説明

微粒子の製造方法及び装置

【課題】エレクトロスピニング法により、直径がナノオーダーの微粒子を生産性良く製造できる微粒子の製造方法及び装置を提供する。
【解決手段】微粒子構成材料が50重量%未満の含有量で溶媒中に溶解された原料液2と高圧気体とを噴霧機構部4に供給し、噴霧機構部4にて原料液2を霧化して吹き出し口7から吹き出すとともに吹き出し口7と吹き出し口7に対向して配置されたコレクタ10の間に高電圧を印加して吹き出す原料液2に電荷を帯電させる。これにより、高圧空気が急激に膨張する空気爆発によって微粒子に霧化し、その後微粒子中の溶媒が蒸発してさらに粒径が小さくなることで電荷のクーロン力で一次静電爆発が生じてさらに微粒子化し、その後さらに溶媒が蒸発して同様に二次静電爆発が生じてさらに微粒子化されることによって、ナノオーダーの微粒子が高い生産性で製造されるようにした。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は微粒子の製造方法及び装置に関し、特にエレクトロスピニング(電荷誘導紡糸)法を適用してナノサイズの微粒子を製造する方法及び装置に関するものである。
【背景技術】
【0002】
従来、高分子物質から成るサブミクロンスケールの直径を有するナノファイバーを製造する方法として、エレクトロスピニング(電荷誘導紡糸)法が知られている。従来のエレクトロスピニング法では、高電圧を印加した針状のノズルに高分子溶液を供給することで、この針状のノズルから線状に流出する高分子溶液に電荷が帯電され、高分子溶液の溶媒蒸発に伴って帯電電荷間の距離が小さくなって作用するクーロン力が大きくなり、そのクーロン力が線状の高分子溶液の表面張力より勝った時点で線状の高分子溶液が爆発的に延伸される現象が生じ、この静電爆発と称する現象が、一次、二次、場合によっては三次と繰り返されることで、サブミクロンの直径の高分子から成るナノファイバーが製造されるものである。
【0003】
また、図13(a)、(b)に示すように、乾燥室41中に樹脂溶液を噴霧する噴霧ノズル42と、噴霧ノズル42の先端を絶縁体44を介して取り囲む対向電極43と、噴霧ノズル42と対向電極43の間に5kV以上、10kV程度の高電圧を印加する高電圧発生手段45と、タンク47とフィルタ48とポンプ49からなり、噴霧ノズル42に樹脂溶液を供給する樹脂溶液供給手段46と、フィルタ51とファン52とヒータ53とディスパーサー54からなり、乾燥室41内に加熱空気を吹き込む加熱空気吹き込み手段50と、乾燥室41から排出された樹脂粒子を分離回収するサイクロン55から成る樹脂粒子の造粒装置が提案されている(例えば、特許文献1参照)。
【0004】
この造粒装置においては、噴霧ノズル42から噴霧された液滴が帯電しているので、電荷密度が液滴の表面張力を越えると、液滴から細い液柱が引き出され、この液柱が微粒子に分裂して乾燥室41内の空間に噴霧され、その微粒子が乾燥室41内の加熱空気で乾燥されることで樹脂微粒子となり、この樹脂微粒子が加熱空気とともに乾燥室41から排出されて分離回収される。
【0005】
なお、静電塗装装置においては、塗料を噴霧する塗布ノズルと被塗装物との間に電圧を印加し、塗布ノズルで塗料に帯電させ、塗料を被塗装物に強固にかつ効率的に付着させて塗装するように構成されている。
【特許文献1】特公昭63−53006号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
ところが、特許文献1に記載の造粒装置は、エレクトロスピニング法を適用しているとは言え、粒径が数μmの微粒子を製造するものであって、直径がサブミクロンのナノサイズの微粒子を製造することはできないという問題がある。また、その構成であえてナノサイズの微粒子を製造しようとする場合には、噴霧ノズル42の径を小さくし、印加電圧を高くする必要がある。しかしながら、噴霧ノズル42の径を小さくすると、微粒子の製造能率が極めて悪くなり、実用的でないという問題がある。また、噴霧ノズル42とその周囲に絶縁体44を介して配設された対向電極43の間の距離が短いので、印加電圧を高くするとコロナ放電が発生するため、樹脂溶液の溶媒が引火性を持つ場合には爆発を起こす恐れがあり、あまり高い電圧を印加することは不可能である。そのため、ナノサイズの微粒子を生産性良く製造することはできないという課題がある。
【0007】
また、静電塗装においては、単に塗料に帯電させることで被塗装物に付着させるだけであり、当然のことながらエレクトロスピニング法を適用して直径がサブミクロンのナノサイズの微粒子を製造する技術とは全く異なる技術である。具体的にも、静電塗装の塗料は溶媒が5〜10重量%程度含有したもので、印加電荷も数kV程度である。
