説明

基板処理装置

【課題】 積層された基板へ供給されるガスの流量と流速とを均一化することで、前記積載された基板に対してガスを均一に供給する。
【解決手段】 複数の基板を収容する反応室を形成する反応管と、反応管の内部に設けられたバッファ室と、反応室内に第1の処理ガスを導入する第1のガス導入部と、バッファ室内に第2の処理ガスを導入する第2のガス導入部と、を備え、第1のガス導入部は第1のガス供給口を有し、第2のガス導入部はガス導入口を有し、バッファ室は、第2の処理ガスを反応室内に供給する複数の第2のガス供給口を有し、第2のガス導入部にリモートプラズマユニットが設けられ、第2の処理ガスが活性化され、活性化された第2の処理ガスが複数の第2のガス供給口から反応室内に供給され、第1の処理ガスと活性化された第2の処理ガスとが交互に複数回供給されて基板の表面に薄膜が形成される。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体デバイスの製造工程の一工程で用いられる反応室内で基板を処理する基板処理装置に係り、特に基板にガスを供給するガス導入部を改善したものに関する。
【背景技術】
【0002】
CVD(Chemical Vapor Deposition)法、またはその中の1つであるALD(AtomicLayer Deposition)法により反応室内で基板を処理する際の従来の技術について縦型の基板処理装置を例とし、図10を参照しながら簡単に説明する。図10は、従来の技術にかかる縦型の基板処理装置における反応室である反応管内部の模式的な断面図である。反応管106内部には、処理対象の基板としてウェーハ107を多段に重ねた状態で載置したボート108が挿入され、また反応管106内のウェーハ107をプロセス処理するためのガス導入部としてガスノズル101が設けてある。ガスノズル101に複数のガスノズル孔103(図10では、5個の例を示した。)を設けることにより、処理用のガスはガス導入口105よりガスノズル101内を進行し各ガスノズル孔103から各ウェーハ107へ供給される。各ウェーハ107へ供給されたガスは、各ウェーハ107上に所望の膜を成膜する等のプロセス処理の後、排気口118から反応管106外へ排気される構造となっている。
【発明の概要】
【発明が解決しようとする課題】
【0003】
しかし、ガスノズル101に設けられた各ガスノズル孔103の開口面積が全て同一の場合、各ガスノズル孔103から各ウェーハ107へ供給されるガス流量や流速は、ガスの導入口105に近い上流側から、遠い下流側に向かって減少するという問題が見出された。
【0004】
すなわち、図10に示す、複数枚のウェーハ107を一括してプロセス処理する装置において、ウェーハ1枚1枚に対しガスを供給する観点より検討すると、ガスノズル101は見かけ上、1枚1枚の各ウェーハ107へ均一にガスを供給しているようにみえるが、実際にはガス流量や流速に差が発生しており、全てのウェーハ107に同条件で供給されてはいないのである。例えば、ガスノズル101に設けられた5箇所のガスノズル孔103を、ガスノズル101の導入口105に近い上流から、遠い下流へ向かって1番目、2番目…5番目とし、各々のガスノズル孔103より供給されるガス流量を、q1、q2…q5としたとき、q1>q2>…>q5となっている。さらにガスの流速においても、1番目のガスノズル孔103からのガスが最も速く、以降、2番目、3番目と次第に遅くなってゆく。この結果、各ウェーハ107に供給されるガスの流量や流速に不均一が生じてしまうのである。これでは、ガスの供給量に大きく左右されるウェーハのプロセス処理において、積載された各ウェーハ107間の成膜に不均一が生じてしまう。
【0005】
再び図10に戻り、このガスの供給量における不均一の原因を考察する。ウェーハ107へガスを供給している状態のガスノズル101内において、導入口105と1番目のガスノズル孔103との間におけるガスの流量をq00、ガスの圧力をp0とする。次に1番目と2番目のガスノズル孔103との間におけるガスの流量をq01、ガスの圧力をp1とする。以下同様にして、n−1番目とn番目のガスノズル孔103との間におけるガスの流量をq0(n−1)、ガスの圧力をpn−1とする。一方、n番目のガスノズル孔103より噴出するガスの流量をqnとする。
【0006】
このとき、ガスノズル101の上流から下流にわたって設けた開口面積が同一の複数の
ガスノズル孔103から噴出するガス流量qn(n=1、2、…)は、式(1)に示すように、
q1>q2>…>qn−1>qn (1)
上流のガスノズル孔から下流のガスノズル孔にかけて減少していく。これは、ガスノズル101内を上流から下流側に向かって流れるガスは、そのガス流量q0(n−1)が、ガスノズル孔103を通過するとき、当該ガスノズル孔103から噴出するガス流量qn分だけ減って次のガスノズル孔に向かうことになるためで、当該ガスノズル孔103を通過した後のガスのガス流量q0nは、式(2)のように
q0n=q0(n−1)−qn (2)
