説明

半導体検査装置、及び荷電粒子線の画像、或いは光学条件の選択装置

【課題】本発明は、光学条件の調整を容易に行うことを目的とする半導体検査装置等の提供を目的とする。
【解決手段】上記目的を達成するために、荷電粒子線装置を備えた半導体検査装置、或いは荷電粒子線装置の画像,光学条件選択装置であって、異なる複数の光学条件にて得られた画像データと、設計データに基づいて形成される画像データとの間でマッチングを行い、当該マッチングに基づいて、前記光学条件、或いは画像の選択を行う半導体検査装置、或いは荷電粒子線装置の画像,光学条件選択装置を提案する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体試料等の検査装置に関し、特に走査型電子顕微鏡の電子線によって試料内の吸収電流を使用する検査装置に関する。
【背景技術】
【0002】
近年、半導体の微細化が進み、配線の不良解析も容易ではなくなってきている。配線の不良解析において、レーザー光によるOBIRCHやエミッション顕微鏡も有効であるが、電子線の試料内の吸収電流を使って不良位置を判断するEBAC(Electron Beam Absorbed Current)像を観察する手法が有効である。
【0003】
この方法は、多層に及ぶ配線にも電子線の吸収電流が流れ増幅器によって導通している配線のみ吸収した電流量がそのまま輝度に変わって見えるため、オープン系不良,ショート系不良,抵抗に対応して不良位置が明確に判る特徴がある。
【0004】
例えば、特許文献1には、配線パターンが形成された半導体試料において、配線パターンの両端あるいは片側にプローブを接触させ、電子線を半導体試料上の配線パターンに走査させ、プローブに流れる電流を測定/画像化することにより不良箇所を特定する技術が開示されている。
【0005】
また、同様に半導体の検査装置としては、文献2のように欠陥箇所を有する配線系の両側にある配線またはパッドに2本のプローブを接触させ、半導体装置の表面に荷電ビームを照射および走査することで、配線に荷電ビームを吸収させ、配線が吸収した荷電ビームを検出し、その検出した電流を増幅器にて増幅し、増幅された電流を画像信号に変換した後、コンピューターの画面上で吸収像として表示する方法が開示されている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2002−368049号公報
【特許文献2】特開2002−343843号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
特許文献1,2に開示の検査装置によれば、吸収電流像等に基づいて、欠陥位置の同定が可能となるが、吸収電流像は、不良箇所の抵抗等によって明るさが変化するため、電子顕微鏡の光学条件を高精度に行う必要がある。しかしながら、加速電圧(試料へのビームの到達エネルギー)や走査速度等の調整は熟練を要し、手動で調整を行うことは困難であった。特許文献1,2には、具体的な光学条件の調整についての言及がない。
【0008】
以下に、光学条件の調整を容易に行うことを目的とする半導体検査装置等を説明する。
【課題を解決するための手段】
【0009】
上記目的を達成するための一態様として、以下に荷電粒子線装置を備えた半導体検査装置、或いは荷電粒子線装置の画像,光学条件選択装置であって、異なる複数の光学条件にて得られた画像データと、設計データに基づいて形成される画像データとの間でマッチングを行い、当該マッチングに基づいて、前記光学条件、或いは画像の選択を行う半導体検査装置、或いは荷電粒子線装置の画像,光学条件選択装置について説明する。
【発明の効果】
【0010】
上記構成によれば、容易に高コントラストの画像の取得、或いは荷電粒子線装置の適正な光学条件の選択が可能となる。
【図面の簡単な説明】
【0011】
【図1】走査電子顕微鏡の光学条件設定工程を示すフローチャート。
【図2】半導体検査装置の概略構成図。
【図3】電子線の照射条件を設定する設定画面の一例を示す図。
【図4】走査電子顕微鏡を含む半導体検査システムの一例を示す図。
【図5】パターンマッチング処理に基づいて、適正な走査電子顕微鏡の光学条件を選択する工程を示すフローチャート。