【0008】
本発明は、上記従来の課題を解決するもので、エレクトロスピニング法を適用して直径がサブミクロンのナノサイズの微粒子を生産性良く製造することができる高分子微粒子の製造方法及び装置を提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明の微粒子の製造方法は、微粒子構成材料を50重量%未満の含有量で溶媒中に溶解させた原料液と高圧気体とを噴霧機構部に供給する供給工程と、噴霧機構部にて原料液を霧化して吹き出し口から吹き出す噴霧化工程と、噴霧機構部の吹き出し口とこの吹き出し口に対向して配置されたコレクタとの間に電界を発生させ、霧化して吹き出す原料液に電荷を帯電させる帯電化工程とを有するものである。微粒子構成材料には、高分子材料(本発明では、分子量が10000以上の一般的な高分子材料に限らず、分子量が1000〜10000の準高分子材料も含める)が好適に適用される。具体的には、各種の合成樹脂材料や、カラーフィルタ用の顔料や、蛋白質(生体細胞の主要成分をしめる高分子の含窒素有機化合物)などを挙げることができ、本発明はそれらのナノオーダーの微粒子を製造するものである。また、上記微粒子構成材料は単体物に限らず、各種材料の混合物であっても良い。さらに、粒径がナノオーダーの微粉末を混合させた混合物であっても良く、その場合製造される微粒子中に微粉末を含むことになる。
【0010】
この構成によれば、噴霧機構部の吹き出し口から電荷を帯電された原料液が高圧空気とともに吹き出すことにより、まず高圧空気が急激に膨張する空気爆発によって原料液が強く噴霧されて10〜50μmの粒径の微粒子に霧化される。そして、静電塗装の場合と異なって、原料液の溶媒量を多くして溶質である微粒子構成材料が50重量%未満の濃度にしているので、その後微粒子中の溶媒が蒸発してさらに粒径が小さくなることで、帯電されていた電荷が集中し、そのクーロン力が原料液の表面張力を超えた時点で一次静電爆発が生じ、0.1〜1μm程度の粒径に微粒子化され、その後さらに溶媒が蒸発して同様に二次静電爆発が生じ、場合によってはさらに三次静電爆発等が生じ、10〜100nm程度の粒径に微粒子化される。かくして、ナノオーダーの微粒子を高い生産性で製造することができる。また、製造されたナノオーダーの微粒子はコレクタ又はその上に配置された部材に付着させることができる。なお、電荷を帯電させるための印加電圧は10kV〜100kVにするのが望ましい。100kVを超えると危険性が高くなるので、100kV以下としている。
【0011】
また、原料液を、微粒子構成材料を30重量%未満の含有量で溶媒中に溶解したものにすると、印加電圧にもよるが、静電爆発がより強く若しくは多段に発生して一層微粒子化を促進させることができる。より望ましくは、原料液の濃度を15重量%未満にするのが好適である。
【0012】
また、コレクタ上に沿って微粒子が付着堆積するシート材を所定の速度で移動させると、ナノオーダーの微粒子を表面に所要量付着させたシート材を連続的に生産性良く製造することができる。
【0013】
また、シート材の移動速度に基づいて噴霧機構部に供給する原料液の量と高圧気体の圧力を制御することによって、シート材上の微粒子の付着量を制御することができる。
【0014】
また、原料液の粘度に基づいて噴霧機構部に供給する高圧気体の圧力又は原料液の供給量を制御することによって、任意の粘度の原料液を用いても所望のナノオーダーの粒径の微粒子を製造することができる。
【0015】
また、噴霧機構部に種類の異なる複数の原料液を供給し、噴霧機構部で、複数の原料液を混合してその混合液を霧化すると、複数種の構成材料の混合物若しくは反応物からなる微粒子を、前工程で原料液の混合工程を設けずに効率良く製造することができる。また、混合後反応完了までの時間が短くかつその反応完了までに微粒子を製造する必要のある場合などに好適に適用することができる。
【0016】
また、本発明の微粒子の製造装置は、微粒子構成材料を50重量%未満の含有量で溶媒中に溶解させた原料液を供給する原料液供給手段と、高圧気体を供給する高圧気体供給手段と、原料液と高圧気体が供給され、吹き出し口から原料液を霧化して吹き出す噴霧機構部と、噴霧機構部の吹き出し口に対向して配置されたコレクタと、吹き出し口に設けられた導電体とコレクタ間に高電圧を印加する高電圧発生手段とを備えたものである。なお、前記導電体は、高電圧を印加するため、独立して絶縁されていることが望ましい。また、高電圧発生手段は10kV〜100kVの高電圧を発生するものが望ましい。100kVを超えると危険性が高くなるので、100kV以下としている。
