説明

測定システム

【課題】高速、かつ少ない振動およびエラーで部品表面の多数の座標ポイント取得できるようにする。
【解決手段】基準表面に対して可動サポートを位置決めするための1つ以上のアクチュエータとを含む測定システムであって、前記可動サポートが、サポートコネクタと、前記可動サポートと取り外し可能に接続された、前記基準表面に位置決めされたワークピースの表面の走査経路にある複数のポイントを測定するための走査プローブと、前記サポートコネクタと相互作用するように配置された、モジュラ回転取り付け具を前記可動サポートに接続させるための第1のコネクタ90、およびプローブコネクタと相互作用するように配置された、前記走査プローブを前記モジュラ回転取り付け具に接続させるための第2のコネクタ40を備えるモジュラ回転取り付け具と、前記第2のコネクタを前記第1のコネクタに対して回転させるためのアクチュエータ58とを有す。

【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は概して、座標測定マシーンおよび座標測定マシーンの使用方法に関する。これらは、ワークピースの表面の複数ポイントの座標を測定し、走査経路に沿ってワークピースの表面を走査し、走査経路に沿った一連のポイントの座標を記録するためのデバイスである。
【背景技術】
【0002】
座標測定マシーン(CMM)は寸法計測の分野で使用され、当業界で既知である。多くの場合、CMMは、基準表面、例えば測定されるワークピースが配置可能な整流済み花崗岩平面と、線形アクチュエータおよびエンコーダの適切なアセンブリによって3つの座標XYZに正確に位置決め可能な可動サポートとを備えている。この構造を有するCMMは通常「ガントリ」または「ブリッジ」CMMと示され、例えば欧州特許出願第1975546号および米国特許出願第5189806号に説明されている。
【0003】
「ブリッジ」CMMシステムは、必要なサポートを位置決めするために線形自由度に大きく左右されるが、他の既知の測定システムは、可動サポートを位置決めするために多数の回転自由度を使用する。このようなマシーンは、例えば、米国特許出願第6354012号および米国特許出願第5528505号に説明されているのが見て取れる。
【0004】
可変配向ブリッジCMMシステムもまた既知である。これらのシステムは、可動サポートを回転可能な回転ヘッドと、例えば1つ、2つまたは3つの直交軸に沿ってこれに取り付けられている座標プローブとを含む。このようなデバイスの例は、とりわけ欧州特許出願第1672309号に見られる。
【0005】
座標プローブは、例えば欧州特許出願第1610087号に説明されているように、接触の瞬間を判断する単純なタッチトリガプローブであってもよい。他の場合、特に表面が連続接触しているプローブで走査される場合、例えばLVDTや引っ張り測定センサによってスタイラスの偏向量を判断するプローブを使用し、この偏向をコントローラに送信し、座標算出に組み込まれることが知られている。
【0006】
マイクロイメージングディジタルシステムは、CMMで使用可能な光学プローブのものであり、機械的測定プローブのように移動され、材料に接触せずに測定する座標のポイントを定め、3D座標測定をすることができる。走査レーザービームによって照射されると、測定物の表面のポイントの座標を判断可能なレーザー座標プローブが、同様に使用可能である。
【0007】
従来技術の座標測定システムは、座標の正確さを犠牲にすることなく達成可能な最大走査速度に制限があった。とりわけ、早い走査速度では、高速発振移動によって質量に生じる振動は、サンプルポイントからの分離および定量化が困難な測定エラーの原因である。
【0008】
既知の座標測定システムのもう1つの制限は、複雑な部品を測定するために、異なる寸法およびサイズを有する多数のプローブを必要とすることである。頻繁なプローブの変化は測定を遅くし、システムの効率を低下させる。長くかつ大きなプローブもまた測定エラーを増大させ、接触ポイントの走査速度を増大させる。
【0009】
プローブ数は、3つの軸に沿った偏向に影響され、かつ3つの個別軸を中心にプローブを連続回転させることができるモータ回転ヘッドである複合走査プローブを用いることによって削減可能である。しかしながら、これらのシステムは比較的高価かつ精巧である。
【0010】
