説明

磁気記憶素子及び不揮発性記憶装置

【課題】安定した動作が可能な磁気記憶素子及び不揮発性記憶装置を提供する。
【解決手段】実施形態によれば、第1、第2積層部を含む磁気記憶素子が提供される。第1積層部は、第1強磁性層/第1非磁性層/第2強磁性層を含む。第1強磁性層の磁化は面直に固定され、第2強磁性層の磁化方向は面直に可変である。第2積層部は、第3強磁性層/第2非磁性層/第4強磁性層を含む。第3強磁性層の磁化方向は面内方向に可変であり、第4強磁性層の磁化は面直に固定されている。第3強磁性層の位置での第1、第2、第4強磁性層からの漏れ磁界Hs、第3強磁性層の磁気異方性Ku、ダンピング定数α、磁化Ms及び反磁界係数Nzは、Ku≦αMs(8πNzMs−Hs)を満たす。電流によりスピン偏極した電子と、第3強磁性層で発生する回転磁界と、を第2強磁性層に作用させ、第2強磁性層の磁化方向を決定できる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、磁気記憶素子及び不揮発性記憶装置に関する。
【背景技術】
【0002】
磁気ランダムアクセスメモリ(MRAM:Magnetic Random Access Memory)において、トンネル磁気抵抗(TMR:Tunneling MagnetoResistive)効果を示す強磁性トンネル接合(MTJ:Magnetic Tunnel Junction)素子をデータ記憶部に用いる構成がある。この構成は、高速・大容量の不揮発メモリとして注目を集めている。MTJ素子の記憶層への書き込みは、例えば、スピントルク書き込み方式により行われる。この方式においては、例えば、MTJ素子に直接通電させ、MTJ素子の基準層から注入されるスピントルクで記憶層の磁化を反転させる。このような磁気記憶素子において、安定した動作を確保することが重要である。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2009−21352号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
本発明の実施形態は、安定した動作が可能な磁気記憶素子及び不揮発性記憶装置を提供する。
【課題を解決するための手段】
【0005】
本発明の実施形態によれば、第1積層部と第2積層部とを含む積層体を備えた磁気記憶素子が提供される。前記第1積層部は、第1強磁性層と、第2強磁性層と、第1非磁性層と、を含む。前記第1強磁性層の磁化は、膜面に対して垂直な成分を有する第1の方向に固定されている。前記第2強磁性層の磁化の方向は、膜面に対して垂直な方向に可変である。前記第1非磁性層は、前記第1強磁性層と前記第2強磁性層との間に設けられる。前記第2積層部は、前記第1強磁性層、前記第2強磁性層及び前記第1非磁性層が積層される積層方向に沿って前記第1積層部と積層される。前記第2積層部は、第3強磁性層と、第4強磁性層と、第2非磁性層と、を含む。前記第3強磁性層の磁化の方向は、膜面に対して平行な方向に可変である。前記第4強磁性層は、前記第3強磁性層と前記積層方向に沿って積層される。前記第4強磁性層の磁化は、膜面に対して垂直な成分を有する第2の方向に固定されている。前記第2非磁性層は、前記第3強磁性層と前記第4強磁性層との間に設けられる。前記第3強磁性層の位置における前記第1強磁性層、前記第2強磁性層及び前記第4強磁性層からの漏れ磁界Hs(Oe)、前記第3強磁性層の磁気異方性Ku(erg/cm)、前記第3強磁性層のダンピング定数α、前記第3強磁性層の磁化Ms(emu/cc)、及び、前記第3強磁性層の反磁界係数Nzは、
【数1】