上流側から下流側にいくにしたがって減少する。
【0007】
このとき、ガスノズル101内の流体のガス密度は、上流から下流に向かってガス孔から噴出するガス流量分だけ減少していく。ガス密度とガス圧力は相関があるから、ガスノズル孔103に対応するガスノズル101内の部位のガス圧力pnは、式(3)のように上流から下流にかけて低くなっていく。
p1>p2>…>pn−1>pn (3)
このため、各ガスノズル孔103から噴出するガス流量qnは等しくならない。また、ガスノズル孔103の開口面積をSとすると、ガスノズル孔から噴出するガス流速Vは、
V=qn/S (4)
と表せる。各ガスノズル孔103から噴射されるガス流量qnは等しくないから、ノズル孔の開口面積が同一であると、各ガスノズル孔103から噴射されるガスの流速も異なる。従って、上述した従来のガスノズル101では、各ガスノズル孔103から噴射されるガスのガス流量もガス流速も異なるから、積載された各ウェーハへ、均一にガスを供給することができないと考えられる。
【0008】
上述した問題点に対し、2つの前駆的な解決策が考えられた。第1の解決策は、ガスノズル孔103の開口面積を上流から下流にかけて大きくしてやり、下流側にいくにしたがって減少するガス流量を開口面積の増大で稼ぐことが考えられる。しかし、開口面積の大きさによってガス流量を等しくしようとしても、式(4)から、開口面積の大きさに応じてガス流速が異なってしまう。したがって、各ガスノズル孔103から噴出するガスは、依然としてガス流速の不均一が解消されない。
【0009】
第2の解決策は、上流から下流側にかけて各ガスノズル孔103からガスが噴出していっても、各ガスノズル孔に対応する部位のガスノズル101内のガス圧力が変化しないように、ガスノズル自体を、噴出量を無視できるような大量のガスを溜めることが可能な大容量ガスノズルで構成して、各ガスノズル孔103から噴出するガス流量を等しくすることも考えられる。しかし、ガスノズル101内のガス圧力がガス噴出量の影響を受けないような大きさに、ガスノズル自体の容量を大きくすることは、ガスノズルを格納する反応室のスペースに制約があるため実用的でない。尚、上述の問題はウェーハに限定されず、広く基板に共通する。
【0010】
そこで本発明の目的は、上述の構造とは異なる観点より、ガスを均一に供給することで、基板間の処理の均一性を達成できる基板処理装置を提供することである。
【課題を解決するための手段】
【0011】
上述の課題を解決するための第1の手段は、積層配置された基板を収納する反応室と、前記反応室に基板の積層配置方向に沿って設けられた、基板処理用のガスを導入するためのガス導入部と、基板の積層配置方向に沿って設けられた複数のガス供給口を有し、前記ガス導入部から導入される処理用ガスを前記複数のガス供給口から供給するようにしたバッファ室とを備えたことを特徴とする基板処理装置である。
【0012】
この構成を備えることにより、本発明にかかる基板処理装置は、前記ガス導入部より供給される流速が不均一状態なガスを、前記バッファ室内において流速を均一化することができ、基板に対しガスを均一に供給することができる。
【0013】
第2の手段は、第1の手段に記載の基板処理装置であって、前記バッファ室に設けられた複数のガス供給口の開口面積がほぼ等しいことを特徴とする基板処理装置である。
【0014】
第1の手段に加え、同じ開口面積を持つガス供給口を設けることで、基板へのガス供給をさらに均一化できる。
【0015】
第3の手段は、第1または第2の手段に記載の基板処理装置であって、前記バッファ室の中にプラズマ発生用の電極を設けたことを特徴とする基板処理装置である。
【0016】
バッファ室の中にプラズマ発生用の電極を設ける構成を用いることにより、基板に近接した位置で、且つ均一化された圧力の状態でプラズマにより活性種を生成し、均一でより多くの活性種を基板へ供給できる。
【発明の効果】
【0017】
積層された基板へ処理用のガスを供給してこれを処理する際、ガス導入部から導入される処理用のガスを複数のガス供給口から供給するようにしたバッファ室を設けたことでガスの流速を均一化し、前記積層された基板に対してガスを均一に供給することができる。
【図面の簡単な説明】
【0018】
【図1】本発明にかかる基板処理装置の反応管内部の模式的な断面図である。
【図2】本発明にかかる基板処理装置の反応管の模式的な横断面図である。
【図3】本発明にかかるガスノズルとバッファ室との斜視図である。
【図4】本発明にかかる縦型の基板処理装置の機構概要図である。
【図5】本発明にかかる基板処理装置の反応管の外観および内部を示す図である。
【図6】図5のA−A横断面図である。
【図7】異なる実施の形態例に係る基板処理装置の反応管の横断面図である。
【図8】異なる実施の形態例に係る基板処理装置の反応管の横断面図である。
【図9】異なる実施の形態例に係る基板処理装置の反応管の横断面図である。
【図10】従来の技術にかかる基板処理装置の反応管内部の模式的な断面図である。
【発明を実施するための形態】
【0019】
