説明

半導体装置及びその製造方法

【課題】 半導体装置及びその製造方法に関し、バリアメタルの絶縁膜及びCuに対する密着性と、Cu拡散防止とを両立する。
【解決手段】 第1絶縁膜に設けた凹部の側壁に第2絶縁膜を形成し、第2絶縁膜の内側に順に第2絶縁膜との密着性が優れている第1の導電性バリア層、炭素を含有する第2の導電性バリア層、及び、Cu系埋込電極との密着性が優れている第3の導電性バリア層の3層構造のバリア層を介してCu系埋込電極を設けるとともに、前記第1の導電性バリア層と前記第2の導電性バリア層との界面と、前記第2の導電性バリア層と前記第3の導電性バリア層との界面に炭素混合領域を設ける。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は半導体装置及びその製造方法に関するものであり、例えば、埋込配線を形成する際のバリア層の構成に関するものである。
【背景技術】
【0002】
近年、半導体装置の電極材料或いは配線材料として、アルミニウムが広く用いられてきた。しかし、近年の半導体装置の微細化や処理の高速化の要求に伴い、電極や配線をアルミニウムで対応することが困難になってきている。そのため、エレクトロマイグレーションに強く、比抵抗がアルミニウムより小さな銅を利用する試みが進められている。
【0003】
一方、半導体装置の高速化のためには、電極及び配線の低抵抗化とともに、信号遅延の要因となる寄生容量を低減するために層間絶縁膜の低誘電率化が必要になる。このような絶縁膜としてk値の低い所謂low−k材料が適用されている。
【0004】
しかし、Low−k材料は一般には空孔を有することでk値を下げているため、空孔があるが故に、配線材料であるメタルがLow−k材料に拡散し易いという問題がある。そのため、ダマシン構造を有する銅多層配線において、Low−k材料からなる層間絶縁膜に設けた配線用トレンチの側壁を絶縁膜でシールしている(例えば、特許文献1参照)。
【0005】
また、銅埋込配線の微細化にともなう配線抵抗値の上昇の回避、ならびに銅の領域周辺に酸化ルテニウム等の金属酸化膜層を形成することで、TDDB(Time Dependent Dielectric Bearkdown:経時破壊)寿命の長寿命化等の配線信頼性を確保している(例えば、特許文献2参照)。
【0006】
特に、銅はSi−Oを含む絶縁膜に対し拡散し易く、拡散を防ぐためにバリアメタル層が銅成膜前に配線ならびにビアホール側壁に成膜されている。バリアメタル層としては、一般にはTa、Ti、TaN等が用いられているが、Cuよりも抵抗値が高いという特徴を持つ。例えば、銅の比抵抗値が1.7×10-6Ω・cmであるのに対して、Taは15×10-6Ω・cm、Tiは80×10-6Ω・cmである。
【0007】
配線の微細化が進むにつれ、配線抵抗に占めるバリアメタル膜に抵抗値の占める割合が高くなるため、銅ならびにバリアメタルのトータルの抵抗値が上昇する問題が発生する。例えば、ITRS2006(International Technology Roadmap of Semiconductors 2006 Edition)が示すテクノロジーロードマップによれば、hp(harf pitch)32nm世代(配線ピッチ64nm)の銅配線の比抵抗値は4.83×10-6Ω・cmとされている。
【0008】
また、配線のTDDB寿命信頼性を確保するためには、Cu界面における密着を向上させることが効果的である。例えば、結晶性のRuは比抵抗が低くCuとの密着性が良好なバリアメタルとして知られている。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開2005−236285号公報
【特許文献2】特開2008−159720号公報
【特許文献3】特開2006−229207号公報
【特許文献4】特開2007−258390号公報
【特許文献5】特開2006−005305号公報
【特許文献6】特開2006−019325号公報
【特許文献7】特開2008−031541号公報
【特許文献8】特開2007−154297号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
結晶性のRuは比抵抗が低くCuとの密着性が良好ではあるが、結晶性が故に結晶欠陥を通してCuが外部に拡散し、Ru単層ではメタルバリア性が低いことや、ポーラス膜中の水分により、Ruがデバイス動作中に酸化され不良が発生する問題がある。
【0011】
また、絶縁膜やバリア層としてのTiとの密着性が低いために配線形成後の実装用パッケージ製造におけるワイヤーボンンディングの際、パッド部のRuと絶縁層界面で剥離が発生するという問題が生じている。
【0012】
また、従来から、バリアメタルの成膜法としてPVD法(物理的気相堆積法)が用いられてきたが、配線の細化に伴って溝孔内のカバレジ性に問題が生じている。例えば、トレンチコーナ部や細孔内におけるバリアメタルのカバレジ性が特に低いために、この欠陥部位からCuが外部に拡散してしまう。