【発明を実施するための形態】
【0012】
複数の探針を備え、吸収電流像を検出する走査電子顕微鏡によって得られる画像は、試料の荷電粒子の吸収状態を表している。不良箇所は、この吸収電流像を解析することで見つけられるが、不良箇所の抵抗成分が低い場合や、対象となる配線が複雑な形状の場合などは、不良と正常部との明るさの差が出にくくなり、その箇所の同定が難しくなってくる。そこで不良箇所の同定をしやすくするための観察条件の最適化が必要になってくる。
【0013】
そこで、以下に説明する実施例では、SEMの光学条件を変化させることによって得られる複数の画像と、設計データに基づいて形成される画像とを比較し、相対的に一致度の高い画像を選択、或いは選択画像を取得したときの光学条件をSEMの装置条件として設定する。例えば、ある深さの配線の断線を観察したい場合、電子線の加速電圧を変化させて、所望の配線の吸収電流画像の明暗が鮮明で且つ、予め用意された観察場所のレイアウトデータにマッチングするよう最適化することで不良箇所の同定を行う。
【0014】
特に、吸収電流像を取得するためには、電子線の照射条件の最適化が重要になってくるが、この作業は熟練を要し、且つ相当の時間を要する。
【0015】
以下に、容易にSEMの光学条件を見出すことによって、検査に要する時間の短縮化を実現できる検査装置について説明するが、光学条件の調整対象はSEMに限らず、例えば集束イオンビーム(Focused Ion beam:FIB)装置等、他の荷電粒子線装置に適用することも可能である。本実施例では、迅速かつ、容易に配線の不良箇所を同定することが可能な荷電粒子線装置を備えた半導体検査装置及び検査方法について、特に説明する。
【0016】
本実施例にて例示する装置は、電子線源と、前記電子線源から発生された電子線を試料上に集束させる対物レンズと、前記試料を載置する試料台と、前記試料に接触する探針とを備えた検査装置において、電子線の加速電圧,電子線の電流,電子線のスキャンスピードが可変可能な走査電子顕微鏡である。
【0017】
以上のような構成によれば、迅速かつ、容易に配線の不良箇所を同定することができ、作業効率が向上する。
【0018】
以下、図面を参照して、半導体検査装置の概要を説明する。
【0019】
図2は、試料検査装置の概略構成図である。一次電子線1が試料2に照射される。試料2の表面には配線パターン3が有り、探針4をこの配線パターン3の片側または、両端あるいはパッドに接触させる。この状態で、上記配線パターン3を含めた試料2の表面に、電子線源5より一次電子線1を走査させる。
【0020】
照射された一次電子線1のうち、配線パターン3に流入した電子が電流として探針4から検出され、増幅器6に入力され増幅される。増幅器6は、この入力された信号に対し、信号を生成し出力する。この信号を一次電子線1の走査に同期させ、吸収電流像7として表示部15に表示させる。
【0021】
以上のような吸収電流像7を用いた試料検査装置において、不良箇所の抵抗成分が低い場合や、対象となる配線が複雑な形状の場合などは、不良と正常部との明るさの差が出にくくなり、不良箇所の同定が難しくなってくる。そこで不良箇所の同定をしやすくするための手法が必要になってくる。不良箇所の同定を容易にする方法としては、吸収電流像7を取得する際の電子線の照射条件である電子線の加速電圧,電子線の電流,電子線のスキャンスピードを最適化することが挙げられる。これらのパラメータは、検査の目的,試料へのダメージ,試料の材質,構造に応じて、その最適値を求める必要がある。
【0022】
なお、代表的な電子線の照射条件パラメータとして、(1)電子線の加速電圧,(2)電子線の電流,(3)電子線のスキャンスピードがあるが、これらのパラメータ以外であっても、画像のコントラストに影響を与えるパラメータであるならば、後述する光学条件の設定対象とすることが可能である。
【0023】
図1は、走査電子顕微鏡の光学条件設定工程を示すフローチャートである。まず、ステップ1で試料2を試料室へロードする。試料室は、真空排気が可能な真空チャンバであり、電子ビームの照射位置を変化させるための試料ステージが内蔵されている。ステップ2では、ステージおよび探針4を測定位置へ移動させる。そして、ステップ3で探針4を配線パターン3の片側または、両端あるいはパッドに接触させる。その後、ステップ4で電子線の加速電圧設定,電子線の電流設定,電子線のスキャンスピード設定を行う。