まず、本発明の実施の形態にておこなった、基板へのプロセス処理例としてCVD法と、その中の1つであるALD法を用いた成膜処理について、両者を比較しながら簡単に説明する。
【0020】
CVD法は、ある成膜条件(温度、時間等)の下で、成膜に用いる1種類(またはそれ以上の種類)の原料となるガスを混合して基板上に供給し、気相反応と表面反応、あるいは表面反応のみを用いて基板上に吸着、反応させて成膜を行う手法である。ALD法は、ある成膜条件(温度、時間等)の下で、成膜に用いる2種類(またはそれ以上)の原料となるガスを1種類ずつ交互に基板上に供給し、1原子層単位で吸着させ、表面反応を利用して成膜を行う手法である。
【0021】
すなわち、利用する化学反応は、例えばSiN(窒化ケイ素)膜形成の場合ALDではDCS(ジクロルシラン)とNH(アンモニア)を用いて300〜600℃の低温で高品質の成膜が可能である。これに対して通常のCVDの場合は、成膜温度は600〜80
0℃と比較的高温である。また、ガス供給は、ALDでは複数種類の反応性ガスを1種類ずつ交互に供給する(同時に供給しない)のに対し、通常のCVDでは複数種類のガスを同時に供給する。そして、膜厚制御は、ALDでは反応性ガス供給のサイクル数で制御する。(例えば、成膜速度が1Å/サイクルとすると、20Åの膜を形成する場合、処理を20サイクル行う。)のに対して、CVDでは時間で制御する点で異なる。
【0022】
ここで、図1〜図9を用いて本発明の実施の形態について説明する。尚、図1〜図9において共通する箇所には同一の符号を付して示した。
【0023】
まず図4を用いて本発明に係る縦型の基板処理装置の機構概要について簡単に説明する。図4は、複数枚の被処理用の基板である直径200mmのウェーハを、反応室である石英製の反応管内に積載し、プロセス処理としてCVD法あるいはその中の1つであるALD法による成膜処理をおこなう縦型の基板処理装置例の外観を示した図である。縦型の基板処理装置は、本体60および本体へ電力等を供給するユーティリティ部61を有している。
【0024】
本体60の内部には、ウェーハにプロセス処理を施す縦型の反応室として反応管6、その反応管6を適宜に加熱するヒータ16が設けられている。そして、反応管6の下方には、反応管6中へウェーハを出し入れするボート8およびボート8を上下させるボートエレベータ36が設置されている。また、反応管6にてプラズマを生成する必要がある際は、反応管6内に電極52を設け、この電極52へRFマッチングユニット53を介して高周波電源51より高周波電力が加えられる。
【0025】
さらに本体60の内部には、前記ボート8へ供給されるウェーハが収納されたカセットを一時保管するカセット棚34と、このカセット棚34よりボート8へ被処理前ウェーハを供給し、被処理後ウェーハを搬出するウェーハ移載機38が設けられている。そしてカセット棚34と、ウェーハのカセット32を外界と受け渡しをするI/Oステージ33との間では、カセットローダー35がウェーハのカセット32を運搬する。I/Oステージ33は、装置前面に設置されており装置外部との間でウェーハが収納されたカセット32の授受を行なう。
【0026】
ここで、上述した縦型の基板処理装置の動作について簡単に説明する。I/Oステージ33に、ウェーハが収納されたカセット32をセットする。I/Oステージ33にセットされたカセット32はカセットローダ35によって順次カセット棚34に運ばれる。
【0027】
本実施の形態の場合、カセット32には25枚のウェーハが収納されている。ウェーハ移載機38は力セット棚34からウェーハを搬出し、石英のボート8に搬送する。ボート8には100枚のウェーハが装填できるため、上記ウェーハ移載機38による搬送動作が何度か繰り返される。ボート8へのウェーハの搬送が終了したら、ボ一ト8は、ボートエレベータ36により上昇して反応管6のなかに挿入され、この後、反応管6内部は気密に保持される。
【0028】
反応管6内のガスは、図示していない排気口からポンプで排気し、所定の圧力に到達したら、ボート8を図示していない回転機構により回転させ、反応管6内部に一定流量の成膜処理用のガスを供給する。供給される処理用ガスは、図示しない圧力調整機構よって一定の圧力に保たれている。このとき反応管6内部のウェーハは、ヒータ16によって所定の温度に保持されている。
【0029】
このようにして、ウェーハ上に成膜処理をおこなうプロセスが進行するがその内容については後述する。またこのとき、プラズマCVD法あるいはその中の1つであるALD法
により成膜処理をおこなう場合は、電極52に高周波電源51よりRFマッチングユニット53を介して高周波電力を加え、前記成膜用ガス中でプラズマを生成し、この成膜用ガスを活性化する操作もおこなわれるがその内容についても後述する。成膜処理のプロセスが完了すると、ウェーハボート8は、ボートエレベータ36により反応管6より降ろされ、ウェーハ移載機38、カセット棚34、カセットローダ35を経由してI/Oステージ33に運ばれ、装置外部へ搬出される。
【0030】
