説明

4輪独立駆動車両の制御装置

【課題】インホイールモータのいずれか1つにフェイルが発生し、その出力トルクが減少する状況であっても、安定した走行を継続させることが可能な4輪独立駆動車両の制御装置を提供すること。
【解決手段】駆動力源として力行機能と回生機能とを有する電動機と、摩擦力により車輪を制動するブレーキ装置とを備え、前後左右の4輪のトルクをそれぞれ独立に制御可能な4輪独立駆動車両の制御装置において、前記4輪のいずれか1輪にフェイルが生じた際に、前記電動機が力行制御される場合は、前記車両全体の総駆動トルクを制限し、前記電動機が回生制御される場合は、前記車両全体の総制動トルクを前記フェイルが生じていない通常状態に維持するフェイルセーフ手段(ステップS3,S5)を設けた。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、電動機を駆動力源とし、かつ前後左右の4輪のトルクをそれぞれ独立に制御することが可能な4輪独立駆動車両の制御装置に関するものである。
【背景技術】
【0002】
近年、電気自動車の一形態として、車輪のホイール内部もしくはその近傍に電動機を配置してその電動機により車輪を直接駆動する、いわゆるインホイールモータ方式の車両が開発されている。このインホイールモータ方式の車両では、各車輪(駆動輪)毎に設けられた電動機を個別に力行制御もしくは回生制御することにより、各駆動輪に付与する駆動トルクもしくは制動トルクを個別に制御することができる。すなわち、電動機を駆動力源とする4輪独立駆動車両を構成することができる。また、電動機が駆動輪のホイール内部もしくはその近傍に設けられて駆動輪に直接動力を伝達するものであるから、従来の車両に設けられている変速機やデファレンシャルなどの動力伝達機構を設ける必要がなくなり、車両の構成を簡素化することができる。
【0003】
上記のようなインホイールモータ方式の車両を含む電気自動車、あるいはハイブリッド車など、電動機を車両の駆動力源として使用する場合、通常、電動機は使用限度として定格トルクや定格速度あるいは温度上昇などの特性を考慮して運転制御される。それに関連して、モータの過負荷運転による過熱を防止することを目的とした電動機を駆動力源とする車両の一例が特許文献1に記載されている。この特許文献1に記載された電動車両は、モータ温度が所定温度よりも高い場合にトルク制限を実行するモータ駆動装置が搭載された車両であって、モータの力行トルクによって車両駆動力を発生可能なように構成されている。特に、車両の制動力を発生させるための制動機構を更に備えている場合に、モータ温度が所定温度よりも高い領域において、モータの出力トルクに対して、モータの回生トルク発生時に力行トルク発生時よりも相対的に厳しい制限を加えるように構成されている。
【0004】
なお、特許文献2には、モータやブレーキ系の異常時に、直進走行安定性や旋回走行安定性を確保することを目的として、前後輪のうち少なくとも一方の左右輪がそれぞれ2つのモータにより駆動され、両モータへのトルク出力指令により左右輪へのトルク配分を制御するように構成された車両のトルク配分制御装置であって、特に、左右輪のうちの1輪のみが異常であり、かつ過回転異常であるとの判定時に、トルク配分値を正常輪側へオフセットさせる、もしくは異常輪を駆動するモータの出力を制限するように構成された車両のトルク配分制御装置が記載されている。
【0005】
また、特許文献3には、独立駆動方式車両の車輪の一部が走行中に駆動不能に陥ったときに、走行を可能にするとともに安全性を確保することを目的として、例えばモータを駆動源とする車両において、左側の車輪の駆動力の合計と、右側の車輪の駆動力の合計との比が、正常時と駆動不能時とで同じになるように各車輪に対する目標駆動力を補正するように構成された車輪独立駆動式車両の駆動力制御装置が記載されている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2007−244072号公報
【特許文献2】特開2006−256454号公報
【特許文献3】特開2005−119647号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
上記の特許文献1に記載されている車両では、モータの温度が所定温度よりも高い場合に、そのモータの出力トルクが制限されるので、モータの温度上昇が抑制され、そのためモータの過熱を防止することができる。例えば駆動時にモータを力行制御して発生させる駆動トルクを減少させることにより、あるいは制動時にモータを回生制御して発生させる制動トルクを減少させることにより、モータの温度上昇を抑制することができる。
【0008】
この特許文献1に記載されているモータの過負荷運転による過熱を防止するための構成は、前述のインホイールモータ方式の4輪独立駆動車両の制御に対しても適用することができる。例えば、4輪独立駆動車両のいずれか1輪のインホイールモータの温度が所定温度よりも高くなってしまうようなフェイルが生じた場合に、そのフェイルが生じたインホイールモータの出力トルクを制限することにより、温度上昇を抑制して過熱による損傷を防止することができる。
【0009】
しかしながら、走行中にフェイルした電動機の出力トルクが制限されるので、安定走行のために必要な駆動力もしくは制動力が不足し、あるいは4輪の駆動トルクもしくは制動トルクのバランスが悪くなり、車両挙動が乱れてしまう可能性がある。また、フェイルした電動機の分を他の正常な電動機で補う場合、それら正常な電動機が過負荷の状態になってしまう可能性もある。このように、前述したような4輪独立駆動車両において、フェイルセーフの観点から、いずれかの車輪の電動機にフェイルが生じた場合であっても安定した車両挙動の下で走行を継続させるためには、未だ改良の余地があった。
【0010】
この発明は上記の技術的課題に着目してなされたものであり、各車輪をそれぞれ駆動する電動機のいずれか1つにフェイルが発生し、その出力トルクが減少する状況であっても、安定した走行を継続させることが可能な4輪独立駆動車両の制御装置を提供することを目的とするものである。
【課題を解決するための手段】
【0011】
上記の目的を達成するために、請求項1の発明は、駆動力源として力行機能と回生機能とを有する電動機と、摩擦力により車輪を制動するブレーキ装置とを備え、前後左右の4輪のトルクをそれぞれ独立に制御可能な4輪独立駆動車両の制御装置において、前記4輪のいずれか1輪にフェイルが生じた際に、前記電動機が力行制御される場合は、前記車両全体の総駆動トルクを制限し、前記電動機が回生制御される場合は、前記車両全体の総制動トルクを前記フェイルが生じていない通常状態に維持するフェイルセーフ手段を備えていることを特徴とする制御装置である。
【0012】