【0013】
欠陥を防止するために、成膜の膜厚を厚くする手法があるが、配線の微細化に対して不利な方向となる。また、バリア性の高いPVDメタル層として窒化されたPVDメタルとPVDメタルを積層させて用いられているが、積層構造であるため膜厚が増加するため、微細化に向けて不利となる。
【0014】
一方、カバレジ性を改良したメタル成膜技術としてCVD法(化学的気相堆積法)或いはALD法(原子層堆積法)が知られている。この成膜技術を用いることによって、1〜3nm程度の薄膜を配線内の場所を選ばす、欠陥なしで均一に成膜することが可能になる。
【0015】
しかし、成膜には有機物を含む所謂プリカーサを用いるため、成膜されたメタル層中にはCをはじめとした多くの不純物が含まれる。そのため、ダマシン形成時におけるCuめっきシード層との密着性が劣化し、配線内のボイド発生の原因となるとともに、EME(エレクトロマイグレーション)寿命の劣化に繋がる問題がある。
【0016】
したがって、本発明は、バリアメタルの絶縁膜及びCuに対する密着性と、Cu拡散防止機能とを両立することを目的とする。
【課題を解決するための手段】
【0017】
本発明の一観点からは、第1絶縁膜と、前記第1絶縁膜に設けられた凹部と、前記凹部の側壁に形成された第2絶縁膜と、前記凹部内であって、前記第2絶縁膜の内側に順に設けられた第1の導電性バリア層、第2の導電性バリア層、及び、第3の導電性バリア層を介して形成されたCu系埋込電極を設けた半導体装置であって、前記第3の導電性バリア層は、前記第2の導電性バリア層よりCu系埋込電極との密着性が優れており、前記第2の導電性バリア層は、炭素含有導電性バリア層であり、前記第1の導電性バリア層は、前記第2の導電性バリア層より前記第2絶縁膜との密着性が優れており、且つ、前記第1の導電性バリア層と前記第2の導電性バリア層との界面と、前記第2の導電性バリア層と前記第3の導電性バリア層との界面に炭素混合領域を有することを特徴とする半導体装置が提供される。
【0018】
また、本発明の別の観点からは、第1絶縁膜に凹部を形成する工程と、前記凹部の側壁に第2絶縁膜を形成する工程と、前記凹部内であって前記第2絶縁膜の内側に第1の導電性バリア層を物理気相堆積法により成膜する工程と、前記第1の導電性バリア層上に化学気相堆積法或いは原子層堆積法のいずれかにより炭素を含有した第2の導電性バリア層を成膜する工程と、前記第2の導電性バリア層上に前記第2の導電性バリア層よりCuに対する密着性が優れる第3の導電性バリア層を物理堆積法により成膜する工程と、熱処理により前記第2の導電性バリア層中の炭素を拡散して前記第1の導電性バリア層と前記第2の導電性バリア層との界面と、前記第2の導電性バリア層と前記第3の導電性バリア層との界面に炭素混合領域を形成する工程と、前記第3の導電性バリア層上に前記凹部を埋め込むようにCu系電極材料を堆積する工程と、前記Cu系電極材料と、前記第3の導電性バリア層と、前記第2の導電性バリア層と、前記第1の導電性バリア層とを前記凹部を形成した絶縁膜の表面が露出するまで化学機械研磨を行って研磨する工程とを有していることを特徴とする半導体装置の製造方法が提供される。
【発明の効果】
【0019】
開示の半導体装置及びその製造方法によれば、バリアメタルを3層構造にするとともに、それらの境界面に炭素混合領域を形成しているのでバリアメタルの絶縁膜及びCuに対する密着性と、Cu拡散防止機能とを両立することが可能となる。
【図面の簡単な説明】
【0020】
【図1】本発明の実施の形態の配線構造の概念的断面図である。
【図2】本発明の実施の形態の配線構造の形成工程の途中までの説明図である。
【図3】本発明の実施の形態の配線構造の形成工程の図2以降の途中までの説明図である。
【図4】本発明の実施の形態の配線構造の形成工程の図3以降の途中までの説明図である。
【図5】本発明の実施の形態の配線構造の形成工程の図4以降の途中までの説明図である。
【図6】本発明の実施の形態の配線構造の形成工程の図5以降の説明図である。
【図7】本発明におけるエレクトロマイグレーション試験パターンの概略的断面図である。
【図8】本発明における剥離試験パターンの概略的平面図である。
【図9】本発明の実施例1の半導体装置の概略的断面図である。
【発明を実施するための形態】
【0021】
ここで、図1乃至図8を参照して、本発明の実施の形態を説明する。図1は本発明の実施の形態の配線構造の概念的断面図である。プラグ2を埋め込んだ下地絶縁膜1上に形成した層間絶縁膜となる絶縁膜3に凹部を形成し、凹部の側壁をシール絶縁膜4でシールし、第1の導電性バリア層5乃至第3の導電性バリア層7を介してCu系埋込電極10を埋め込んだものである。
【0022】
この時、第2の導電性バリア層6として、炭素を含んだ導電性バリア層を用い、熱処理を施すことによって、第2の導電性バリア層6から第1の導電性バリア層5及び第3の導電性バリア層7へ炭素を拡散する。その結果、第1の導電性バリア層5と第2の導電性バリア層6との界面と、第2の導電性バリア層6と第3の導電性バリア層7との界面に炭素混合領域8,9が形成されて密着性が向上する。