次に、上述した縦型の基板処理装置を用い、以下、1)成膜処理プロセスにCVD法を用いた実施の形態、2)成膜処理プロセスにALD法を用いた実施の形態、3)成膜処理プロセスにALD法を用いた異なる実施の形態について説明する。
【0031】
1)成膜処理プロセスにCVD法を用いた実施の形態
図2(a)は、本実施の形態にかかる縦型の基板処理装置における反応管の模式的な横断面図であり、(b)は、(a)のa−a’縦断面図である。図2(a)において、縦型の反応室である反応管6の外周にはヒータ16が設けられ、内側には複数枚の被処理対象の基板としてウェーハ7が積層して載置されている。さらに反応管6の内壁とウェーハ7との間における円弧状の空間には、反応管6の下部より上部の内壁にウェーハ7の積載方向に沿って、バッファ室17が設けられ、そのバッファ室17のウェーハ7と隣接する壁の端部にはガス供給口としてのバッファ室孔3が設けられている。このバッファ室孔3は反応管6の中心へ向けて開口している。そしてバッファ室17内のバッファ室孔3が設けられた端部と反対側の端部には、ガス導入部に設けられたガスノズル2が、やはり反応管6の下部より上部にわたりウェーハ7の積載方向に沿って配設されている。そしてガスノズル2には複数のガスノズル孔4が設けられている。
【0032】
一方、図2(b)に示すように、反応管6は、その外周をヒータ16で覆われている。そして反応管6は、炉口フランジ25の上に支持され、炉口フランジ25の炉口は炉口キャップ27により密閉される。
【0033】
反応管6内の中央部には複数枚のウェーハ7を多段に同一間隔で載置するボート8が設けられており、このボート8は上述したボートエレベータ機構により反応管6に出入りできるようになっている。また処理の均一性を向上する為にボート8の下部にはボート8を回転するための回転機構15が設けてある。
【0034】
ボート8が反応管6内に入り、ウェーハ7に成膜処理がおこなわれる際、多段に載置された状態の各ウェーハ7は、バッファ室17と等距離をもって載置された状態となる。
【0035】
反応管6の内壁に沿ってバッファ室17が設けられ、バッファ室17の内部にはガスノズル2が反応管6側面の下部より上部にわたって配設されており、下部ではガス導入口5となる。
【0036】
ガスノズル2とバッファ室17には、上述したガスノズル孔とバッファ室孔とが設けられているが、この孔の開口状態の例を図3により説明する。図3(a)は、図2に示されたガスノズルの斜視図であり、(b)は、同じく図2に示されたバッファ室の斜視図である。図3(a)に示すガスノズル2は、断面が円形のパイプでその側面には、そのガスノズル2のほぼ最上部より、バッファ室17の底部に至る位置にまでガスノズル孔4が、ガス流の上流側より下流側へ向けて直線的に並んで設けられ、且つその開口面積は、前記ガス導入口から見て上流側(図3においては下方)より下流側(図3においては上方)に向かって大きくなっている。図3(b)に示すバッファ室17は、断面が円弧状を有するパイプで、その内側の曲面の端部には、同じ開口面積を有するバッファ室孔3が、ウェーハ7の積載方向に沿って直線的に並んで設けられている。
【0037】
ここで再び、図2(b)に戻る。反応管6下部の側面には、図示していない排気ポンプに連なる排気口18が設けられている。
【0038】
ここで、反応管6内における、ウェーハ7へのCVD法による成膜プロセスについて図2(a)(b)を参照しながら説明する。
【0039】
成膜の原料となる処理用のガスは、ガス導入口5よりガスノズル2へ供給される。ガスノズル2には、上述した複数のガスノズル孔4が設けられ、バッファ室17内にガスを噴出する。しかし前駆的な解決策として説明したように、ガスノズル孔4の開口面積の制御のみでは、複数のガスノズル孔4より噴出するガスの流量と流速とを同一にすることは困難である。
【0040】
そこで、本発明においては、ガスノズル孔4の開口面積を下流から上流にかけて大きくすることで、まず、各ガスノズル孔4よりガスの流速の差はあるが、流量はほぼ同量であるガスを噴出させる。そしてこの各ガスノズル孔4から噴出するガスを反応管6内に噴出するのではなく、バッファ室17内に噴出させて一旦導入し、前記ガスの流速差の均一化をおこなうこととした。すなわち、バッファ室17内において、各ガスノズル孔4より噴出したガスはバッファ室17の内部で各ガスの粒子速度が緩和された後、バッファ室孔3より反応管6内に噴出する。この間に、各ガスノズル孔4よりより噴出したガスは、互いの運動エネルギーを交換するので、各バッファ室孔3より噴出する際には、均一な流量と流速とを有するガスとすることができた。
【0041】
上述したバッファ室17における、ガス供給量の均一化に関し、図1を用いてさらに説明する。図1は、本発明にかかる縦型の基板処理装置の反応管内部における、ガスノズルと、バッファ室と、ウェーハとの関係を示した模式的な断面図である。図1において、反応管6内には、バッファ室17が設けられ、バッファ室17の内部にはガスノズル2が配設され、さらに反応管6内のガスを室外に排気する排気口18が設けられている。さらに反応管6内には、バッファ室17に隣接して、ウェーハ7を載置した(図1においては、5枚載置している。)ボート8が設けられている。ガスノズル2とバッファ室17には、ガスノズル孔4とバッファ室孔3とが設けられており(図1においては、各々5個設けられている。)、ガスノズル孔4の開口面積は、各ガスノズル孔4からのガスの噴出量が同量となるように、ガス導入口5から見て上流側が小さく、下流側に向かって大きくなっている。
