー部31は、本実施形態では、保護基板30を厚さ方向に
貫通して圧力発生室12の幅方向に亘って形成されており、上述のように流路形成基板1
0の連通部13と連通されて各圧力発生室12の共通のインク室となるリザーバー100
を構成している。また、流路形成基板10の連通部13を圧力発生室12毎に複数に分割
して、リザーバー部31のみをリザーバーとしてもよい。さらに、例えば、流路形成基板
10に圧力発生室12のみを設け、流路形成基板10と保護基板30との間に介在する部
材(例えば、弾性膜50、絶縁体膜55等)にリザーバーと各圧力発生室12とを連通す
るインク供給路14を設けるようにしてもよい。
【0055】
また、保護基板30の圧電素子300に対向する領域には、圧電素子300の運動を阻
害しない程度の空間を有する圧電素子保持部32が設けられている。圧電素子保持部32
は、圧電素子300の運動を阻害しない程度の空間を有していればよく、当該空間は密封
されていても、密封されていなくてもよい。
【0056】
このような保護基板30としては、流路形成基板10の熱膨張率と略同一の材料、例え
ば、ガラス、セラミック材料等を用いることが好ましく、本実施形態では、流路形成基板
10と同一材料のシリコン単結晶基板を用いて形成した。
【0057】
また、保護基板30には、保護基板30を厚さ方向に貫通する貫通孔33が設けられて
いる。そして、各圧電素子300から引き出されたリード電極90の端部近傍は、貫通孔
33内に露出するように設けられている。
【0058】
また、保護基板30上には、並設された圧電素子300を駆動するための駆動回路12
0が固定されている。この駆動回路120としては、例えば、回路基板や半導体集積回路
(IC)等を用いることができる。そして、駆動回路120とリード電極90とは、ボン
ディングワイヤー等の導電性ワイヤーからなる接続配線121を介して電気的に接続され
ている。
【0059】
また、このような保護基板30上には、封止膜41及び固定板42とからなるコンプラ
イアンス基板40が接合されている。ここで、封止膜41は、剛性が低く可撓性を有する
材料からなり、この封止膜41によってリザーバー部31の一方面が封止されている。ま
た、固定板42は、比較的硬質の材料で形成されている。この固定板42のリザーバー1
00に対向する領域は、厚さ方向に完全に除去された開口部43となっているため、リザ
ーバー100の一方面は可撓性を有する封止膜41のみで封止されている。
【0060】
このような本実施形態のインクジェット式記録ヘッド1では、図示しない外部インク供
給手段と接続したインク導入口からインクを取り込み、リザーバー100からノズル開口
21に至るまで内部をインクで満たした後、駆動回路120からの記録信号に従い、圧力
発生室12に対応するそれぞれの第1電極60と第2電極80との間に電圧を印加し、弾
性膜50、絶縁体膜55、第1電極60及び圧電体層70をたわみ変形させることにより
、各圧力発生室12内の圧力が高まりノズル開口21からインク滴が吐出する。
【0061】
ここで、インクジェット式記録ヘッドの製造方法について、図5〜図9を参照して説明
する。なお、図5〜図9は、インクジェット式記録ヘッドの製造方法を示す断面図である

【0062】
まず、図5(a)に示すように、流路形成基板10が複数一体的に形成されるシリコン
ウェハーである流路形成基板用ウェハー110の表面に弾性膜50を構成する二酸化シリ
コン(SiO)からなる二酸化シリコン膜51を形成する。次いで、図5(b)に示す
ように、弾性膜50(二酸化シリコン膜51)上に、例えば、酸化ジルコニウムからなる
絶縁体膜55を形成する。
【0063】
次いで、図5(c)に示すように、白金からなる第1電極60を絶縁体膜55上に形成
する。第1電極60の形成方法は特に限定されないが、例えば、スパッタリング法、化学
蒸着法(CVD法)、物理蒸着法(PVD法)などが挙げられる。この第1電極60の材
料は、上述したように特に限定されないが、本実施形態のように圧電体層70としてチタ
ン酸ジルコン酸鉛(PZT)を用いる場合には、酸化鉛の拡散による導電性の変化が少な
い材料であることが望ましいため、第1電極60の材料としては白金、イリジウム等が好
適に用いられる。
【0064】
次に、チタン酸ジルコン酸鉛(PZT)等からなる圧電体層70を流路形成基板用ウェ