【0023】
絶縁膜3としては所謂Low−k材料が好適であり、例えば、絶縁材料として、例えば、Black Diamond(AMAT社製商品名)、Coral(ノベラスシステム社登録商標)或いはAurolaUKL(ASM社製商品名)等が挙げられる。
【0024】
また、凹部の側壁をシールするシール絶縁膜4としては、シリコンカーバイド、シリコンオキシカーバイド、シリコンナイトライド、シリコンオキシナイトライド、シリコンオキサイド等の内、1種以上が用いられている。なお、バリア性の観点からシリコンオキシカーバイドがより好適である。
【0025】
また、第1の導電性バリア層5としては、凹部の側壁に設けたシール絶縁膜4との密着性が良好な材料が望ましく、例えば、Ti,Ta,TaN等を物理気相堆積法、典型的には、スパッタリング法により成膜すれば良い。
【0026】
このTi,Ta,TaNはポーラスなLow−k膜に対するシール性を有するために、Low−k膜中のポア内に含まれる水分のメタル層への拡散を遮断することが出来る。そのため、第2の導電性バリア層6及び第3の導電性バリア層7、及び、Cu系埋込電極10の酸化を防止することで、配線の信頼性を向上することができる。さらに、Ti,Ta,TaNは、Cu系埋込電極10内のCuが絶縁膜3に拡散することを防止する機能を有する。
【0027】
第2の導電性バリア層6としては、被覆性に優れたバリアメタルが望ましく、例えば、CVD(化学気相堆積)法或いはALD(原子層堆積法)を用いて成膜すれば良い。その結果、第2の導電性バリア層6中には、炭素が含有されるが、0.001atom%〜1atom%の範囲であれば差し支えない。なお、膜厚は0.1nm〜5nmであることが望ましい。
【0028】
第2の導電性バリア層6としては、Ru,Pd,Ti,Ta,Mn,Ni,Co,Os,Cr,Ge,Zr,Mo,Ag,Ba,Hf,W,Re,Ir,Pt等が挙げられるが、典型的には、Ruを用いる。
【0029】
CVD−Ru膜の成膜方法としては、例えば、上述の特許文献7に示されている手法にて成膜される。原料である金属化合物として、ビス(シクロペンタヂエニル)ルテニウム、トリス(2,2,6,6−テトラメチル−3,5−ヘプタンジオネート)ルテニウム、トリス(N,N′−ジイソプロピルアセトアミジネート)ルテニウム(III)、ビス(N,N′−ジイソプロピルアセトアミジネート)ルテニウム(II)ジカルボニル、ビス(エチルシクロペンタジエニル)ルテニウム、ビス(ペンタメチルシクロペンタジエニル)ルテニウム、ビス(2,2,6,6−テトラメチル−3,5−ヘプ タンジオネート)(1,5−シクロオクタジエン)ルテニウム(II)、ルテニウム(III)アセ チルアセトネートを挙げることができる。
【0030】
また、Ru以外にも
Pd:
パラジウムヘキサフルオロアセチルアセトネート(Pd(hfac))、シクロペンタジエニルパラジウムアリル((C)Pd(allyl))、およびパラジウムアリル(Pd(allyl))を挙げることができる。
Ti:
四塩化チタン(TiCl)、四フッ化チタン(TiF)、四臭化チタン(TiBr)、四ヨウ化チタン(TiI)、テトラキスエチルメチルアミノチタン(Ti[N(CCH)](TEMAT))テトラキスジメチルアミノチタン(Ti[N(CH(TDMAT))、テトラキスジエチルアミノチタン(Ti[N(C(TDEAT))を挙げることができる。
Ta:
五塩化タンタル(TaCl)、五フッ化タンタル(TaF)、五臭化タンタル(TaBr)、五ヨウ化タンタル(TaI)、ターシャルブチルイミドトリス(ジエチルアミド)タンタル(Ta(NC(CH)(N(C(TBTDET))、ターシャリーアミルイミドトリス(ジメチルアミド)タンタル(Ta(NC(CH)(N(CH)を挙げることができる。
Pt(白金):
(トリメチル)メチルシクロペンタジエニルプラチニウム(IV)ラチニウム(II)アセチルアセトネート、ビス(2,2,6,6−テトラメチル−3,5−ヘプタンジオネート)プラチニウム(II)、プラチニウム(II)ヘキサフルオロアセチルアセトネートを挙げることができる。
Ir:
5−シクロオクタジエン)イリジウム(I)、ジカルボニル(アセチルアセトネート)イリジウム(I)、イリジウム(III)アセチルアセトネートを挙げることができる。
Mn:
ビス(シクロペンタジエニル)マンガン(Mn(C)、ビス(メチルシクロペンタジエニル)マンガン(Mn(CH)、ビス(エチルシクロペンタジエニル)マンガン(Mn(C)、ビス(イソプロピルシクロペンタジエニル)マンガン(Mn(C)、ビス(t−ブチルシクロペンタジエニル)マンガン(Mn(C)、ビス(アセチルアセトネート)マンガン(Mn(CO2))、ビス(ペンタメチルシクロペンタジエニル)マンガン(II)(Mn(C(CH)、ビス(テトラメチルシクロペンタジエニル)マンガン(II)(Mn(C(CHH))、(DMPD)(エチルシクロペンタジエニル)マンガン(Mn(C11))、トリス(DPM)マンガン(Mn(C1119O2))、マンガン(0)カルボニル(Mn(CO)10)、メチルマンガンペンタカルボニル(CHMn(CO))、シクロペンタジエニルマンガン(I)トリカルボニル((C)Mn(CO))、メチルシクロペンタジエニルマンガン(I)トリカルボニル((CH)Mn(CO))、エチルシクロペンタジエニルマンガン(I)トリカルボニル((C)Mn(CO))、アセチルシクロペンタジエニルマンガン(I)トリカルボニル((CHCOC)Mn(CO))、ヒドロキシイソプロピルシクロペンタジエニルマンガン(I)トリカルボニル((CHC(OH)C)Mn(CO))等を用いても良い。
【0031】
また、第2の導電性バリア層の成膜方法としては、上述の特許文献8に示されているALD法を用いても良い。その際に用いられる原料ガスとしてはRuを成膜する場合は、Ru(CO)12、Ru(EtCp);EtCpは、エチルシクロペンタジエンなどが用いられる。
【0032】
また、Ru以外にも、
Ti: Ti[N(CH;テトラキス(ジメチルアミノ)チタン(TDMAT)
Cr: Cr(CO)
Mn: Mn(CO)10
Co: CO2(CO)
Ni: Ni(CO)、Ni(acac);ここで、acacは、アセチルアセトン(2,4−ペンタジオン)を意味する。
Zn: Zn(CH
Ge: Ge(OCH
Zr: Zr(O−t−C
Mo: Mo(CO)Rh: Rh(CO)12
Pd: Pd(OAc);OAcは酢酸を意味する。
Ag: Ag[O2C−C(CH];2,2−ジメチルプロピオネート銀(I)
Ba: Ba(O2C1119;ビスジピバロイルメタナートバリウム
Hf: Hf(C1119O2)
Ta: Ta(N−t−C11)[N(CH;(ターシャリーアミルイミド)トリス(ジメチルアミノタンタル)
W: W(CO)
Re: Re(CO)10
Ir: Ir(C)(C12);エチルシクロペンタジエニル(1,5−シクロオクタジエン)イリジウム
Pt: Pt(C)(CH;エチルシクロペンタジエニル(トリメチル)白金
等の原料ガスを用いれば良い。
【0033】
また、第3の導電性バリア層7としては、非晶質のRuよりCu拡散阻止能力は劣るが、Cuとの密着性が良好な結晶性のバリアメタルが好適である。第2の導電性バリア層6との密着性の観点からは、第2の導電性バリア層6と同じ元素を用いることが望ましい。
【0034】
即ち、第3の導電性バリア層7としては、炭素を含まない結晶性のRu,Pd,Ti,Ta,Mn,Ni,Co,Os,Cr,Ge,Zr,Mo,Ag,Ba,Hf,W,Re,Ir,Ptを用いる。なお、このような、炭素を含まない結晶性のバリアメタルを成膜するためには、物理気相堆積法、典型的には、スパッタリング法を用いれば良い。
【0035】
メタル膜装置内にて真空または水素窒素混合雰囲気で、250℃〜450℃、例えば、400℃で、5〜500秒、好ましくは10〜120秒にてアニールすることで、各メタル界面に炭素混合領域8,9を形成する。
【0036】
各メタル界面に炭素混合領域8,9が形成されるために、第1の導電性バリア層5と第2の導電性バリア層6との密着性及び第2の導電性バリア層6と第3の導電性バリア層7との密着性が確保される。その結果、LSI実装パッケージアセンブリにおけるワイヤーボンディングによる剥離の問題を回避することができる。
【0037】
各メタル界面に炭素混合領域8,9を形成するに必要な炭素は、第2導電性バリア層6に含有される炭素の拡散で供給することから、還元処理は不要である。しかし、還元処理をした場合でも第2の導電性バリア層6中には微量な炭素が残留するために、炭素混合領域8,9は形成される。
【0038】
なお、Cu系埋込電極10は純粋なCuである必要はなく、エレクトロマイグレーション耐性を高めるために、3.0重量%以下のAl或いはSiを添加しても良い。
【0039】
次に、図2乃至図6を参照して、本発明の実施の形態の配線構造の形成工程を説明する。まず、図2(a)に示すように、PSG(リンガラス)等からなる下地絶縁膜11にW等からなるプラグ12を埋め込んだのち、エッチングストッパー膜13、層間絶縁膜14、及び、キャップ膜15を順次堆積する。この場合のエッチングストッパー膜13は、例えば、比誘電率3.6のシリコンオキシカーバイド(SiOC)を用い、厚さは10nm〜40nmとする。
【0040】
また、層間絶縁膜14としては、k値が2.6以下の低誘電率絶縁材料からなるポーラスLow−k材料であるCVD系のSiOC膜が好適である。このような、材料としては、上述のBlack Diamond、Coral或いはAurolaUKL等が挙げられる。なお、厚さは、60nm〜120nmとする。また、キャップ膜15としては、SiOが 好適であり、厚さは、30nm〜70nmとする。
【0041】