とりわけ、連続回転および双方向への無制限回転が可能な1つ以上の回転自由度を有するCMMについて説明する欧州特許出願第1975546号のような1つ以上の回転自由度を有する座標測定システムが、当業界で既知である。このような高速回転走査システムによって多量の表面データを迅速かつ正確に取得することができる。残念ながら、運動学の複雑さおよびプローブの高速は、とりわけワークピースが名目寸法に対して大きな耐性を示す場合に、測定中のワークピースにおけるプローブまたはプローブサポートプラットフォームの予見不可能な衝突というリスクおよび結果を増大させる。
【発明の概要】
【発明が解決しようとする課題】
【0011】
したがって、高速、かつ少ない振動およびエラーで部品の表面の多数の座標ポイントを取得可能な座標測定システムが必要とされる。複雑な表面に適合可能であり、かつ既知の多軸プローブより少ないコストで高速回転CMMで安全に使用可能な測定プローブが必要とされる。
本発明によると、これらの目的は添付の請求項の対象物によって達成される。
【図面の簡単な説明】
【0012】
【図1】線形偏向エンコーダを具備するタッチ走査プローブを示している。
【図2】図1のプローブの断面図を示している。
【図3】モジュラプローブのコネクタを示している。
【図4】スイング型のモジュラ走査プローブを示している。
【図5】図4のスイングプローブのコネクタ側の図である。
【図6】図1および図4に示されているプローブの回転取り付け具の断面図である。
【図7】モジュラ無接触レーザー走査プローブを示している。
【図8】図7のプローブの断面図である。
【図9】図7に示されているコネクタの上面図である。
【図10】軸リストに搭載されている図1の線形偏向プローブを示している。
【図11】インデックス化2軸リストの、図4および図6の本発明のデバイスを示している。
【図12】インデックス化2軸リストの、図7および図6の本発明のデバイスを示している。
【図13】線形連続2軸リストを具備する図10から図12の配置を示している。
【図14】線形連続2軸リストを具備する図10から図12の配置を示している。
【図15】線形連続2軸リストを具備する図10から図12の配置を示している。
【発明を実施するための形態】
【0013】
本発明は、実施例によって付与され、かつ図面によって図示された実施形態に関する説明によってより良好に理解される。本発明のいくつかの実施形態は、インデックス化または線形リストの誘導線形偏向接触プローブ120の使用に関する。
【0014】
線形誘導プローブについて考えられる構造について、次に図1から図3を参照して説明する。プローブは、一方の側のコネクタ40と、細長い本体25とを備えている。コネクタ40の機能は、測定マシーンとの正確かつ反復可能な空間的関係に触覚プローブ120を維持することと、必要な信号をプローブ120と適切なプローブコントローラとの間に送信することである。プローブコントローラは一般的にCMMコントローラに追加され、あるいは、実施形態によっては独立システムとして実現されてもよい。コネクタ40のもう1つの機能は、後述されるように、偏向検出器などのプローブへの電気接続と、信号処理および情報変換・記憶のための埋め込み型電子デバイスへの電源とを保証することである。
【0015】
プローブは、座標が測定される対象物の表面の複数のポイントと接触関係にあるコネクタ40の反対の端部に触覚先端30を含む。触覚先端30は好ましくは、半径が正確に分かっているルビー球体、または適切な硬質材料の球体を含む。触覚先端40は、スタイラス25に搭載されているスライディングロッド60に搭載されており、線形軸、例えば、接触プローブ120の一般的な対称軸に整列された軸に沿ってスライディング可能である。スタイラス25とスライディングロッド60間の間隙は好ましくは、ベローズ70のような柔軟性要素によってシールされて、粒子や液滴の侵入を防止する。
【0016】
弾性要素61は、スライディングロッド60を完全拡張位置に付勢するために使用される。走査時に、CMMはワークピースの表面の走査経路を取得または判断し、このアクチュエータを操作して、触覚先端30を走査経路の開始ポイントに接触させ、かつ所定の圧縮量のスプリング61を判断する。CMMは次いで、触覚先端を維持するプローブ25を走査経路に移動させるように操作される。スタイラス25に対するスライディングロッド60の線形変位は走査ポイントの座標に連続的に左右され、線形可変差分変換器(LVDT)65によって誘導的に読み取られ、コネクタ40を介してプローブコントローラに送信される。
【0017】