【0017】
この構成によれば、上記微粒子の製造方法を実施することができ、ナノオーダーの微粒子を生産性良く製造することができる。
【0018】
また、原料液が微粒子構成材料を30重量%未満の含有量で溶媒中に溶解したものであると、上記のように、印加電圧にもよるが、静電爆発がより強く若しくは多段に発生して一層微粒子化を促進させることができる。
【0019】
また、噴霧機構部の噴霧ノズル部に、原料液を吐出する複数のノズル部を設けると、吐出した原料液に対する電荷の帯電性を向上することができ、溶媒の含有割合が多くても確実に電荷を帯電させることができ、静電爆発をより確実に発生させてナノオーダーの微粒子を製造することができる。
【0020】
また、吹き出し口が幅広形状で、その幅方向に等間隔置きに複数の噴霧ノズル部が配設されていると、広い幅の領域に対して微粒子を一括して吹き付けることができ、大面積の領域に微粒子を吹き付けて付着させる場合に高い生産性を実現することができる。。
【0021】
また、導電体が、先細の突起部を有していると、その突起部の先端に電荷が溜まり、その電荷が吐出した原料液に対して容易に帯電し、原料液に対する帯電性が向上するので、溶媒の含有割合が多くても確実に電荷を帯電させることができ、静電爆発をより確実に発生させてナノオーダーの微粒子を製造することができる。突起部は導電体の原料液噴出し方向に突出形成することで上記作用が得られるが、原料液を吐出するノズル部の円周に突出するように1又は複数の突起部を突出させると、原料液に対する帯電効果が大きい。
【0022】
また、噴霧機構部の吹き出し口に、メッシュ状の電荷付加体を配設しても、吐出した原料液に対して容易に帯電し、原料液に対する帯電性が向上するので、溶媒の含有割合が多くても確実に電荷を帯電させることができ、静電爆発をより確実に発生させてナノオーダーの微粒子を製造することができる。
【0023】
また、噴霧機構部を、複数の原料液供給口を有し、これら複数の原料液供給口から供給された複数の原料液を攪拌混合してノズル部から吐出し、吐出した原料液を高圧気体にて霧化して吹き出し口から吹き出すようにすると、複数種の構成材料の混合物若しくは反応 物からなる微粒子を、前工程で原料液の混合工程を設けずに効率良く製造することができる。また、混合後反応完了までの時間が短くかつその反応完了までに微粒子を製造する必要のある場合などに好適に適用することができる。
【0024】
また、三次元方向に移動可能な移動手段の可動ヘッドに、原料液供給手段と高圧気体供給手段と噴霧機構部と高電圧発生手段の内の少なくとも噴霧機構部を搭載し、可動ヘッドの可動範囲に設置された対象物表面に微粒子を付着させるようにすると、可動ヘッドを任意の対象物表面に沿うように移動させることで、対象物表面に対して効率的にかつ均一に微粒子を付着させることができる。
【発明の効果】
【0025】
本発明の微粒子の製造方法及び装置によれば、まず高圧空気が急激に膨張する空気爆発によって原料液が強く噴霧されて微粒子に霧化され、その後微粒子中の溶媒が蒸発してさらに粒径が小さくなることで、帯電されていた電荷のクーロン力で一次静電爆発が生じてさらに微粒子化され、その後さらに溶媒が蒸発して同様に二次静電爆発などが生じてさらに微粒子化されることによってナノオーダーの微粒子を高い生産性で製造することができる。
【発明を実施するための最良の形態】
【0026】
以下、本発明の微粒子の製造方法及び装置の各実施形態について、図1〜図12を参照しながら説明する。
【0027】
(第1の実施形態)
まず、本発明の高分子微粒子の製造方法及び装置の第1の実施形態について、図1〜図3を参照して説明する。
【0028】
図1において、1は高分子材料などの微粒子構成材料を溶媒に溶解してなる原料液2を収容した溶液容器である。原料液2中の微粒子構成材料は、単一の高分子物質からなるものでも、複数種の高分子物質からなるものでも、さらに例えば光触媒として機能する酸化チタンなどから成るナノオーダーの粒径の微粉末を混合したものであっても良い。また、原料液2の組成は、微粒子構成材料が50重量%未満、好適には30重量%未満、より好適には15重量%未満、さらに最適には5〜10重量%とされ、それに対応して溶媒が5重量%以上、好適には70重量%以上、より好適には85重量%以上、さらに最適には95〜90重量%とされ、溶媒の組成率の高い溶液組成とされている。
【0029】