ハー110の全面に形成する。なお、金属有機物を溶媒に溶解・分散したいわゆるゾルを
塗布乾燥してゲル化し、さらに高温で焼成することで金属酸化物からなる圧電体層70を
得る、いわゆるゾル−ゲル法を用いて圧電体層70を形成した。
【0065】
圧電体層70の具体的な作成手順を説明する。
まず、図6(a)に示すように、第1電極60上にセラミックス薄膜形成用組成物71
を塗布する(塗布工程)。このセラミックス薄膜形成用組成物71は、セラミックス薄膜
を構成する有機金属化合物と、水と、溶媒と、その他必要に応じて添加される添加物とを
混合して、セラミックス薄膜形成用組成物とし、該セラミックス薄膜形成用組成物を冷結
晶化させた後、冷結晶化のピーク領域の上限温度より高く融解開始温度より低い温度で保
存したものである。
【0066】
次いで、セラミックス薄膜形成用組成物71を熱処理することで、図6(b)に示す非
晶質のセラミックス前駆体膜72を形成した。具体的には、セラミックス薄膜形成用組成
物71を所定の温度に加熱して一定時間乾燥させてセラミックス前駆体膜72を形成する
(乾燥工程)。例えば、本実施形態の乾燥工程では、流路形成基板用ウェハー110上に
塗布されたセラミックス薄膜形成用組成物71を100〜200℃で3〜30分保持する
ことで乾燥することができる。
【0067】
次に、乾燥工程によって乾燥したセラミックス前駆体膜72を所定温度に加熱して一定
時間保持することによって脱脂する(脱脂工程)。本実施形態では、乾燥されたセラミッ
クス前駆体膜72を200〜400℃に加熱して約3〜30分保持することで脱脂した。
なお、ここで言う脱脂とは、セラミックス前駆体膜72に含まれる有機成分を、例えば、
NO、CO、HO等として離脱させることである。
【0068】
次に、図6(c)に示すように、セラミックス前駆体膜72を所定温度に加熱して一定
時間保持することによって結晶化させ、セラミックス薄膜73を形成する(焼成工程)。
この焼成工程では、セラミックス前駆体膜72を550〜800℃に加熱するのが好まし
く、本実施形態では、680℃で5〜30分間加熱を行ってセラミックス前駆体膜72を
焼成して、セラミックス薄膜(圧電体膜)73を形成した。
【0069】
なお、このような乾燥工程、脱脂工程及び焼成工程で用いられる加熱装置としては、例
えば、ホットプレートや、赤外線ランプの照射により加熱するRTP(Rapid Thermal Pr
ocessing)装置などを用いることができる。
【0070】
次に、図7(a)に示すように、第1電極60上に1層目のセラミックス薄膜73を形
成した段階で、第1電極60及び1層目のセラミックス薄膜73をそれらの側面が傾斜す
るように同時にパターニングする。これにより、2層目のセラミックス薄膜73を形成す
る際に、第1電極60及び1層目のセラミックス薄膜73が形成された部分とそれ以外の
部分との境界近傍において、下地の違いによる2層目のセラミックス薄膜73の結晶性へ
の悪影響を小さく、すなわち、緩和することができる。これにより、第1電極60とそれ
以外の部分との境界近傍において、2層目のセラミックス薄膜73の結晶成長が良好に進
み、結晶性に優れた圧電体層70を形成することができる。また、第1電極60及び1層
目の圧電体膜73の側面を傾斜させることで、2層目以降のセラミックス薄膜73を形成
する際の付き回りを向上することができる。これにより、密着性及び信頼性に優れた圧電
体層70を形成することができる。なお、第1電極60及び1層目の圧電体膜73のパタ
ーニングは、例えば、イオンミリング等のドライエッチングにより行うことができる。
【0071】
次に、図7(b)に示すように、1層目の圧電体膜73上を含む流路形成基板用ウェハ
ー110上に、上述した塗布工程、乾燥工程、脱脂工程及び焼成工程を順次繰り返し行う
ことにより、複数層のセラミックス薄膜(圧電体膜)73からなる厚さ1μmの圧電体層
70を形成する。ちなみに、本実施形態では、圧電体層70が複数層のセラミックス薄膜
(圧電体膜)73で構成されたものを例示したが、圧電体層70は、一層のセラミックス
薄膜(圧電体膜)73からなるものであってもよい。
【0072】
次に、複数層の圧電体膜73からなる圧電体層70上に亘ってイリジウム(Ir)から
なる第2電極80を成膜した後、図5(d)に示すように、圧電体層70及び第2電極8