本実施形態では、プローブはアクティブエレクトロニクスを含んでいない。LVDTトランスデューサ65は、コネクタ40を介して、例えば同軸ケーブルやツイストペアを介して適切な送信ラインによってプローブコントローラに接続される。アクティブエレクトロニクスがないことによって簡潔性および信頼性を得るが、これらは望ましいが必須ではない。本発明はまた、位置エンコーダの出力信号を処理および/または増幅し、好ましくは、情報の損失なしに離れたユニットに送信可能なディジタル信号に変換するための、各プローブにアクティブ電子要素を具備する複数のプローブ、例えば信号調整器を含む。
【0018】
通常、図1から図3の線形変位プローブの測定範囲は1ミリメートル、例えば4ミリメートルより大きく、線形化後のトランスデューサの正確さは10ミクロン、例えば1ミクロンより良好である。好ましくは、触覚先端は、触覚先端が測定範囲を超えて変位されるときにプローブが高精度を提供できない場合にも、ダメージなく、衝突保護のために測定範囲を大きく超えてスライド可能である。触覚先端の機械的偏向範囲は好ましくは、線形範囲より大きく、例えば、線形範囲より少なくとも2倍または3倍大きい。
【0019】
あらゆる種類のプローブによると、測定範囲は機械的範囲より小さい。例えば、第1のプローブ(図1)に関しては、機械的範囲によってトランスデューサを広範囲に変換することができるが、測定範囲は捕捉長さによって制限される。同様に、スイング型プローブ(図4)は広い機械的範囲で移動可能であるが、測定範囲はこの範囲の一部のみである。また最終的に、光学プローブ(図7)は同様のことを提供し、特定の範囲に焦点を当てると、焦点から外れる場合、衝突前の機械的範囲と、特定の測定範囲とを有する。
【0020】
本態様と、例えばモジュラ回転取り付け具との組み合わせで、最終的な測定範囲は、較正および線形化損失ゆえに、物理的測定範囲より小さい。この事実によって、較正補正によるデバイスの問題の実際の範囲は、より小さな測定範囲の場合のように思われる。この制限は、フィルタリング済み測定範囲のように作用する。この測定範囲の変化は変動し、共に接続されているデバイスに左右されるはずである。例えば、回転振動によって、この振動の測定値が測定時には小さいことを保証する範囲を失う恐れがある。この場合、この事実を保証するためにすべての範囲を使用することはできない。
【0021】
モジュラデバイスおよびモジュラプローブの組み合わせは、較正および線形化目的で、共通の情報メモリが記憶されることが可能である。
【0022】
本発明の一態様によると、プローブコントローラは誘導トランスデューサ65の非線形性を補正するようにプログラミングされており、プローブ120は、線形化に使用される個別または結合情報を内部に記憶する。好ましい変形例では、プローブは、例えばエンコード化多項式関数のような個別較正情報を適切なメモリに記憶する。線形化情報は、コネクタ40を介して、好ましくは低ワイヤ数シリアルバス、例えばMaxim Integrated Productsによって提供される「1ワイヤ」シリアルバスや、Philips Electronicsによって提供される「IC」バスを使用してプローブからプローブコントローラに転送される。代替例では、プローブのメモリは、線形化データの代わりに、プローブごとに個別線形化情報を検索することができるバインディング情報、例えば、プローブコントローラが、プローブコントローラによって適切なデータベースから特定の較正テーブルおよび線形化データを検索するためのインデックスとして使用可能なプローブのシリアル番号を含むことができる。線形化データまたはシリアル番号の通信も無線であってもよく、例えばRFIDシステムによるものであってもよい。
【0023】
同時または同様に話すデバイス数を削減するために、あるいはマスター/スレーブ通信を組織化するために、システムは、複数の構成の情報を組み合わせ、またモジュラデバイスを共に組み合わせて、毎回算出する累積または個別較正の複雑さを低減することができる。結合線形化の結果は1つのデバイスに記憶され、このデバイスは2つ以上の構成を記憶可能であるが、同時に使用するのはアクティブ構成1つのみである。
【0024】
図3は、コネクタ40について考えられる実現を示している。コネクタはさらに、プローブの正確かつ反復可能な位置決めを保証するために配置された複数の位置決め表面45を含んでいる。好ましくは、位置決め表面は、6つの個別接触ポイント(均衡接続)を提供するように配置されている。コネクタ40は、プローブと、CMMに走査信号を送信する可動サポートとの間に電気信号および電気エネルギーを送信するための電気コンタクト42と、ロッキングデバイス48とをさらに備えている。欧州特許出願第1577050号は、類似の特徴を含むタッチプローブ用のモジュラコネクタについて説明しているが、他の形態のコネクタも可能である。