の関係を満たす。前記積層方向に沿って前記積層体に電流を流すことによりスピン偏極した電子を前記第2強磁性層に作用させ、且つ、前記第3強磁性層の磁化を歳差運動させることにより発生する回転磁界を前記第2強磁性層に作用させることにより、前記第2強磁性層の磁化の方向を前記電流の向きに応じた方向に決定可能である。
【図面の簡単な説明】
【0006】
【図1】第1の実施形態に係る磁気記憶素子を示す模式的断面図である。
【図2】図2(a)及び図2(b)は、磁化を示す模式図である。
【図3】図3(a)〜図3(d)は、実施形態に係る磁気記憶素子の動作を示す模式図である。
【図4】図4(a)及び図4(b)は、実施形態に係る磁気記憶素子の動作を示す模式図である。
【図5】図5(a)及び図5(b)は、第1の実施形態に係る別の磁気記憶素子を示す模式的断面図である。
【図6】図6(a)及び図6(b)は、第1の実施形態に係る別の磁気記憶素子を示す模式的断面図である。
【図7】図7(a)及び図7(b)は、第1の実施形態に係る別の磁気記憶素子を示す模式的断面図である。
【図8】図8(a)及び図8(b)は、第1の実施形態に係る別の磁気記憶素子を示す模式的断面図である。
【図9】図9(a)及び図9(b)は、第1の実施形態に係る別の磁気記憶素子を示す模式的断面図である。
【図10】図10(a)及び図10(b)は、第1の実施形態に係る別の磁気記憶素子を示す模式的断面図である。
【図11】第1の実施形態に係る別の磁気記憶素子を示す模式的断面図である。
【図12】第1の実施形態に係る磁気記憶素子の特性を示すグラフ図である。
【図13】磁気記憶素子の特性を示すグラフ図である。
【図14】磁気記憶素子の特性を示すグラフ図である。
【図15】磁気記憶素子の特性を示すグラフ図である。
【図16】第2の実施形態に係る不揮発性記憶装置を示す模式図である。
【図17】第2の実施形態に係る不揮発性記憶装置を示す模式図である。
【発明を実施するための形態】
【0007】
以下に、各実施形態について図面を参照しつつ説明する。
なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。
なお、本願明細書と各図において、既出の図に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
【0008】
(第1の実施形態)
図1は、第1の実施形態に係る磁気記憶素子の構成を例示する模式的断面図である。
図1に表したように、実施形態に係る磁気記憶素子110は、積層体SB0を備える。積層体SB0は、第1積層部SB1と、第2積層部SB2と、を含む。
【0009】
第1積層部SB1は、第1強磁性層10と、第2強磁性層20と、第1非磁性層10nと、を含む。
【0010】
第1強磁性層10においては、膜面に対して垂直な成分を有する第1の方向に磁化(第1強磁性層10の磁化)が固定されている。第2強磁性層20においては、磁化(第2強磁性層20の磁化)の方向が膜面に対して垂直な方向に可変である。第1非磁性層10nは、第1強磁性層10と第2強磁性層20との間に設けられる。「膜面」は、層の主面に対して平行な面であり、「層面」に対応する。
【0011】
すなわち、第1強磁性層10、第2強磁性層20及び第1非磁性層10nは、積層される。第1強磁性層10、第2強磁性層20及び第1非磁性層10nが重ねられる方向(軸)を積層方向SD1とする。積層方向SD1は、例えば、第1強磁性層10の膜面に対して垂直である。
【0012】
説明の便宜上、積層方向SD1に対して平行な軸をZ軸とする。Z軸に対して垂直な1つの軸をX軸とする。Z軸とX軸とに対して垂直な軸をY軸とする。
【0013】
本願明細書において、「積層」は、複数の層が互いに接して重ねられる場合に加え、間に別の要素が挿入されて複数の層が重ねられる場合を含む。
【0014】
第2積層部SB2は、積層方向SD1に沿って第1積層部SB1と積層される。第2積層部SB2は、第3強磁性層30と、第4強磁性層40と、第2非磁性層20nと、を含む。第3強磁性層30においては、磁化(第3強磁性層30の磁化)の方向が膜面に対して平行な方向に可変である。第4強磁性層40は、第3強磁性層30と積層方向SD1に沿って積層される。第4強磁性層40においては、膜面に対して垂直な成分を有する第2の方向に磁化(第4強磁性層40の磁化)が固定されている。第2非磁性層20nは、第3強磁性層30と第4強磁性層40との間に設けられる。
【0015】
すなわち、第3強磁性層30、第4強磁性層40及び第2非磁性層20nは、積層方向SD1に沿って、第1強磁性層10、第2強磁性層20及び第1非磁性層10nと積層される。後述するように、各層の順序は、種々の変形が可能である。
【0016】
磁気記憶素子110においては、積層方向SD1に沿って積層体SB0に電流を流すことによりスピン偏極した電子を第2強磁性層20に作用させ、且つ、第3強磁性層30の磁化を歳差運動させることにより発生する回転磁界を第2強磁性層20に作用させることにより、第2強磁性層20の磁化の方向を電流の向きに応じた方向に決定可能とする。上記の電流は、積層体SB0の各層の膜面に対して略垂直な方向に流れる。
【0017】
磁気記憶素子110において、第2積層部SB2は、磁界発生部として機能する。第1積層部SB1は、磁気記憶部として機能する。以下、第2積層部SB2を、適宜、磁界発生部と言い、第1積層部SB1を、適宜、磁気記憶部と言う。
【0018】
第1強磁性層10は、例えば、第1の磁化固定層である。第2強磁性層20においては、磁化容易軸が膜面に対して略垂直方向である。第2強磁性層20は、磁気記憶層として機能する。第1非磁性層10nは、第1のスペーサ層として機能する。第1強磁性層10と、第1非磁性層10nと、第2強磁性層20と、を含む第1積層部SB1は、例えば、MTJ(Magnetic Tunnel Junction)の構造を有する。
【0019】
第3強磁性層30は、磁化回転層として機能する。第4強磁性層40は、磁化が膜面に対して略垂直方向に固定された第2の磁化固定層として機能する。第2非磁性層20nは、第2のスペーサ層として機能する。
【0020】
このような構成を有する磁気記憶素子110においては、書き込み時における磁化反転が高速に生じる。
【0021】
図1は、Z軸に対して平行な平面で切断したときの積層体SB0の断面を例示している。Z軸に沿ってみたときの積層体SB0(第1積層部SB1及び第2積層部SB2)の形状は、例えば、円形(扁平円を含む)である。ただし、実施形態において、Z軸に沿ってみたときの第1積層部SB1及び第2積層部SB2の形状は、任意である。
【0022】
磁気記憶素子110においては、積層体SB0は、第3非磁性層30nをさらに含む。第3非磁性層30nは、第1積層部SB1と第2積層部SB2との間に設けられる。第3非磁性層30nは、必要に応じて設けられ、場合によっては省略可能である。
【0023】
第1強磁性層10、第2強磁性層20及び第4強磁性層40には、例えば、垂直磁化膜が用いられる。第3強磁性層には、例えば、面内磁化膜が用いられる。
【0024】
図2(a)及び図2(b)は、磁化を例示する模式図である。
図2(a)は、垂直磁化膜における磁化を例示している。図2(b)は、面内磁化膜における磁化を例示している。
【0025】
図2(a)及び図2(b)に表したように、積層方向SD1に対して垂直な1つの軸を面内軸SD2とする。面内軸SD2は、X−Y平面内の軸である。磁化72は、膜面に対して垂直な方向の磁化斜影成分(積層方向SD1に対して平行な磁化成分72a)と、膜面に対して平行な方向の磁化斜影成分(面内軸SD2に対して平行な磁化成分72b)と、を有する。
【0026】
図2(a)に表したように、垂直磁化膜は、膜面に対して垂直な磁化成分72aが、膜面に対して平行な磁化成分72bよりも大きい磁化状態を有する。垂直磁化膜において、磁化の方向が膜面に対して略垂直であることが動作特性上望ましい。
【0027】
図2(b)に表したように、面内磁化膜は、膜面に対して平行な磁化成分72bが、膜面に対して垂直な磁化成分72aよりも大きい磁化状態を有する。面内磁化膜において、磁化の方向が膜面に対して略平行であることが動作特性上望ましい。
【0028】
説明の便宜上、第1積層部SB1から第2積層部SB2に向かう方向を「上」または「上向き」と言う。第2積層部SB2から第1積層部SB1に向かう方向を「下」または「下向き」と言う。
【0029】
既に説明したように、第1強磁性層10の磁化は、第1の方向に実質的に固定されている。第4強磁性層40の磁化は、第2の方向に実質的に固定されている。
【0030】
図1に例示したように、磁気記憶素子110においては、第1の方向は下向きであり、第2の方向は上向きである。ただし、後述するように、第1の方向及び第2の方向は種々の変形が可能である。
【0031】
磁気記憶素子110において、例えば、積層体SB0を挟む一対の電極(図示しない)により、積層体SB0に電子電流を流すことができる。電子電流は電子の流れである。上向きに電流が流れるときには、電子電流は下向きに流れる。
【0032】
第2強磁性層20は、データを記憶する役割をもつ。第2強磁性層20の磁化は、比較的容易に反転可能である。第3強磁性層30は、書き込み時に高周波磁界を発生させる役割をもつ。
【0033】
膜面に対して垂直な方向に電子電流を流すと、磁界発生部の第3強磁性層30における磁化が歳差運動する。これにより、回転磁界(高周波磁界)が発生する。高周波磁界の周波数は、例えば約1GHz〜60GHz程度である。高周波磁界は、第2強磁性層20の磁化に対して垂直方向の成分(第2強磁性層20の磁化困難軸の方向の成分)を有する。したがって、第3強磁性層30から発生した高周波磁界の少なくとも一部は、第2強磁性層20の磁化困難軸の方向に印加される。第3強磁性層30から発生した高周波磁界が、第2強磁性層20の磁化困難軸の方向に印加されると、第2強磁性層の磁化は非常に反転し易くなる。
【0034】
磁気記憶素子110においては、電子電流を積層体SB0に流すことによって、第2強磁性層20の磁化の方向を制御することができる。具体的には、電子電流の流れる向き(極性)を変えることで第2強磁性層20の磁化の向きを反転させることができる。情報を記憶させる場合において、例えば、第2強磁性層20の磁化の方向に応じて、「0」と「1」とがそれぞれ割り当てられる。
【0035】
磁気記憶素子110における動作の具体例として、まず「書き込み」動作について説明する。
【0036】
図3(a)〜図3(d)は、実施形態に係る磁気記憶素子の動作を例示する模式図である。
これらの図は、磁気記憶素子110における「書き込み」動作の際の第1積層部SB1の状態を例示している。これらの図では、第2積層部SB2及び第3非磁性層30nは省略されている。
【0037】
図3(a)は、第1強磁性層10から第2強磁性層20に向かって電子電流60を流し始めた状態を例示している。図3(b)は、第1強磁性層10から第2強磁性層20に向かって電子電流60を流し終えた状態(磁化が反転した状態)を例示している。図3(c)は、第2強磁性層20から第1強磁性層10に向かって電子電流60を流し始めた状態を例示している。図3(d)は、第2強磁性層20から第1強磁性層10に向かって電子電流60を流し終えた状態(磁化が反転した状態)を例示している。図3(c)及び図3(d)は、図3(a)及び図3(b)に示した場合に対して、電子電流60の向きを反転させた場合に相当する。
【0038】
書き込み動作においては、第1強磁性層10の膜面及び第2強磁性層20の膜面を横切るように電子電流60を流して、第2強磁性層20に対して書き込み動作が実施される。ここでは、第1非磁性層10nを介した磁気抵抗効果が、ノーマルタイプである場合について説明する。
【0039】
「ノーマルタイプ」の磁気抵抗効果においては、非磁性層の両側の磁性層の磁化どうしが互いに平行である時の電気抵抗は、反平行である時の電気抵抗よりも低い。ノーマルタイプの場合、第1非磁性層10nを介した第1強磁性層10と第2強磁性層20との間の電気抵抗は、第1強磁性層10の磁化が第2強磁性層20の磁化に対して平行である時には、反平行である時よりも低い。
【0040】
図3(a)に表したように、膜面に対して略垂直方向の磁化12aを有する第1強磁性層10を通過した電子は、第1強磁性層10の磁化と同じ方向のスピンをもつようになる。この電子が、第2強磁性層20へ流れると、このスピンのもつ角運動量が第2強磁性層20へ伝達され、第2強磁性層20の磁化32に作用する。すなわち、いわゆるスピントランスファトルクが働く。
【0041】
これにより、図3(b)に表したように、第2強磁性層20の磁化32は、第1強磁性層10の磁化12aと同じ向きになる。この向きは、図3(b)において上向きであり、例えば積層方向SD1に対して平行な1つの方向である。この向き(図3(b)において上向き)の磁化32を有する第2強磁性層20の状態に、例えば「0」を割り当てる。
【0042】
図3(c)に表したように、第1非磁性層10nを通過した電子のうちで、第1強磁性層10の磁化12aと同じ向き(図3(c)において上向き)のスピンをもった電子は、第1強磁性層10を通過する。一方、第1強磁性層10の磁化12aに対して逆向き(図3(c)において下向き)のスピンをもった電子は、第1強磁性層10と第1非磁性層10nとの界面において反射される。この反射された電子のスピンの角運動量が第2強磁性層20へ伝達され、第2強磁性層20の磁化32に作用する。
【0043】
これにより、図3(d)に表したように、第2強磁性層20の磁化32は、第1強磁性層10の磁化12aに対して逆向き(図3(d)において下向き)になる。すなわち、スピントランスファトルクが働く。この向き(図3(d)おいて下向き)の磁化32を有する第2強磁性層20の状態に、例えば「1」を割り当てる。
【0044】
このような作用に基づいて、第2強磁性層20の異なる状態に、「0」または「1」が適宜割り当てられる。これにより、磁気記憶素子110における「書き込み」が実施される。
【0045】
一方、磁気抵抗効果が「リバースタイプ」の場合は、第1非磁性層10nを介した第1強磁性層10と第2強磁性層20との間の電気抵抗は、第1強磁性層10の磁化が第2強磁性層20の磁化に対して平行である時には、反平行である時よりも高い。リバースタイプにおける「書き込み」動作は、ノーマルタイプの場合と同様である。
【0046】
次に、「読み出し」動作について説明する。
磁気記憶素子110における第2強磁性層20の磁化の方向の検出は、例えば、磁気抵抗効果を利用して実施される。磁気抵抗効果においては、各層の磁化の相対的な向きにより電気抵抗が変わる。磁気抵抗効果を利用する場合、第1強磁性層10と第2強磁性層20との間にセンス電流を流し、磁気抵抗が測定される。センス電流の電流値は、記憶時に流す電子電流60に対応する電流値よりも小さい。
【0047】
図4(a)及び図4(b)は、実施形態に係る磁気記憶素子の動作を例示する模式図である。
これらの図は、磁気記憶素子110における「読み出し」動作の際の第1積層部SB1の状態を例示している。これらの図では、第2積層部SB2及び第3非磁性層30nは省略されている。
【0048】
図4(a)は、第1強磁性層10の磁化の方向が、第2強磁性層20の磁化の方向と同じ場合を例示している。図4(b)は、第1強磁性層10の磁化の方向が、第2強磁性層20の磁化の方と反平行(逆向き)である場合を例示している。
【0049】
図4(a)及び図4(b)に表したように、第1積層部SB1にセンス電流61を流し、電気抵抗を検出する。
ノーマルタイプの磁気抵抗効果においては、図4(a)の状態の抵抗は、図4(b)の状態の抵抗よりも低い。リバースタイプの磁気抵抗効果においては、図4(a)の状態の抵抗は、図4(b)の状態の抵抗よりも高い。
【0050】
これらの抵抗が互いに異なる状態に、それぞれ「0」と「1」とを対応づけることにより、2値データの記憶の読み出しが可能となる。なお、センス電流61の向きは、図4(a)及び図4(b)に例示した方向に対して逆向きでも良い。
【0051】
以下、本実施形態に係る磁気記憶素子の積層体SB0における種々の積層構成の例について説明する。
図5(a)及び図5(b)は、第1の実施形態に係る別の磁気記憶素子の構成を例示する模式的断面図である。
図5(a)及び図5(b)に表したように実施形態に係る磁気記憶素子111a及び111bにおいては、第1強磁性層10は、第2強磁性層20と第4強磁性層40との間に配置され、第4強磁性層40は、第1強磁性層10と第3強磁性層30との間に配置されている。第3非磁性層30nは、第1強磁性層10と第4強磁性層40との間に配置されている。第1〜第4強磁性層10〜40がこの順に配列する構成を便宜的に第1積層構成ということにする。
【0052】
磁気記憶素子111aにおいては、第1強磁性層10の磁化は上向きであり、第4強磁性層40の磁化は上向きである。磁気記憶素子111bにおいては、第1強磁性層10の磁化は下向きであり、第4強磁性層40の磁化は下向きである。
【0053】
図6(a)及び図6(b)は、第1の実施形態に係る別の磁気記憶素子の構成を例示する模式的断面図である。
図6(a)及び図6(b)に表したように実施形態に係る磁気記憶素子112a及び112bにおいても、積層体SB0は、第1積層構成を有する。なお、磁気記憶素子112bは、図1に例示した磁気記憶素子110と同じ構成を有している。
【0054】
磁気記憶素子112aにおいては、第1強磁性層10の磁化は上向きであり、第4強磁性層40の磁化は下向きである。磁気記憶素子112bにおいては、第1強磁性層10の磁化は下向きであり、第4強磁性層40の磁化は上向きである。
【0055】
すなわち、磁気記憶素子112a及び112bにおいては、第1の方向に固定された磁化(第1強磁性層10の磁化)の垂直斜影成分の向きは、第2の方向に固定された磁化(第4強磁性層10の磁化)の垂直斜影成分の向きに対して逆向きである。また、第3強磁性層30において発生する回転磁界の向きと、第2強磁性層20の磁化が歳差運動する向きと、は、一致する。
【0056】
この構成においては、第3強磁性層30において発生した回転磁界は、第2強磁性層20に、より効果的に作用する。第2強磁性層20の磁化反転を、より効率的にアシストすることができる。これにより、第2強磁性層20への書き込みに必要な電流を、より低減させることができる。
【0057】
図7(a)及び図7(b)は、第1の実施形態に係る別の磁気記憶素子の構成を例示する模式的断面図である。
図7(a)及び図7(b)に表したように実施形態に係る磁気記憶素子112c及び112dにおいては、積層体SB0は、第1積層構成を有している。そして、これらにおいては、第1強磁性層10の磁化の向き及び第4強磁性層40の磁化の向きが膜面に対して斜めである。この場合も、第1の方向に固定された磁化(第1強磁性層10の磁化)の垂直斜影成分の向きは、第2の方向に固定された磁化(第4強磁性層40の磁化)の垂直斜影成分の向きに対して逆向きである。
【0058】
図8(a)及び図8(b)は、第1の実施形態に係る別の磁気記憶素子の構成を例示する模式的断面図である。
図8(a)及び図8(b)に表したように、実施形態に係る磁気記憶素子121a及び121bにおいては、第2強磁性層20は、第1強磁性層10と第3強磁性層30との間に配置され、第3強磁性層30は、第2強磁性層20と第4強磁性層40との間に配置されている。第3非磁性層30nは、第2強磁性層20と第3強磁性層30との間に配置されている。第1〜第4強磁性層10〜40がこの順に配列する構成を便宜的に第2積層構成ということにする。
【0059】
図9(a)及び図9(b)は、第1の実施形態に係る別の磁気記憶素子の構成を例示する模式的断面図である。
図9(a)及び図9(b)に表したように、実施形態に係る磁気記憶素子131a及び131bにおいては、第2強磁性層20は、第1強磁性層10と第4強磁性層40との間に配置され、第4強磁性層40は、第2強磁性層20と第3強磁性層30との間に配置されている。第3非磁性層30nは、第2強磁性層20と第4強磁性層40との間に配置されている。第1〜第4強磁性層10〜40がこの順に配列する構成を便宜的に第3積層構成ということにする。
【0060】
図10(a)及び図10(b)は、第1の実施形態に係る別の磁気記憶素子の構成を例示する模式的断面図である。
図10(a)及び図10(b)に表したように、実施形態に係る磁気記憶素子141a及び141bにおいては、第1強磁性層10は、第2強磁性層20と第3強磁性層30との間に配置され、第3強磁性層30は、第1強磁性層10と第4強磁性層40との間に配置されている。第3非磁性層30nは、第1強磁性層10と第3強磁性層30との間に配置されている。第1〜第4強磁性層10〜40がこの順に配列する構成を便宜的に第4積層構成ということにする。
【0061】
第2積層構成を有する磁気記憶素子121a及び121b、第3積層構成を有する磁気記憶素子131a及び131b、及び、第4積層構成を有する磁気記憶素子141a及び141bにおいては、第1の方向に固定された磁化(第1強磁性層10の磁化)の垂直斜影成分の向きは、第2の方向に固定された磁化(第4強磁性層40の磁化)の垂直斜影成分の向きに対して逆向きである。第2〜第4積層構成において、第1強磁性層10の磁化の垂直斜影成分の向きは、第4強磁性層40の磁化の垂直斜影成分の向きと同じでも良い。
【0062】
また、第2〜第4積層構成において、第1強磁性層10の磁化及び第4強磁性層40の磁化の向きは、膜面に対して斜めでも良い。
【0063】
図11は、第1の実施形態に係る別の磁気記憶素子の構成を例示する模式的断面図である。
図11に表したように、実施形態に係る磁気記憶素子112bsにおいては、第1積層部SB1の側面に対向する磁気シールド51が設けられる。この例では、磁気シールド51は、さらに、第2積層部SB2の側面、及び、第3非磁性層30nの側面に対向している。
【0064】
すなわち、磁気記憶素子112bsは、積層体SB0の側面の少なくとも一部に対向する磁気シールド51をさらに備える。磁気シールド51は、積層体SB0の側面の上記の少なくとも一部を覆う。
【0065】
さらに、磁気記憶素子112bsは、積層体SB0の側面の上記の少なくとも一部と、磁気シールド51との間に設けられた保護層52をさらに備える。
【0066】
磁気記憶素子112bsにおいては、磁気シールド51は、第1積層部SB1の側面を覆う。磁気記憶素子112bsにおいては、磁気シールド51は、第1積層部SB1の側面、第2積層部SB2の側面、及び、第3非磁性層30nの側面を覆う。
【0067】
例えば、第1積層部SB1の側面及び第2積層部SB2の側面は、例えばSiNやAlなどの保護層52を介してパーマロイ(Py)などの磁気シールド51により覆われる。
【0068】
磁気シールド51を設けることにより、複数の磁気記憶素子が並べられた場合において、隣の磁気記憶素子からの漏洩磁界が、第1積層部SB1及び第2積層部SB2の動作に影響を与えることが抑制される。これにより、回転磁界を発生させるために必要となる電流注入量を抑えることができる。また、第1積層部SB1及び第2積層部SB2からの漏洩磁界が、隣の磁気記憶素子に作用することを抑制することができる。その結果、複数の磁気記憶素子どうしを近接して配置することができ、集積度を向上することができる。
【0069】
磁気記憶素子112bsにおいては、磁気記憶素子112bにおいて、磁気シールド51及び保護層52が設けられている例であるが、実施形態はこれに限らない。すなわち、第1〜第4積層構成を有する任意の積層体SB0において、磁気シールド51を設けることができ、さらに保護層52を設けることができる。
【0070】
第1〜第4強磁性層10〜40、第1〜第3非磁性層10n〜30n、磁気シールド51及び保護層52に用いられる材料の例に関しては、後述する。
【0071】
以下、本実施形態に係る磁気記憶素子における第3強磁性層30の特性に関して、磁気記憶素子110の例として説明する。以下の説明は、第1〜第4積層構成を有する任意の積層体SB0を有する磁気記憶素子に適用できる。
【0072】
本実施形態に係る磁気記憶素子110のように、第2積層部SB2が第1積層部SB1と積層される構造では、第3強磁性層30の位置に、第1強磁性層10、第2強磁性層20及び第4強磁性層40から発生した漏洩磁界が存在する。このような状態において、第3強磁性層30が発振する条件は、漏洩磁界の大きさに依存する。
【0073】
本願発明者は、積層体SB0の構成が特定の条件を満たすときに、積層体SB0(特に第3強磁性層30)を流れる電流の大きさが所定の範囲で、第3強磁性層30において発振が生じることを新たに見出した。
【0074】
ここで、第3強磁性層30の位置における第1強磁性層10、第2強磁性層20及び第4強磁性層40からの漏れ磁界(leak magnetic field)を、Hs(Oe:エルステッド)とする。第3強磁性層30の磁気異方性(magnetic anisotropy)をKu(erg/cm:エルグ/立方センチメートル)とする。第3強磁性層30のダンピング定数(damping coefficient)をαとする。第3強磁性層30の磁化(magnetization)をMs(emu/cc:イーエムユー/シーシー、emu/cc=emu/cm)とする。第3強磁性層30の反磁界係数(demagnetic field coefficient)をNzとする。ダンピング定数α及び反磁界係数Nzは、無次元の定数である。
【0075】
そして、これらの値が以下の第2式の関係を満たすときに、第3強磁性層30は、ある電流範囲で発振する。
【数2】