また、請求項2の発明は、請求項1の発明において、前記フェイルセーフ手段が、前記総駆動トルクを制限する場合に、前記フェイルが生じた車輪の前記電動機が出力する駆動トルクを制限するとともに前記左右方向におけるフェイルが生じた側のフェイルが生じていない車輪の前記電動機が出力する駆動トルクを増大させ、前記電動機が回生制御される場合に、前記フェイルが生じた車輪の前記電動機が出力する制動トルクを制限するとともに前記フェイルが生じた側のフェイルが生じていない車輪の前記電動機が出力する制動トルクを増大させかつ前記フェイルが生じた車輪に対して前記ブレーキ装置による制動トルクを付与する手段を含むことを特徴とする制御装置である。
【0013】
また、請求項3の発明は、請求項1または2の発明において、前記フェイルセーフ手段が、前記電動機が力行制御されかつ要求駆動力が相対的に小さい場合に、前記左右方向におけるフェイルが生じていない側の、前記フェイルが生じた車輪に前記前後方向で対向する車輪の駆動トルクを該フェイルが生じた車輪に前記左右方向で対向する車輪の駆動トルクよりも大きくする手段を含むことを特徴とする制御装置である。
【0014】
また、請求項4の発明は、請求項1または2の発明において、前記フェイルセーフ手段が、前記左右いずれか一方の前輪にフェイルが生じた際に、前記電動機が力行制御されかつ要求駆動力が相対的に大きい場合に、前記フェイルが生じていない側の前輪の駆動トルクを該フェイルが生じていない側の後輪の駆動トルクよりも大きくし、前記電動機が回生制御されかつ要求制動力が相対的に大きい場合は、前記フェイルが生じていない側の前輪の制動トルクを該フェイルが生じていない側の後輪の制動トルクよりも大きくする手段を含むことを特徴とする制御装置である。
【0015】
また、請求項5の発明は、請求項1または2の発明において、前記フェイルセーフ手段が、前記左右いずれか一方の前輪にフェイルが生じた際に、前記電動機が力行制御される場合は、前記フェイルが生じていない側の前輪の駆動トルクを該フェイルが生じていない側の後輪よりも先に出力する手段を含むことを特徴とする制御装置である。
【0016】
また、請求項6の発明は、請求項1または2の発明において、前記フェイルセーフ手段が、前記電動機が回生制御されかつ要求制動力が相対的に小さい場合に、前記フェイルが生じた側のフェイルが生じていない車輪の制動トルクを制限するとともに該フェイルが生じた車輪を前記ブレーキ装置により制動する時期を相対的に早める手段を含むことを特徴とする制御装置である。
【0017】
そして、請求項7の発明は、請求項1ないし6のいずれかの発明において、前記電動機が、前記4輪毎のホイール内もしくはその近傍に設けられ、前記4輪それぞれに直接動力を伝達してトルクを作用させるインホイールモータを含むことを特徴とする制御装置である。
【発明の効果】
【0018】
請求項1の発明によれば、全4輪のうちいずれか1輪にフェイルが生じた際に、電動機が力行制御される場合すなわち電動機が駆動トルクを出力する場合は、車両の駆動力源として電動機が出力する全ての駆動トルクである総駆動トルクが制限される。そのため、フェイルが生じていない他の3輪に駆動トルクを作用させる電動機に対する過負荷を防止し、それら正常な3輪による安定的な車両の駆動力を確保することができる。そして、電動機が回生制御される場合すなわち電動機が制動トルクを出力する場合は、車両の駆動力源として電動機が出力する全ての制動トルクである総制動トルクがフェイルが生じる前の状態に維持される。そのため、車両の制動力を安定して確保することができる。
【0019】
また、請求項2の発明によれば、総駆動トルクが制限される場合に、フェイルが生じた車輪に駆動トルクを作用させる電動機の出力が制限されて、そのフェイルが生じた車輪と車両の左右方向(もしくは幅方向)で同じ側のフェイルが生じていない車輪に駆動トルクを作用させる電動機の出力が増大される。そのため、車両の左右方向における駆動力のバランスを乱すことなく総駆動トルクを制限することができる。そして、電動機が回生制御される場合に、フェイルが生じた車輪に制動トルクを作用させる電動機の出力が制限されて、そのフェイルが生じた車輪と車両の左右方向で同じ側のフェイルが生じていない車輪に制動トルクを作用させる電動機の出力が増大され、なおかつブレーキ装置によってフェイルが生じた車輪に制動トルクが付与される。そのため、車両の左右方向における制動力のバランスを乱すことなく総制動トルクを維持することができる。また、フェイルが生じていない車輪に制動トルクを作用させる電動機の出力が増大されることにより、回生時に正常な電動機による発電量を増大させることができる。
【0020】
また、請求項3の発明によれば、例えば左右いずれか一方の前輪にフェイルが生じ、要求駆動力が相対的に小さい場合には、他方の前輪の駆動トルクが減少させられ、かつ他方のすなわちフェイルが生じていない側の後輪の駆動トルクが増大させられて、車両の前後の駆動トルク配分が「前輪<後輪」の状態にされる。反対に、左右いずれか一方の後輪にフェイルが生じ、要求駆動力が相対的に小さい場合には、他方の後輪の駆動トルクが減少させられ、かつ他方のすなわちフェイルが生じていない側の前輪の駆動トルクが増大させられて、車両の前後の駆動トルク配分が「前輪>後輪」の状態にされる。そのため、いずれか1輪にフェイルが生じた場合であっても、後輪駆動もしくは前輪駆動の形態で車両を安定して走行させることができる。
【0021】
また、請求項4の発明によれば、左右いずれか一方の前輪にフェイルが生じ、要求駆動力もしくは要求制動力が相対的に大きい場合は、他方の前輪の駆動トルクもしくは制動トルクが、他方のすなわちフェイルが生じていない側の後輪よりも大きくされる。そのため、走行時の冷却効率が良く熱定格トルクが大きい前輪のトルク配分を高め、走行継続可能時間を延ばすことができる。
【0022】
また、請求項5の発明によれば、左右いずれか一方の前輪にフェイルが生じた場合に、他方の前輪の駆動トルクが、他方のすなわちフェイルが生じていない側の後輪よりも先に出力される。そのため、車両の前輪で走行路面の摩擦係数等に関する情報を検知し、その情報を基に後輪の駆動トルクを適切に制御することができる。
【0023】
また、請求項6の発明によれば、左右いずれか一方の車輪にフェイルが生じ、要求制動力が相対的に小さい場合は、そのフェイルが生じた側の正常な車輪の制動トルクが制限され、フェイルが生じた車輪に対するブレーキ装置による制動が早期に行われる。そのため、フェイルが生じた側の正常な車輪の電動機による回生発電を可及的に有効に実行することができる。
【0024】
そして、請求項7の発明によれば、4輪毎にそれぞれ独立して駆動トルクもしくは制動トルクを付与する電動機として、インホイールモータが搭載される。そのため、車両の駆動力もしくは制動力を容易に前後輪でそれぞれ独立して発生させることができる。