【0025】
図4および図5に示されている本発明のもう1つの実施形態によると、スイング型のプローブが提案可能であり、アーティキュレーション63によってスイングアームサポートに旋回可能に取り付けられた、スイングアーム28の端部の触覚球体30と、スイングアームサポートの角度偏向を読み取るための誘導角度エンコーダとを有するレバープローブが提供される。触覚球体30の許容スイングの一部に対応する角度エンコーダの測定範囲は好ましくは1ミリメートル、例えば4ミリメートルより良好、または±10°の角度であり、線形化後の誘導エンコーダの精度は10ミクロン、例えば1ミクロンより良好である。スイングプローブ120の誘導トランスデューサは、線形変形例に関して、プローブ自体に記憶されている情報によって個別較正可能である。好ましくは、衝突耐性について、スイングアームの最大許容偏向範囲は角度エンコーダの測定範囲よりかなり大きく、例えば、測定範囲の少なくとも2倍または3倍大きい。好ましい実施形態では、測定軸63は、角度エンコーダの測定範囲よりかなり大きな偏向範囲を保証するための摩擦機構を備えている。
【0026】
図5は、プローブの変形例によるコネクタ40を示している。
【0027】
本発明の本実施形態は、測定表面配向にしたがってプローブ配向を設定するための手動操作アーティキュレーション64を含む。好ましくは、アーティキュレーションの配向角度は、プローブの傾斜を考慮してプローブの適切な測定変動を算出するためのプローブコントローラに既知である。アーティキュレーションの角度は、適切なエンコーダによって提供されたり、基準本体を触覚30に接触させるためにCMMを駆動することによって較正ステップのプローブコントローラによって推論されたりすることが可能である。
【0028】
図4の構成は、例えば、回転対称性を有する内部球体、とりわけ、容積内部にプローブを配置して、回転することによって回転時の変動を測定する円筒形ボアを走査するのに有用である。プローブの回転軸は測定形態の軸と整列されるが、絶対的な正確さは必要ではない。アーティキュレーション64は、ボアや測定されるはずの他の部材の半径寸法に対応するプローブの回転軸122からの距離rにタッチ30を位置決めするように操作される。このように、本発明のプローブは、単一軸に沿ってプローブの偏向を測定する内部ボアの連続走査測定値と、プローブサポートの単純回転とを提供可能である。好ましくは、測定アーティキュレーション63もまた、アーティキュレーション64の配向を設定後に回転軸122に対して平行なスタイラス28を有するように、スタイラス28を手動配向可能な摩擦機構を含んでいる。
【0029】
アーティキュレーション64は好ましくは、角度位置の連続性を許容する摩擦アーティキュレーションであり、ノブ66によってロックまたはロック解除可能である。別の可能な変形例では、アーティキュレーション64はインデックス化され、正確に反復可能であり既知の所定数の事前設定角度位置を許容する。変形例では、アーティキュレーションは、外部トルクや力作用によって位置間でスイッチするように配置され、CMMは、適切なツールに対してスイングアームサポートプローブを押し出すことによって、所望のアーティキュレーションの位置を設定するように操作可能である。アーティキュレーション62および/または63の傾斜を変更することによって距離rを設定した後、既知の基準部品によるプローブの較正が好ましくは実行される。
【0030】
好ましくは、プローブ120はまた、安全性傾斜軸68を中心とするスイングアーム28の傾斜を許容する安全性アーティキュレーション62を含む。安全性アーティキュレーション62は、角度エンコーダによって検知される回転軸から離れた軸を中心とする傾斜を許容するという点が理解される。本発明の図示された実施形態では、安全性傾斜軸および測定軸は平行ではなく、それぞれ2つの異なる平面における、場合によっては2つの直交平面におけるスイングアームの傾斜を許容する、つまり、安全性アーティキュレーションは、測定平面に直交する方向の傾斜を許容するが、角度エンコーダは、測定平面におけるスイングアームの傾斜に影響されやすい。付加的または代替的に、インデックス化アーティキュレーション63は安全性アーティキュレーションとして作用してもよい。
【0031】