すなわち、第2式が満たされるとき、第3強磁性層30において発振が生じる電流範囲が存在し、安定した動作が可能になる。
【0076】
ここで、磁気異方性Kuは、第3強磁性層30の膜面内における異方性の大きさである。すなわち、磁気異方性Kuは、材料固有で生じる結晶磁気異方性だけでなく、形状磁気異方性を含むことができる。さらに、磁気異方性Kuは、磁歪から生じる異方性を含むことができる。
【0077】
結晶磁気異方性が低い材料として、パーマロイ、FeCo、Co及びFeCoBなどがある。これらの材料を第3強磁性層30に用いることが適している。ただし、実施形態はこれに限らず、第3強磁性層30には、上記以外の材料を用いても良い。また、第3強磁性層30にアモルファス材料を用いることで、磁気異方性Kuを低減しても良い。
【0078】
形状磁気異方性は、各層の寸法と組成を測定し、測定して得られた値を用いたシミュレータにより解析することで求めることができる。各層の寸法(幅及び厚さなど)は、例えば電子顕微鏡写真などにより測定できる。各層の組成は、例えば、SIMS(Secondary Ion-microprobe Mass Spectrometry、二次イオン質量分析法)、及び、EELS(Electron Energy-Loss Spectroscopy、電子エネルギー損失分光法)などによって求められる。
【0079】
また、上記の各パラメータは、例えば、VSM(Vibrating Sample Magnetometer、試料振動型磁力計)、及び、カー効果測定装置などにより測定される。
【0080】
シミュレータでの計算においては、メッシュサイズは、上記で同定した寸法と組成から解析的に求められる交換結合長未満とする。交換結合長は、(A/Ku)1/2、(A/2πMs1/2、及び、(2A/(Heff・Ms))1/2で計算される値の中で最も小さい値を採用する。ここで、”A”は、交換スティッフネス定数(μerg/cm:マイクロエルグ/センチメートル)である。”A”として、0.5μerg/cm以上3μerg/cm以下の値を用いれば、交換結合長の大きさに大きな差は現れない。
【0081】
以下、実施形態に係る磁気記憶素子の特性について説明する。
本願発明者は、第3強磁性層30における発振特性をシミュレーションした。このシミュレーションでは、図1に例示した磁気記憶素子110において、以下の条件を採用した。ただし、このシミュレーションでは、第2積層部SB2の発振特性を評価するために、第1積層部SB1が設けられておらず第2積層部SB2が設けられているモデルに関してシミュレーションを行った。
【0082】
磁界発生部(第2積層部SB2)をZ軸に沿ってみたときの形状は円形とし、その直径を50ナノメートル(nm)とした。
第3強磁性層30の厚さは、3nmとした。第3強磁性層30は、800emu/ccの磁化Msを有する面内磁化膜とした。
第4強磁性層40の厚さは、8nmとした。第4強磁性層40は、1000emu/ccの磁化を有する垂直磁化膜とした。
第2非磁性層20nは、Cu層(厚さ8nm)とした。
第3強磁性層30のダンピング定数αは、0.01とした。第3強磁性層30のスピン偏極度は、0.4とした。
【0083】
そして、第3強磁性層30の磁気異方性Kuを、0erg/cm〜50000erg/cmの間で変化させて、第3強磁性層30における発振特性をシミュレーションした。
【0084】
図12は、第1の実施形態に係る磁気記憶素子の特性を例示するグラフ図である。
同図は、第3強磁性層30における発振の周波数の電流依存性を表している。横軸は、電流Ic(μA:マイクロアンペア)であり、縦軸は、周波数f(GHz:ギガヘルツ)である。
【0085】
図12から分かるように、第3強磁性層30の磁気異方性Kuが小さいと、電流Icの絶対値が小さくても発振が生じる。第3強磁性層30の磁気異方性Kuが大きくなるにつれ、発振する電流Icの範囲が狭まる。第3強磁性層30の磁気異方性Kuが50000erg/cmのときは、非発振であった。従って、図12には、磁気異方性Kuが50000erg/cmのときの周波数fは示されていない。
【0086】
LLG方程式(Landau-Liftshitz-Gilbert-Langevin equations)によれば、第3強磁性層30の磁化の挙動は次の第3式で表される。
【0087】
【数3】