次いで、図2(b)に示すように、レジストパターン(図示を省略)をマスクとしてエッチングを施すことによって、キャップ膜15乃至エッチングストッパー膜13を順次エッチングして配線用凹部16を形成する。
【0042】
次いで、図2(c)に示すように、厚さが、例えば、3nmのシール絶縁膜17を堆積させる。この場合のシール絶縁膜17としては、シリコンカーバイド、シリコンオキシカーバイド、シリコンナイトライド、シリコンオキシナイトライド、シリコンオキサイド等を用いる。
【0043】
次いで、図3(d)に示すように、ドライエッチングによってキャップ膜15の表面と配線用凹部16の底面に堆積したシール絶縁膜17を除去して、配線用凹部16の側壁にのみシール絶縁膜17を残存させる。
【0044】
次いで、図3(e)に示すように、配線用凹部16の内面を厚さが0.5nm〜10nmのPVDバリア膜18で被覆する。この場合のPVDバリア膜18は、例えば、スパッタリング法によって形成したPVD-Ti膜がシール絶縁膜17との密着性の観点から好適である。
【0045】
次いで、図3(f)に示すように、PVDバリア膜18の表面を厚さが0.1nm〜5nmの炭素含有バリアメタル膜19で被覆する。この場合の炭素含有バリアメタル膜19は、例えば、CDV-Ru膜を用いる。
【0046】
次いで、図4(g)に示すように、炭素含有バリアメタル膜19の表面を厚さが3nm〜10nmのPVDバリアメタル膜20で被覆する。この場合のPVDバリアメタル膜20は、真空中でRuをスパッタリングすることによって形成した結晶性Ru膜がCuとの密着性の観点から好適である。
【0047】
次いで、図4(h)に示すように、メタル膜装置内にて真空または水素窒素混合雰囲気で、250℃〜450℃、例えば、400℃で、5〜500秒、好ましくは10〜120秒にてアニールする。その結果、炭素含有バリアメタル膜19中のCが拡散して、PVDバリア膜18/炭素含有バリアメタル膜19の界面、及び、炭素含有バリアメタル膜19/PVDバリアメタル膜20の界面に炭素混合領域21,22が形成される。
【0048】
次いで、図5(i)に示すように、PVDバリアメタル膜20の表面上に無電解メッキ法によって厚さが、例えば、30nmのCuめっきシード層23を形成する。シード層はスパッタを用いて形成しても差し支えない。その場合、バリアメタル層を形成後、連続して真空中で成膜されることが望ましい。次いで、電解めっき法を用いて凹部を完全に埋め込むようにCuめっき膜24を成膜する。
【0049】
次いで、図5(j)に示すように、CMP処理を施すことによって、キャップ膜15が露出するまで研磨することによって平坦化してCu埋込配線25を形成する。次いで、平坦化を行った後、表面を酸性またはアルカリ性の溶液で表面を洗浄することにより、研磨後の残留メタルを除去することが望ましい。この場合の洗浄後の配線表面における絶縁膜部のメタル濃度が5×1011atom/cm2 以下になるまで洗浄することが望ましい。なお、表面の研磨残渣等の異物を除去するために二流体スプレー等で処理を行っても差し支えない。
【0050】
次いで、図6(k)に示すように、平坦化された表面上に、再び、厚さが、例えば、30nmのシリコンオキシカーバイド等からなるエッチングストッパー膜26を形成する。以降は、層間絶縁膜及びキャップ膜の堆積工程、配線用凹部或いはビアホールの形成工程、シール絶縁膜の形成工程、多層バリア層の形成工程、Cuの堆積工程、平坦化工程を必要とする多層構造の積層数に応じて順次行う。
【0051】
このように、本発明の実施の形態においては、配線用凹部の側壁をシール絶縁膜で被覆したのち、3層構造のバリア層を設けるとともに、各バリア膜界面に炭素混合領域を形成している。その結果、バリア層の層間絶縁膜及びCuに対する密着性と、Cu拡散防止とを両立することが可能となる。また、バリア層の層間絶縁膜及びCuに対する密着性が良好であるので、CMP処理においてせん断応力による剥離が生ずることがない。
【0052】
この実施の形態の配線構造について、エレクトロマイグレーション耐性試験を行った。図7は本発明におけるエレクトロマイグレーション試験パターンの概略的断面図であり、1層目Cu埋込配線41及び2層目Cu埋込配線43はそれぞれ幅70nm、厚さ100nm、長さ200μmとした。また、ビア42は直径70nm、高さ100μmとした。
【0053】
この図7に示すエレクトロマイグレーション評価用パターンを用いて、300℃の温度において、0.2mAの電流を流して試験を行った。その結果、試験時間50時間で100チップ中不良発生は0個であった。
【0054】
次に、図8に示す剥離評価用パターンを用いて剥離試験を行った。図8は本発明における剥離試験パターンの概略的平面図であり、100μm角のAlパッド45を40μm間隔で32個、1.6mm×2.4mmのチップ44に設けた。
【0055】
このAlパッド45に対してφ50μmのAuボールを30gfの圧着力にてワイヤーボンディングする際のAlパッド45からAu剥れ数を評価したところ、50チップ中パッド剥れは0個であった。