【図面の簡単な説明】
【0025】
【図1】この発明の制御装置によるフェイルセーフ制御の基本的な流れを説明するためのフローチャートである。
【図2】この発明の制御装置によるフェイルセーフ制御の第1実施例を説明するための概念図であってその第1実施例において適用されるマップである。
【図3】この発明の制御装置によるフェイルセーフ制御の第2実施例を説明するための概念図であってその第2実施例において適用されるマップである。
【図4】この発明の制御装置によるフェイルセーフ制御の第3実施例を説明するための概念図であってその第3実施例において適用されるマップである。
【図5】この発明の制御装置によるフェイルセーフ制御の第4実施例を説明するための概念図であってその第4実施例において適用されるマップである。
【図6】この発明の制御装置によるフェイルセーフ制御の第5実施例を説明するための概念図であってその第5実施例において適用されるマップである。
【図7】この発明の制御装置によるフェイルセーフ制御の第6実施例を説明するための概念図であってその第6実施例において適用されるマップである。
【図8】従来の技術によるフェイルセーフ制御の例を説明するための概念図である。
【図9】この発明で制御の対象とする4輪独立駆動車両の構成を模式的に示す図である。
【発明を実施するための形態】
【0026】
つぎに、この発明の実施例を図面に基づいて説明する。まず、この発明で対象とする4輪独立駆動車両Veの構成および制御系統を図9に示す。この図9に示す車両Veは、車両の幅方向における左右の前輪1,2および左右の後輪3,4を有している。そして、前輪1,2は、互いにもしくはそれぞれ独立してサスペンション機構(図示せず)等を介して車両Veの車体Boに支持されていて、同様に、後輪3,4も、互いにもしくはそれぞれ独立してサスペンション機構(図示せず)等を介して車両Veの車体Boに支持されている。
【0027】
前輪1,2のホイール内部には電動機5,6が、また後輪3,4のホイール内部には電動機7,8が、それぞれ組み込まれていて、それぞれ前輪1,2および後輪3,4に動力伝達可能に連結されている。すなわち、それら前輪1,2の電動機5,6および後輪3,4の電動機7,8は、いわゆるインホイールモータ5,6,7,8であり、前輪1,2および後輪3,4と共に車両Veのばね下に配置されている。そして、各インホイールモータ5,6,7,8の回転をそれぞれ独立して制御することにより、前輪1,2および後輪3,4の駆動トルクあるいは制動トルクをそれぞれ独立して制御することができるようになっている。
【0028】
これらの各インホイールモータ5,6,7,8は、例えば交流同期モータにより構成されていて、インバータ9を介してバッテリやキャパシタなどの蓄電装置10に接続されている。したがって、各インホイールモータ5,6,7,8の駆動時には、蓄電装置10の直流電力がインバータ9によって交流電力に変換され、その交流電力が各インホイールモータ5,6,7,8に供給されることによりそれら各インホイールモータ5,6,7,8が力行制御されて、前輪1,2および後輪3,4に駆動トルクが付与される。また、各インホイールモータ5,6,7,8は前輪1,2および後輪3,4の回転エネルギを利用して回生制御することも可能である。すなわち、各インホイールモータ5,6,7,8の回生・発電時には、前輪1,2および後輪3,4の回転(運動)エネルギが各インホイールモータ5,6,7,8によって電気エネルギに変換され、その際に生じる電力がインバータ9を介して蓄電装置10に蓄電される。このとき、前輪1,2および後輪3,4には回生・発電力に基づく制動トルクが付与される。
【0029】
各車輪1,2,3,4と、それらに連動する各インホイールモータ5,6,7,8との間には、それぞれ、ブレーキ装置11,12,13,14が設けられている。各ブレーキ装置11,12,13,14は、例えば、ディスクブレーキあるいはドラムブレーキなどの摩擦力を利用して車輪を制動する公知の制動装置であって、それら各種の制動装置が適宜に選択されて設置されている。そして、これらのブレーキ装置11,12,13,14は、例えば、マスタシリンダ(図示せず)から圧送される油圧により、各車輪1,2,3,4に制動力を生じさせるブレーキキャリパのピストン(図示せず)あるいはブレーキシュー(図示せず)などを動作させるブレーキアクチュエータ15に接続されている。
【0030】
また、前輪1,2の間には、ステアリング装置16が設けられている。この車両Veにおけるステアリング装置16は、運転者によるハンドル操作により操舵されるとともに、後述の電子制御装置17からの制御信号に基づいて自動操舵が可能な構成となっている。
【0031】
上記のインバータ9およびブレーキアクチュエータ15は、各インホイールモータ5,6,7,8の回転状態、あるいはブレーキアクチュエータ15の動作状態などを制御する電子制御装置(ECU)17にそれぞれ接続されている。
【0032】
この電子制御装置17には、例えば、アクセルペダルの踏み込み量(もしくは角度、圧力)などから運転者のアクセル操作量を検出するアクセルセンサ(もしくはアクセルスイッチ)18、ブレーキペダルの踏み込み量(もしくは角度、圧力)などから運転者のブレーキ操作量を検出するブレーキセンサ(もしくはブレーキスイッチ)19、各車輪1,2,3,4の回転数を基に車速を検出する車速センサ20、各インホイールモータ5,6,7,8の温度を検出するモータ温度センサ21などの各種センサ類からの検出信号、およびインバータ9からの情報信号などが入力されるように構成されている。
【0033】
このうち、アクセルセンサ18およびブレーキセンサ19から入力される信号に基づいて、運転者のアクセル操作量およびブレーキ操作量に応じた要求駆動力もしくは要求制動力が演算されて求められる。また、インバータ9から入力される信号に基づいて、各インホイールモータ5,6,7,8の出力トルク(モータトルク)がそれぞれ演算されて求められる。例えば、インバータ9からの入力信号により、各インホイールモータ5,6,7,8が力行制御されていることを検出した場合に、その際に各インホイールモータ5,6,7,8へ供給される電力量あるいは電流値を検出し、それに基づいて各インホイールモータ5,6,7,8のモータトルクをそれぞれ算出することができる。
【0034】
これに対して、電子制御装置17からは、インバータ9を介して各インホイールモータ5,6,7,8の回転をそれぞれ制御する信号、ブレーキアクチュエータ15を介して各ブレーキ装置11,12,13,14の動作をそれぞれ制御する信号、ステアリング装置16の動作を制御する信号などが出力されるように構成されている。
【0035】