安全性アーティキュレーション62と、好ましくは測定アーティキュレーション63は、正常測定時の傾斜を防止して、衝突に対応する水平力が所定の値を超える場合にアーム28またはプローブ120の少なくとも一部を傾斜させるための摩擦や他の適切な保有手段を含んでいる。変形例では、安全性機能は、解除機構、例えば、溝に弾性的に付勢される球体などによって提供されてもよい。
【0032】
変形例では、図1に示されたプローブのような、触覚の線形変位に影響されやすい線形アナログプローブも、安全性アーティキュレーションおよび/またはインデックス化アーティキュレーションを備えている。この場合、欠陥耐性は、生じうる衝突ベクトルごとに強化される。図11に示されているような回転ツイストと併用される場合、2つの個別回転自由度および線形偏向制限は、軸衝突の事例は容易に回避可能であるため、プローブを保護するのに十分である。
【0033】
図1から図5に示され、かつ上述されている個別態様によると、本発明は、単一の線形または角度軸に沿って偏向測定値を送出し、好ましくは誘導トランスデューサを含み、かつ較正および線形化情報を内部記憶するアナログ走査プローブに関する。第1の態様にしたがったアナログ走査プローブは好ましくは、座標位置決めプラットフォームと相互作用するためのモジュラコネクタを備えている。
【0034】
もう1つの本発明の態様は、図6に示されている回転モジュラ取り付け具50に関する。この追加アクチュエータは、好ましくは測定ポイントの経路に交差する必要はない(が、プローブの対称軸と一致する)軸に沿って自動回転を提供する。回転取り付け具50は、回転部分の慣性を最低に維持しつつプローブを回転させることができる。この回転手段は、低振動の高速かつ正確な走査を保証する。
【0035】
この回転モジュラ取り付け具50は、駆動経路のエラーを小さくワークピースを水平走査して、走査済み表面の配向と関連して走査ヘッド全体の配向を変更する必要なく、結果としてワークピースの測定値を取得することができる。プローブの配向は、従来技術で既知のデバイスとは対照的に、迅速に、かつ移動中の重い構成要素を引っ張ることなく変更可能である。本発明では、回転によって、表面に平行な経路に沿ってサポートを移動させ、本発明と併用される場合に走査ヘッドを何らかの障害物に衝突させるというリスクをほとんどなく、プローブの回転の少なくとも一部について表面と交差するプローブ回転経路を選択することができる。
【0036】
予見不可能な衝撃の場合にも、本発明のシステムはダメージを受けずに済む可能性があるが、それは、上述されるように、高速で移動中の回転取り付け具の後の要素が低慣性を有しており、本質的に衝突耐性があるからである。システムのより重いパーツ、例えばプローブサポートは好ましくは、比較的低速でワークピース表面からかなり離れた平行経路に沿って駆動され、何らかの障害物との望ましくない接触が生じる場合には問題となる。本システムは、実際のダメージはない小さな衝突に対して、個別には、走査前のシステムには既知であるが、ワークピースの名目寸法のみに基づいている走査経路および軌道に対して耐性がある。
【0037】
本発明の態様によると、CMMの軸および回転モジュラ取り付け具50は、特別の対象エリアで測定されるか、事前に判断されるか、事前測定値の関数として自動判定されたポイントのサンプリング密度を増大させるために、回転駆動可能である。例えば、一部のパーツでは低速回転することと、所与の密度、および、例えば表面の縁部や別の部材に近接するパーツにおけるプローブのより高速な回転を有する表面のポイントの座標を収集することと、より高い密度でポイントの座標を収集するか、特殊な測定、例えば測定中の表面の配向判断を実行することとが想定可能である。
【0038】
回転取り付け具は、この両端部に2つのコネクタ40および90を有しており、これらは、それぞれCMMの可動サポートのコネクタおよび走査プローブ120のコネクタと相互作用可能であり、電気および/または光学信号コネクタ97、47、42、プラットフォームの取り付け具50および取り付け具のプローブの正確かつ反復可能な位置決めを保証するように配置された位置決め表面45、およびロッキングデバイス48などの、図9、図5および図3に見られる走査プローブのコネクタの部材の多くを共有している。
【0039】
このように、回転取り付け具50は、必要ならば、可動サポートとプローブ間に挿入可能である。回転取り付け具50の上下の端部は、電気モータ58によって駆動されるベアリング56ゆえに相互に回転可能である。回転角度は、適切な角度エンコーダ52によって連続的に読み取られる。モータ58を駆動するというコマンドと、エンコーダ52の読み取りは、コネクタ90の電気接触を介してCMMに通信可能である。好ましくは、回転取り付け具は、モータ58を駆動し、エンコーダ52によって提供された角度を測定し、かつプローブコントローラと通信するように配置されたディジタル処理ユニット(図示せず)を備えている。