【0056】
また、効果を確認するために比較例1乃至比較例3を作製して本発明の実施の形態と同様の条件でエレクトロマイグレーション耐性試験及び剥離試験を行った。
比較例1はCVD−Ru層を形成せずに、PVD−Ti上に直接PVD−Ruを成膜した構造とした。エレクトロマイグレーション耐性試験においては、試験時間50時間で100チップ中不良発生は0個であった。一方、剥離試験においては、50チップ中パッド剥れは38チップで剥離が発生した。
【0057】
また、比較例2はバリア膜としてPVD−Tiのみのバリア構造とした。エレクトロマイグレーション耐性試験においては、試験時間50時間で100チップ中不良発生は100個であった。一方、剥離試験においては、50チップ中パッド剥れは0個であった。
【0058】
また、比較例3はバリア膜として結晶性Ruのみのバリア構造とした。エレクトロマイグレーション耐性試験においては、試験時間50時間で100チップ中不良発生は100個であった。一方、剥離試験においては、50チップ中パッド剥れは40チップで剥離が発生した。
【0059】
このように、本発明の実施の形態においては界面に炭素混合領域を形成した3層構造のバリア層を用いているので、Cu拡散防止機能を確保しつつ、絶縁膜との密着性とCu埋込配線との密着性を良好にして、剥離耐性を大きくすることができる。
【実施例1】
【0060】
以上を前提として、次に、図9を参照して本発明の実施例1の半導体装置の製造工程を説明する。図9は、本発明の実施例1による製造方法で作製した半導体装置の概略的断面図であり、まず、例えば、直径が300mmのシリコン基板51の表面にシャロートレンチアイソレーション(STI)による素子分離絶縁膜52を形成し、この素子分離絶縁膜52で囲まれた活性領域内に、MOSFET53を形成する。
【0061】
このMOSFET53は、ゲート絶縁膜54、ゲート電極55、ソース領域57、及び、ドレイン領域58で構成される。ゲート電極55の側壁にはサイドウォール56が設けられており、ソース領域57及びドレイン領域58のゲート電極寄りにはエクステンション領域が形成されている。
【0062】
次いで、例えば、CVD法を用いて全面にリンガラス(PSG)からなる厚さ1.5μmの層間絶縁膜59を堆積させたのち、層間絶縁膜59を貫通するとともにソース領域57及びドレイン領域58に達する2本のビアホールを形成する。このビアホール内にCMP法を用いてTiN膜を介してタングステン(W)からなる導電性プラグ60,61で充填する。
【0063】
次いで、例えば、原料ガスとしてテトラメチルシランならびに炭酸ガスを用いたCVDにより、層間絶縁膜59上にエッチングストッパーとなる比誘電率が3.6のSiOC膜62を形成する。成膜条件は、下記の通りである。
テトラメチルシランの流量:500sccm
炭酸ガスの流量:150sccm
圧力:約600Pa(4.5Torr)
13.56MHzのRF電力:600W
400kHzのRF電力:10W
基板温度:400℃
とした。
なお、RF電力を投入するための平行平板電極の面積は、シリコン基板51の面積とほぼ等しい。
【0064】
次いで、SiOC膜62上に、例えば、k値2.6以下の低誘電率絶縁材料、例えば、ポーラスLow−k材料であるBlack Diamondを成膜して厚さが、例えば、100nmのポーラスシリカ膜63を形成する。次いで、全面に厚さが、例えば、60nmのSiOキャップ膜64を成膜する。
【0065】
次いで、配線用トレンチの内面が厚さ3nmのSiOC膜で覆ったのち、ドライエッチングによって配線用トレンチの底面とSiOキャップ膜64の表面に堆積したSiOC 膜を除去して配線用トレンチの側壁を覆うシール絶縁膜66を形成する。
【0066】
次いで、スパッタリング法を用いて配線用トレンチの内面に厚さが1nmのPVD-Ti67、厚さが3nmの炭素を含むCVD-Ru68、及び、厚さが5nmの炭素含まない結晶性Ru膜69を順次成膜して3層構造のバリア膜65を形成する。
【0067】
次いで、メタル膜装置内にて真空または水素窒素混合雰囲気で、例えば、400℃で、100秒にてアニールすることにより、PVD-Ti膜/CVD-Ru膜界面及びCVD-Ru/結晶性Ru界面に炭素混合領域70,71を形成する。
【0068】
次いで、無電解めっき法により厚さが30nmのCuめっきシード層73を形成したのち、電解めっき法によりCuめっき膜74を形成する。次いで、SiOキャップ膜64 が露出するまでCMP処理を行ってCu埋込配線72を形成する。
【0069】
次いで、全面に再びエッチングストッパーとなる厚さが、例えば、30nmSiOC膜75、厚さが、例えば、150nmのポーラスシリカ膜76、ミドルストッパーとなる厚さが、例えば、30nmのSiOC膜77、厚さが、例えば、150nmのポーラスシリカ膜78、及び、厚さが、例えば、100nmのSiOキャップ膜79を順次堆積する。