前述したように、この発明で対象としている車両Veは、前後左右の4つの車輪1,2,3,4毎に、それぞれインホイールモータ5,6,7,8が設けられていて、各車輪1,2,3,4のトルクをそれぞれ独立に制御可能な構成となっている。したがって、例えば走行中に各インホイールモータ5,6,7,8のいずれか1つにフェイルが生じ、あるいはいずれか1つの各車輪1,2,3,4と各インホイールモータ5,6,7,8との間の伝動機構等にフェイルが生じるなどして、各車輪1,2,3,4のいずれか1つの車輪で所望する駆動トルクもしくは制動トルクが得られなくなった場合でも、残りの3つの正常な車輪のトルクを制御して車両Veの走行を継続させることができる。
【0036】
ただし、その場合には、各インホイールモータ5,6,7,8の定格や温度上昇などの特性を考慮する必要があり、また、車両Veの走行安定性の観点から前後あるいは左右のトルクのバランスを考慮する必要がある。そこで、この発明における車両Veの制御装置では、いずれか1つの車輪にもしくは車輪を駆動するインホイールモータにフェイルが発生した場合であっても、安定した走行を継続可能にすること、すなわち、いわゆるフェイルセーフを確立することができるように、以下に示すフェイルセーフ制御を実行するように構成されている。
【0037】
図1は、そのフェイルセーフ制御の基本的な流れを説明するためのフローチャートであって、このフローチャートで示されるルーチンは、所定の短時間毎に繰り返し実行される。すなわち、この発明におけるフェイルセーフ制御は、各車輪1,2,3,4もしくは各インホイールモータ5,6,7,8のいずれか1つにフェイルが発生した場合に、駆動力源の回転制御状態が力行制御であるか回生制御であるかに応じてフェイルセーフ制御の内容を適宜変更するようになっている。
【0038】
具体的には、図1において、先ず、各車輪1,2,3,4もしくはそれらに連動する各インホイールモータ5,6,7,8のいずれか1つにフェイルが発生したか否かが判断される(ステップS1)。この発明におけるフェイルとは、例えば、各インホイールモータ5,6,7,8のいずれか1つに何らかの異常が発生し、あるいは各インホイールモータ5,6,7,8と各車輪1,2,3,4との間の伝動機構等のいずれか1つに何らかの異常が発生し、その異常が発生した車輪で所望する駆動力もしくは制動力を発生させることができなくなった状態のことである。したがって、例えば各インホイールモータ5,6,7,8を制御するための信号や電流値を監視すること、あるいは各車輪1,2,3,4と各インホイールモータ5,6,7,8と差回転数を監視することなどにより、フェイルの発生を検出することができる。
【0039】
フェイルの発生が検出されないことにより、このステップS1で否定的に判断された場合は、フェイルセーフ制御を実行する必要がないので、以降の制御を実行することなくこのルーチンを一旦終了する。そして、フェイルの発生が検出されたことにより、ステップS1で肯定的に判断された場合には、ステップS2へ進み、駆動力源すなわち各インホイールモータ5,6,7,8の回転制御状態が力行制御であるか否かが判断される。
【0040】
各インホイールモータ5,6,7,8の回転制御状態が力行制御であることにより、このステップS2で肯定的に判断された場合、すなわち各インホイールモータ5,6,7,8が、それぞれ各車輪1,2,3,4で駆動力を発生させるための駆動トルクを出力している場合は、ステップS3へ進み、力行時のフェイルセーフ制御、すなわち、各車輪1,2,3,4もしくはそれらに連動する各インホイールモータ5,6,7,8のいずれか1つにフェイルが生じた際に、各インホイールモータ5,6,7,8が力行制御されている場合に、車両Ve全体の要求駆動力に対する各車輪1,2,3,4の駆動トルクの総和である総駆動トルクを制限するように各インホイールモータ5,6,7,8のトルク制御が実行される。この力行時のフェイルセーフ制御の詳細については、回生時のフェイルセーフ制御の詳細と共に後述する。
【0041】
一方、各インホイールモータ5,6,7,8の回転制御状態が力行制御でないことにより、このステップS2で否定的に判断された場合には、ステップS4へ進み、各インホイールモータ5,6,7,8の回転制御状態が回生制御であるか否かが判断される。各インホイールモータ5,6,7,8の回転制御状態が回生制御でないことにより、このステップS4で否定的に判断された場合は、以降の制御を実行することなくこのルーチンを一旦終了する。
【0042】
そして、各インホイールモータ5,6,7,8の回転制御状態が回生制御であることによりステップS4で肯定的に判断された場合には、ステップS5へ進み、回生時のフェイルセーフ制御、すなわち、各車輪1,2,3,4もしくはそれらに連動する各インホイールモータ5,6,7,8のいずれか1つにフェイルが生じた際に、各インホイールモータ5,6,7,8が回生制御されている場合に、車両Ve全体の要求制動力に対する各車輪1,2,3,4の制動トルクの総和である総制動トルクを、フェイルが生じる以前の正常時の状態で維持するように各インホイールモータ5,6,7,8のトルク制御が実行される。
【0043】
上記のようにして、ステップS3もしくはステップS5で、力行時のフェイルセーフ制御もしくは回生時のフェイルセーフ制御が実行されると、このルーチンを一旦終了する。
【0044】
(第1制御例)
次に、この発明における第1制御例として、力行時のフェイルセーフ制御の具体例を説明する。この第1制御例は、力行時のフェイルセーフ制御の基本的な例であって、図2に示す各インホイールモータ5,6,7,8の制御マップに基づいて実行される。この図2の制御マップは、いずれか1つのインホイールモータ(この実施例では前輪右側のインホイールモータ6)にフェイルが生じた場合に、残りの3つのインホイールモータ(すなわちこの実施例では各インホイールモータ5,7,8)の駆動トルクを制御するためのものである。
【0045】
具体的には、この図2の制御マップは、所定の要求駆動力に対して各車輪1,2,3,4に作用する駆動トルクの総和である総駆動トルクと、各車輪1,2,3,4それぞれのトルク配分もしくはトルク分担率とを示している。なお、この図2を含めこれ以降に説明する各制御マップにおいて、T1は、各インホイールモータ5,6,7,8単体の許容最大トルク(定格トルク)を示し、T2は、各インホイールモータ5,6,7,8単体の温度上昇を考慮した場合に上限とするのが好ましい熱定格トルクを示している。
【0046】
図2の制御マップにおいて、所定のアクセル開度すなわち要求駆動力における破線L0とアクセル開度を表す横軸との間の距離が、いずれのインホイールモータにもフェイルが生じていない正常時の総駆動トルク、すなわち各インホイールモータ5,6,7,8が許容最大トルクの範囲で出力可能な最大駆動トルクの総和を表している。したがって、アクセル開度100%における破線L0と横軸との間の距離が、最大の総駆動トルクとなっている。
【0047】