原料液2中の微粒子構成材料としての高分子物質には、ポリプロピレン、ポリエチレン、ポリスチレン、ポリエチレンオキサイド、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリ−m−フェニレンテレフタレート、ポリ−p−フェニレンイソフラテート、ポリフッ化ビニリデン、ポリフッ化ビニリデン−ヘキサフルオロプロピレン共重合体、ポリ塩化ビニル、ポリ塩化ビニリデン−アクリレート共重合体、ポリアクリロニトリル、ポリアクリロニトリル−メタクリレート共重合体、ポリカーボネート、ポリアリレート、ポリエステルカーボネート、ナイロン、アラミド、ポリカプロラクトン、ポリ乳酸、ポリグリコール酸、コラーゲン、ポリヒドロキシ酪酸、ポリ酢酸ビニル、ポリペプチド等を例示でき、これらより選ばれる少なくとも一種が用いられるが、特にこれらに限定されるものではない。また、微粒子構成材料には、上記のような高分子物質に限らず、液晶表示パネルにおけるカラーフィルタ用の顔料や、各種の蛋白質やcDNAなどの生物学的に活性な高分子物質などにも適用して、その微粒子化を図ることもできる。
【0030】
使用できる溶媒としては、メタノール、エタノール、1−プロパノール、2−プロパノ ール、ヘキサフルオロイソプロパノール、テトラエチレングリコール、トリエチレングリコール、ジベンジルアルコール、1,3−ジオキソラン、1,4−ジオキサン、メチルエチルケトン、メチルイソブチルケトン、メチル−n−ヘキシルケトン、メチル−n−プロピルケトン、ジイソプロピルケトン、ジイソブチルケトン、アセトン、ヘキサフルオロアセトン、フェノール、ギ酸、ギ酸メチル、ギ酸エチル、ギ酸プロピル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、酢酸メチル、酢酸エチル、酢酸プロピル、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジプロピル、塩化メチル、塩化エチル、塩化メチレン、クロロホルム、o−クロロトルエン、p−クロロトルエン、四塩化炭素、1,1−ジクロロエタン、1,2−ジクロロエタン、トリクロロエタン、ジクロロプロパン、ジブロモエタン、ジブロモプロパン、臭化メチル、臭化エチル、臭化プロピル、酢酸、ベンゼン、トルエン、ヘキサン、シクロヘキサン、シクロヘキサノン、シクロペンタン、o−キシレン、p−キシレン、m−キシレン、アセトニトリル、テトラヒドロフラン、N,N−ジメチルホルムアミド、ピリジン、水等を例示でき、これらより選ばれる少なくとも一種が用いられるが、特にこれらに限定されるものではない。
【0031】
また、原料液2には、無機質固体材料を混入することも可能であり、その無機質固体材料としては、酸化物、炭化物、窒化物、ホウ化物、珪化物、弗化物、硫化物等を挙げることができるが、耐熱性、加工性などの観点からは酸化物を用いるのが好ましい。酸化物としては、Al2O3、SiO2、TiO2、Li2O、Na2O、MgO、CaO、SrO、BaO、B2O3、P2O5、SnO2、ZrO2、K2O、Cs2O、ZnO、Sb2O3、As2O3、CeO2、V2O5、Cr2O3、MnO、Fe2O3、CoO、NiO、Y2O3、Lu2O3、Yb2O3、HfO2、Nb2O5等を例示でき、これらより選ばれる少なくとも一種が用いられるが、特にこれらに限定されるものではない。
【0032】
具体例としては、微粒子構成材料がポリウレタンの場合、溶媒はDMF(ディメチルフラン)又はトルエンが用いられ、ポリウレタン15重量%、溶媒85重量%の組成とするのが好適である。また、微粒子構成材料がPEG(ポリエチレングリコール)の場合、溶媒は水が用いられ、PEG5重量%、水95重量%の組成とするのが好適である。
【0033】
3は溶液容器1から噴霧機構部4に原料液2を所定流量で供給する原料液供給手段である。5は圧縮空気などの高圧気体を供給する高圧気体供給手段であり、圧力調整手段6を介して圧力調整された高圧気体を噴霧機構部4に供給する。
【0034】
噴霧機構部4は原料液2と高圧気体が供給されることで、吹き出し口7から原料液2を霧化して吹き出すように構成されている。また、噴霧機構部4の吹き出し口7に導電体8が設けられ、高電圧発生手段9にて、10〜100kV、好適には30〜60kVの高電圧を印加するように構成されている。高電圧発生手段9には、その動作を入切するスイッチ9aが設けられ、任意に出力をオン・オフできるように構成されている。また、導電体8は、高電圧が印加されるため、独立して絶縁されている。
【0035】
また、噴霧機構部4に間隔をあけて対向させて導電体から成るコレクタ10が配設されている。このコレクタ10には、噴霧機構部4の吹き出し口7に設けられた導電体8に対して電位差を有する電圧が印加されている。具体的には、高電圧発生手段9の一方の出力端子が導電体8に接続され、他方の接地される出力端子がコレクタ10に接続されている。なお、コレクタ10は必ずしも接地する必要はなく、導電体8とは逆極性の電圧を印加するようにしても良い。また、導電体8を接地して、コレクタ10側に、正または負の高電圧を印加して、導電体8の吹き出し口7から噴霧される原料液2に電荷を誘導して、帯電させるようにしても、同様の効果が得られる。