【0024】
ステップ5では、ステップ4で設定された電子線の照射条件にて複数の吸収電流像を取得する。そしてステップ6では画像処理装置により予め用意された観察場所のレイアウトデータとステップ5で取得された複数の吸収電流像との間のマッチングを評価する。ステップ7では評価結果から、最も相関値の大きい条件を最適値と決定する。
【0025】
本実施例では、電子線の照射条件として、電子線の加速電圧設定を行う場合を説明する。この場合は、その他の電子線の電流,電子線のスキャンスピードに関しては標準値を用いることとする。電子線の加速電圧設定は、値をバンドで指定し、その範囲で変化させて、複数の配線パターン3の吸収電流像7を取得する。これらは自動的に実行される。
【0026】
図3は、電子線の加速電圧をバンドで指定する際の画面の例である。画面17には電子線の加速電圧設定用ボタン18,電子線の電流設定用ボタン19,電子線のスキャンスピード設定用ボタン20が表示されており、マウスでいずれかをクリックすることで、画面17の下方に設定用の領域が表示される。
【0027】
本実施例では、電子線の加速電圧設定用ボタン18をクリックした場合を示し、他のクリックされていないボタンと区別するために、ボタンの枠を強調したり、色分けされている。画面17の下方に表示されている電子線の加速電圧値をバンドで指定するための値入力欄21,22,23には値を入力して指定する。画面17の右下方には、戻りボタン24が設けられ、これをクリックすると、図示しない吸収電流像を取得する画面に移る。電子線の電流,電子線のスキャンスピードに関しても、電子線の加速電圧設定時と同様に、バンドで指定した範囲で変化させることができる。そして指定した条件で複数の吸収電流像7を自動で取得する。その後、取得した複数の吸収電流像7を画像処理装置にて予め用意された図示しない観察場所のレイアウトデータとのマッチングを評価する。その評価結果から、最も相関値の大きい条件を最適値と決定する。
【0028】
以上のように、本実施例によれば、迅速かつ、容易に最適な電子線の照射条件を導くことができ、作業効率が向上する。
【0029】
以下、より具体的な実施例を説明する。図4は、走査電子顕微鏡を含む半導体検査システムの一例を示す図である。図4に例示する半導体検査システムは、走査電子顕微鏡401,走査電子顕微鏡の制御装置402,演算装置403を含んでいる。演算装置403は、後述する画像、或いは光学条件の選択装置であり、半導体検査装置の一部をなしても良いし、半導体検査装置とは別の演算装置を設けるようにしても良い。
【0030】
試料から放出された二次電子信号は検出器404にて捕捉され、増幅器406を介して、A/D変換器408でデジタル信号に変換され、演算装置403内のメモリ411に格納される。同様に、探針11にて検出された検出信号は、差動増幅器407,増幅器13を介して、メモリ411に格納される。
【0031】
デジタル信号は、画像処理部410に内蔵されるCPU,ASIC,FPGA等の画像処理ハードウェアによって、目的に応じた画像処理が行われる。更に演算装置403は、入力手段を備えた入力装置417と接続され、当該入力装置417に設けられた表示装置、或いは外部ディスプレイ1109には、図3に例示したような設定画面等を表示するGUI(Graphcal User Interface)等を表示する機能が備えられている。
【0032】
なお、制御装置402や演算装置403における制御や処理の一部又は全てを、CPUや画像の蓄積が可能なメモリを搭載した電子計算機等に割り振って処理・制御することも可能である。また、入力装置417は、検査等に必要とされる電子デバイスの座標,位置決めに利用するパターンマッチング用のテンプレートを、電子デバイスの設計データ416を活用して作成する機能を備えている。
【0033】