【0042】
この構成により、ガスノズル2において導入口5に近い上流から、遠い下流へ向かって1番目、2番目…5番目とし、各々のガスノズル孔4より供給されるガス流量を、Q1、Q2…Q5としたとき、Q1=Q2=…=Q5とすることができる。しかし、前駆的な解決策にて説明したようにガスの流速においては、1番目のガスノズル孔4からのガスが最も速く、以降、2番目、3番目と次第に遅くなってゆく。流量は同量だが流速は異なるQ1〜Q5のガス流は、バッファ室17内に一旦導入される。この間にQ1〜Q5のガス流は、運動のエネルギーの交換による流速差の均一化がおこなわれ、バッファ室17内の圧力はほぼ均一になる。
【0043】
この結果、各バッファ室孔3から噴出するガス流の流量をR1、R2…R5としたとき、各バッファ室孔3が同一の開口面積であっても、バッファ室17内の圧力は均一であるため、R1=R2=…=R5であるとともに、その流速も等しくなる。
さらに、バッファ室孔3の各開口位置を、それぞれ隣接するウェーハ7と同ピッチとし、さらに載置された各ウェーハ7間の間隔の部分にガスを供給するように設けることで、流速および流量が均一化されたガスを効率よくウェーハ7へ供給でき好ましい。
流速および流量が均一化されたガスが効率よくウェーハ7へ供給されることで、各ウェーハ7間の成膜状態は均一なものとなることに加え、ウェーハ7のプロセス処理の速度を大幅に向上できる。
【0044】
尚、上述の説明において、ガスノズルと、バッファ室との構成についてCVD法を例として記載したが、これはALD法においても同様に適用できる構成である。
【0045】
2)成膜処理プロセスにALD法を用いた実施の形態成膜をALD法でおこなう実施の形態について、CVD法の場合より、さらに具体的に説明する。
【0046】
ALD法によりウェーハ7へ成膜する際も、上述した縦型の基板処理装置を用いることができる。但し、ALD法の場合、処理用のガスをプラズマ等により活性化することが求められる場合は、この過程に必要な装置および操作が加わることとなる。
以下、図5、図6を用いて、成膜がALD法でおこなわれる場合について説明する。
【0047】
図5(a)(b)(c)は、ALD法による成膜の際に用いられる、本発明にかかる縦型の基板処理装置における反応室である反応管の外観および内部を異なる側面より示した図であり、図6は、そのA−A横断面図である。
尚、図5(a)(b)(c)において、(a)は反応室の外観を示し、(b)(c)は反応室の縦断面を示し、ヒータ、ウェーハ、ボート、反応管と炉口フランジとの接合部、ボート回転機構は省略してある。
【0048】
図6において、反応管6の外周には、ヒータ16が設けられ、内側には、複数枚の処理対象の基板としてウェーハ7が積層して載置されている。さらに反応管6の内壁とウェーハ7との間における円弧状の空間には、反応管6の内壁へウェーハ7の積載方向に沿って、バッファ室17が設けられ、そのウェーハと隣接する壁の端部にはバッファ室孔3が設けられている。
また、反応管6の下部には排気口18が設けられている。
【0049】
ここで、図2(a)において説明した反応管においては、バッファ室内のバッファ室孔が設けられた端部と反対側の端部にはガスノズルが配設されていたが、本実施の形態にかかる反応管においては、ガスノズルの替わりにガス供給室43がガス導入部として配設され、その下部にはガス導入口5が設けられている。
そして、ガス供給室43とバッファ室17との隔壁には、上述したガスノズルに設けられていたガスノズル孔と同様の構成を有するガス供給室孔47が設けられており、バッファ室17に設けられた各バッファ室孔3の開口位置を、それぞれ隣接するウェーハ7と同ピッチにて設置している。この結果、「1)成膜処理プロセスにCVD法を用いた実施の形態」にて説明したのと同様に、ガス導入部からガスが一旦導入されて、積載された各ウェーハ7へガスを均一に供給することができる。
【0050】
さらに本実施の形態においては、バッファ室17内に、電極52が上部より下部にわたって電極保護管50に保護されて配設され、この電極52はRFマッチングユニット53を介して高周波電源51に接続されている。この結果、電極52はバッファ室17内において、プラズマ14を発生させることができる。
【0051】
さらに加えて、本実施の形態においては、バッファ室孔3の開口位置より、反応管6の内周を120°程度回った内壁に反応ガスバッファ室42が設けられている。この反応ガスバッファ室42は、ALD法による成膜においてウェーハ7へ、複数種類のガスを1種類ずつ交互に供給する際に、バッファ室17とガス供給種を分担するものである。この反応ガスバッファ室42も、バッファ室17と同様にウェーハと隣接する位置に同一ピッチ