【0036】
噴霧機構部4は、図2に示すように、先端部に小径のノズル部11aを形成された原料液2の吐出通路11が軸芯部に貫通形成され、この吐出通路11の周囲に環状に高圧気体溜まり12が形成され、その後端の適所に設けられた供給路12aに高圧気体供給手段5 に接続された供給管13が接続されている。この高圧気体溜まり12の先端部には、吐出通路11のノズル部11aに向けて径及び断面積が縮小するテーパ通路部14が設けられ、このテーパ通路部14の先端部に、吐出通路11のノズル部11aの先端部外周に周方向複数箇所又は全周で連通する気体混合ノズル15が設けられている。吐出通路11のノズル部11aと気体混合ノズル15にて噴霧ノズル部16が構成されている。また、噴霧機構部4の先端面に、噴霧ノズル部16に対応して吹き出し口7が形成された導電体8が配置されている。吹き出し口7は、外面に向けて口径が漸次大きくなるテーパ開口にて構成されている。
【0037】
以上の構成によれば、図2に示すように、噴霧機構部4の吹き出し口7から電荷を帯電された原料液が高圧空気とともに吹き出すことにより、まず空気爆発領域17で、高圧空気が急激に膨張する空気爆発によって原料液が強く噴霧されて10〜50μmの粒径の微粒子に霧化され、その後一次静電爆発領域18で、微粒子中の溶媒が蒸発してさらに粒径が小さくなることで帯電されていた電荷が集中し、そのクーロン力が原料液2の表面張力を超えた時点で一次静電爆発が生じ、0.1〜1μm程度の粒径に微粒子化され、その後二次静電爆発領域19で、さらに溶媒が蒸発して同様に二次静電爆発が生じ、場合によってはさらに三次静電爆発等が生じ、10〜100nm程度の粒径に微粒子化され、これによってナノオーダーの微粒子が高い生産性で製造される。
【0038】
また、噴霧機構部4の吹き出し口7と電位差を有する電圧が印加されたコレクタ10が噴霧機構部4と間隔をあけて対向させて配置されているので、上記のように製造された微粒子が、このコレクタ10又はその上に配置された各種部材上に吹き付けられて付着し、ナノオーダーの極薄の付着層を均一に形成することができる。
【0039】
従って、このコレクタ10上に沿って、例えば外装シートや壁紙材などのシート材(図示せず)を所定の速度で移動させるように構成すると、ナノオーダーの微粒子が表面に所要量付着されたシート材を連続的に生産性良く製造することができる。さらに、この場合シート材の移動速度に基づいて、原料液供給手段3と圧力調整手段6を制御して噴霧機構部4に供給する原料液2の量と高圧気体の圧力を制御することによって、シート材上の微粒子の付着量を制御することができる。
【0040】
また、原料液2の粘度に基づいて、噴霧機構部4に供給する高圧気体の圧力と原料液2の供給量の何れか又は両方を制御するのが好適である。原料液2の粘度が高い場合には、微粒子の粒径が大きくなるので、粘度の低い場合に比して原料液2の供給量を少なくしたり、高圧気体の圧力を高くしたりして所望の粒径が得られるように制御する。このような制御を行うことにより、任意の粘度の原料液2を用いても所望のナノオーダーの粒径の微粒子を製造することができる。
【0041】
また、導電体8に形成する吹き出し口7の開き角度αを変化させることで、吹き出す高分子微粒子の広がりを変化させることができ、図3(a)に示すようにαを大きくすることで、高分子微粒子の吹き出し範囲を大きく広げることができ、図3(b)に示すようにαを小さくすることで高分子微粒子の吹き出し範囲を狭くすることができる。
【0042】
(第2の実施形態)
次に、本発明の微粒子の製造装置の第2の実施形態について、図4、図5を参照して説明する。尚、以下の実施形態の説明では、先行する実施形態と同一の構成要素については同一の参照符号を付して説明を省略し、主として相違点についてのみ説明する。
【0043】
上記実施形態では、導電体8の表面が、平面ないし吹き出し口7を形成する円錐面で、滑らかな表面を呈している例を示したが、本実施形態では、図4(a)、(b)に示すよ うに、ノズル部11aの先端外周部に、原料液2の吹き出し方向に向かって先細の環状突起部21を有するリング状のノズル部導電体20を配設している。また、ノズル部導電体20の外周に、テーパ通路部14を通って加速及び集束された高圧気体をノズル部11aから吐出した原料液2に向けて吹き付けて混合・霧化させる環状若しくは環状に配置された複数の気体混合ノズル15が配設され、これらノズル部11aと気体混合ノズル15にて噴霧ノズル部16が構成され、かつこの噴霧ノズル部16が吹き出し口7を構成している。気体混合ノズル15の外周には導電体8が配設され、ノズル部導電体20と電気的に接続されている。