ここで、γはジャイロ定数であり、αはダンピング定数である。aは、第3強磁性層30におけるスピントルクの大きさを表す。Msは、第3強磁性層30の磁化を表す。第3式の右辺の第1項は歳差項を表し、第2項はダンピング項を表す。
【0088】
第3式の右辺の第2項がゼロであるときに、第3強磁性層30が安定して発振する。さらに、本願発明者は、第2項のスピントルクの大きさが反磁界の最大値よりも小さいときに、発振が生じることを見出した。
【0089】
これに基づき、次の第4式が解析的に導出される。すなわち、第3強磁性層30の位置における第1強磁性層10、第2強磁性層20及び第4強磁性層40からの漏れ磁界Hs、第3強磁性層30の磁気異方性Ku、第3強磁性層30のダンピング定数α、第3強磁性層30の磁化Ms、第3強磁性層30の反磁界係数Nzが、以下の第4式の関係を満たすとき、発振する電流範囲が存在する。
【0090】
【数4】


上記の漏れ磁界Hsは、各層の構成を基に、R. Engel-Herbert and T. Hesjedal : J. Appl. Phys., 97 (2005) 074504に記載の方法により、解析的に求めることができる。
【0091】
なお、各層の寸法(幅及び厚さなど)は、例えば電子顕微鏡写真などにより求められる。各層の組成は、SIMS及びEELSなどによって同定できる。また、各パラメータは、VSM及びカー効果測定装置で測定される。
【0092】
さらに、本願発明者は、第3強磁性層30が発振する時の、第3強磁性層30の磁化の角度をシミュレーションした。このシミュレーションにおいては、図12に関して説明したシミュレーションのモデルを採用した。そして、第3強磁性層30の磁気異方性Kuは、5000erg/cmとした。そして、電流Icの値を変えて発振特性を求めた。
【0093】
図13は、磁気記憶素子の特性を例示するグラフ図である。
同図は、第3強磁性層30に電流Icを流し始めてからの第3強磁性層30の磁化の方向の変化を表している。横軸は、時間t(ns:ナノ秒)である。縦軸は、角度θ(度)である。角度θは、第3強磁性層30の磁化の方向と、積層方向SD1(Z軸)と、の間の角度である。また、単位系として「°:度」から「rad:ラジアン」への変換は、「rad=(2π/360)×度」である。
【0094】
このシミュレーションにおいては、図1に例示したように、第3強磁性層30から第4強磁性層40に向かう方向を「下向き」と言い、第4強磁性層40から第3強磁性層30に向かう方向を「上向き」ということにする。
【0095】
このシミュレーションでは、通電前に、「下向き」の漏れ磁界によって、第3強磁性層30の磁化は、「下向き」に傾いている(角度θが約82度)とした。角度θの絶対値が90度であることは、X−Y平面内に磁化ベクトルが存在することに対応する。負の方向(「下向き」)に電流を流した場合、磁化は、X−Y平面から上方向に傾く。正の方向(「上向き」)に電流を流した場合、磁化は、X−Y平面から下方向に傾く。
【0096】
図13に表したように、時間tが4ns以上になると、角度θは実質的に一定の値になり、安定する。安定した後の角度θは、第3強磁性層30が発振状態を維持しているときの、第3強磁性層30の磁化の方向の角度θである。電流Icの絶対値が大きいと、通電による角度θの変化(通電前の角度θと、安定した後の角度θと、の差の絶対値)は、大きい。なお、電流Icが−80μAのときの特性は、電流Icが−70μAの特性とほぼ一致した。
【0097】
このようなシミュレーション結果から、本願発明者は、第3強磁性層30における発振時に、磁化が膜面から傾く角度の絶対値は40度以下であるであることを見出した。
【0098】
本願発明者は、第3強磁性層30の磁化が傾いたとき(第3強磁性層30が発振状態を維持しているとき)における、磁化ベクトルの状態をシミュレーションした。そして、第3強磁性層30の磁化ベクトルのZ軸に対して平行な成分の、磁化ベクトルに対する比率(膜面直方向割合)を求めた。このシミュレーションでは、図1に例示した構成を有する磁気記憶素子110において、積層体SB0は円筒形とし、積層体SB0をZ軸方向に沿ってみたときの直径φが20nmのときと50nmのときの特性をシミュレーションした。
【0099】
図14は、磁気記憶素子の特性を例示するグラフ図である。
横軸は電流Icであり、縦軸は、磁化の膜面直方向割合Anr(第3強磁性層30が発振状態を維持しているときにおける、第3強磁性層30の磁化ベクトルのZ軸に対して平行な成分の、磁化ベクトルに対する比率)である。
【0100】
図14に表したように、磁化の膜面直方向割合Anr(第3強磁性層30の磁化ベクトルのZ軸に対して平行な成分の、磁化ベクトルに対する比率)は、0.4以下であることが分かった。
【0101】
従って、漏れ磁界Hs、第3強磁性層30の磁気異方性Ku、第3強磁性層30のダンピング定数α、第3強磁性層30の磁化Ms、第3強磁性層30の反磁界係数Nzが、以下の第5式の関係を満たすとき、発振する電流範囲は拡大し、動作のマージンが広くなる。
【0102】
【数5】


本実施形態に係る磁気記憶素子(例えば磁気記憶素子110など)のように、第2積層部SB2が第1積層部SB1と積層される構造では、第2強磁性層20の記憶状態(磁化状態)を読み出すために流す読み出し電流Iによって、第3強磁性層30が発振しないこと(誤書き込みが生じないこと)が望ましい。読み出し電流Iは、読み出し動作の際に積層体SB0に流される電流(すなわち、第3強磁性層30に流される電流)である。
【0103】
漏れ磁界Hs、第3強磁性層30の磁気異方性Ku、第3強磁性層30のダンピング定数α、第3強磁性層30の磁化Ms、第3強磁性層30の反磁界係数Nz、第3強磁性層30の体積V(cm:立方センチメートル)、読み出し電流I(A:アンペア)が、以下の第6式の関係を満たすとき、読み出し時の誤書き込みを回避しつつ、発振する電流範囲が確保できる。
【0104】
【数6】