で反応ガスバッファ室孔48を有し、下部には反応ガス導入口45を有している。しかし、バッファ室17と異なりガス供給室43と電極52を有さず、さらに反応ガスバッファ室孔48は、開口面積が上流側から下流に向かうに従って大きくなる構成を有している。
【0052】
反応管6の下部には排気口18が設けられているが、上述したALD法による成膜において、ウェーハ7へ、複数種類のガスを1種類ずつ交互に供給する際、この排気口18は、反応管6より内部の気体を排気できる構造となっている。
【0053】
図5(a)は、バッファ室17が正面となる方向より見た場合における、反応管6の外観および内部(破線で示している。)である。反応管6内には、上部より下部にわたってバッファ室17が設けられ、バッファ室17に隣接してガス供給室43が設けられている。そしてバッファ室17内には、上部より下部にわたって電極保護管50に覆われた電極52が配設され、ガス供給室43の下部にはガス導入口5が設けられている。
【0054】
この電極保護管50は、細長い構造を有する電極52をバッファ室17の雰囲気と隔離した状態で、バッファ室17内へ挿入できる構造となっている。ここで電極保護管50の内部は外気(大気)と同一雰囲気であるため、電極保護管50に挿入された電極52は、図示していないヒータの加熱で酸化される。このため電極保護管50の内部は窒素などの不活性ガスを充填あるいはパージし、酸素濃度を充分低く抑えるための、不活性ガスパージ機構が設けてある。
【0055】
このバッファ室17より、反応管6の内壁を回ったところに、同じく上部より下部にわたって反応ガスバッファ室42が設けられ、その下部には反応ガス導入口45が設けられている。またバッファ室17より、反応ガスバッファ室42と反対の方向へ反応管6の内壁を回ったところの下部に排気口18が設けられている。
【0056】
図5(b)は、バッファ室孔3および反応ガスバッファ室孔48が正面となる方向より見た場合における、反応管6の内部である。反応管6内には、上部より下部にわたってバッファ室17と、それに隣接するガス供給室43が設けられており、バッファ室17内には、上部より下部にわたって、図示していないウェーハと隣接する位置に、同一の開口面積を有するバッファ室孔3が同ピッチで設けられている。尚、バッファ室孔3は、同一の厚みのバッファ室17の壁に同一の開口面積を有している。
【0057】
このバッファ室17より、反応管6の内壁を回ったところに、同じく上部より下部にわたって反応ガスバッファ室42が設けられている。そして反応ガスバッファ室42内には、上部より下部にわたって、図示していないウェーハと隣接する位置に同一ピッチで反応ガスバッファ室孔48が設けられている。尚、反応ガスバッファ室孔48の開口面積は、上流側より下流側、図5では下から上に向かうに従って大きくなる構成を有している。
【0058】
図5(c)は、ガス供給室43に設けられたガス供給室孔47が、正面に現れるよう反応管6を縦断した縦断面である。反応管6内には、上部より下部にわたって、バッファ室17に隣接してガス供給室43が設けられている。そしてバッファ室17とガス供給室43との隔壁には、上部より、図示していないウェーハと隣接する位置よりもさらに下部にわたってガス供給室孔47が設けられている。ガス供給室孔47がバッファ室17の最下端まで開口してある理由は、バッファ室17の中にガスの淀み部を生じさせないためである。尚、ガス供給室孔47の開口面積は、図3(a)にて説明したガスノズルに設けられたガスノズル孔と同様に、ガス流の上流側より下流に向かうに従って大きくなる構成を有している。
【0059】
ここで、反応管6内におけるウェーハ7へのALD法による成膜について図5、図6を
参照しながら説明する。尚、本成膜例においては、処理用のガスとしてアンモニア(NH)の活性種とジクロルシラン(SiHCl)とを交互に供給し、原子層成膜法によつてSiNx膜(窒化シリコン膜)を形成する方法について説明する。
【0060】
反応管6に100枚のウェーハ7を装填し、反応管6内部を気密状態として保持する。反応管6内部を排気管18を介して、図示しないポンプで排気し、ヒータ16の温度調節により、300〜600℃の範囲で一定の温度に保持する。
【0061】
アンモニアをガス導入口5からガス供給室43へ供給開始する。ガス供給室43に設けられたガス供給室孔47は、ここからバッファ室17に噴出するアンモニアの流量が同量となるように、ガス流の上流側より下流側に向かって開口面積が徐々に大きくなるように設けられている。従って、ガス供給室孔47を通過してバッファ室17に噴出するアンモニアは、流速において、上流側で速く下流側で遅くなるが、流量においては、全てのガス供給室孔47において同一となる。このバッファ室17に噴出したアンモニアは、ここに一旦導入され、互いの運動エネルギーの交換により流速の差が均一化され、バッファ室17の内部の圧力は均一になる。
【0062】