また、所定のアクセル開度における実線(太線)L4と横軸との間の距離が、インホイールモータ6にフェイルが生じた場合における後輪右側のインホイールモータ8の駆動トルクを表し、所定のアクセル開度における実線(細線)L1と上記の実線L4との間の距離が、インホイールモータ6にフェイルが生じた場合における前輪左側のインホイールモータ5の駆動トルクを表している。また、所定のアクセル開度における実線(太線)L3と上記の実線L1との間の距離が、インホイールモータ6にフェイルが生じた場合における後輪左側のインホイールモータ7の駆動トルクを表している。
【0048】
したがって、アクセル開度100%における実線L3と横軸との間の距離が、インホイールモータ6にフェイルが生じた場合における正常な残り3つの各インホイールモータ5,7,8の総駆動トルクを表している。すなわち、上記の破線L0とこの実線L3との比較から、インホイールモータ6にフェイルが生じた場合には、上記の正常な各インホイールモータ5,7,8の総駆動トルクが制限されることが分かる。
【0049】
そして、上記のインホイールモータ7の駆動トルクを表す実線L3と実線L1との間の距離およびインホイールモータ5の駆動トルクを表す実線L1と実線L4との間の距離の和と、インホイールモータ8の駆動トルクを表す実線L4と横軸との間の距離とが等しくもしくはほぼ等しくなるように設定されている。すなわち、車両Ve左側のインホイールモータ5およびインホイールモータ7が出力する駆動トルクの合計と、車両Ve右側のインホイールモータ8が出力する駆動トルクとが等しくもしくはほぼ等しくなるように設定されている。
【0050】
したがって、正常時に各インホイールモータ5,6,7,8のトルク配分が等配分されている状態に対して、インホイールモータ8すなわちフェイルが生じた側(この実施例では右側)のフェイルが生じていない車輪4のインホイールモータ8が出力する駆動トルクが増大させられ、インホイールモータ5が出力する駆動トルクが減少させられていることにより、各インホイールモータ5,7,8による総駆動トルクとしては、正常時と比較して制限されている。
【0051】
このように、この第1制御例で示す力行時のフェイルセーフ制御によれば、4つのうち右側の前輪2に連動するインホイールモータ6にフェイルが生じた場合に、正常な残りの3つのインホイールモータ5,7,8の駆動トルクを、上記のような図2に示す制御マップに基づいて制御することにより、いずれのインホイールモータにもフェイルが生じていない正常時と比較して、フェイルが生じていない各インホイールモータ5,7,8による総駆動トルクが制限される。そのため、それら各インホイールモータ5,7,8に対する過負荷を防止するとともに、それら正常な各インホイールモータ5,7,8によって車両Veの駆動力を安定して確保することができる。
【0052】
また、総駆動トルクが制限される場合に、フェイルが生じた車輪2に駆動トルクを作用させるインホイールモータ6の出力が制限されて、そのフェイルが生じた車輪2と車両Veの左右方向(もしくは幅方向)で同じ側のフェイルが生じていない車輪4に駆動トルクを作用させるインホイールモータ8の出力が増大される。そのため、車両Veの左右方向における駆動力のバランスを乱すことなく総駆動トルクを制限することができる。
【0053】
なお、要求駆動力が大きく熱定格トルクT2を超過するような場合は、フェイルが生じた車輪2に駆動トルクを作用させるインホイールモータ6と車両Veの左右方向で反対側の車輪(この実施例では車輪1,3)に駆動トルクを作用させるインホイールモータ(この実施例ではインホイールモータ5,7)の出力を増大させ、それとともに、ステアリング装置16による操舵角を自動制御して車両Veの進行方向を修正することもできる。その結果、各インホイールモータ5,7,8が熱定格トルクT2を超過するのを回避させるために車両Veの左右方向で駆動力が不均等になった場合であっても、ステアリング装置16による自動操舵が適宜実行されることにより、車両Veの偏向を防止することができる。
【0054】
また、さらに要求駆動力が大きい場合は、許容最大トルクT1を超過させない範囲で、一時的に熱定格トルクT2を超過させて各インホイールモータ5,7,8の駆動トルクを出力することにより、運転者の要求に対して可及的に対応することができる。
【0055】
(第2制御例)
図3は、この発明の第2制御例として、力行時のフェイルセーフ制御で適用される制御マップを示している。この図3の制御マップは、実質的には前述の図2で示した制御マップと同じであり、この第2制御例は、いずれか1つのインホイールモータ(この実施例では前輪右側のインホイールモータ6)にフェイルが生じた場合に、車両Veの駆動形態を前輪駆動もしくは後輪駆動(この実施例ではインホイールモータ7,8による後輪駆動)にして、車両Veの走行を安定させるための制御である。
【0056】
この第2制御例では、図3の制御マップにおいて範囲Aで示すような、要求駆動力すなわちアクセル開度が相対的に小さい場合には、車両Veの左右方向におけるフェイルが生じていない側の、フェイルが生じた車輪に左右方向で対向する車輪の駆動トルクよりも、フェイルが生じた車輪に車両Veの前後方向で対向する車輪の駆動トルクが大きくなるように制御される。すなわち、この実施例では、右側の前輪2に連動するインホイールモータ6にフェイルが生じ、アクセル開度が相対的に小さい場合には、左側の前輪1に連動するインホイールモータ5の駆動トルクが減少させられ、かつ左側の後輪3に連動するインホイールモータ7の駆動トルクが増大させられて、車両Veの前後の駆動トルク配分が「前輪<後輪」の状態にされる。したがって、車両Veの駆動形態が、左右の後輪3,4のインホイールモータ7,8の出力による後輪駆動の状態、もしくは後輪3,4を主体とする駆動状態で制御される。
【0057】
なお、これとは反対に、例えば左側の後輪3に連動するインホイールモータ7にフェイルが生じ、アクセル開度が相対的に小さい場合には、右側の後輪4に連動するインホイールモータ8の駆動トルクよりも、右側の前輪2に連動するインホイールモータ6の駆動トルクが大きくなるように制御される。すなわち、右側の後輪4に連動するインホイールモータ8の駆動トルクが減少させられ、かつ左側の前輪1に連動するインホイールモータ5の駆動トルクが増大させられて、車両Veの前後の駆動トルク配分が「前輪>後輪」の状態にされる。したがって、車両Veの駆動形態が、左右の前輪1,2のインホイールモータ5,6の出力による前輪駆動の状態、もしくは前輪1,2を主体とする駆動状態で制御される。
【0058】