ここで、hはプランク定数(約6.626×10−27erg・s:エルグ・秒)を表す。なお、6.626×10−27erg・s(エルグ・秒)は、6.626×10−34J・s(ジュール・秒)に相当する。eは電気素量(約1.602×10−19A・S:アンペア・秒)を表している。g(θ)は、スピン偏極度に依存するスピントランスファの効率を表すパラメータである。g(θ)は、偏極度、及び、第3強磁性層30の磁化の角度θの関数として解析的に求められる。スピン偏極度は、例えば第3強磁性層30のMR比から求められる。第6式における角度θの単位は、ラジアン(rad)である。角度θは、第3強磁性層30の寸法及び有効磁界の大きさがわかれば、解析的に求めても良い。または、角度θは、第3強磁性層30のMR比から求めても良い。
【0105】
マイクロマグネティクス解析で見出した発振時の磁化の傾きを考慮すると、第6式の代わりに、以下の第7式を用いても良い。
【0106】
【数7】


すなわち、漏れ磁界Hs、第3強磁性層30の磁気異方性Ku、第3強磁性層30のダンピング定数α、第3強磁性層30の磁化Ms、第3強磁性層30の反磁界係数Nz、読み出し電流Iが、上記の第7式の関係を満たすとき、読み出し時の誤書き込みを回避しつつ、発振する電流範囲が確保できる。
【0107】
さらに、第7式の左辺の値(すなわち、第3強磁性層30の磁気異方性Kuの下限値)について検討した。すなわち、第7式の左辺が、第2項を有さず第1項だけを有する場合(反磁界の影響を考慮しない場合)と、第7式の左辺が、上記の第1項及び第2項を有する場合(反磁界の影響を考慮した場合)の特性を求めた。
【0108】
図15は、磁気記憶素子の特性を例示するグラフ図である。
横軸は、読み出し電流I(μA)である。縦軸は、第7式のおける左辺(磁気異方性Kuの下限値Ku(min))である。図15には、第7式の左辺が第2項を有さず第1項だけを有する場合(反磁界の影響を考慮しない場合:case1)と、第7式の左辺が第1項及び第2項を有する場合(反磁界の影響を考慮した場合:case2)の特性が示されている。
【0109】
図15からわかるように、反磁界の影響を考慮しない場合(case1)の特性は、反磁界の影響を考慮した場合(case2)の特性と実質的に一致する。このことから、第3強磁性層30の磁気異方性Kuの下限値Ku(min)を考える場合には、第7式の左辺の第2項は省略可能である。
【0110】
すなわち、漏れ磁界Hs、第3強磁性層30の磁気異方性Ku、第3強磁性層30のダンピング定数α、第3強磁性層30の磁化Ms、第3強磁性層30の反磁界係数Nz、読み出し電流Iが、以下の第8式の関係を満たすとき、読み出し時の誤書き込みを回避しつつ、発振する電流範囲が確保できる。
【0111】
【数8】