入力装置417は、設計データに基づいて形成される線図画像の一部を切り出して、テンプレートとするテンプレート作成部を備えており、作成されたテンプレートは画像処理部410に内蔵されるマッチング処理部412におけるマッチングのテンプレートとして、メモリ411に登録される。テンプレートマッチングは、位置合わせの対象となる撮像画像と、テンプレートが一致する箇所を、正規化相関法等を用いた一致度判定に基づいて特定する手法であり、マッチング処理部412は、一致度判定に基づいて、マッチングスコアを算出する。
【0034】
また、図4に例示するシステムには、シミュレーター418が含まれている。シミュレーター418は、設計データ記憶媒体416に記憶された設計データに基づいて、パターンの出来栄えを推定する装置である。
【0035】
以下に説明する実施例は、主に設計データに基づいて得られるエッジ情報と、SEM等によって撮像された撮像画像間との間のマッチングに基づいて、画像選択や光学条件選択を行う手法に関するものであり、設計データに基づいて得られるエッジ情報は、設計データに基づいて形成されるパターンの理想形状を示す線分画像情報や、シミュレーター418によって、実パターンに近くなるような変形処理が施された線分画像情報である。また、設計データは例えばGDSフォーマットやOASISフォーマットなどで表現されており、所定の形式にて記憶されている。なお、設計データは、設計データを表示するソフトウェアがそのフォーマット形式を表示でき、図形データとして取り扱うことができれば、その種類は問わない。
【0036】
なお、以下に説明する実施例では、SEMに搭載された制御装置、或いはSEMに接続される演算装置にて、画像選択や光学条件選択を行う例について説明するが、これに限られることはなく、コンピュータープログラムによって、画像処理を実行する汎用の演算装置を用いて、後述するような処理を行うようにしても良い。
【0037】
以下に説明する実施例は、マッチングを行う装置,マッチングをコンピューターに実行させるプログラム、及び当該プログラムを記憶する記憶媒体にも関連する。
【0038】
図5は、適正な光学条件にて吸収電流像を取得、或いは適正な光学条件を選択する工程を示すフローチャートである。まず、1の光学条件(複数の光学条件パラーメータの組み合わせ)を設定(ステップ501)し、吸収電流像等を取得する(ステップ502)。次に、設計データに基づいて得られた画像と、取得画像間との一致度判定(マッチング処理)を実行する(ステップ503)。設計データに基づいて得られる画像は、パターンの輪郭線が明確な画像であり、走査電子顕微鏡にて取得すべき画像の理想画像として定義することができる。即ち、一致度(マッチングスコア)が高いと判定された画像は、理想的な条件で取得された画像であると定義することができる。本実施例では、半導体回路のレイアウトデータに基づいて得られる画像をテンプレートとしてマッチング処理を行う。このマッチング処理は、正規化相関法等の一致度判定法の適用が可能であり、当該処理をマッチング処理部412にて実行する。
【0039】
なお、一致度判定を行うに当たり、レイアウトデータ,吸収電流像、或いはその両者に、両者を近似させる処理を施しておくことが望ましい。例えば、レイアウトデータはパターンの輪郭を示す線図であるため、吸収電流像に近づけるために、パターンと下地のそれぞれに適当な輝度を付加する等の処理が考えられる。例えばパターン部が下地と比較して明るい場合には、パターン部が階調A、下地部が階調B(A>B)となるように、画像変換するようなことが考えられる。また、吸収電流像をレイアウトデータに近似させる場合には、例えば、吸収電流像のエッジ部分を細線化し、輪郭線抽出すること等が考えられる。このような処理は、輝度調整部412にて行われる。輝度調整部413では任意の輝度をパターンの輪郭線にて区画される領域毎に割り当てるようにしても良いし、試料の材料や他の条件の組み合わせ毎に、輝度情報をテーブル化しておき、選択された領域に応じて、その情報に基づいて、輝度変調を行うようにしても良い。
【0040】
輝度変調を行う場合には、探針の接触により輝度が大きく変化する領域と、それ以外の領域のコントラストが大きくなるようにすることが望ましいため、例えば一方の領域を0階調とし、他方の領域を255階調とすること等が考えられる。
【0041】
また、欠陥が存在する場合、吸収電流像は部分的に明暗の差が生じることがあるため、明らかに明るくなると判断できるパターン、或いは当該パターンを含む領域を選択し、当該選択領域について、上記一致度判定を行うようにしても良い。