またさらに、この第2制御例では、図3の制御マップにおいて範囲Aで示すように、要求駆動力すなわちアクセル開度が相対的に小さい場合に、車両Veの左右方向におけるフェイルが生じていない側の前後輪のうち、後輪よりも前輪の方が先に駆動トルクを出力するように制御される。すなわち、この実施例では、右側の前輪2に連動するインホイールモータ6にフェイルが生じ、アクセル開度が相対的に小さい場合には、フェイルが生じていない左側の前輪1に連動するインホイールモータ5の駆動トルクが、左側の後輪3に連動するインホイールモータ7よりも先に出力される。そのため、例えば走行路面の摩擦係数を、走行中に後輪3,4のトルク制御に先行して前輪1,2によって検知することができる。
【0059】
このように、この第2制御例で示す力行時のフェイルセーフ制御によれば、いずれか1輪にフェイルが生じた場合であっても、後輪駆動もしくは前輪駆動の形態で車両Veを安定して走行させることができる。
【0060】
また、左右いずれか一方の前輪1(もしくは2)にフェイルが生じた場合に、他方の前輪2(もしくは1)の駆動トルクが、他方のすなわちフェイルが生じていない側の後輪4(もしくは3)よりも先に出力される。そのため、車両Veの前輪1(もしくは2)で走行路面の摩擦係数等に関する情報を検知し、その情報を基に後輪3(もしくは4)の駆動トルクを適切に制御することができる。
【0061】
(第3制御例)
図4は、この発明の第3制御例として、力行時のフェイルセーフ制御で適用される制御マップを示している。この第3制御例は、前輪1,2側の左右いずれか一方のインホイールモータ(この実施例では前輪右側のインホイールモータ6)にフェイルが生じた場合に、走行中の冷却効果を考慮してフェイルが生じていない他方の前輪1,2側のインホイールモータ(この実施例では前輪左側のインホイールモータ5)の駆動トルクを後輪3,4側よりも大きくして、フェイル発生後の走行可能距離もしくは走行可能時間を延長させるための制御である。
【0062】
この第3制御例では、前輪1,2側の左右いずれか一方のインホイールモータ5(もしくは6)にフェイルが生じた場合であって、図4の制御マップにおいて範囲Bで示すような、要求駆動力すなわちアクセル開度が相対的に大きい場合には、車両Veの左右方向におけるフェイルが生じていない側の前輪の駆動トルクが、左右方向におけるフェイルが生じていない側の後輪の駆動トルクよりも大きくなるように制御される。すなわち、この実施例では、右側の前輪2に連動するインホイールモータ6にフェイルが生じ、アクセル開度が相対的に大きい場合には、左側の前輪1に連動するインホイールモータ5の駆動トルクが、左側の後輪3に連動するインホイールモータ7の駆動トルクよりも増大させられる。なお、これとは反対に、左側の前輪1に連動するインホイールモータ5にフェイルが生じ、アクセル開度が相対的に大きい場合には、右側の前輪2に連動するインホイールモータ6の駆動トルクが、右側の後輪4に連動するインホイールモータ8の駆動トルクよりも増大させられる。
【0063】
車両Veが走行する際に、各インホイールモータ5,6,7,8を空冷する場合には、後輪3,4側のインホイールモータ7,8よりも前輪1,2側のインホイールモータ5,6の方が冷却効果が良くなる。そのため、後輪3,4側のインホイールモータ7,8よりも前輪1,2側のインホイールモータ5,6の方が熱定格トルクを高く設定できる。したがって、前後の各インホイールモータ5,6,7,8の駆動トルクを等配分する場合よりも、前輪1,2側のインホイールモータ5,6のトルク配分を後輪3,4側のインホイールモータ7,8よりも大きくすることにより、フェイル発生後の走行可能距離もしくは走行可能時間を延長することができる。
【0064】
このように、この第3制御例に示す力行時のフェイルセーフ制御によれば、前輪1,2側の左右いずれか一方のインホイールモータ5(もしくは6)にフェイルが生じ、要求駆動力が相対的に大きい場合は、前輪1,2側の他方のすなわちフェイルが生じていない方のインホイールモータ6(もしくは5)の駆動トルクが、後輪3,4側の他方のインホイールモータ8(もしくは7)よりも大きくされる。そのため、走行時の冷却効率が良く熱定格トルクを大きく設定できる前輪1,2側のインホイールモータ5(もしくは6)のトルク配分を高めて、走行継続可能時間を延ばすことができる。
【0065】
(第4制御例)
次に、この発明における第4制御例として、回生時のフェイルセーフ制御の具体例を説明する。この第4制御例は、回生時のフェイルセーフ制御の基本的な例であって、図5に示す各インホイールモータ5,6,7,8の制御マップに基づいて実行される。この図5の制御マップは、いずれか1つのインホイールモータ(この実施例では前輪右側のインホイールモータ6)にフェイルが生じた場合に、残りの3つのインホイールモータ(すなわちこの実施例では各インホイールモータ5,7,8)の制動トルクを制御するためのものである。
【0066】
具体的には、この図5の制御マップは、所定の要求制動力もしくは回生指令量に対して各車輪1,2,3,4に作用する制動トルクの総和である総制動トルクと、各車輪1,2,3,4それぞれのトルク配分もしくはトルク分担率とを示している。
【0067】
図5の制御マップにおいて、所定の回生指令量すなわち要求制動力における実線(太線)G2と回生指令量を表す横軸との間の距離が、車両Ve全体の総制動トルク、すなわち各インホイールモータ5,6,7,8が許容最大トルクの範囲で出力可能な最大制動トルクの総和を表している。
【0068】
また、所定の回生指令量における実線(細線)G1と横軸との間の距離が、インホイールモータ6にフェイルが生じた場合における前輪左側のインホイールモータ5の制動トルクを表し、所定の回生指令量における実線(細線)G3と上記の実線G1との間の距離が、インホイールモータ6にフェイルが生じた場合における後輪左側のインホイールモータ7の制動トルクを表し、所定の回生指令量における実線(細線)G4と上記の実線G3との間の距離が、インホイールモータ6にフェイルが生じた場合における後輪右側のインホイールモータ8の制動トルクを表している。
【0069】
そして、上記の実線G2と上記の実線G4との間の距離が、インホイールモータ6にフェイルが生じた場合に、そのインホイールモータ6に連動する右側の前輪2に作用する制動トルク、具体的には、前輪2に備えられたブレーキ装置12により前輪2に付与される制動トルクを表している。したがって、上記の実線G2と回生指令量を表す横軸との間の距離が、インホイールモータ6にフェイルが生じた場合における、車両Ve全体の制動トルク、すなわち各車輪1,2,3,4に作用する総制動トルクを表している。
【0070】
一方、図8には、いずれの車輪1,2,3,4およびそれらに連動するインホイールモータ5,6,7,8にもフェイルが生じていない通常状態での各インホイールモータ5,6,7,8のトルク制御、および、前輪右側のインホイールモータ6にフェイルが生じた場合の従来技術によるフェイルセーフ制御を説明するための制御マップが示されている。