以下、第1〜第4強磁性層10〜40、第1〜第3非磁性層10n〜30n、磁気シールド51及び保護層52の構成の例について説明する。
【0112】
第1強磁性層10及び第2強磁性層20には、例えば、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、マンガン(Mn)及びクロム(Cr)よりなる群から選択された少なくともいずれかの元素を含む金属材料を用いることが好ましい。さらに、上記の群から選択された少なくともいずれかと、白金(Pt)、パラジウム(Pd)、イリジウム(Ir)、ルテニウム(Ru)及びロジウム(Rh)よりなる群から選択された少なくともいずれかの元素と、の組み合わせによる合金を用いることができる。
【0113】
第1強磁性層10及び第2強磁性層20において、含まれる磁性材料の組成や熱処理により特性を調整することができる。また、第1強磁性層10及び第2強磁性層20には、TbFeCo及びGdFeCoなどの希土類−遷移金属のアモルファス合金を用いることができる。第1強磁性層10及び第2強磁性層20には、Co/Pt、Co/Pd及びCo/Niなどの積層構造を用いることができる。Co/Ru、Fe/Au、Ni/Cu等は、下地層との組み合わせで垂直磁化膜となる。膜の結晶配向方向を制御することで、Co/Ru、Fe/Au、Ni/Cu等を、第1強磁性層10及び第2強磁性層20に用いることができる。第1強磁性層10及び第2強磁性層20には、アルミニウム(Al)、ゲルマニウム(Ge)、窒素(N)、リン(P)、砒素(As)、ボロン(B)、及び、シリコン(Si)のような添加物が含まれていても良い。
【0114】
第1非磁性層10nには、非磁性トンネルバリア層として機能する絶縁材料を用いることができる。具体的には、例えば、アルミニウム(Al)、チタン(Ti)、亜鉛(Zn)、ジルコニウム(Zr)、タンタル(Ta)、コバルト(Co)、ニッケル(Ni)、シリコン(Si)、マグネシウム(Mg)及び鉄(Fe)よりなる群から選択された少なくともいずれかの元素を含む、酸化物、窒化物又は弗化物を用いることができる。
【0115】
第1非磁性層10nには、例えば、Al、SiO、MgO、AlN、Ta−O、Al−Zr−O、Bi、MgF、CaF、SrTiO、AlLaO、Al−N−O、Si−N−O等を用いることができる。第1非磁性層10nには、例えば、非磁性半導体(ZnO、InMn、GaN、GaAs、TiO、Zn、Te、または、それらに遷移金属がドープされたもの)などを用いることができる。
【0116】
第1非磁性層10nの厚さは、約0.2ナノメートル以上2.0nm程度の範囲の値とすることが望ましい。これにより、例えば、絶縁膜の均一性を確保しつつ、抵抗が過度に高くなることが抑制される。
【0117】
第2非磁性層20nには、例えば、非磁性トンネルバリア層及び非磁性金属層のうちのいずれかを用いることができる。
【0118】
非磁性トンネルバリア層には、例えば、絶縁材料が用いられる。具体的には、非磁性トンネルバリア層には、例えば、アルミニウム(Al)、チタン(Ti)、亜鉛(Zn)、ジルコニウム(Zr)、タンタル(Ta)、コバルト(Co)、ニッケル(Ni)、シリコン(Si)、マグネシウム(Mg)及び鉄(Fe)よりなる群から選択された少なくともいずれかの元素を含む、酸化物、窒化物又は弗化物を用いることができる。非磁性トンネルバリア層としては、例えば、Al、SiO、MgO、AlN、Ta−O、Al−Zr−O、Bi、MgF、CaF、SrTiO、AlLaO、Al−N−O、及び、Si−N−Oなどを用いることができる。
【0119】
非磁性トンネルバリア層として、非磁性半導体(ZnO、InMn、GaN、GaAs、TiO、Zn、Te、または、それらに遷移金属がドープされたもの)などを用いることができる。
【0120】
第2非磁性層20nとして、非磁性トンネルバリア層が用いられる場合、第2非磁性層20nの厚さは、約0.2nm以上2.0nm程度の範囲の値とすることが望ましい。
【0121】
第2非磁性層20nに用いられる非磁性金属層には、例えば、銅(Cu)、銀(Ag)、金(Au)、クロム(Cr)、亜鉛(Zn)、ガリウム(Ga)、ニオブ(Nb)、モリブデン(Mo)、ルテニウム(Ru)、パラジウム(Pd)、ハフニウム(Hf)、タンタル(Ta)、タングステン(W)、白金(Pt)及びビスマス(Bi)よりなる群から選択されたいずれかの非磁性金属、または、上記の群から選択された少なくともいずれか2つ以上の元素を含む合金を用いることができる。第2非磁性層20nの厚さは、1.5nm以上、20nm以下とすることが望ましい。これにより、磁性層間で層間結合せず、かつ、伝導電子のスピン偏極状態が非磁性金属層を通過する際に失われることが抑制される。
【0122】
第3強磁性層30には、例えば、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、マンガン(Mn)及びクロム(Cr)よりなる群から選択された少なくともいずれかの元素を含む磁性金属を用いることができる。さらに、上記の群から選択された少なくともいずれかと、白金(Pt)、パラジウム(Pd)、イリジウム(Ir)、ルテニウム(Ru)及びロジウム(Rh)よりなる群から選択された少なくともいずれかの元素と、の組み合わせによる合金を用いることができる。
【0123】
第3強磁性層3において、含まれる磁性材料の組成や熱処理により特性を調整することができる。また、第3強磁性層30には、アルミニウム(Al)、ゲルマニウム(Ge)、窒素(N)、リン(P)、砒素(As)、ボロン(B)、及び、シリコン(Si)のような添加物が含まれていても良い。第3強磁性層30には、Co/Pt、Co/Pd及びCo/Niなどの積層構造を用いることができる。膜の結晶配向方向を制御することで、Co/Ru、Fe/Au、Ni/Cu等を、第3強磁性層30に用いることができる。
【0124】
第4強磁性層40には、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、マンガン(Mn)及びクロム(Cr)よりなる群から選択された少なくともいずれかの元素を含む金属材料を用いることが好ましい。さらに、これらと、白金(Pt)、パラジウム(Pd)、イリジウム(Ir)、ルテニウム(Ru)及びロジウム(Rh)よりなる群から選択された少なくともいずれかの元素と、の組み合わせによる合金を用いることができる。
【0125】
第4強磁性層40において、含まれる磁性材料の組成や熱処理により特性を調整することができる。第4強磁性層40には、TbFeCo、GdFeCoなどの希土類−遷移金属のアモルファス合金を用いることができる。第4強磁性層40には、Co/Pt、Co/Pd及びCo/Niなどの積層構造を用いることができる。Co/Ru、Fe/Au、Ni/Cu等は、下地層との組み合わせで垂直磁化膜となる。膜の結晶配向方向を制御することで、Co/Ru、Fe/Au及びNi/Cu等を第4強磁性層40に用いることができる。第4強磁性層40には、アルミニウム(Al)、ゲルマニウム(Ge)、窒素(N)、リン(P)、砒素(As)、ボロン(B)、及び、シリコン(Si)のような添加物が含まれていても良い。
【0126】
第3非磁性層30nには、非磁性金属層が用いられる。
第3非磁性層30nに用いられる非磁性金属層には、銅(Cu)、銀(Ag)、金(Au)、クロム(Cr)、亜鉛(Zn)、ガリウム(Ga)、ニオブ(Nb)、モリブデン(Mo)、ルテニウム(Ru)、パラジウム(Pd)、ハフニウム(Hf)、タンタル(Ta)、タングステン(W)、白金(Pt)、ビスマス(Bi)、イリジウム(Ir)及びオスミウム(Os)よりなる群から選択された少なくともいずれかの非磁性金属、または、上記の群から選択された2つ以上の元素を含む合金を用いることができる。
【0127】
第3非磁性層30nには、銅(Cu)などのスピン拡散長が長い材料、または、ルテニウム(Ru)などのスピン拡散長が短い材料を用いることができる。スピン偏極した電子が挿入される効果を消去したい場合には、ルテニウム(Ru)などのスピン拡散長が短い材料を、第3非磁性層30nに用いることが望ましい。
【0128】
本実施形態に係る磁気記憶素子(例えば磁気記憶素子110など)において、積層体SB0に電子電流を流すための一対の電極が設けられる。
電極には、導電性の磁性材料または導電性の非磁性材料が用いられる。導電性の磁性材料の例としては、第3強磁性層30及び第4強磁性層40に用いられる材料と同様の材料を挙げることができる。
【0129】
導電性の非磁性材料の具体例としては、金(Au)、銅(Cu)、クロム(Cr)、亜鉛(Zn)、ガリウム(Ga)、ニオブ(Nb)、モリブデン(Mo)、ルテニウム(Ru)、パラジウム(Pd)、銀(Ag)、ハフニウム(Hf)、タンタル(Ta)、タングステン(W)、白金(Pt)、ビスマス(Bi)及びアルミニウム(Al)よりなる群から選択されたいずれかの金属、または、上記の群から選択された2つ以上を含む合金を用いることができる。
【0130】
さらに、電極に用いられる導電性の非磁性材料として、カーボンナノチューブ、カーボンナノワイヤ及びグラフェン等の材料が挙げられる。
【0131】
電極に付与される導電性の保護膜には、タンタル(Ta)、ルテニウム(Ru)、銅(Cu)、金(Au)、銀(Ag)、アルミニウム(Al)、銅(Cu)、金(Au)、銀(Ag)及びアルミニウム(Al)よりなる群から選択された少なくともいずれかの元素を含む合金、または、グラフェンなどの材料を用いることができる。エレクトロマグレーション耐性及び低抵抗であることを考慮すると、保護膜には、銅(Cu)及びアルミニウム(Al)よりなる群から選択されたいずれかの元素、または、これらを含む合金を用いることが望ましい。
【0132】
保護層52には、アルミニウム(Al)、チタン(Ti)、亜鉛(Zn)、ジルコニウム(Zr)、タンタル(Ta)、コバルト(Co)、ニッケル(Ni)、シリコン(Si)、マグネシウム(Mg)及び鉄(Fe)よりなる群から選択された少なくともいずれかの元素を含む、酸化物、窒化物または弗化物を用いることができる。
【0133】
磁気シールド51には、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、マンガン(Mn)及びクロム(Cr)よりなる群から選択されたいずれかの元素、または、この群から選択された2つ以上を含む合金を用いることができる。
【0134】
磁気シールド51には、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、マンガン(Mn)及びクロム(Cr)よりなる群から選択された少なくともいずれかの元素と、白金(Pt)、パラジウム(Pd)、イリジウム(Ir)、ルテニウム(Ru)及びロジウム(Rh)よりなる群から選択された少なくともいずれかの元素と、の組み合わせによる合金を用いることができる。
【0135】
磁気シールド51に含まれる磁性材料の組成や熱処理により、磁気シールド51の特性を調整することができる。また、磁気シールド51には、TbFeCo及びGdFeCoなどの希土類−遷移金属のアモルファス合金を用いることができる。また、磁気シールド51には、Co/Pt、Co/Pd及びCo/Niなどの積層構造を用いることができる。
【0136】
既に説明したように、Z軸に沿ってみたときの第1積層部SB1及び第2積層部SB2の形状は任意である。例えば、Z軸に沿ってみたときの第1積層部SB1及び第2積層部SB2の形状(膜面に対して平行な面で切断した形状)は、円形、楕円形、扁平円、並びに、四角形及六角形などの3つ以上の角を有する多角形の形状を有することができる。
【0137】
Z軸に対して平行な平面で切断したときの第1積層部SB1及び第2積層部SB2の形状は任意である。Z軸に対して平行な平面で切断したときの第1積層部SB1及び第2積層部SB2の形状(膜面に対して垂直な面で切断した形状)は、例えば、テーパ形状または逆テーパ形状を有することができる。
【0138】
図6(a)及び図6(b)に例示した磁気記憶素子112a及び112b、図7(a)及び図7(b)に例示した磁気記憶素子112c及び112d、図8(a)及び図8(b)に例示した磁気記憶素子121a及び121b、図9(a)及び図9(b)に例示した磁気記憶素子131a及び131b、図10(a)及び図10(b)に例示した磁気記憶素子141a及び141bにおいては、第1強磁性層10の磁化の垂直斜影成分の向きは、第4強磁性層10の磁化の垂直斜影成分の向きに対して逆向きである。
【0139】
この場合、
第2強磁性層20の位置において膜面に対して垂直な方向にかかる漏洩磁界を低減させる(例えば打ち消す)ことができる。一方、第3強磁性層30の位置において膜面に対して垂直な方向にかかる漏洩磁界を残留させ、作用させることができる。
【0140】
これにより、第3強磁性層30において発生する回転磁界の向きは、第2強磁性層20の磁化が歳差運動する向きと一致する。第3強磁性層30において発生した回転磁界により、第2強磁性層20の磁化反転を効率的にアシストすることができる。その結果、第2強磁性層20への情報の記憶(書き込み)に必要な電流を低減させることができる。
【0141】
第1積層構成を有する磁気記憶素子(例えば磁気記憶素子112a、112b、112c及び112dなど)において、第1強磁性層10と第4強磁性層40とは、第3非磁性層30nを介して反強磁性結合していても良い。このように、非磁性層を介して互いの磁化の方向が反強磁性結合し反平行となる構造は、シンセティックアンチフェロ(SAF:Synthetic Anti-Ferromagnet)構造と呼ばれる。この例では、「第1の磁性層(例えば第1強磁性層10)/非磁性層(例えば第3非磁性層30n)/第2の磁性層(例えば第4強磁性層40)」の積層構造が、SAF構造に対応する。
【0142】
SAF構造を用いることにより、互いの磁化固定力が増強され、外部磁界に対する耐性、及び、熱的な安定性を向上させることができる。この構造では、磁気記憶層(例えば第2強磁性層20)の位置において膜面に対して垂直な方向にかかる漏洩磁界をほぼゼロにすることができる。
【0143】
SAF構造における非磁性層(中間層)には、ルテニウム(Ru)、イリジウム(Ir)やオスミウム(Os)などの金属材料が用いられる。非磁性層の厚さは、3nm以下に設定される。これにより、非磁性層を介して十分強い反強磁性結合が得られる。
【0144】
すなわち、第3非磁性層30nは、ルテニウム(Ru)、オスミウム(Os)、及び、イリジウム(Ir)よりなる群から選択されたいずれかの金属、または、前記群から選択された少なくとも2つ以上を含む合金を含み、第3非磁性層30nの厚さは、3nm以下であることが望ましい。
【0145】
なお、実施形態に係る磁気記憶素子に含まれる各層の寸法(幅及び厚さなど)は、例えば電子顕微鏡写真像などにより求められる。
【0146】
第2積層構成を有する磁気記憶素子(例えば磁気記憶素子121a及び121bなど)においては、第2強磁性層20と第3強磁性層30との間の距離は、例えば、磁気記憶素子121a及び121bにおける距離よりも短い。これにより、第3強磁性層30において発生した回転磁界は、第2強磁性層20に、より大きく作用し、第2強磁性層20の磁化反転をより効率的にアシストすることができる。これにより、第2強磁性層への書き込みに必要な電流を、より低減させることができる。
【0147】
磁気記憶素子121a及び121bにおいて、第3非磁性層30nにおいてスピン情報が保たれると、第3強磁性層30は、第2強磁性層20からのスピントランスファトルクの影響を受ける。このため、第3強磁性層30の磁化回転の制御性が低下する場合がある。
【0148】