【0070】
次いで、SiOキャップ膜79乃至SiOC膜77に配線用トレンチを形成するとともに、ポーラスシリカ膜76及びSiOC膜75にCu埋込配線72に達するビアホールを形成する。
【0071】
次いで、スパッタリング法を用いて配線用トレンチ及びビアホールの内面に厚さが1nmのPVD-Ti膜、厚さが3nmの炭素を含むCVD-Ru膜、及び、厚さが5nmの炭素を含まない結晶性Ru膜を順次成膜する。次いで、アニールを行って各バリア膜界面に炭素混合領域を形成して3層構造のバリア膜80とする。
【0072】
次いで、無電解めっき法により厚さが30nmのCuめっきシード層を形成したのち、電解めっき法によりCuめっき膜を形成する。次いで、SiOキャップ膜79が露出するまでCMP処理を行ってCu埋込配線82及びCuプラグ81を形成する。
【0073】
次いで、必要とする多層配線構造の数に応じてデュアルダマシン工程を繰り返したのち、最も上のCu埋込配線83を含む配線層の上に、再びエッチングストッパーとなる厚さが、例えば、30nmSiOC膜84、及び、厚さが、例えば、150nmのポーラスシリカ膜85を形成する。
【0074】
次いで、ポーラスシリカ膜85及びSiOC膜84を貫通するとともにCu埋込配線83に達するビアホールを形成したのち、TiN膜を介してWを埋め込んでCMP処理することによってWプラグ86を形成する。
【0075】
次いで、ポーラスシリカ膜85の上にWプラグ86に接続されるAlパッド87を形成したのち、Alパッド87及びポーラスシリカ膜85をSiN保護膜88で覆う。最後にSiN保護膜88にパッド87の表面を露出させる開口を形成することによって、本発明の実施例1の半導体装置の基本構成が完成する。
【0076】
なお、上記の実施例の説明においては、Cu埋込配線72はバリア膜65を介してWプラグ61と接続されている。しかし、バリア膜65の成膜時のスパッタ条件を調整することにより、配線用トレンチの底部にバリア膜65が堆積しない条件でバリア膜65を成膜しても良い。その結果、Cu埋込配線72とWプラグ61との間には比較的高抵抗なバリア膜65が存在しないので、直列抵抗がより低くなる。
【0077】
ここで、実施例1を含む本発明の実施の形態に関して、以下の付記を開示する。
(付記1) 第1絶縁膜と、前記第1絶縁膜に設けられた凹部と、前記凹部の側壁に形成された第2絶縁膜と、前記凹部内であって、前記第2絶縁膜の内側に順に設けられた第1の導電性バリア層、第2の導電性バリア層、及び、第3の導電性バリア層を介して形成されたCu系埋込電極を設けた半導体装置であって、前記第3の導電性バリア層は、前記第2の導電性バリア層よりCu系埋込電極との密着性が優れており、前記第2の導電性バリア層は、炭素含有導電性バリア層であり、前記第1の導電性バリア層は、前記第2の導電性バリア層より前記第2絶縁膜との密着性が優れており、且つ、前記第1の導電性バリア層と前記第2の導電性バリア層との界面と、前記第2の導電性バリア層と前記第3の導電性バリア層との界面に炭素混合領域を有することを特徴とする半導体装置
(付記2) 前記第2絶縁膜は、シリコンカーバイド、シリコンオキシカーバイド、シリコンナイトライド、シリコンオキシナイトライド、シリコンオキサイドのうちのいずれかであることを特徴とする付記1に記載の半導体装置。
(付記3) 前記第1の導電性バリア層が、Ta,Ti,TaNのいずれかからなることを特徴とする付記1または付記2に記載の半導体装置。
(付記4) 前記第2の導電性バリア層が、それぞれ炭素を含むRu,Pd,Ti,Ta,Mn,Ni,Co,Os,Cr,Ge,Zr,Mo,Ag,Ba,Hf,W,Re,Ir,Ptのいずれかからなることを特徴とする付記1乃至付記3のいずれか1に記載の半導体装置。
(付記5) 前記第2の導電性バリア層における炭素含有濃度が、0.001atm%〜1atm%であることを特徴とする付記1乃至付記4のいずれか1に記載の半導体装置。
(付記6) 前記第3の導電性バリア層が、炭素を含まない結晶性のRu,Pd,Ti,Ta,Mn,Ni,Co,Os,Cr,Ge,Zr,Mo,Ag,Ba,Hf,W,Re,Ir,Ptのいずれかであることを特徴とする付記1乃至付記5のいずれか1に記載の半導体装置。
(付記7) 第1絶縁膜に凹部を形成する工程と、前記凹部の側壁に第2絶縁膜を形成する工程と、前記凹部内であって前記第2絶縁膜の内側に第1の導電性バリア層を物理気相堆積法により成膜する工程と、前記第1の導電性バリア層上に化学気相堆積法或いは原子層堆積法のいずれかにより炭素を含有した第2の導電性バリア層を成膜する工程と、前記第2の導電性バリア層上に前記第2の導電性バリア層よりCuに対する密着性が優れる第3の導電性バリア層を物理堆積法により成膜する工程と、熱処理により前記第2の導電性バリア層中の炭素を拡散して前記第1の導電性バリア層と前記第2の導電性バリア層との界面と、前記第2の導電性バリア層と前記第3の導電性バリア層との界面に炭素混合領域を形成する工程と、前記第3の導電性バリア層上に前記凹部を埋め込むようにCu系電極材料を堆積する工程と、前記Cu系電極材料と、前記第3の導電性バリア層と、前記第2の導電性バリア層と、前記第1の導電性バリア層とを前記凹部を形成した絶縁膜の表面が露出するまで化学機械研磨を行って研磨する工程とを有していることを特徴とする半導体装置の製造方法。