【0044】
この構成によれば、ノズル部導電体20の環状突起部21の先端に電荷が集中して帯電させ易い状態となっているので、ノズル部11aから流出した原料液2が効果的に帯電されるとともに、気体混合ノズル15から吹き出した高圧気体が混合されて高圧空気の急激な膨張による空気爆発が発生することで、強く帯電された微粒子を生成させることができ、ナノオーダーの微粒子をより効率的に製造することができる。
【0045】
なお、図4(a)、(b)に示した例では、ノズル部導電体20の先端に環状突起部21を形成した例を示したが、図5に示すように、ノズル部導電体20の環状の先端面に複数の突起部22を配列しても良い。さらに、ノズル部導電体20の環状の先端面に多数の微小で鋭い突起部を形成しても良い。また、ノズル部導電体20や導電体8の表面を、多数の微小な突起部を有する凹凸面に形成しても良い。さらに、1又は複数の突起部をノズル部11aの円周に突出するように形成して、流出する原料液により直接的にかつ効果的に帯電させるようにしてもよい。
【0046】
(第3の実施形態)
次に、本発明の微粒子の製造装置の第3の実施形態について、図6を参照して説明する。
【0047】
上記第2の実施形態では、導電体8の表面が平面状で、吹き出し口7が噴霧ノズル部16にて構成されている例を示したが、本実施形態では、図6(a)、(b)に示すように、導電体8の少なくともコレクタ10側に対向する表面に、コレクタ10側に向かって広がる円錐表面23を形成し、その円錐表面23に複数の突起部24を分散して配設し、円錐表面23の開口にて吹き出し口7を構成している。なお、突起部24は、図示例では大きく図示しているが、その高さは0.1mm〜1.0mm程度で良い。
【0048】
この構成によれば、原料液2が空気爆発にて噴霧されて微粒子が生成され、吹き出し口7から吹き出すまでの過程において、生成される原料液2の微粒子に対しても突起部24から効果的に電荷を帯電させることができるので、より強く帯電された微粒子を生成させることができ、ナノオーダーの微粒子をより効率的に製造することができる。
【0049】
(第4の実施形態)
次に、本発明の微粒子の製造装置の第4の実施形態について、図7を参照して説明する。
【0050】
上記第3の実施形態では、導電体8に形成した円錐表面23に複数の突起部24を分散して配設したが、本実施形態では、噴霧ノズル部16に対向するとともに、円錐表面23で囲まれた空間を横断するように、メッシュ状や平行線の電荷付加体25を配設し、導電体8から電荷付加体25に高電圧を印加している。
【0051】
この構成によれば、噴霧ノズル部16にて霧化して吹き出し口7から吹き出そうとする原料液2の微粒子に対して電荷付加体25にてより直接的に電荷を付与することができて 、原料液2の微粒子に対する帯電性が向上するので、溶媒の含有割合が多くても確実に電荷を帯電させることができ、静電爆発をより確実に発生させてナノオーダーの微粒子を一層効率的に製造することができる。
【0052】
(第5の実施形態)
次に、本発明の微粒子の製造装置の第5の実施形態について、図8を参照して説明する。
【0053】
上記実施形態では、噴霧機構部4における噴霧ノズル部16には、単一のノズル部11aが設けられている例を示したが、本実施形態では、図8(a)、(b)に示すように、噴霧ノズル部16に、吐出通路11を通して供給されてきた原料液2を吐出するノズル部11aが複数並列して配設されるとともに、ノズル部導電体20の先端面には各ノズル部11aの周囲を取り囲むように複数の環状突起部21が設けられている。
【0054】
この構成によれば、各ノズル部11aから吐出する原料液2に対してそれぞれ環状突起部21から電荷が帯電されるので、原料液2の全体に対する電荷の帯電性を向上することができる。その結果、溶媒の含有割合が多くても確実に電荷を帯電させることができ、静電爆発をより確実に発生させてナノオーダーの微粒子を製造することができる。
【0055】
(第6の実施形態)
次に、本発明の微粒子の製造装置の第6の実施形態について、図9、図10を参照して説明する。
【0056】
上記実施形態では、噴霧機構部4に単一の噴霧ノズル部16が設けられている例を示したが、本実施形態では、図9に示すように、噴霧機構部4の吹き出し口7を幅広形状に形成しており、図10に示すように、吹き出し口7の幅方向に等間隔置きに複数の噴霧ノズル部16が並列して配設されている。