このとき、第3非磁性層30nとして、例えばルテニウム(Ru)などのようなスピン拡散長の短い膜(スピン消失の機能を持つ材料)、または、スピン拡散長の短い構造を有する層を用いることが望ましい。これにより、第3強磁性層30の磁化回転の制御性の低下を抑制できる。
【0149】
すなわち、第3強磁性層30の磁化が歳差運動をするためのスピントランスファトルクの大きさは、第4強磁性層40でのスピン偏極で決まる。この構成においては、他の電子のスピンの影響(スピントランスファトルク)を受けることなく、第3強磁性層30の磁化を独立に制御することが可能となる。
【0150】
第3非磁性層30nのための、このようなスピン消失効果が得られる材料としては、ルテニウム(Ru)、タンタル(Ta)、タングステン(W)、白金(Pt)、パラジウム(Pd)、モリブデン(Mo)、ニオブ(Nb)、ジルコニウム(Zr)、チタン(Ti)及びバナジウム(V)よりなる群から選択された金属、または、これらの群から選択された2つ以上を含む合金を挙げることができる。
【0151】
第2積層構成において、第3非磁性層30nの厚さは、第2強磁性層20と第3強磁性層30とが層間磁気結合しない値に設定されることが望ましい。具体的には、第3非磁性層30nの厚さは、1.4nm以上に設定することが望ましい。
【0152】
第3非磁性層30nの厚さが1.4nm以上であると、第2強磁性層20と第3強磁性層30とが層間結合せず、かつ、第3非磁性層30nにおいて、伝導電子が第3非磁性層30nの内部及び界面を通過する際にスピン偏極度を消失させることができる。さらに、第2強磁性層20の磁化の向きにより第3強磁性層30の歳差運動が変化することを、第3非磁性層30nにより防ぐことができる。
【0153】
一方、第3非磁性層30nの厚さが20nmを超えると、多層膜のピラー形成が困難となる。さらに、第3強磁性層30から発生する回転磁界の強度が、第2強磁性層20の位置で減衰する。そのため、第3非磁性層30nの厚さは、20nm以下に設定されることが望ましい。
【0154】
第2積層構成において、第3非磁性層30nとして、前述した単層膜の他に、積層膜を用いることができる。この積層膜は、例えば、ルテニウム(Ru)、タンタル(Ta)、タングステン(W)、白金(Pt)、パラジウム(Pd)、モリブデン(Mo)、ニオブ(Nb)、ジルコニウム(Zr)、チタン(Ti)及びバナジウム(V)よりなる群から選択された金属、または、その群から選択された2つ以上を含む合金を含む層と、その層の少なくとも片側に積層された銅(Cu)層と、の積層構成を有することができる。
【0155】
さらに、第3非磁性層30nに用いられる積層膜は、例えば、ルテニウム(Ru)、タンタル(Ta)、タングステン(W)、白金(Pt)、パラジウム(Pd)、モリブデン(Mo)、ニオブ(Nb)、ジルコニウム(Zr)、チタン(Ti)及びバナジウム(V)よりなる群から選択された金属、または、その群から選択された2つ以上を含む合金を含む第1層と、第1層の少なくとも片側に積層され、アルミニウム(Al)、マグネシウム(Mg)、チタン(Ti)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、バナジウム(V)、クロム(Cr)、タンタル(Ta)、タングステン(W)及びルテニウム(Ru)よりなる群から選択された少なくともいずれかの元素を含む酸化物を含む第2層と、を含む積層構成を有することができる。
【0156】
第3積層構成を有する磁気記憶素子(例えば磁気記憶素子131a及び141bなど)、及び、第4積層構成を有する磁気記憶素子(例えば磁気記憶素子141a及び141bなど)においては、第2の強磁性層20と第3の強磁性層30との間の距離は、磁気記憶素子112a及び112bにおける距離よりも短い。これにより、第3強磁性層30において発生した回転磁界は、第2強磁性層20に、より大きく作用し、第2強磁性層20の磁化反転をより効率的にアシストすることができる。これにより、第2強磁性層への書き込みに必要な電流を、より低減させることができる。
【0157】
第3積層構成を有する磁気記憶素子、及び、第4積層構成を有する磁気記憶素子において、第3非磁性層30n及び第2非磁性層20nには、金属導体、絶縁体及び半導体のいずれを用いても良い。第3非磁性層30nと第2非磁性層20nとにおいて、異なる材料に基づく層を用いても良い。
【0158】
第3積層構成を有する磁気記憶素子、及び、第4積層構成を有する磁気記憶素子において、第3非磁性層30nとして絶縁体または半導体を用いた場合には、抵抗値が上昇する。このため、この場合には、第2非磁性層20nとして金属導体を用いることが好ましい。金属導体として、銅(Cu)、アルミニウム(Al)、銀(Ag)及び金(Au)などを用いることが好ましい。
【0159】
実施形態に係る磁気記憶素子の製造方法の例について説明する。以下の製造方法は、層の作製順を適宜変更することにより、本実施形態に係る磁気記憶素子(例えば磁気記録素子110など)及びそれらの変形の磁気記憶素子などに適用される。
以下の説明において、「材料A\材料B」は、材料Aの上に材料Bが積層されていることを指す。
【0160】
ウェーハ上に下部電極(図示せず)を形成した後、そのウェーハを超高真空スパッタ装置内に配置する。下部電極上に、Ta\Ru(電極とのコンタクト層、兼ストッパー層)、CoFeB\FePt層(第1強磁性層10)、MgO(第1非磁性層10n)、FePd\CoFeB層(第2強磁性層20)、及び、その上にTa\Ru層(コンタクト層、兼ストッパー層、兼第3非磁性層30n)を、この順に積層させる。ここで、磁界中でアニールすることによって、FePd\CoFeB層とCoFeB\FePt層との膜面垂直方向の磁気異方性の強さを調節することもできる。続いて、FePt\CoFeB\Cu\Py層(磁界発生部)、及び、Ta\Ru層(コンタクト層、兼ストッパー層)をこの順に積層する。これにより、加工体が形成される。
【0161】
次に、EB(electron beam:電子線)レジストを塗布してEB露光を行い、直径50nmのレジストマスクを形成する。加工体のうちで、レジストで被覆されていない部分を、ストッパー層のTa層が露出するまで、イオンミリングによって削る。
【0162】
この後、埋め込み絶縁層となるSiO膜を成膜した後、レジストをリフトオフする。
【0163】
次に、埋め込み絶縁層となるSiO膜を成膜した後、CMP(Chemical Mechanical Polishing)等で平坦化した後、RIE(Reactive Ion Etching)等で全面をエッチングすることで電極とのコンタクト層を露出させる。
【0164】
さらに全面にレジストを塗布し、レジストの開口部が上部電極の位置に対応するように、ステッパ露光装置を用いてレジストをパターニングする。上部電極に対応する開口を埋め込むように、Cu膜を形成し、レジストを除去する。これにより、上部電極が形成される。上部電極に電気的に接続される配線(図示しない)が設けられる。
【0165】
以下、図11に例示した磁気記憶素子112bsの製作方法の例について説明する。
まず、ウェーハ上に下部電極(図示せず)を形成した後、そのウェーハを超高真空スパッタ装置内に配置する。次に、下部電極上に、Ta\Ru層(電極とのコンタクト層、兼ストッパー層)、FePd\CoFeB層(磁気記憶部の第2強磁性層)、MgO(第1非磁性層)、CoFeB\FePt層(磁気記憶部の第1強磁性層)、Ru(第3非磁性層)、FePt\CoFeB\Cu\Py層(磁界発生部)および、その上にTa(電極とのコンタクト層)による層をこの順に積層させる。ここで、磁界中でアニールすることによって、FePd\CoFeB層とCoFeB\FePt層の膜面垂直方向の磁気異方性の強さを調節することもできる。
【0166】
次に、EBレジストを塗布してEB露光を行い、直径50nmのレジストマスクを形成する。イオンミリングによってレジストで被覆されていない部分を、ストッパー層を兼ねた下部電極上のTa層が露出するまで削る。
【0167】
続いて、保護層52としてSiN層を形成した後、磁気シールド51として機能するPy層を形成する。エッチバックにより、Py層が磁気記憶素子の側壁に残るようにする。
【0168】
次に、磁気記憶素子を絶縁埋め込みすべくSiO膜を成膜した後、CMP等で平坦化した後、RIE等で全面をエッチングすることで電極とのコンタクト層を露出させる。
【0169】
さらに全面にレジストを塗布し、このレジストを上部電極の位置にレジストが被覆されない部分ができるように、ステッパ露光装置を用いてパターニングする。上部電極に対応した開口をCuで埋め込み成膜し、レジストを除去する。上部電極には、図示しない配線を設けて電気的入出力ができるようにする。
【0170】
(第2の実施形態)
図16は、第2の実施形態に係る不揮発性記憶装置の構成を例示する模式図である。
図16に表したように、本実施形態に係る不揮発性記憶装置340は、メモリセルアレイMCAを備える。メモリセルアレイMCAは、マトリクス状に配列された複数のメモリセルMCを有する。
【0171】
各メモリセルMCは、第1の実施形態に係る磁気記憶素子のいずれかを、MTJ素子(積層体SB0)として有する。
【0172】
メモリセルアレイMCAには、複数のビット線対(ビット線BL及びビット線/BL)及び、複数のワード線WLが配置されている。複数のビット線対のそれぞれは、列(カラム)方向に延在する。複数のワード線WLのそれぞれは、行(ロウ)方向に延在する。
【0173】
ビット線BLとワード線WLとの交差部分に、メモリセルMCが配置される。各メモリセルMCは、MTJ素子と選択トランジスタTRとを有する。MTJ素子の一端は、ビット線BLに接続されている。MTJ素子の他端は、選択トランジスタTRのドレイン端子に接続されている。選択トランジスタTRのゲート端子は、ワード線WLに接続されている。選択トランジスタTRのソース端子は、ビット線/BLに接続されている。
【0174】
ワード線WLには、ロウデコーダ341が接続されている。ビット線対(ビット線BL及びビット線/BL)には、書き込み回路342a及び読み出し回路342bが接続されている。書き込み回路342a及び読み出し回路342bには、カラムデコーダ343が接続されている。
【0175】
各メモリセルMCは、ロウデコーダ341及びカラムデコーダ343により選択される。メモリセルMCへのデータ書き込みの例は、以下である。まず、データ書き込みを行うメモリセルMCを選択するために、このメモリセルMCに接続されたワード線WLが活性化される。これにより、選択トランジスタTRがオンする。
【0176】
MTJ素子には、例えば、双方向の書き込み電流が供給される。具体的には、MTJ素子に左から右へ書き込み電流を供給する場合、書き込み回路342aは、ビット線BLに正の電位を印加し、ビット線/BLに接地電位を印加する。また、MTJ素子に右から左へ書き込み電流を供給する場合、書き込み回路342aは、ビット線/BLに正の電位を印加し、ビット線BLに接地電位を印加する。このようにして、メモリセルMCに、データ「0」、または、データ「1」を書き込むことができる。
【0177】
メモリセルMCからのデータ読み出しの例は、以下である。まず、メモリセルMCが選択される。読み出し回路342bは、MTJ素子に、例えば、選択トランジスタからMTJ素子に向かう方向に流れる読み出し電流を供給する。そして、読み出し回路342bは、この読み出し電流に基づいて、MTJ素子の抵抗値を検出する。このようにして、MTJ素子に記憶された情報を読み出すことができる。
【0178】
図17は、第2の実施形態に係る不揮発性記憶装置の構成を例示する模式図である。
図17は、1つのメモリセルMCの部分を例示している。この例では、磁気記憶素子110が用いられているが、実施形態に係る任意の磁気記憶素子を用いることができる。
【0179】
図17に表したように、不揮発性記憶装置340は、実施形態に係る磁気記憶素子(例えば磁気記憶素子110)と、第1配線81と、第2配線82と、を備える。第1配線81は、磁気記憶素子110の一端(例えば第1積層部SB1の端)に、直接または間接に接続される。第2配線82は、磁気記憶素子110の他端(例えば第2積層部SB2の端)に直接または間接に接続される。
【0180】
ここで、「直接に接続される」は、間に他の導電性の部材(例えばビア電極や配線など)が挿入されないで電気的に接続される状態を含む。「間接に接続される」は、間に他の導電性の部材(例えばビア電極や配線など)が挿入されて電気的に接続される状態、及び、間にスイッチ(例えばトランジスタなど)が挿入されて、導通と非導通とが可変の状態で接続される状態を含む。
【0181】
第1配線81及び第2配線82のいずれか一方は、例えば、ワード線WLに対応する。 第1配線81及び第2配線82のいずれか他方は、例えば、ビット線BLまたはビット線/BLに対応する。
【0182】
図17に表したように、不揮発性記憶装置340は、選択トランジスタTRをさらに備えることができる。選択トランジスタTRは、磁気記憶素子110と第1配線81との間(第1の位置)、及び、磁気記憶素子110と第2配線82の間(第2の位置)の少なくともいずれかに設けられる。これにより、図16に関して説明した動作が実現できる。
【0183】
実施形態によれば、安定した動作が可能な磁気記憶素子及び不揮発性記憶装置が提供される。
【0184】
なお、本願明細書において、「垂直」及び「平行」は、厳密な垂直及び厳密な平行だけではなく、例えば製造工程におけるばらつきなどを含むものであり、実質的に垂直及び実質的に平行であれば良い。
【0185】
以上、具体例を参照しつつ、本発明の実施形態について説明した。しかし、本発明の実施形態は、これらの具体例に限定されるものではない。例えば、磁気記憶素子に含まれる強磁性層、非磁性層、電極など、並びに、不揮発性記憶装置に含まれる配線及びトランジスタなどの各要素の具体的な構成に関しては、当業者が公知の範囲から適宜選択することにより本発明を同様に実施し、同様の効果を得ることができる限り、本発明の範囲に包含される。
【0186】
また、各具体例のいずれか2つ以上の要素を技術的に可能な範囲で組み合わせたものも、本発明の要旨を包含する限り本発明の範囲に含まれる。
【0187】
その他、本発明の実施形態として上述した磁気記憶素子及び不揮発性記憶装置を基にして、当業者が適宜設計変更して実施し得る全ての磁気記憶素子及び不揮発性記憶装置も、本発明の要旨を包含する限り、本発明の範囲に属する。
【0188】
その他、本発明の思想の範疇において、当業者であれば、各種の変更例及び修正例に想到し得るものであり、それら変更例及び修正例についても本発明の範囲に属するものと了解される。
【0189】
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
【符号の説明】
【0190】
10…第1強磁性層、 10n…第1非磁性層、 12a…磁化、 20…第2強磁性層、 20n…第2非磁性層、 30…第3強磁性層、 30n…第3非磁性層、 32…磁化、 40…第4強磁性層、 51…磁気シールド、 52…保護層、 60…電子電流、 61…センス電流、 72…磁化、 72a、72b…磁化成分、 81…第1の配線、 82…第2の配線、 110、111a、111b、112a〜112d、112bs、131a、131b、141a、141b…磁気記憶素子、 340…不揮発性記憶装置、 341…ロウデコーダ、 342a…書き込み回路、 342b…読み出し回路、 343…カラムデコーダ、 Anr…膜面直方向割合、 /BL…ビット線、 BL…ビット線、 MC…メモリセル、 MCA…メモリセルアレイ、 SB0…積層体、 SB1…第1積層部、 SB2…第2積層部、 SD1…積層方向、 SD2…面内軸、 TR…選択トランジスタ、 WL…ワード線、 f…周波数、 t…時間、 θ…角度、 φ…直径