【符号の説明】
【0078】
1 下地絶縁膜
2 プラグ
3 絶縁膜
4 シール絶縁膜
5 第1の導電性バリア層
6 第2の導電性バリア層
7 第3の導電性バリア層
8,9 炭素混合領域
10 Cu系埋込電極
11 下地絶縁膜
12 プラグ
13 エッチングストッパー膜
14 層間絶縁膜
15 キャップ膜
16 配線用凹部
17 シール絶縁膜
18 PVDバリア膜
19 炭素含有バリアメタル膜
20 PVDバリアメタル膜
21,22 炭素混合領域
23 Cuめっきシード層
24 Cuめっき膜
25 Cu埋込配線
26 エッチングストッパー膜
41 1層目Cu埋込配線
42 ビア
43 2層目Cu埋込配線
44 チップ
45 Alパッド
51 シリコン基板
52 素子分離絶縁膜
53 MOSFET
54 ゲート絶縁膜
55 ゲート電極
56 サイドウォール
57 ソース領域
58 ドレイン領域
59 層間絶縁膜
60,61,86 Wプラグ
62,75,77,84 SiOC膜
63,76,78,85 ポーラスシリカ膜
64,79 SiOキャップ膜
65,80 バリア膜
66 シール絶縁膜
67 PVD-Ti膜
68 CVD-Ru膜
69 結晶性Ru膜
70,71 炭素混合領域
72,82,83 Cu埋込配線
73 Cuめっきシード層
74 Cuめっき膜
81 Cuプラグ
87 Alパッド
88 SiN保護膜

【特許請求の範囲】
【請求項1】
第1絶縁膜と、
前記第1絶縁膜に設けられた凹部と、
前記凹部の側壁に形成された第2絶縁膜と、
前記凹部内であって、前記第2絶縁膜の内側に順に設けられた第1の導電性バリア層、第2の導電性バリア層、及び、第3の導電性バリア層を介して形成されたCu系埋込電極を設けた半導体装置であって、
前記第3の導電性バリア層は、前記第2の導電性バリア層よりCu系埋込電極との密着性が優れており、
前記第2の導電性バリア層は、炭素含有導電性バリア層であり、
前記第1の導電性バリア層は、前記第2の導電性バリア層より前記第2絶縁膜との密着性が優れており、
且つ、前記第1の導電性バリア層と前記第2の導電性バリア層との界面と、前記第2の導電性バリア層と前記第3の導電性バリア層との界面に炭素混合領域を有する
ことを特徴とする半導体装置。
【請求項2】
前記第1の導電性バリア層が、Ta,Ti,TaNのいずれかからなることを特徴とする請求項1に記載の半導体装置。
【請求項3】
前記第2の導電性バリア層が、それぞれ炭素を含むRu,Pd,Ti,Ta,Mn,Ni,Co,Os,Cr,Ge,Zr,Mo,Ag,Ba,Hf,W,Re,Ir,Ptのいずれかからなることを特徴とする請求項1または請求項2に記載の半導体装置。
【請求項4】
前記第3の導電性バリア層が、炭素を含まない結晶性のRu,Pd,Ti,Ta,Mn,Ni,Co,Os,Cr,Ge,Zr,Mo,Ag,Ba,Hf,W,Re,Ir,Ptのいずれかであることを特徴とする請求項1乃至請求項3のいずれか1項に記載の半導体装置。
【請求項5】
第1絶縁膜に凹部を形成する工程と、
前記凹部の側壁に第2絶縁膜を形成する工程と、
前記凹部内であって前記第2絶縁膜の内側に第1の導電性バリア層を物理気相堆積法により成膜する工程と、
前記第1の導電性バリア層上に化学気相堆積法或いは原子層堆積法のいずれかにより炭素を含有した第2の導電性バリア層を成膜する工程と、
前記第2の導電性バリア層上に前記第2の導電性バリア層よりCuに対する密着性が優れる第3の導電性バリア層を物理堆積法により成膜する工程と、
熱処理により前記第2の導電性バリア層中の炭素を拡散して前記第1の導電性バリア層と前記第2の導電性バリア層との界面と、前記第2の導電性バリア層と前記第3の導電性バリア層との界面に炭素混合領域を形成する工程と、
前記第3の導電性バリア層上に前記凹部を埋め込むようにCu系電極材料を堆積する工程と、
前記Cu系電極材料と、前記第3の導電性バリア層と、前記第2の導電性バリア層と、前記第1の導電性バリア層とを前記凹部を形成した絶縁膜の表面が露出するまで化学機械研磨を行って研磨する工程と
を有していることを特徴とする半導体装置の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2011−199009(P2011−199009A)
【公開日】平成23年10月6日(2011.10.6)
【国際特許分類】
【出願番号】特願2010−64150(P2010−64150)
【出願日】平成22年3月19日(2010.3.19)
【出願人】(308014341)富士通セミコンダクター株式会社 (2,507)
【Fターム(参考)】