【0042】
次に、所定の光学条件数による画像取得が終了したか、或いはステップ503にて、所定のマッチングスコアが得られたかの判定を行い、これらの条件を満たさない場合には、ステップ501に戻り、異なる光学条件に変化させた上で、ステップ501〜503を再実行する。所定の光学条件数を予め決めておく場合には、当該光学条件に応じた複数の画像を取得する。また、予めマッチングスコアの閾値となる値を定めておき、当該閾値を超えた画像を選択するようにしても良い。選択する画像は、1枚でも良いし、スコアの高いN枚の画像を選択するようにしても良い。スコア判定部414では、このような判断基準に基づいて、最も高いスコアを示す画像、或いは所定値以上のスコアを示す画像を選択する(ステップ504)。スコア判定部414は、画像や光学条件の選択部として機能する。
【0043】
最後に、選択画像取得時の光学条件を抽出し(ステップ505)、その条件を装置条件として登録(ステップ506)、或いは選択画像を登録(ステップ507)する。抽出された光学条件は例えばメモリ411に格納し、同じ、或いは同等の試料を観察する際に、光学条件調整部409から光学条件制御電源405への制御信号として伝達するようにする。
【0044】
出力データ作成部415は、得られた画像や光学条件情報を、入力装置417に伝達し、入力装置417の表示装置にその情報を表示させる。
【0045】
以上のような構成によれば、画像取得の際の適正な光学条件の設定、及び適正な画像取得を、マッチングスコア判定に基づいて行うことができるため、装置条件の設定を簡単に行うことができ、且つ図5に例示するような工程は、自動化にも対応できるため、更に簡単に装置条件の設定、或いは画像の取得を行うことが可能となる。
【符号の説明】
【0046】
8 一次電子線
9 試料
10 配線パターン
11 探針
12 電子線源
13 増幅器
14 吸収電流像
15 表示部
16 画像処理装置
17 画面
18 電子線の加速電圧設定用ボタン
19 電子線の電流設定用ボタン
20 電子線のスキャンスピード設定用ボタン
21,22,23 値入力欄
24 戻りボタン

【特許請求の範囲】
【請求項1】
設計データに基づいて得られる画像データと、荷電粒子線の照射によって得られる画像データとのマッチングを行うマッチング処理部を備えた荷電粒子線装置の画像、或いは光学条件の選択装置であって、
異なる複数の光学条件にて得られた複数の画像データと、設計データに基づいて形成される画像データとの間でマッチングを行い、当該マッチングに基づいて、前記光学条件、或いは画像の選択を行う選択部を備えたことを特徴とする荷電粒子線装置の画像、或いは光学条件選択装置。
【請求項2】
請求項1において、
前記選択部は、前記複数の光学条件にて得られた複数の画像データの内、相対的に前記設計データに基づいて形成される画像データとの一致度が高い画像、或いは当該画像の光学条件を選択することを特徴とする荷電粒子線装置の画像、或いは光学条件選択装置。
【請求項3】
請求項1において、
前記光学条件は、前記荷電粒子線装置の加速電圧,ビーム電流、及びビームの走査速度の少なくとも1つを含んでいることを特徴とする荷電粒子線装置の画像、或いは光学条件選択装置。
【請求項4】
請求項1において、
前記選択された光学条件を記憶する記憶媒体と、当該記憶媒体に記憶された光学条件に基づいて、前記荷電粒子線の光学条件を調整する光学条件調整部を備えたことを特徴とする荷電粒子線装置の画像、或いは光学条件選択装置。
【請求項5】
請求項1において、
前記荷電粒子線装置の画像、或いは光学条件選択装置を備えたことを特徴とする半導体検査装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2012−156026(P2012−156026A)
【公開日】平成24年8月16日(2012.8.16)
【国際特許分類】
【出願番号】特願2011−14684(P2011−14684)
【出願日】平成23年1月27日(2011.1.27)
【出願人】(501387839)株式会社日立ハイテクノロジーズ (4,325)
【Fターム(参考)】