【特許請求の範囲】
【請求項1】
膜面に対して垂直な成分を有する第1の方向に磁化が固定された第1強磁性層と、
磁化の方向が膜面に対して垂直な方向に可変である第2強磁性層と、
前記第1強磁性層と前記第2強磁性層との間に設けられた第1非磁性層と、
を含む第1積層部と、
前記第1強磁性層、前記第2強磁性層及び前記第1非磁性層が積層される積層方向に沿って前記第1積層部と積層された第2積層部であって、
磁化の方向が膜面に対して平行な方向に可変である第3強磁性層と、
前記第3強磁性層と前記積層方向に沿って積層され膜面に対して垂直な成分を有する第2の方向に磁化が固定された第4強磁性層と、
前記第3強磁性層と前記第4強磁性層との間に設けられた第2非磁性層と、
を含む第2積層部と、
を含む積層体を備え、
前記第3強磁性層の位置における前記第1強磁性層、前記第2強磁性層及び前記第4強磁性層からの漏れ磁界Hs(Oe)、前記第3強磁性層の磁気異方性Ku(erg/cm)、前記第3強磁性層のダンピング定数α、前記第3強磁性層の磁化Ms(emu/cc)、及び、前記第3強磁性層の反磁界係数Nzは、
【数9】


の関係を満たし、
前記積層方向に沿って前記積層体に電流を流すことによりスピン偏極した電子を前記第2強磁性層に作用させ、且つ、前記第3強磁性層の磁化を歳差運動させることにより発生する回転磁界を前記第2強磁性層に作用させることにより、前記第2強磁性層の磁化の方向を前記電流の向きに応じた方向に決定可能としたことを特徴とする磁気記憶素子。
【請求項2】
前記第1の方向は、前記第2の方向に対して逆向きであることを特徴とする請求項1記載の磁気記憶素子。
【請求項3】
前記積層体は、前記第1積層部と前記第2積層部との間に設けられた第3非磁性層をさらに含み、
前記第3非磁性層は、ルテニウム(Ru)、タンタル(Ta)、タングステン(W)、白金(Pt)、パラジウム(Pd)、モリブデン(Mo)、ニオブ(Nb)、ジルコニウム(Zr)、チタン(Ti)、及び、バナジウム(V)よりなる群から選択されたいずれかの金属、または、前記群から選択された少なくとも2つ以上を含む合金を含むことを特徴とする請求項1または2に記載の磁気記憶素子。
【請求項4】
前記積層体は、前記第1積層部と前記第2積層部との間に設けられた第3非磁性層をさらに含み、
前記第3非磁性層は、ルテニウム(Ru)、オスミウム(Os)、及び、イリジウム(Ir)よりなる群から選択されたいずれかの金属、または、前記群から選択された少なくとも2つ以上を含む合金を含み、
前記第3非磁性層の厚さは、3ナノメートル以下であることを特徴とする請求項1または2に記載の磁気記憶素子。
【請求項5】
前記漏れ磁界Hs(Oe)、前記第3強磁性層の磁気異方性Ku(erg/cm)、前記第3強磁性層のダンピング定数α、前記第3強磁性層の磁化Ms(emu/cc)、及び、前記第3強磁性層の反磁界係数Nzは、
【数10】



の関係を満たすことを特徴とする請求項1〜4のいずれか1つに記載の磁気記憶素子。
【請求項6】
前記漏れ磁界Hs(Oe)、前記第3強磁性層の磁気異方性Ku(erg/cm)、前記第3強磁性層のダンピング定数α、前記第3強磁性層の磁化Ms(emu/cc)、前記第3強磁性層の反磁界係数Nz、前記第3強磁性層の体積V(cm)、及び、読み出し動作の際に前記第3強磁性層に流される読み出し電流I(A)は、
【数11】


の関係(hはプランク定数(erg・s)、eは電気素量(A・秒)、θは、前記第3強磁性層の前記磁化の方向と前記積層方向との間の角度(rad)、g(θ)は、スピン偏極度に依存するスピントランスファの効率を表すパラメータ)を満たすことを特徴とする請求項1〜4のいずれか1つに記載の磁気記憶素子。
【請求項7】
前記漏れ磁界Hs(Oe)、前記第3強磁性層の磁気異方性Ku(erg/cm)、前記第3強磁性層のダンピング定数α、前記第3強磁性層の磁化Ms(emu/cc)、及び、前記第3強磁性層の反磁界係数Nz、前記第3強磁性層の体積V(cm)、及び、読み出し動作の際に前記第3強磁性層に流される読み出し電流I(A)は、
【数12】


の関係(hはプランク定数(erg・s)、eは電気素量(A・s)、θは、前記第3強磁性層の前記磁化の方向と前記積層方向との間の角度(rad)、g(θ)は、スピン偏極度に依存するスピントランスファの効率を表すパラメータ)を満たすことを特徴とする請求項1〜4のいずれか1つに記載の磁気記憶素子。
【請求項8】
前記積層体の少なくとも一部の側面に対向する磁気シールドをさらに備えたことを特徴とする請求項1〜7のいずれか1つに記載の磁気記憶素子。
【請求項9】
請求項1〜8のいずれか1つに記載の磁気記憶素子と、
前記磁気記憶素子の一端に直接または間接に接続された第1の配線と、
前記磁気記憶素子の他端に直接または間接に接続された第2の配線と、
を備えたことを特徴とする不揮発性記憶装置。
【請求項10】
前記磁気記憶素子と前記第1の配線との間、及び、前記磁気記憶素子と前記第2の配線の間の少なくともいずれかの間に設けられた選択トランジスタをさらに備えたことを特徴とする請求項9記載の不揮発性記憶装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate


【公開番号】特開2013−69819(P2013−69819A)
【公開日】平成25年4月18日(2013.4.18)
【国際特許分類】
【出願番号】特願2011−206661(P2011−206661)
【出願日】平成23年9月21日(2011.9.21)
【出願人】(000003078)株式会社東芝 (54,554)
【Fターム(参考)】