【0071】
図8の制御マップにおいて、所定の回生指令量における実線(太線)G12と回生指令量すなわち要求制動力を表す横軸との間の距離が、通常時の車両Ve全体の総制動トルク、すなわち各インホイールモータ5,6,7,8が許容最大トルクの範囲で出力可能な最大制動トルクの総和を表している。また、所定の回生指令量における実線(細線)G13と横軸との間の距離が、通常時の後輪左側のインホイールモータ7の制動トルクを表し、所定の回生指令量における実線(細線)G14と上記の実線G13との間の距離が、通常時の後輪右側のインホイールモータ8の制動トルクを表し、所定の回生指令量における実線(細線)G11と上記の実線G14との間の距離が、通常時の前輪左側のインホイールモータ5の制動トルクを表し、そして、所定の回生指令量における実線(細線)G12と上記の実線G11との間の距離が、通常時の前輪右側のインホイールモータ6の制動トルクを表している。
【0072】
上記の図8の制御マップで示す通常時の状態から、右側の前輪2に連動するインホイールモータ6にフェイルが生じた場合、従来技術によるフェイルセーフ制御の例では、インホイールモータ6に連動する右側の前輪2に作用する制動トルクが、前輪2に備えられたブレーキ装置12によって付与される。すなわち、上記のように図8の制御マップにおいて、実線G12と実線G11との間の距離に相当する大きさの制動トルクが、ブレーキ装置12により車輪2に付与されることを示している。
【0073】
これらのことから、この発明における回生時のフェイルセーフ制御では、フェイルが生じた際に、各インホイールモータ5,6,7,8が回生制御される場合に、車両Ve全体の総制動トルクが、フェイルが生じていない通常の状態のまま維持されることが分かる。
【0074】
そして、この第4制御例では、右側の前輪2に連動するインホイールモータ6にフェイルが生じた場合に、そのフェイルが生じたインホイールモータ6の出力を制限するとともに、フェイルが生じた側のフェイルが生じていない車輪すなわち右側の後輪4に連動するインホイールモータ8が出力する制動トルクが増大させられる。そして、フェイルが生じた車輪すなわち右側の前輪2に対してブレーキ装置12による制動トルクが付与される。
【0075】
すなわち、図5の制御マップでは、インホイールモータ6にフェイルが生じた場合における右側の後輪4に連動するインホイールモータ8の制動トルクの大きさに相当する実線G4と実線G3との間の距離が、上記の図8の制御マップで通常時の後輪右側のインホイールモータ8の制動トルクの大きさに相当する実線G14と実線G13との間の距離よりも増大するように設定されている。そして、増大されたインホイールモータ8の制動トルクと、フェイルが生じたことにより制限もしくは削減されたインホイールモータ6の制動トルクとを加減算して、通常時の総制動トルクに対して不足する分の制動トルクが、ブレーキ装置12により車輪2に付与されるように設定されている。そのため、インホイールモータ6にフェイルが生じた場合であっても、車両Ve全体の総制動トルクとしては、通常時の総制動トルクと同じ大きさで維持される。
【0076】
このように、この第4制御例で示す回生時のフェイルセーフ制御によれば、4つのうち右側の前輪2に連動するインホイールモータ6にフェイルが生じた場合に、正常な残りの3つのインホイールモータ5,7,8の駆動トルクを、上記のような図5に示す制御マップに基づいて制御することにより、車両Ve全体の総駆動トルクが、いずれのインホイールモータにもフェイルが生じていない正常時と同じ状態で維持される。そして、フェイルが生じた車輪2に制動トルクを作用させるインホイールモータ6の出力が制限されて、そのフェイルが生じた車輪2と車両Veの左右方向で同じ側すなわち右側のフェイルが生じていない車輪4に制動トルクを作用させるインホイールモータ8の出力が増大され、なおかつブレーキ装置12によってフェイルが生じた車輪2に制動トルクが付与される。そのため、車両Veの左右方向における制動力のバランスを乱すことなく総制動トルクを維持することができる。また、インホイールモータ6にフェイルが生じ、そのインホイールモータ6による回生時の発電量が削減される状態であっても、フェイルが生じていない車輪4に制動トルクを作用させるインホイールモータ8の出力が増大されることにより、その正常なインホイールモータ8による発電量を増大させて、回生時の発電電力を確保することができる。
【0077】
(第5制御例)
図6は、この発明の第5制御例として、回生時のフェイルセーフ制御で適用される制御マップを示している。この図6の制御マップは、基本的な部分では前述の図5で示した制御マップと同じであり、この第5制御例は、前輪1,2側の左右いずれか一方のインホイールモータ(この実施例では前輪右側のインホイールモータ6)にフェイルが生じた場合に、走行中の冷却効果を考慮してフェイルが生じていない他方の前輪1,2側のインホイールモータ(この実施例では前輪左側のインホイールモータ5)の制動トルクを後輪3,4側よりも大きくして、フェイル発生後の走行可能距離もしくは走行可能時間を延長させるための制御である。
【0078】
この第5制御例では、前輪1,2側の左右いずれか一方のインホイールモータ5(もしくは6)にフェイルが生じた場合であって、図6の制御マップにおいて範囲Cで示すような、要求制動力すなわち回生指令量が相対的に大きい場合には、車両Veの左右方向におけるフェイルが生じていない側の前輪の制動トルクが、左右方向におけるフェイルが生じていない側の後輪の制動トルクよりも大きくなるように制御される。すなわち、この実施例では、右側の前輪2に連動するインホイールモータ6にフェイルが生じ、回生指令量が相対的に大きい場合には、左側の前輪1に連動するインホイールモータ5の制動トルクが、左側の後輪3に連動するインホイールモータ7の制動トルクよりも増大させられる。なお、これとは反対に、左側の前輪1に連動するインホイールモータ5にフェイルが生じ、回生指令量が相対的に大きい場合には、右側の前輪2に連動するインホイールモータ6の制動トルクが、右側の後輪4に連動するインホイールモータ8の制動トルクよりも増大させられる。
【0079】
これは、前述の第3制御例で示した力行時のフェイルセーフ制御の場合と同様に、車両Veが走行する際に各インホイールモータ5,6,7,8を空冷する場合は、後輪3,4側のインホイールモータ7,8よりも前輪1,2側のインホイールモータ5,6の方が冷却効果が良くなることを利用したものである。したがって、前後の各インホイールモータ5,6,7,8の制動トルクを等配分する場合よりも、前輪1,2側のインホイールモータ5,6のトルク配分を後輪3,4側のインホイールモータ7,8よりも大きくすることにより、フェイル発生後の走行可能距離もしくは走行可能時間を延長することができる。
【0080】