アンモニアがバッファ室17に導入され、1対の電極保護管の間の空間の圧力が均一になった状態で、バッファ室17内に設けられた2本の電極保護管50に挿入された棒状の電極52へ、高周波電源51からの高周波電力を、RFマッチクグユニット53を介して供給すると、電極保護管50の間にプラズマ14が生成される。
そしてバッファ室17内において、アンモニアをプラズマ化することによりアンモニアの活性種が生成される。またこの時、バッファ室17内の圧力が均一な状態でプラズマが生成されるため、活性種の生成に影響のあるプラズマの電子温度やプラズマ密度の分布も均一になるため、より均一な状態の活性種が生成できる。
プラズマ等の作用で生成された活性種には寿命があり、プラズマ生成部とウェーハ7との距離が離れていると、ウェーハ7に供給される前に失活し、ウェーハ7上で反応に寄与する活性種の量が著しく減少してしまうため、プラズマの生成はウェーハ7の近傍でおこなうのが望ましい。
この構成によれば、バッファ室17内というウェーハ7の近傍でアンモニアの活性種を生成するので、生成したアンモニアの大量の活性種を効率よくウェーハ7へ供給することができる。
尚、2本の電極保護管50の間隔は、プラズマ14の生成がバッファ室17の内部に限定されるように、適切な距離に設定することが好ましく好適には20mm程度である。またプラズマ14の生成はバッファ室17のどこでも良いが、バッファ室17に導入されたガスがプラズマ中を通過していくことが望ましく、好適にはバッファ室孔3とガス供給室孔47の中間に位置するように設けると良い。
【0063】
さらに、バッファ室17内部に生成されたプラズマ14が拡散してバッファ室17の室外に漏れることのないよう、電極保護管50とバッファ室孔3との距離は適切な間隔に調整してある。この結果、バッファ室孔3からウェーハ7に供給されるのは電気的に中性なアンモニアの活性種のみとなり、ウェーハ7のチャージアップによるダメージを回避できる。
【0064】
上述したようにバッファ室17に設けられたバッファ室孔3は、全て同一開口面積であるため、ウェーハ7ヘ供給されるアンモニアの活性種は、均一な流量、且つ均一な流速で供給されるため、各ウェーハ7に対して均一な成膜処理が行われる。さらに、バッファ室孔3は、多段に載置されたウェーハ7の間隔の中間に位置するよう設けてあるので、処理用のガスは、積載された各ウェーハ7へ充分に供給される。
【0065】
尚、異なる種類の処理用ガスを交互に供給して極薄膜を1層ずつ形成するALD法においては、反応管6内部の圧力や温度を適宜に設定することで、このアンモニアの活性種の供給によるN原子を含んだ極薄膜が1層分形成されるとリミットがかかり、それ以上、膜厚は増加しない。
【0066】
ウェーハ7の全面にN原子を含んだ極薄膜が形成されたら、電極52に印加していたRF電力を切り、アンモニアの供給も停止する。
【0067】
次に、NやArなどの不活性ガスにより反応管6内部をパージしながら、これらのガスを排気口18より排気する。そして、反応管6内におけるアンモニアの活性種の濃度が充分下がった時点で、前記不活性ガスの供給を停止し、反応ガス導入口45から反応ガスバッファ室42へジクロルシランを導入する。
【0068】
反応ガスバッファ室42には、反応ガス導入口45の上流より下流に向かって開口面積が徐々に大きくなる反応ガスバッファ室孔48が反応管6の中心に向けて設けられている。この結果、反応ガスバッファ室孔48よりウェーハに供給されるジクロルシランは、流速は異なるが、流量は同一の流れとなって、反応管6内へ噴出する。
【0069】
もちろん、ジクロルシランの供給も反応ガスバッファ室42の替わりに、アンモニアの供給に用いたのと同様のガス供給室43とこれに隣接したしたバッファ室17を、もう一組、反応管6内に設置し、ここに設けられたバッファ室孔3よりジクロルシランを供給することとすれば、流量も流速も均一にすることができ好ましい。しかし、本実施の形態において、ジクロルシランの供給は、ガス供給室43とバッファ室17の組合わせよりも簡易的な、反応ガスバッファ室42を用いて、ガス流量を等しくすれば、ウェーハ7において充分均一な成膜処理が可能である。
【0070】
ウェーハ7表面にSiを含んだ粒子が極薄膜状に吸着したら、ジクロルシランの供給を停止する。そして、NやArなどの不活性ガスで反応管6内部をパージした後、これらのガスを排気口18より排気し、反応管6内のジクロルシランの濃度が充分に下がった時点で、不活性ガスの供給を停止する。
【0071】
この一連のプロセスにより、約1ÅのSiNx膜が形成できる。そこで例えば、ウェーハ7上に500ÅのSiNx膜を形成する場合は、上記プロセスを約500回繰り返す。
【0072】
尚、ウェーハ7を載置した図示していないボートを、一定速度で回転させることで、ウェーハ7の一方の横部よりガスを供給しても、ウェーハ7の全面にわたって、より均一な成膜処理が実現される。本実施の形態例において、この回転速度は1〜10rpmあれば十分である。因みに、ボートを回転させない場合、ウェーハ7の膜厚の均一性は±5%程度であるが、ボートを回転した場合は<±1%となった。