0を、各圧力発生室12に対向する領域にパターニングして圧電素子300を形成する。
圧電体層70及び第2電極80のパターニング方法としては、例えば、反応性イオンエッ
チングやイオンミリング等のドライエッチングが挙げられる。
【0073】
次に、リード電極90を形成する。具体的には、図8(a)に示すように、流路形成基
板用ウェハー110の全面に亘って、例えば、金(Au)等からなるリード電極90を形
成後、例えば、レジスト等からなるマスクパターン(図示なし)を介して各圧電素子30
0毎にパターニングすることで形成される。
【0074】
次に、図8(b)に示すように、流路形成基板用ウェハー110の圧電素子300側に
、シリコンウェハーであり複数の保護基板30となる保護基板用ウェハー130を接着剤
35によって接合する。なお、保護基板30には、リザーバー部31、圧電素子保持部3
2等が予め形成されている。また、保護基板30は、例えば、400μm程度の厚さを有
するシリコン単結晶基板からなり、保護基板30を接合することで流路形成基板10の剛
性は著しく向上することになる。そして、図8(c)に示すように、流路形成基板用ウェ
ハー110を所定の厚さにする。
【0075】
次いで、図9(a)に示すように、流路形成基板用ウェハー110にマスク膜52を新
たに形成し、所定形状にパターニングする。そして、図9(b)に示すように、流路形成
基板用ウェハー110をマスク膜52を介してKOH等のアルカリ溶液を用いた異方性エ
ッチング(ウェットエッチング)することにより、圧電素子300に対応する圧力発生室
12、連通部13、インク供給路14及び連通路15等を形成する。
【0076】
その後は、流路形成基板用ウェハー110及び保護基板用ウェハー130の外周縁部の
不要部分を、例えば、ダイシング等により切断することによって除去する。そして、流路
形成基板用ウェハー110の保護基板用ウェハー130とは反対側の面にノズル開口21
が穿設されたノズルプレート20を接合すると共に、保護基板用ウェハー130にコンプ
ライアンス基板40を接合し、流路形成基板用ウェハー110等を図3に示すような一つ
のチップサイズの流路形成基板10等に分割することによって、本実施形態のインクジェ
ット式記録ヘッド1とする。
【0077】
以上説明したように、本実施形態に係るインクジェット式記録ヘッドの製造方法では、
セラミックス薄膜を構成する有機金属化合物と、水と、を少なくとも混合してセラミック
ス薄膜形成用組成物とし、該セラミックス薄膜形成用組成物を冷結晶化させた後、冷結晶
化のピーク領域の上限温度より高く融解開始温度より低い温度で保存する工程と、前記第
1電極上に保存したセラミックス薄膜形成用組成物を塗布し、焼成して前記圧電体層を形
成する工程と、を具備することにより、保存期間にかかわらず、圧電特性のばらつきの発
生を抑制して、圧電特性の優れた液体噴射ヘッドを製造することができる。また、保存安
定性に優れた保存方法により保存したセラミックス薄膜形成用組成物を用いているため、
製品ごとに圧電特性にバラツキが生じることがなく、圧電特性の安定した液体噴射ヘッド
を製造することができる。
【0078】
なお、上述した実施形態2では、液体噴射ヘッドの一例としてインクジェット式記録ヘ
ッドを挙げて説明したが、本発明は広く液体噴射ヘッド全般を対象としたものであり、イ
ンク以外の液体を噴射する液体噴射ヘッドにも勿論適用することができる。その他の液体
噴射ヘッドとしては、例えば、プリンター等の画像記録装置に用いられる各種の記録ヘッ
ド、液晶ディスプレー等のカラーフィルターの製造に用いられる色材噴射ヘッド、有機E
Lディスプレー、FED(電界放出ディスプレー)等の電極形成に用いられる電極材料噴
射ヘッド、バイオchip製造に用いられる生体有機物噴射ヘッド等が挙げられる。
【0079】
(他の実施形態)
本発明のセラミックス薄膜形成用組成物の保存方法により保存されるセラミックス薄膜
形成用組成物は、例えば、強誘電体メモリー、赤外センサー、超音波センサー、感熱セン
サー、圧力センサー、焦電センサー等の各種センサー、SAWデバイス等の強誘電体膜や
、マイクロホン、発音体、各種振動子、発信子等に搭載される圧電素子、マイクロ液体ポ
ンプに搭載される圧電素子等に用いられる強誘電体膜を形成するのに好適に用いることが