【0057】
この構成によれば、広い幅の領域に対して高分子微粒子を一括して吹き付けることができるので、大面積の領域に高分子微粒子を吹き付けて付着させる場合に高い生産性を実現することができる。
【0058】
(第7の実施形態)
次に、本発明の微粒子の製造装置の第7の実施形態について、図11を参照して説明する。
【0059】
以上の実施形態では、噴霧機構部4に対して単一の種類の原料液2を供給する例を示したが、本実施形態では噴霧機構部4に、複数の原料液供給口26a、26bを設けるとともに、これら複数の原料液供給口26a、26bから供給された種類の異なる複数の原料液2a、2bを攪拌混合する混合手段27を配設して、混合した原料液2を吐出通路11に送り出すように構成されている。これにより、複数の種類の異なる原料液2a、2bが混合された原料液2がノズル部11aから吐出し、吐出した原料液2が噴霧ノズル部16で高圧気体にて霧化されて吹き出される。なお、混合手段27は、攪拌翼を回転駆動して混合する混合機を適用しても、流路方向に配列された複数の固定翼を通過する間に攪拌混合されるようにしたものを適用しても良い。
【0060】
この構成によれば、複数種類の構成材料の混合物若しくは反応物からなるナノオーダーの微粒子を製造する場合に、複数種類の原料液を前工程で混合する工程を設ける必要がなく、そのような微粒子を効率良く製造することができる。特に、微粒子が反応生成物から成り、かつ混合後反応完了までの時間が短いため、混合した後短時間で微粒子を製造する 必要のある場合などに好適に適用することができる。
【0061】
(第8の実施形態)
次に、本発明の微粒子の製造装置の第8の実施形態について、図12を参照して説明する。
【0062】
本実施形態の微粒子の製造装置は、三次元方向に移動可能な移動手段としてのロボット部31を備えており、その可動ヘッド32に原料液供給手段3と噴霧機構部4を搭載し、可動ヘッド32の可動範囲の下部に、微粒子を付着させる対象物33を搬入・搬出する対象物移送位置決め手段34が配設されている。また、噴霧機構部4は、装置の固定部又は装置外に配置された高圧気体供給手段5や高電圧発生手段9と供給ホースや給電ケーブル(図示せず)にて接続されている。また、好適には対象物移送位置決め手段34における対象物33の下部にコレクタ10が配設され、又は可能であれば、対象物33自体がコレクタ10として機能するように対象物33が電気的に接地又は逆極性の電圧が印加される。
【0063】
この構成によれば、可動ヘッド32を任意の対象物33表面に沿うように移動させることで、対象物33の表面に対して効率的にかつ均一に微粒子を付着させることができる。
【0064】
なお、可動ヘッド32には、少なくとも噴霧機構部4を搭載すればよく、可能であればさらに原料液供給手段3、高圧気体供給手段5、高電圧発生手段9の内の1又は複数の手段が搭載され、搭載できずに固定側に配設された手段と搭載された手段とがホースやケーブル等で接続される。
【産業上の利用可能性】
【0065】
本発明の微粒子の製造方法と装置によれば、噴霧機構部から吹き出した原料液が、高圧空気が急激に膨張する空気爆発と、その後の溶媒の蒸発に伴うクーロン力の増大による一次静電爆発と二次静電爆発とによって順次微粒子化されることにより、ナノオーダーの微粒子を高い生産性で製造することができるので、各種材質のナノオーダーの微粒子の製造に好適に利用することができる。
【図面の簡単な説明】
【0066】
【図1】本発明の第1の実施形態における微粒子の製造装置の概略構成を示す斜視図。
【図2】同実施形態の噴霧機構部の断面図。
【図3】同実施形態における吹き出し口の変形構成例の説明図。
【図4】本発明の第2の実施形態における微粒子の製造装置の要部構成を示し、(a)は断面図、(b)はリング状導電体の斜視図。
【図5】同実施形態における変形構成例を示す斜視図。
【図6】本発明の第3の実施形態における微粒子の製造装置の要部構成を示し、(a)は断面図、(b)は(a)のA矢視図。
【図7】本発明の第4の実施形態における微粒子の製造装置の要部構成を示し、(a)は断面図、(b)は電荷付加体の正面図。
【図8】本発明の第5の実施形態における微粒子の製造装置の要部構成を示し、(a)は断面図、(b)は斜視図。
【図9】本発明の第6の実施形態における微粒子の製造装置の概略構成を示す斜視図。
【図10】図9のB矢視図。
【図11】本発明の第7の実施形態における微粒子の製造装置の噴霧機構部の断面図。
【図12】本発明の第8の実施形態における微粒子の製造装置の全体概略構成を示す斜視図。
【図13】従来例の微粒子の製造装置を示し(a)は全体概略構成図、(b)は同ノズル部の詳細構成図。