【0073】
3)成膜処理プロセスにALD法を用いた異なる実施の形態
図7は、本発明の異なる実施の形態例に係る縦型の基板処理装置の反応管の横断面図である。図7に示す反応管6は、図6に示す反応管6と同様の構造を有しているが、図6においては、バッファ室17内にプラズマ発生用電極を配設していたのに対し、図7においては、ガスを活性化するための紫外線ランプ54と、紫外線がバッファ室17の外に照射されるのを防ぐための反射板58を組み合わせて設けてある。ランプ54の光のエネルギーにより反応性ガスを活性化する。以上の構成を有するバッファ室17内で活性種化された処理用のガスは、バッファ室孔3よりウェーハ7へ向かって噴出し、上述したALD法によりウェーハ7上に成膜がおこなわれる。
【0074】
図8も、本発明の異なる実施の形態例に係る縦型の基板処理装置の反応管の横断面図である。
図8に示す反応管6は、図7に示す反応管6と同様の構造を有しているが、図7においては、反応性ガスを光のエネルギーで活性化するが、本実施では適宜な電気抵抗値を有する発熱線(以下、ホットワイヤーと記載する。)55を電源57で1600℃以上に加熱し、該ホットワイヤーに触れたガスを活性化するものである。
この適宜な電気抵抗値を有し活性種を発生するホットワイヤー55としては、0.5mm程度のW(タングステン)のワイヤー等が好個に適用できる。このホットワイヤー55を、電源57の電力により1600℃以上に加熱し、これと接触した処理用ガスの熱エネルギーで活性化するものである。
以上の構成を有するバッファ室17内で活性化された処理用のガスは、バッファ室孔3よりウェーハ7へ向かって噴出し、上述したALD法によりウェーハ7上に成膜がおこなわれる。
【0075】
図9も、本発明の異なる実施の形態例に係る縦型の基板処理装置の反応管の横断面図である。図9に示す反応管6は、図6に示す反応管6と同様の構造を有しているが、図6においては、バッファ室17内にプラズマ発生用電極を配設していたのに対し、図9においては、処理用のガスが反応管6内に導入されるガス導入口5のさらに上流側のガス流路にリモートプラズマユニット56を配設し、ここを通過するガスにプラズマを生成する構成としたものである。
【0076】
リモートプラズマユニット56を通過する処理用のガスは、ここでプラズマと反応して活性種化し、この活性種化したガスをガス導入口5より反応管6内へ入りガス供給室43を経由してバッファ室17へ供給され、さらに、このバッファ室17に設けられたバッファ室孔3より均一なガスとしてウェーハ7へ供給される。そして上述したALD法によりウェーハ7上に成膜がおこなわれる。ここでリモートプラズマユニット56として、ICPコイル等が好個に用いられる。
この構成によれば、図6の装置と比べて、ウェーハに供給される活性種の量が減り処理効率が落ちるが、処理効率が落ちても構わない場合に用いられる。
【符号の説明】
【0077】
2.ガスノズル
3.バッファ室孔
4.ガスノズル孔
5.ガス導入口
6.反応管
7.ウェーハ
8.ボート
18.排気口
.ガスノズル孔より噴出するガスの流量
.バッファ室孔より噴出するガスの流量

【特許請求の範囲】
【請求項1】
積層配置された複数の基板を収容する反応室を形成する反応管と、
前記反応管の内部に設けられたバッファ室と、
前記反応室内に第1の処理ガスを導入する第1のガス導入部と、
前記バッファ室内に第2の処理ガスを導入する第2のガス導入部と、
を備えた基板処理装置であって、
前記第1のガス導入部は、前記第1の処理ガスを前記反応室内に供給する第1のガス供給口を有し、
前記第2のガス導入部は、前記第2の処理ガスを前記バッファ室内に導入するガス導入口を有し、
前記バッファ室は、前記第2のガス導入部から導入される前記第2の処理ガスを前記反応室内に供給する複数の第2のガス供給口を有し、
前記第2のガス導入部にリモートプラズマユニットが設けられ、
前記リモートプラズマユニットを通過する第2の処理ガスが活性化され、
前記活性化された第2の処理ガスが前記複数の第2のガス供給口から前記反応室内に供給され、
前記第1の処理ガスと前記活性化された第2の処理ガスとが前記反応室内に交互に複数回供給されて、前記基板の表面に薄膜が形成されるように構成されている
ことを特徴とする基板処理装置。
【請求項2】
請求項1に記載の基板処理装置であって、前記リモートプラズマユニットはICPコイルを備えていることを特徴とする基板処理装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2011−142347(P2011−142347A)
【公開日】平成23年7月21日(2011.7.21)
【国際特許分類】
【出願番号】特願2011−86587(P2011−86587)
【出願日】平成23年4月8日(2011.4.8)
【分割の表示】特願2007−104727(P2007−104727)の分割
【原出願日】平成14年4月5日(2002.4.5)
【出願人】(000001122)株式会社日立国際電気 (5,007)
【Fターム(参考)】