このように、この第5制御例に示す回生時のフェイルセーフ制御によれば、前輪1,2側の左右いずれか一方のインホイールモータ5(もしくは6)にフェイルが生じ、要求制動力が相対的に大きい場合は、前輪1,2側の他方のすなわちフェイルが生じていない方のインホイールモータ6(もしくは5)の制動トルクが、後輪3,4側の他方のインホイールモータ8(もしくは7)よりも大きくされる。そのため、走行時の冷却効率が良く熱定格トルクを大きく設定できる前輪1,2側のインホイールモータ5(もしくは6)のトルク配分を高めて、走行継続可能時間を延ばすことができる。
【0081】
(第6制御例)
図7は、この発明の第6制御例として、回生時のフェイルセーフ制御で適用される制御マップを示している。この第6制御例は、いずれか1つのインホイールモータ(この実施例では前輪右側のインホイールモータ6)にフェイルが生じた場合であって、要求制動力すなわち回生指令量が相対的に小さい場合に、フェイルが生じた車輪に対するブレーキ装置による制動トルクを早期に作用させて、正常なインホイールモータ(この実施例では後輪右側のインホイールモータ8)による回生時の発電電力を有効に活用するための制御である。
【0082】
この第6制御例では、図7の制御マップにおいて範囲Dで示すような、回生指令量が相対的に小さい場合には、車両Veの左右方向におけるフェイルが生じた側の、フェイルが生じていない車輪の制動トルクが制限されるとともに、そのフェイルが生じた車輪をブレーキ装置により制動する時期が相対的に早まるように制御される。すなわち、この実施例では、右側の前輪2に連動するインホイールモータ6にフェイルが生じ、回生指令量が相対的に小さい場合には、右側の後輪4に連動するインホイールモータ8の制動トルクが減少させられ、フェイルが生じた右側の前輪2に対するブレーキ装置12による制動が早期に実行される。
【0083】
このように、この第6制御例で示す回生時のフェイルセーフ制御によれば、左右いずれか一方の車輪にフェイルが生じ、要求制動力が相対的に小さい場合は、そのフェイルが生じた側の正常な車輪の制動トルクが制限され、フェイルが生じた車輪に対するブレーキ装置による制動が早期に行われる。そのため、フェイルが生じた側の正常な車輪のインホイールモータによる回生発電を可及的に有効に実行することができる。
【0084】
ここで、上述した具体例とこの発明との関係を簡単に説明すると、上述したステップS3,S5を実行する機能的手段が、この発明における「フェイルセーフ手段」に相当する。そのうち、ステップS3を実行する機能的手段が、この発明における「力行時のフェイルセーフ制御」を実行する手段に相当し、ステップS5を実行する機能的手段が、この発明における「回生時のフェイルセーフ制御」を実行する手段に相当する。
【符号の説明】
【0085】
1,2…前輪、 3,4…後輪、 5,6,7,8…インホイールモータ(電動機)、 11,12,13,14…ブレーキ装置、 16…ステアリング装置、 17…電子制御装置(ECU)、 Bo…車体、 Ve…車両。

【特許請求の範囲】
【請求項1】
駆動力源として力行機能と回生機能とを有する電動機と、摩擦力により車輪を制動するブレーキ装置とを備え、前後左右の4輪のトルクをそれぞれ独立に制御可能な4輪独立駆動車両の制御装置において、
前記4輪のいずれか1輪にフェイルが生じた際に、前記電動機が力行制御される場合は、前記車両全体の総駆動トルクを制限し、前記電動機が回生制御される場合は、前記車両全体の総制動トルクを前記フェイルが生じていない通常状態に維持するフェイルセーフ手段を備えていることを特徴とする4輪独立駆動車両の制御装置。
【請求項2】
前記フェイルセーフ手段は、前記総駆動トルクを制限する場合に、前記フェイルが生じた車輪の前記電動機が出力する駆動トルクを制限するとともに前記左右方向におけるフェイルが生じた側のフェイルが生じていない車輪の前記電動機が出力する駆動トルクを増大させ、前記電動機が回生制御される場合に、前記フェイルが生じた車輪の前記電動機が出力する制動トルクを制限するとともに前記フェイルが生じた側のフェイルが生じていない車輪の前記電動機が出力する制動トルクを増大させかつ前記フェイルが生じた車輪に対して前記ブレーキ装置による制動トルクを付与する手段を含むことを特徴とする請求項1に記載の4輪独立駆動車両の制御装置。
【請求項3】
前記フェイルセーフ手段は、前記電動機が力行制御されかつ要求駆動力が相対的に小さい場合に、前記左右方向におけるフェイルが生じていない側の、前記フェイルが生じた車輪に前記前後方向で対向する車輪の駆動トルクを該フェイルが生じた車輪に前記左右方向で対向する車輪の駆動トルクよりも大きくする手段を含むことを特徴とする請求項1または2に記載の4輪独立駆動車両の制御装置。
【請求項4】
前記フェイルセーフ手段は、前記左右いずれか一方の前輪にフェイルが生じた際に、前記電動機が力行制御されかつ要求駆動力が相対的に大きい場合に、前記フェイルが生じていない側の前輪の駆動トルクを該フェイルが生じていない側の後輪の駆動トルクよりも大きくし、前記電動機が回生制御されかつ要求制動力が相対的に大きい場合は、前記フェイルが生じていない側の前輪の制動トルクを該フェイルが生じていない側の後輪の制動トルクよりも大きくする手段を含むことを特徴とする請求項1または2に記載の4輪独立駆動車両の制御装置。
【請求項5】
前記フェイルセーフ手段は、前記左右いずれか一方の前輪にフェイルが生じた際に、前記電動機が力行制御される場合は、前記フェイルが生じていない側の前輪の駆動トルクを該フェイルが生じていない側の後輪よりも先に出力する手段を含むことを特徴とする請求項1または2に記載の4輪独立駆動車両の制御装置。
【請求項6】
前記フェイルセーフ手段は、前記電動機が回生制御されかつ要求制動力が相対的に小さい場合に、前記フェイルが生じた側のフェイルが生じていない車輪の制動トルクを制限するとともに該フェイルが生じた車輪を前記ブレーキ装置により制動する時期を相対的に早める手段を含むことを特徴とする請求項1または2に記載の4輪独立駆動車両の制御装置。
【請求項7】
前記電動機は、前記4輪毎のホイール内もしくはその近傍に設けられ、前記4輪それぞれに直接動力を伝達してトルクを作用させるインホイールモータを含むことを特徴とする請求項1ないし6のいずれかに記載の4輪独立駆動車両の制御装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2011−36062(P2011−36062A)
【公開日】平成23年2月17日(2011.2.17)
【国際特許分類】
【出願番号】特願2009−181320(P2009−181320)
【出願日】平成21年8月4日(2009.8.4)
【出願人】(000003207)トヨタ自動車株式会社 (59,920)
【Fターム(参考)】