【0040】
図7および図8は、無接触光学走査プローブ160を含む本発明のシステムの変形例を示している。好ましくは、プローブ160は光学アクティブ要素を含んでいないが、光ファイバ150によって、あるいは、光ファイバを介して光信号をコントローラに転送するCMMソケットによって外部から、信号を電気情報に変換するために利用するプローブモジュール内の光学プローブコントローラに接続される。コネクタ40および90は、この場合、単一モードまたはマルチモードファイバによって一方向または双方向にプローブと光学コントローラ間に光信号を転送するための光学ポート47、97を具備している。図9は、コネクタを上方から示している。変形例では、光学コントローラはモジュラプローブに含まれており、信号は無線転送される。
【0041】
光学プローブ160は、自由端部にレンズ300を担持する細長いスタイラスを有する。干渉計を含むこともある光学プローブコントローラは、レンズ300と、測定される部品との間の距離を判断するために提供される。好ましい変形例では、レンズ300は、プローブの軸と整列されていない方向に沿った距離を測定するように配置されるが、例えば、軸から90°で横断する。このように、回転取り付け具50は、経路に沿ってワークピースの表面を走査するように起動可能である。従来技術において、プローブは、焦点ポイントのみに作用するように使用されるが、本発明では、光学プローブは部分的焦点ポイントと併用される。実際、焦点ポイントが非焦点化ゾーンにある場合、マシーンは、寸法を判断するために、焦点化の限度における両方のサイドポイントを用いる。実際、プローブの局所的回転によって、これらのポイントは、表面に焦点を合わせたままにするのに理想的な経路を正確にたどることなく、表面の完全マップを描くことができる。
【0042】
図6および図8は、プローブおよび回転取り付け具の断面を示している。光ファイバは、モータ自体の上下にスパイラス状に巻かれた光ファイバ151、152の2つの柔軟性部分ゆえに、モータ52の回転を収容可能であり、かつモータのシャフトの軸方向ボアを横断可能である。このように、回転取り付け具50は、光ファイバ150を介する送信を妨害することなく、両回転方向に360°、好ましくは720°より大きな角度で回転可能である。この配置は、反復および交互回転にかかわらず、ファイバの長寿命を保証するということが分かっている。
【0043】
ここに示されていない変形例では、モジュラ回転取り付け具は、洞または他の数学的関数のような、同一方向の多数の回転および反対方向の回転を順次組み合わせる特殊な最終的な関数によって運動を生成するための1つ以上の追加モジュラ回転取り付け具と組み合わせ可能である。加速を累積してから、低慣性モジュールを具備するいくつかの機能に必要な高加速を生成することは非常に興味深い。
【0044】
コネクタ90および40は、光学コネクタ97および47と同様に、図示されていない柔軟性スパイラス電気コンダクタによって共に接続される。回転取り付け具はまた、変形例では、軸を中心とする無制限回転が可能である。この場合、回転パーツ間の信号および電力送信は、空隙や、信号変換器、または信号損失を回避する同等のデバイスを介して、適切な電気スリップリングおよび光学再送信デバイスによって保証される。
【0045】
図10から図15は、本発明の測定システムの種々の用途を示している。図10において、線形誘導接触プローブは回転インデックス化ヘッド250に搭載され、これはCMMマシーンの中空軸600に接続されている。この構成では、中空軸600は、走査プローブ120の先端で所定の走査経路をたどるために、3つの個別線形座標XYZに沿って移動可能である。インデックス化ヘッド250によって、測定に対して最良に適合されたプローブの配向を設定することができる。
【0046】