できる。
【符号の説明】
【0080】
1 インクジェット式記録ヘッド、 10 流路形成基板、 12 圧力発生室、 1
3 連通部、 14 インク供給路、 20 ノズルプレート、 21 ノズル開口、
30 保護基板、 40 コンプライアンス基板、 60 第1電極、 70 圧電体層
、 71 セラミックス薄膜形成用組成物、 72 セラミックス前駆体膜、 73 セ
ラミックス薄膜、 80 第2電極、 90 リード電極、 300 圧電素子

【特許請求の範囲】
【請求項1】
セラミックス薄膜を構成する有機金属化合物と、水と、を少なくとも混合してセラミック
ス薄膜形成用組成物とし、
該セラミックス薄膜形成用組成物を冷結晶化させた後、冷結晶化のピーク領域の上限温度
より高く融解開始温度より低い温度で保存することを特徴とするセラミックス薄膜形成用
組成物の保存方法。
【請求項2】
請求項1に記載のセラミックス薄膜形成用組成物の保存方法において、前記セラミックス
薄膜形成用組成物は、圧電セラミックス薄膜形成用組成物であることを特徴とするセラミ
ックス薄膜形成用組成物の保存方法。
【請求項3】
請求項1又は2に記載のセラミックス薄膜形成用組成物の保存方法において、前記セラミ
ックス薄膜形成用組成物は、鉛、チタン、及びジルコニウムを少なくとも含むことを特徴
とするセラミックス薄膜形成用組成物の保存方法。
【請求項4】
請求項1〜3のいずれか1項に記載のセラミックス薄膜形成用組成物の保存方法において
、前記セラミックス薄膜形成用組成物は、アルコール及びカルボン酸のうち少なくとも一
方を含むことを特徴とするセラミックス薄膜形成用組成物の保存方法。
【請求項5】
請求項1〜4のいずれか1項に記載のセラミックス薄膜形成用組成物の保存方法において
、保存後のセラミックス薄膜形成用組成物の粘度は、7.0mPa・s以上25.0mP
a・s以下であることを特徴とするセラミックス薄膜形成用組成物の保存方法。
【請求項6】
セラミックス薄膜を構成する有機金属化合物と、水と、を少なくとも混合してセラミック
ス薄膜形成用組成物とし、該セラミックス薄膜形成用組成物を冷結晶化させた後、冷結晶
化のピーク領域の上限温度より高く融解開始温度より低い温度で保存する工程と、
基板の一方面側に保存したセラミックス薄膜形成用組成物を塗布し、焼成してセラミック
ス薄膜を形成する工程と、
を具備することを特徴とするセラミックス薄膜の製造方法。
【請求項7】
基板上に設けられた第1電極と、前記第1電極上に設けられた圧電体層と、前記圧電体層
上に設けられた第2電極とを具備する圧電素子の製造方法であって、
セラミックス薄膜を構成する有機金属化合物と、水と、を少なくとも混合してセラミック
ス薄膜形成用組成物とし、該セラミックス薄膜形成用組成物を冷結晶化させた後、冷結晶
化のピーク領域の上限温度より高く融解開始温度より低い温度で保存する工程と、
前記第1電極上に保存したセラミックス薄膜形成用組成物を塗布し、焼成して前記圧電体
層を形成する工程と、
を具備することを特徴とする圧電素子の製造方法。
【請求項8】
液体を噴射するノズル開口に連通する圧力発生室が形成された流路形成基板と、
前記流路形成基板上に設けられた第1電極と、前記第1電極上に設けられた圧電体層と、
前記圧電体層上に設けられた第2電極とを具備し、各圧力発生室に対応する圧電素子と、
を具備する液体噴射ヘッドの製造方法であって、
セラミックス薄膜を構成する有機金属化合物と、水と、を少なくとも混合してセラミック
ス薄膜形成用組成物とし、該セラミックス薄膜形成用組成物を冷結晶化させた後、冷結晶
化のピーク領域の上限温度より高く融解開始温度より低い温度で保存する工程と、
前記第1電極上に保存したセラミックス薄膜形成用組成物を塗布し、焼成して前記圧電体
層を形成する工程と、
を具備することを特徴とする液体噴射ヘッドの製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2011−142152(P2011−142152A)
【公開日】平成23年7月21日(2011.7.21)
【国際特許分類】
【出願番号】特願2010−1021(P2010−1021)
【出願日】平成22年1月6日(2010.1.6)
【出願人】(000002369)セイコーエプソン株式会社 (51,324)
【Fターム(参考)】