【符号の説明】
【0067】
2 原料液
2a、2b 種類の異なる原料液
3 原料液供給手段
4 噴霧機構部
5 高圧気体供給手段
7 吹き出し口
8 導電体
9 高電圧発生手段
10 コレクタ
16 噴霧ノズル部
17 空気爆発領域
18 一次静電爆発領域
19 二次静電爆発領域
21 環状突起部
22 突起部
24 突起部
25 電荷付与体
26a、26b 原料液供給口
27 混合手段
31 ロボット部
32 可動ヘッド
33 対象物

【特許請求の範囲】
【請求項1】
微粒子構成材料を50重量%未満の含有量で溶媒中に溶解させた原料液と高圧気体とを噴霧機構部に供給する供給工程と、噴霧機構部にて原料液を霧化して吹き出し口から吹き出す噴霧化工程と、噴霧機構部の吹き出し口とこの吹き出し口に対向して配置されたコレクタとの間に電界を発生させ、霧化して吹き出す原料液に電荷を帯電させる帯電化工程とを有することを特徴とする微粒子の製造方法。
【請求項2】
原料液は、微粒子構成材料を30重量%未満の含有量で溶媒中に溶解したものであることを特徴とする請求項1記載の微粒子の製造方法。
【請求項3】
微粒子が付着堆積するシート材をコレクタ上に沿って所定の速度で移動させることを特徴とする請求項1又は2記載の微粒子の製造方法。
【請求項4】
シート材の移動速度に基づいて噴霧機構部に供給する原料液の量と高圧気体の圧力を制御することを特徴とする請求項3記載の微粒子の製造方法。
【請求項5】
原料液の粘度に基づいて噴霧機構部に供給する高圧気体の圧力又は原料液の供給量を制御することを特徴とする請求項1〜4の何れかに記載の微粒子の製造方法。
【請求項6】
噴霧機構部に種類の異なる複数の原料液を供給し、噴霧機構部で、複数の原料液を混合してその混合液を霧化することを特徴とする請求項1〜5の何れかに記載の微粒子の製造方法。
【請求項7】
微粒子構成材料を50重量%未満の含有量で溶媒中に溶解させた原料液を供給する原料液供給手段と、高圧気体を供給する高圧気体供給手段と、原料液と高圧気体が供給され、吹き出し口から原料液を霧化して吹き出す噴霧機構部と、噴霧機構部の吹き出し口に対向して配置されたコレクタと、吹き出し口に設けられた導電体とコレクタ間に高電圧を印加する高電圧発生手段とを備えたことを特徴とする微粒子の製造装置。
【請求項8】
原料液は、微粒子構成材料を30重量%未満の含有量で溶媒中に溶解したものであることを特徴とする請求項7記載の微粒子の製造装置。
【請求項9】
噴霧機構部の噴霧ノズル部に、原料液を吐出する複数のノズル部を設けたことを特徴とする請求項7又は8記載の微粒子の製造装置。
【請求項10】
吹き出し口が幅広形状で、その幅方向に等間隔置きに複数の噴霧ノズル部が配設されていることを特徴とする請求項7〜9の何れかに記載の微粒子の製造装置。
【請求項11】
導電体は、先細の突起部を有していることを特徴とする請求項7〜10の何れかに記載の微粒子の製造装置。
【請求項12】
噴霧機構部の吹き出し口に、メッシュ状の電荷付加体を配設したことを特徴とする請求項7〜10の何れかに記載の微粒子の製造装置。
【請求項13】
噴霧機構部は、複数の原料液供給口を有し、これら複数の原料液供給口から供給された複数の原料液を攪拌混合してノズル部から吐出し、吐出した原料液を高圧気体にて霧化して吹き出し口から吹き出すことを特徴とする請求項7〜12の何れかに記載の微粒子の製造装置。
【請求項14】
三次元方向に移動可能な移動手段の可動ヘッドに、原料液供給手段と高圧気体供給手段と噴霧機構部と高電圧発生手段の内の少なくとも噴霧機構部を搭載し、可動ヘッドの可動範囲に設置された対象物表面に微粒子を付着させるようにしたことを特徴とする請求項7〜13の何れかに記載の微粒子の製造装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate


【公開番号】特開2008−43944(P2008−43944A)
【公開日】平成20年2月28日(2008.2.28)
【国際特許分類】
【出願番号】特願2007−190133(P2007−190133)
【出願日】平成19年7月20日(2007.7.20)
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成18年度、独立行政法人新エネルギー・産業技術総合開発機構「革新的部材産業創出プログラム/新産業創造高度部材基盤技術開発/先端機能発現型新構造繊維部材基盤技術の開発」にかかる委託研究、産業技術力強化法第19条の適用を受ける特許出願
【出願人】(000005821)松下電器産業株式会社 (73,050)
【Fターム(参考)】