図11は、図10と同様にインデックス化ヘッド250に搭載されたスイングアーム誘導走査プローブを示している。回転取り付け具50は、プローブヘッド250と誘導プローブ120間に介在される。回転取り付け具50は連続または反対回転可能であり、また測定触覚は、回転軸自体に留まることを制限しないため、図11のシステムは、走査に使用可能なさらなる自由度を有する。図12は、無接触光学プローブ160を具備する、さらなる回転自由度を有する走査システムを示している。ヘッド250のインデックス化回転ジョイント251および252は、複数の角度位置において、および例えば(システムの中心軸から小さなシフトがあるまたはない)軸方向または半径方向光学プローブによってプローブ160の配向を設定することができ、この能力は、表面付近を回転して、走査経路をたどる寸法の変化を検出することである。本発明によって、走査の一部が、焦点外範囲の両側で得られたポイントに基づく焦点化範囲外の場合にも、焦点化範囲を走査し、かつ寸法を判断することができる。この焦点外は、焦点範囲内の測定範囲に対する機械的範囲のように見える。
【0047】
図13から図15の変形例において、走査プローブは3軸回転走査ヘッド350に搭載され、6つの自由度、中空軸600の運動に関する3つの線形座標、および走査ヘッド350の3つの個別回転軸351、352および450に沿った3つの回転を具備する走査システムを生成する。必要性に従えば、走査プローブは、図13および図14のような接触誘導プローブ120または図15のような無接触プローブ160であってもよい。回転軸351、352および450は、CMMコントローラによって所望の角度に駆動可能である。本変形例では、モジュラ回転取り付け具は、より複雑な回転走査経路を取得するために付加可能である。これらのすべては、測定範囲より大きな機械的範囲による衝突耐性がある。機械的範囲は、プローブによって、限度に達して衝突状況を発生させる前の移動自由度を定義する。これらの衝突状況は、新たなプローブを使用して、本発明によって容易に回避可能である。

【特許請求の範囲】
【請求項1】
処理ユニットおよび可動サポートを有する座標測定マシーンと、基準表面に対して前記可動サポートを位置決めするための1つ以上のアクチュエータとを含む測定システムであって、
前記可動サポートが、
サポートコネクタと、
前記可動サポートと取り外し可能に接続された、前記基準表面に位置決めされたワークピースの表面の走査経路にある複数のポイントを測定するための走査プローブと、
前記サポートコネクタと相互作用するように配置された、モジュラ回転取り付け具を前記可動サポートに接続させるための第1のコネクタ、およびプローブコネクタと相互作用するように配置された、前記走査プローブを前記モジュラ回転取り付け具に接続させるための第2のコネクタを備えるモジュラ回転取り付け具と、
前記第2のコネクタを前記第1のコネクタに対して回転させるためのアクチュエータと
を有し、
前記第1および第2のコネクタが、前記モジュラ回転取り付け具の前記アクチュエータに駆動信号を送信するための複数の信号接続を含むことを特徴とする測定システム。
【請求項2】
前記モジュラ回転取り付け具が、前記第1および第2のコネクタに接続された光ファイバを備える、請求項1に記載の測定システム。
【請求項3】
前記モジュラ回転ユニットが釣り合いが取られていることをさらに特徴とする、請求項1または2に記載の測定システム。
【請求項4】
前記モジュラ回転ユニットが、モータを駆動し、角度エンコーダによって角度を測定し、前記処理ユニットにデータを送信するための信号処理ユニットを含むことをさらに特徴とする、請求項1から3の何れか1項に記載の測定システム。
【請求項5】
走査プローブが、前記測定ポイントが前記回転ユニットの回転軸上にないように配置される、請求項1に記載の測定システム。
【請求項6】
前記走査プローブが、線形オフセットまたは角度オフセットによるポイント変動を測定するためのLVDTトランスデューサ、または光学無接触距離トランスデューサを含む、請求項1に記載の測定システム。
【請求項7】
前記走査プローブが、予見不可能な衝突の場合にプローブの一部を傾斜させることを可能にする少なくとも1つのアーティキュレーションを含む、請求項1に記載の測定システム。
【請求項8】
前記走査プローブおよび前記モジュラ回転取り付け具が、測定中のポイント付近の移動の組み合わせによってワークピースの表面配向を判断するように配置される、請求項1に記載の測定システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate


【公開番号】特開2011−237428(P2011−237428A)
【公開日】平成23年11月24日(2011.11.24)
【国際特許分類】
【外国語出願】
【出願番号】特願2011−99106(P2011−99106)
【出願日】平成23年4月27日(2011.4.27)
【出願人】(511100914)
【氏名又は名称原語表記】TESA SA
【Fターム(参考)】